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Abstract

For a LLM to be trustworthy, its confidence
level should be well calibrated with its actual
performance. While it is now common sense
that LLM performances are greatly impacted by
prompts, the confidence calibration in prompt-
ing LLMs has yet to be thoroughly explored. In
this paper, we explore how different prompting
strategies influence LLM confidence calibra-
tion and how it could be improved. We conduct
extensive experiments on six prompting meth-
ods in the question-answering context and we
observe that, while these methods help improve
the expected LLM calibration, they also trigger
LLMs to be over-confident when responding to
some instances. Inspired by human cognition,
we propose Fact-and-Reflection (FaR) prompt-
ing, which improves the LLM calibration in
two steps. First, FaR elicits the known “facts”
that are relevant to the input prompt from the
LLM. And then it asks the model to “reflect”
over them to generate the final answer. Ex-
periments show that FaR prompting achieves
significantly better calibration; it lowers the
Expected Calibration Error by 23.5% on our
multi-purpose QA tasks. Notably, FaR prompt-
ing even elicits the capability of verbally ex-
pressing concerns in less confident scenarios,
which helps trigger retrieval augmentation for
solving these harder instances.

1 Introduction

With the emergence of Large Language Models
(LLMs) (Chowdhery et al., 2022; Thoppilan et al.,
2022; OpenAI, 2022, 2023; Touvron et al., 2023;
Anil et al., 2023), various prompting strategies have
been proposed for improving the LLM performance.
It is now common sense that well-designed prompts
can help elicit desirable capabilities from LLMs

∗ Work done during an internship at Tencent AI Lab,
Bellevue. Corresponding contact email addresses: {xin-
ranz3,sherryw}@andrew.cmu.edu, {hongmingzhang, xiao-
manpan ,wenlinyao,dyu,jianshuchen}@global.tencent.com.
Our code is publicly available at: https://github.com/
colinzhaoust/fact-and-reflection.

Can	sunlight	travel	to	the	deepest	part	
of	the	Black	Sea?		
Answer	my	question	with	your	
confidence	on	the	answer.

It	can	not,	my	confidence	is	95%.

Can	sunlight	travel	to	the	deepest	part	
of	the	Black	Sea?	
Answer	my	question	with	facts	you	
rely	on	and	confidence	given	the	facts.

It	can	not.	My	confidence	is	98%	
Facts:1.Sunlight	penetration	ability…
2.Life	in	anoxic	conditions	…

fef7e0

Figure 1: An example of how different prompting meth-
ods affect confidence extraction: model verbalized con-
fidence of GPT-3.5 increases when asking the model to
elicit the facts it relies on to answer the question.

that are important for various tasks. For exam-
ple, Chain-of-Thought and its variants have been
widely used for unlocking LLM reasoning capabili-
ties (Liu et al., 2022; Wei et al., 2022b; Wang et al.,
2023; Press et al., 2023; Yao et al., 2023).

However, what is less studied is the fact that
prompting also influences the model confidence in
their responses. For example, as shown in Figure 1,
the LLM’s verbalized confidence (Lin et al., 2022)
would shift when it is asked to simply first seek sup-
porting facts. Effective confidence calibration of
LLMs — output confidence scores matching model
performance — is crucial because calibrated confi-
dence ensures the model reliability and helps guide
practical use cases, e.g., identifying potential hal-
lucinations (Kadavath et al., 2022; Varshney et al.,
2023), applying additional fact-checking (Chen
et al., 2021), etc. Beyond inference time usage,
it can also help guide the training process, e.g.,
improving instruction tuning (Chung et al., 2022).
Therefore, one central question we want to answer
is: how do different prompting methods influence
the confidence calibration?

To do so, we first start by assessing six different
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prompting strategies, on Question-Answering (QA)
datasets that rely on reasoning (Geva et al., 2021)
and knowledge (Bordes et al., 2014). In our assess-
ment, we employ confidence calibration, specifi-
cally Expected Calibration Error (ECE) (Guo et al.,
2017) and Macro Calibration Error (MacroCE) (Si
et al., 2022), to measure the discrepancy between
a model’s performance and its confidence levels.
They are widely recognized metrics for evaluating
the quality of confidence scores in models, as dis-
cussed in prior studies (Desai and Durrett, 2020;
Si et al., 2023). We find that different prompting
methods generally suffer from over-confidence, and
exhibit poor calibration at the instance level.

Psychological and cognitive research (Block and
Harper, 1991; George et al., 2000) indicates that
human’s over-confidence can be mitigated by dis-
entangling the processes of fact acquisition and rea-
soning. Instead of reasoning while stating the facts,
explicitly recalling all relevant facts before delib-
eration can avoid early anchoring the reasoning
process onto the first upcoming fact in the context.
Accordingly, we propose our Fact-and-Reflection
(FaR) prompting to improve model confidence cali-
bration — see Figure 2 for an example. Specifically,
it consists of three steps: first, prompting the model
for potential known facts and their sources, second,
eliciting reflective reasoning to connect all recalled
knowledge, and finally, generating the answer.

Our experiments on aforementioned datasets
demonstrate that FaR prompting significantly re-
duces the confidence calibration error across vari-
ous calibration measures (23.5% and 13.9% under
ECE and MacroCE, respectively).

Further analysis reveals that the improvement
comes from that FaR prompting intrigues the model
to generate cautious answers that express concerns,
such as adding a comment like “there is no suf-
ficient evidence” after the answer. We observe
that expressing concerns co-occurs with an average
of 13.2% reduction in confidence relative to the
situations without expressing concerns. This phe-
nomenon can suggest a potential mechanism that
helps detect hard instances that are not answerable
with LLM’s internal knowledge and may benefit
from retrieval augmented generation.

In summary, our main contributions are:

1. We study how different prompting methods
influence confidence calibration and find that
many methods, though generally being helpful,
suffer from the over-confidence issue.

Question:	what	does	Jamaican	people	speak?	
What	are	the	facts	needed	to	answer	this	question?	
Supporting	Facts:	
1.Jamaican	people	typically	speak	English	…	
2.Jamaican	Creole	or	Patois	is	one	commonly	…	

Given	above	facts	you	provided,	what	are	the	sources?	
Sources:	
1.	https://www.babbel.com/en/magazine/what-
language-do-jamaicans-speak	
2.	https://en.wikipedia.org/wiki/Jamaican_Creole	

Given	above	facts	provided,	what	is	your	reasoning?	
Reasoning:	
There	are	two	languages	they	speak	…

Therefore,	choose	a	final	answer.	
Answer:	English	and	Creole

Fact

Reflection

Answer

Figure 2: An example of the proposed FaR prompt-
ing, which consists of three steps: fact, reflection, and
answer. Before answering the question and extracting
the confidence scores, FaR explicitly decomposes the
entire process into fact elicitation (with corresponding
sources) and reflectively reasoning over the facts. The
answers will then be utilized in the prompt to gener-
ate the final answer. Highlighted text denotes the input
prompts provided to the model.

2. We propose FaR prompting that improves
model confidence calibration across various
common metrics.

3. We show that FaR prompting mitigates over-
confidence. Moreover, FaR prompting elicits
the model to express concerns when answering
questions they are uncertain of.

2 How do Prompting Strategies Influence
Confidence Calibration in LLMs?

To examine the influence of different prompting
strategies on the confidence calibration of LLMs,
we follow Tian et al. (2023) and conduct our ex-
periments on QA. Specifically, we use QA datasets
that mainly examine either reasoning (StrategyQA,
Geva et al., 2021) or knowledge (Web Questions.
Bordes et al., 2014) where the confidence calibra-
tion is important due to the reliability requirement.
An example question would be, “Did Aristotle use
a laptop?”. The answers are either in the format of
Yes/No or a set of short phrases, e.g., “English and
Creole”. We report the macro-average scores for
two kinds of QA data. Following Wei et al. (2022a),
we conduct all of our experiments using OpenAI’s
GPT-3 (text-davinci-003, Ouyang et al., 2022)1.
We set the default max output length to 120 and the
temperature to 1.2.

1At the time of writing, this model was the only one that
both has sufficient reasoning capability for solving StrategyQA
and provides access to the logits (necessary for confidence cal-
culation). Experiments with other models are in Section 3.4.
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2.1 Evaluation Metrics

We follow the conventional approach (Guo et al.,
2017; Desai and Durrett, 2020; Si et al., 2022), and
measure the confidence score quality with confi-
dence calibration: the error between model per-
formance and confidence scores across instances.
Lower errors indicate better calibration and thus,
higher accuracy in confidence scores.

We measure model performance with the exact
match criterion, where an answer is deemed correct
if it matches a candidate label after normalization.

Then, following Si et al. (2022), we use both Ex-
pected Calibration Error (ECE, Guo et al., 2017)
and Macro-average Calibration Error (MacroCE,
Si et al., 2022) to evaluate the quality of confi-
dence calibration. Both metrics are based on the
difference between the confidence scores and the
correctness of model predictions.
• ECE uses a bucketing approach that measures the

overall calibration. It assigns examples with
similar confidence to the same buckets. Given
the input x, ground truth y, prediction ỹ, and
Bm denoting the m-th bucket for (x,y,ỹ), for N
model predictions bucketed into M buckets:

ECE =
1

N

M∑

m=1

|Bm| · |Acc(Bm)− Conf(Bm)|,

where Acc(Bm) and Conf(Bm) denote the ac-
curacy and averaged confidence for the samples
in Bm, and |Bm| denotes the cardinality of Bm.
Such definition triggers bucket-canceling effect,
i.e., the over- and under- confident instances
within the same bucket may cancel with each
other and hence not contribute to the overall er-
ror. As a result, ECE provides a stable overall
measure of how well the confidence matches the
expected accuracy — A single outlier (e.g., ex-
tremely high confidence for a wrong prediction)
will not affect the global ECE too much.

• MacroCE is the (macro) average of the following
two instance-level calibration errors (ICE), which
measures the ICE for the Np correctly and Nn

incorrectly predicted samples, respectively:

ICEpos =
1

Np

Np∑

i=1

(1− Conf(xi, ỹi)), ∀iyi = ỹi,

ICEneg =
1

Nn

Nn∑

i=1

(Conf(xi, ỹi)− 0),∀iyi ̸= ỹi.

MacroCE does not have the bucket-canceling ef-
fects, provides more granularity, and is more reflec-
tive of instance-level confidence calibration. For
example, consider a set of two predictions {1, 0}
with labels {0, 0}. When the corresponding con-
fidence scores are {1, 0}, assume they are in the
same bucket, the output of ECE will be 0, as the
difference between the average confidence scores
and accuracy. Therefore, the high error extreme
instances are not captured by ECE (e.g., wrong, but
conf = 1). In contrast, each instance contributes
to MacroCE (equals 1 in this case), which reveals
more instance-level effects than ECE.

2.2 Prompting Methods

We examine how different prompting methods in-
fluence confidence calibration. Besides Standard
prompting, we categorize the strategies into two
kinds: Step Decomposition and Multi-Candidate
Selection (examples in Figure 7 in the appendix).

Step Decomposition prompts guide the model
to output multiple steps of thoughts or knowledge
that may facilitate answering the question in the
final step. We consider three common ones:
1. Knowledge prompting (Liu et al., 2022): We

insert a prompt “Generate some knowledge
about the question:” after the original question,
and have the model generate the final answer
based on the generated knowledge. We also
explore a minor variant: Knowledge+Explain,
which denotes changing the final prompt from
“Answer:” to “Explain and Answer:”.

2. Chain-of-Thought prompting (CoT, Wei et al.,
2022b): We have the model generate chained
reasoning before the final answer. We fol-
low (Kojima et al., 2023) to conduct zero-shot
CoT by adding a prompt “Let’s think step by
step:” after the original question.

3. Self-ask (Press et al., 2023): we have the
model decompose the original question into mul-
tiple sub-questions, generate the intermediate
answers, and combine them in the prompt to
get the final answer. In detail, we first ask the
model “Are follow-up questions needed?”. If
not, we directly get the final answer; Otherwise,
we ask the model to generate the follow-up ques-
tions and the corresponding intermediate an-
swers. All these intermediate steps are included
in the final prompt (“Question:<question>; In-
termediate Questions and Answers: <generated
question-answer pairs> Answer:”). Self-Ask (ag-
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Question:	what	does	Jamaican	people	speak?	
Answer:	English	and	Creole

English	and	Creole

Possible	Answer:	English	and	Creole		
Is	the	Possible	Answer:	(A)	True	(B)	False	
Answer:	A

Answer:	Jamaican	Creole	and	English	
Confidence(0-1): 0.9

0.8 0.5 0.8 Token Prob.

P(True)

Verbalized Conf.

0.8

Figure 3: Different methods for computing confidence
scores. The numbers in green denote the token proba-
bility of the output sequences. Highlighted texts denote
input prompts provided to the model. Note that Both
P(True) and Verbalized Confidence can be considered
as suffix prompting methods that obtain the confidence
scores after the model outputs its answer.

gregate) denotes the variant that asks the model
to answer all the intermediate questions together
in a one-step generation.
On the other hand, Multi-candidate Selection

methods acquire the final answer through querying
the model for multiple rounds and selecting a can-
didate with pseudo discussion or majority voting.
We examine the following two (we extract their
confidence scores after the final answer):
4. Self-consistency (Wang et al., 2023): We

have the model generate the answers multiple
times with the standard prompt, and select the
final answer through a majority vote. We follow
the original work to sample 10 different outputs
with a temperature 0.7.

5. Tree-of-Thought prompting (ToT, Yao et al.,
2023): We follow the naming protocol by Hul-
bert (2023), and have the model to perform state-
aware generation and search, by mimicking mul-
tiple experts discussing the input questions in
pseudo conversations. We denote our method
as pseudo-ToT since the search steps are not
conducted with a separate module.

2.3 Confidence Extraction Methods

To obtain confidence scores, we examine three
widely used methods in literatures (Figure 3):
• Token Prob.: Computed by averaging the top-1

log probability of each token over the entire se-
quence, and then applying the exponential. This
is the reciprocal of the perplexity of the generated
sequence with greedy decoding.

• P(True) (Kadavath et al., 2022): After prompt-

Conf. Extraction ECE ↓ MacroCE ↓
Token Prob. 27.3 80.8
P(True) 41.3 70.3
Verbalized 42.7 106.3

Table 1: Expected Calibration Error (ECE) and Macro-
average Calibration Error (MacroCE) of different confi-
dence extraction methods in Table 2. Results are aver-
aged over different prompting methods. Down arrows
indicate the lower is the better.

ing the model to generate the answer with “Pos-
sible answer: <model_answer>”, it appends a
suffix prompt asking “Is the possible answer: (A)
True (B) False”, and then extracts the probability
of answering “A” as the confidence score.

• Verbalized Confidence (Lin et al., 2022): Af-
ter the model generates the answer, it further
prompts the model to generate the confidence
score by using suffix “Confidence (0-1):”2.
To validate how applicable these methods are

in our scenario, we first compare different confi-
dence extraction methods to determine the ones
to be used in the later experiments. We use the
ECE and MacroCE metrics averaged over differ-
ent prompting methods to measure the overall and
instance-level performance (the lower, the better).
The average is calculated over the 8 baseline meth-
ods in Table 2.

Table 1 shows that overall, Token Prob. achieves
the best ECE scores. On the other hand, P(True)
achieves the best MacroCE scores. The reason can
be that, while P(True) consistently measures the
probability of an option for a multiple-choice ques-
tion, Token Prob. can be unstable when the gener-
ated answer is long and includes auxiliary words
(“English and Creole” vs. “Jamaican people speak
English and Creole” in Figure 3). Verbalized Con-
fidence shows the worst performance among the
confidence extraction methods, indicating that fur-
ther improvement is still required (e.g., tailor-made
instructions shown in Tian et al. (2023)). There-
fore, we exclude Verbalized Confidence extraction
method in our following experiments, and for sim-
plicity, we only report an aggregated overall per-
formance of calibration by averaging the metrics
obtained from using Token Prob. and P(True)3.

2Slightly different from Lin et al. (2022), we further add
the hint for the range of confidence score “(0-1)”.

3See Table 8 in the appendix for the full results. Since the
confidence scores are on the same scale (0-1) and a specific
calibration metric (e.g., ECE) essentially measures the same
kinds of error regardless of the confidence extraction methods,
reporting the average measures the overall performance.
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Prompting Method ECE ↓ MacroCE ↓
Standard 30.3 54.6

Step Decomposition

Knowledge 33.0 73.9
Knowledge+Explain 27.1 64.5
CoT 29.6 62.3
Self-Ask 26.4 66.6
Self-Ask (aggregate) 26.0 66.0

Multi-Candidate Selection

Self-Con. 34.7 67.6
Pseudo-ToT 33.0 73.5

Table 2: Expected Calibration Error (ECE) and Macro-
average Calibration Error (MacroCE) of different
prompting methods of different categories, as intro-
duced in Section 2.2. The down arrow implies the lower,
the better. The best-performing entry on each column is
marked in bold.

2.4 Impact of Prompting Methods

Table 2 shows the impact of prompting methods on
confidence calibration. We observe:

Step Decomposition helps improve the model’s
overall expected confidence calibration (Knowl-
edge+Explain, CoT, Self-Ask), as reflected by ECE
in Table 2. The reason can be that, with the gen-
erated chained thoughts or intermediate question-
answer pairs in the context, the model-generated
confidence is grounded onto the elicited thoughts.

Multi-Candidate Selection may cast a negative
effect on the confidence calibration (Self-Con.,
Pseudo-ToT). The reason can be that the candidate
proposal stage adds to the randomness of the con-
text. The final answers are sampled from and not
necessarily aware of other candidates when gener-
ated, but the confidence extraction methods are con-
ditioned on all candidates. Such mismatch can lead
to lower confidence calibration and suggests that
specialized confidence extraction methods should
be developed to improve their performance.

Compared to the standard prompting, the ad-
vanced prompting methods (e.g., CoT) seem to de-
grade the instance-level calibration i.e., they can
simultaneously achieve higher MacroCE but lower
ECEs. Such mismatch suggests that instance-level
extreme values have a negative impact on the confi-
dence calibration. We then raise the question: what
are the major causes of these high error extreme
values: over-confidence (high confidence in wrong
answers) or under-confidence (low confidence in
correct answers)? We select the best-performing
prompting methods to investigate further.

0.0 0.2 0.4 0.6 0.8
score

Standard

Knowledge

CoT

Self-Ask

pr
om

pt

Confidence Accuracy

Figure 4: Accuracy versus confidence scores. Higher
confidence scores relative to accuracy mean that the
model is generally over-confident. In the ideal calibra-
tion case, there should be no gap between them.

Over-Confidence Degrades Calibration We
compare the averaged confidence scores (over all
the samples) and accuracy in Figure 4. In the ideal
case where we reach the perfect instance-level cali-
bration (i.e., 100% confidence on all correct exam-
ples and 0% confidence on all wrong examples),
the averaged confidence scores shall be equal to
the accuracy of the model on the data.

We can observe that, compared to the standard
prompting, all other prompting methods suffer
even more from over-confidence. Similar to well-
observed anchoring bias in human behavior (Tver-
sky and Kahneman, 1974; Furnham and Boo, 2011;
Lieder et al., 2018), the generated thoughts may
also mislead the model to be over-certain of its
own answer. For example, the generated thoughts
such as from the steps we can conclude that can
potentially make the model confident with its an-
swers. If the output answer is wrong, the instance-
level error from these high-confidence cases will be
high. In the following section, we will investigate
if treatment towards human anchoring bias can be
extended to model confidence calibration.

3 Fact-and-Reflection Prompting

3.1 Motivation and Design
There have been studies in cognitive science on
how to mitigate the over-confidence caused by
anchoring-bias (Block and Harper, 1991; George
et al., 2000), and the ideas have also been recently
introduced to AI research in the context of decision-
making (Echterhoff et al., 2022). One key insight
is: Providing multiple facts, instead of conducting
reasoning directly with the first acquired fact, can
help reduce the bias. We take inspiration from
this finding and propose to improve confidence cal-
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ibration by decomposing the fact-acquiring and
reflective reasoning steps during prompting. We
expect this framework to encourage the inclusion of
multi-perspective facts in the context before reason-
ing toward the answer. We denote it as Fact-and-
Reflection (FaR) prompting, which can be viewed
as a new form of step decomposition prompting
with constrained decomposition.

Specifically, in FaR prompt context, we guide
the models with facts, sources of facts, and re-
flective reasoning conditioned on the facts be-
fore extracting confidence. In the CoT-style
prompting, the answer A is sampled from the
p(A|Q,T, θ) (Dohan et al., 2022), where Q de-
notes the query, T denotes the thoughts generated
by the model and θ denotes the model parameters.
In FaR, we sequentially acquire two component
thoughts Tf and Tr (i.e., fact and reflection steps
in Figure 2) regarding the known facts and reflec-
tive reasoning of the model about the questions.
Motivated by Weller et al. (2023), we believe the
trustworthiness of the sources can help stabilize the
model reflection Tr. For model generated Tf, we
add a sub-step to ask the model to elicit the known
sources of the generated facts.

Upon acquiring the component thoughts, The
final answer A is sampled from p(A|Q,Tf, Tr, θ),
i.e., the model generates the answer with the final
step prompt including thoughts at each step.

We design FaR prompting to be orthogonal to
confidence extraction so that it can work together
with different confidence extraction methods. The
results of the step questions and the final answer
will be utilized in the prompt to extract confidence.

In an ideal case, the model-generated “facts”
should be verified by humans. However, human
annotations are not always available and are hard
to collect. To address this, we propose to prompt
the models to generate relevant internal knowledge
that may potentially help answer the questions as
“facts”. We conduct a pioneering study on introduc-
ing external verification in Section 3.3.

3.2 Performance and Ablations

We further study the generalized case with model-
generated knowledge as Tf. We compare FaR and
its different variants with the strongest baselines in
Table 2 (i.e., entries with the lowest calibration er-
rors measured in ECE and in MacroCE), which are
Self-Ask (aggregate) and Standard, respectively.
Table 3 shows that FaR prompting brings im-

Prompting Method ECE ↓ MacroCE ↓
Standard 30.3 54.6
Self-Ask (aggregate) 26.0 66.0

FaR (fact-only,no-source) 26.4 72.3
FaR (fact-only) 29.5 70.5
FaR (no-source) 28.4 60.5
FaR (+explain) 27.4 71.7

FaR (final) 22.8 47.0

Table 3: Expected Calibration Error (ECE) and Macro-
average Calibration Error (MacroCE) of different ab-
lations of FaR. Standard and Self-Ask (aggregate) are
provided for reference. “↓” denotes that lower is better.
The best performance of each column is in bold.

provements on both calibration metrics.
We also include an extensive ablation study over

the prompt components of FaR: fact-only denotes
the variant that we do not conduct the reflection
step; no-source is where we remove source gen-
eration (i.e., no “what are the sources...” step in
Figure 2); +explain changes the final prompt from
“Answer:” to “Explain and Answer:”, which is mo-
tivated by Knowledge+Explain. From the table,
we can observe that, although all variants achieve
lower ECE than Standard Prompting, our final de-
sign (denoted as FaR (final)) achieves the best per-
formance among them. On the other hand, for
MacroCE, most variants get lower performance
than the standard prompting. Therefore, all the
components in FaR are important in achieving good
performance in both metrics.

3.3 What Impacted the Calibration?

The performance with ECE and MacroCE in Ta-
ble 2 and 3 together presents that FaR does mitigate
the over-confidence issue analyzed in Section 2.4,
with both the correct and wrong predictions consid-
ered in the design of MacroCE.

We now analyze how FaR prompting shifts the
confidence distribution of the LLM generation.
We compare it with CoT, as it is one of the best-
performing models in the Step Decomposition cate-
gory (Table 2). In addition, FaR can be regarded as
a specially structured step decomposition prompt-
ing that explicitly disentangles the steps of knowl-
edge self-prompting and reflective reasoning.

Figure 5 presents the specific distribution of con-
fidence scores extracted by Token Prob., P(True),
and Verbalized, respectively, smoothed by Kernel
Density Estimation. We can observe that FaR miti-
gates the overconfidence issue that we aspire to

8707



0.0 0.2 0.4 0.6 0.8 1.0
Token Prob.

0

50

100

150

200

C
ou

nt

Prompting Method
CoT

0.0 0.2 0.4 0.6 0.8 1.0
Token Prob.

Prompting Method
FaR

0.0 0.2 0.4 0.6 0.8 1.0
P(True)

0

50

100

150

200

C
ou

nt

Prompting Method
CoT

0.0 0.2 0.4 0.6 0.8 1.0
P(True)

Prompting Method
FaR

0.0 0.2 0.4 0.6 0.8 1.0
Verbalized.

0

50

100

150

200

C
ou

nt

Prompting Method
CoT

0.0 0.2 0.4 0.6 0.8 1.0
Verbalized.

Prompting Method
FaR

Figure 5: Distribution of the confidence scores (Token Prob., P(True), Verbalized, in the top, middle, bottom,
respectively), with different prompting styles, CoT (left) and FaR (right). Kernel Density Estimation (curved lines)
is used to show smoothed distributions. FaR prompting helps lower the distribution mass on the high confidence
side for different confidence extraction methods.

resolve for different confidence extraction methods
— it damps down the peak values and moves the den-
sity mass to the left side (lower confidence). That
said, it still suffers from overconfidence. Such be-
havior partially explains the better confidence cal-
ibration results we observed in Section 2.4. Even
the density mass of the verbalized confidence is
much balanced with FaR prompting, which greatly
enhances the usability of such a method for black-
box language models that have no access to the
output token probabilities. Again, consistent with
our findings in Section 2.4, various confidence ex-
traction methods still suffer from over-confidence
issue, i.e., the confidence scores are higher than the
target model performance, especially Verbalized
Confidence. With Verbalized Confidence, even
though FaR helps reduce over-confidence, further
effort shall be made in future work to make it better
calibrated.

Expressing Concern. How is FaR mitigating
overconfidence? As shown in Table 4, qualita-
tively, we observe an interesting phenomenon of
the model outputs, named Expressing Concern.
With FaR prompting, besides outputting the an-
swer, the model further specifies its thoughts on
the answers, including (i) if the current evidence
provided in the context is enough to answer the
question; (ii) if a specific condition should be given

Question (Label) Model Output

Would Persephone be a
good consultant to a land-
scape architect? (True)

False. There will need to be
further research.

Would an owl monkey en-
joy a strawberry? (True)

It is not possible to answer
with current evidence this
question.

Does Post Malone have a
fear of needles? (False)

False, but there is not yet suffi-
cient evidence to answer.

Should a Celiac sufferer
avoid spaghetti? (True)

False (It depends on the ingre-
dients of the spaghetti)

Table 4: Examples of the model expressing concerns. In
addition to the output answer, the model also specifies
whether the knowledge is sufficient or whether further
conditions are needed to make the prediction. See Ta-
ble 9 for detailed outputs for other steps, e.g., diverse
model-generated sources.

to answer the question.
Comparing the probability of the model express-

ing concern using different prompts, FaR prompt-
ing can inspire the model to express concerns, com-
pared to using the original CoT prompting (in 8.8%
vs 3.9% examples). If we further remove the con-
straint on choosing one answer in the instruction,
the model will elaborate further comments besides
giving the answers (e.g., “False. there is not yet suf-
ficient evidence”) in 59.2% cases with FaR prompt-
ing (denoted as FaR(free)). These complex an-
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Figure 6: The confidence (extracted via token probabil-
ity) and the accuracy when the model expresses (Lower)
and does not express (Upper) concerns. With FaR (free)
prompting, LLMs are more inclined to express concerns
when the confidence and accuracy are low.

swers are harder for performance computation than
simple short answers, but give a clear picture for
reviewing the model comments on the given ques-
tions. For example, as shown in Table 4, the model
correctly answers that Post Malone does not have
a fear of needles 4, but it still expresses concerns
about insufficient evidence. Upon the concerns,
users can choose to find further evidence not in the
model training data to help verify the guess (e.g.,
some video interviews). Yet the definition of “good”
concerns requires future investigation.

Notably, as shown in Figure 6, the expressing
of concerns in the output typically co-occurs with
lower confidence scores, which in turn co-occurs
with lower accuracy on the questions. This implies
that the model exhibits better confidence calibra-
tion — with FaR prompting, the model tends to
express concern on hard examples. As a result, it
can further act as a kind of AI feedback (Bai et al.,
2022) for self-improvement by identifying difficult
instances. For example, such a signal can trigger
an iterative application of retrieval augmentation
for checking and correcting the facts and sources
provided by the models (Chen et al., 2021).

When extracting the statistics in Figure 6 from
FaR(final) and CoT, on examples that the model
expresses concerns, the accuracy is 25% (FaR) vs.
60.2% (CoT); on examples that models do not ex-
press concerns, the accuracy is 67.0% (FaR) vs.
69.9% (CoT). That is, FaR identifies examples with
lower overall accuracy than CoT when concerns
are expressed.

Addressing hard examples. We further simu-
late the scenario of detecting hard examples that
are not answerable with LLM’s internal knowledge

4The model supports its educated guess with Post Malone’s
numerous tattoos in the fact step. See Table 9 for details of
fact and reflection steps of this and other examples.

Prompting Method ECE ↓ MacroCE ↓
Vicuna-13b

Standard 19.4 35.5
FaR 11.1 33.9

Baichuan-2-13b

Standard 17.1 64.3
FaR 10.1 48.4

Llama-2-13b

Standard 19.3 71.9
FaR 15.4 54.2

Table 5: Expected Calibration Error (ECE) and Macro-
average Calibration Error (MacroCE) of different
prompting methods and different backbone large lan-
guage models. The down arrow implies the lower, the
better. The best-performing entry on each column is
marked in bold.

and then using external knowledge as augmenta-
tion. We only sample and apply retrieval augmen-
tation to the examples where the model expresses
concerns. The treatment is done by adding corre-
sponding external knowledge to the hard examples
in the context, with the same setting and external
knowledge from Zhao et al. (2023)5.

We compare this sampling strategy with ran-
domly sampling the same portion of examples (i.e.,
control) and check the performance gain. With
FaR(final) as the prompting method, we can ob-
serve a 68.0% performance improvement in accu-
racy through external augmentation on hard exam-
ples that the model expresses concerns about. In
contrast, randomly sampling the same portion of ex-
amples and applying augmentation only achieved
a 15.0% performance improvement in accuracy,
implying that FaR(final) identifies the instances de-
manding the external knowledge more accurately
by checking if the model expresses concerns.

3.4 Generalizing to other language models
In this section, we generalize our experiments
beyond GPT-3 to test the robustness of FaR across
other language models. We follow the previous
settings and conduct experiments on StrategyQA,
with Token Prob. as the confidence extraction
method. We extend our experiments with Vi-
cuna (Vicuna-13b-v1.3, Zheng et al., 2023),
Baichuan (Baichuan2-13B-Chat, Baichuan,
2023), LLama 2 (Llama-2-13b-chat-hf, Tou-
vron et al., 2023). Our inference structure is built

5Further analysis on this setting incorporating external
knowledge is in the appendix (Section A.4) .
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with vLLM (Kwon et al., 2023).
From Table 5, we can observe that, compared

to Standard Prompting, FaR consistently leads to
reduced calibration errors, measured by either ECE
or MacroCE, which suggests the generalizability
of FaR towards open-source language models.

4 Related Work

Prompting Large Language Models. Recent re-
search (Brown et al., 2020; Kojima et al., 2023)
on large language models shows that in-context
learning (ICL) achieves great effectiveness in using
models as few-shot or zero-shot reasoners. Differ-
ent styles of prompting such as Knowledge prompt-
ing (Liu et al., 2022), Chain of Thought (CoT)
prompting (Wei et al., 2022b), Self-Consistency
prompting (Wang et al., 2023), Self-ask (Press
et al., 2023), Tree-of-Thought prompting (Yao
et al., 2023), and Skill-in-Context (Chen et al.,
2023) are then proposed to guide the model to elicit
its knowledge for reasoning in different ways.

Most previous work mainly focuses on how such
a prompting method influences the model perfor-
mance on various tasks. In this paper, we compare
how confidence calibration is influenced by differ-
ent prompting methods.

Confidence Calibration of LLMs. Extracting
honest and constructive confidence scores of large
language models is considered an important step
towards building faithful and trustworthy AI sys-
tems (Desai and Durrett, 2020; Si et al., 2023).
Many methods have been proposed recently to
get reliable confidence scores with different suffix
prompts added after outputting possible answers,
such as a follow of True or False multiple choice
question (Kadavath et al., 2022), asking models
to describe the likelihood of the answer (Lin et al.,
2022), and describing the likelihood that the an-
swer is correct with demonstrations (Tian et al.,
2023). However, it remains unclear how robust the
methods are and how good they are comparatively.
Our paper proposes FaR prompting as an orthog-
onal method to improve calibration and compare
different extraction methods with our test bed.

Recently, Yang et al. (2023) discuss the honesty
problem of models as part of the alignment. Qian
et al. (2023) study the confidence change when
there is a conflict between in-context and model
internal knowledge. Another line of work links
model confidence with human confidence (Zhou
et al., 2023; Steyvers et al., 2024; Zhou et al., 2024).

In our paper, we refer to the model trustworthiness
based on confidence calibration.

5 Conclusion and Discussion

We closely examined how different prompting
methods influence confidence calibration and found
that over-confidence may lead to bad instance-
level calibration. To address that, we propose FaR
prompting, which decomposes the fact elicitation
and reflective reasoning steps, and shows that it
provides a good way to calibrate the model perfor-
mance across different metrics. Our further analy-
sis reveals that the reasons behind the performance
can be that FaR prompting elicits the model to gen-
erate more honest answers, via expressing concerns
in lower confidence situations.

We encourage the designers of future prompting
methods to evaluate their influence on the confi-
dence calibration in addition to the performance.
Meanwhile, we further suggest that future confi-
dence extraction methods should take into account
their robustness to different prompting methods.

Limitations

Extension to Human Instruction Datasets. So
far, we have conducted our experiments on
question-answering datasets and shown the effec-
tiveness of current prompting methods, confidence
extraction methods, and our FaR prompting. Our
method may be examined on the human instruction
datasets as well, such as the Human Eval dataset
(Wang et al., 2022). However, since the targeted
answers are in free form (e.g., ranging from de-
signing a personal profile to writing a program for
quick sort), it may require very different evaluation
metrics beyond simple accuracy, which calls for
further study and is thus beyond the scope of this
paper. Multi-perspective evaluation of the output
can be necessary, such as the annotations provided
in (Malaviya et al., 2023). We consider such exten-
sion to be an important future work.
Inner Model Dynamics. The confidence extrac-
tion methods compared in this paper are mainly
based on signals from the model’s logits or final
sampled tokens. It remains unclear how prompt-
ing methods will influence the model uncertainty
estimated from inner model dynamics, e.g., the
tree structure-ness of a sentence inside transform-
ers (Murty et al., 2023). We still study the LLM
model as a black box and do not closely examine
how the model’s internal working mechanisms are
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influenced by the FaR prompting. One future direc-
tion is to study the confidence calibration problem
by using mechanistic interpretation (Olsson et al.,
2022). We will leave such internal interpretability
work as a future work.
Model Elicited Sources. In this paper, we explore
how model-generated knowledge sources help im-
prove model confidence calibration. In the Ap-
pendix, we present the detailed outputs for all steps
of FaR, such as diverse model-generated sources
that include but are not limited to URLs, in Ta-
ble 9. For example, in the last row of Table 9, the
model elicits the sources as the Mayo Clinic and
the National Institute of Diabetes and Digestive
and Kidney Diseases (NIDDK). The model then
autonomously comments on whether these sources
are reputable, which plays the role of verbal confi-
dence extraction on generated facts. However, Gao
et al. (2023) directly generating sources based on
facts may lead to inaccurate sources. Exploring
the relation between the source’s factualness and
confidence calibration can be an important future
direction.

Ethical Considerations

Our datasets are written by professional annota-
tors or extracted from Wikipedia for the purpose of
scientific research on question-answering systems.
However, we observe no model outputs that use ex-
tremely sensational language or inappropriate and
aggressive language. The questions and outputs
collected are all in English, which can limit the
generalizability of the performance of our pipeline.
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A Appendix

A.1 Examples of Baseline Prompting Methods
In Section 2.2, we provide a detailed description
of all the baseline prompting methods. Here we
further illustrate their working mechanisms in Fig-
ure 7. It shows how these methods are categorized
into two major classes — Step Decomposition and
Multi-Candidate Selection — based on the number
of answer candidates are provided during the infer-
ence stage. All the baseline methods are evaluated
on the original splits of StrategyQA (dev, 229 ex-
amples) and Web Questions (test, 100 examples),
respectively. The data points we evaluated will be
released upon acceptance.

A.2 Details about Over-confidence or
Under-confidence

As we discussed earlier, most of the prompting
methods generally suffer from over-confidence. We
now include some additional results to further show
that this is true across different confidence extrac-
tion methods.

In Figure 8, we show the average confidence
scores and the accuracies of different prompting
methods, where the confidence score for each
method is obtained by averaging the confidence
scores of all samples. From Figure 8, we can ob-
serve that our conclusion on over-confidence ex-
ists generally across different confidence extraction
methods and prompting methods. We can also iden-
tify that Verbalized Confidence suffers most from
the over-confidence issue.

A.3 Impact of Confidence Extraction
Methods with Additional Metrics

Conf. Extrac-
tion Methods

ECE-
avg ↓

ECE-
wins ↑

MacroCE-
avg ↓

MacroCE-
wins ↑

Token Prob. 23.5 8 78.4 4
P(True) 37.2 1 65.4 5
Verbalized 40.6 0 101.9 0

Table 6: Expected Calibration Error (ECE) and Macro-
average Calibration Error (MacroCE) of different con-
fidence extraction methods. Results are averaged over
different prompting methods. Up (Down) arrows indi-
cate the higher (lower) is the better.

In Section 2.3, we compare different confidence
extraction methods using the ECE and MacroCE
(i.e., ECE-avg and MacroCE-avg) averaged over
different prompting methods to measure the over-
all and instance-level performance (the lower, the

Prompting Method ECE ↓
Standard 25.5
FaR (human fact-only) 14.8
FaR (human fact + reflection) 13.6

Table 7: Expected Calibration Error (ECE) of using
human-annotated facts in FaR, denoted by FaR (human).
We use token probability as the confidence extraction
method. The down arrow denotes that a lower score
implies better calibration performance.

better). To ensure that extreme values do not in-
fluence the conclusion, we further report the addi-
tional metric of ECE/MacroCE-wins in Table 6. If
a confidence extraction method achieves the low-
est ECE/MacroCE-based errors with respect to a
prompting method, it is marked as a win. All the
scores are the average of 8 baseline methods in
Table 2 together with FaR (final).

From Table 6, we observe that Token Prob.
achieves the best ECE for both the averaged scores
and wins. In contrast, P(True) achieves the best
MacroCE for both the averaged scores and wins,
though the margin is not large. Therefore, the con-
clusion based on this new metric is consistent with
the earlier findings.

A.4 FaR with Human-Annotated External
Knowledge

To further verify the idea that providing facts helps
with confidence calibration, we incorporate multi-
ple human-annotated facts (i.e., Tf ) that are rel-
evant to each question (Q) on the StrategyQA
task (Geva et al., 2021). The benchmark in this ex-
periment is not the mix of StrategyQA and WebQ
since human-annotated supporting facts are only
provided in StrategyQA. For example, for the ques-
tion “Did Aristotle use a laptop”, one piece of the
fact can be “The first laptop was invented in 1980”.
Note that we assume the human-annotated facts
are accurate, and therefore omit the step of gener-
ating the source. Incorporating human-annotated
facts isolates the imperfection that may arise from
model-generated facts and sources, which serves
as a controlled ablation for examining the help-
fulness of facts. As shown in Table 7, including
human-annotated facts in the context can improve
the confidence calibration significantly.

Furthermore, with the reflection step linking the
facts and the final answer, the calibration can be
further improved. However, human annotations are
not always available and are hard to collect. To
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Question:	what	does	Jamaican	people	speak?	
Answer:	English	and	Creole

Question:	what	does	Jamaican	people	speak?	
Generate	some	related	knowledge:	
Jamaican	people	typically	…

Answer:	English	and	Creole

Question:	what	does	Jamaican	people	speak?	
Let’s	think	step	by	step:	
Step	1:	Jamaican	people	speak	…

Question:	what	does	Jamaican	people	speak?	
Answer:	English	and	Creole

Question:	what	does	Jamaican	people	speak?	
Are	follow-up	Questions	needed?	Yes

Follow-up	Questions	and	Answers:		
Q1.	In	daily	life	…	A1.	People	…

Question:	what	does	Jamaican	people	speak?	
Imagine	three	different	experts	discussing		
the	question:	
Expert	1:	Jamaican	people	usually	…

Standard Prompting Knowledge Prompting

CoT

Self-consistency

Self-ask Pseudo-ToT

Step Decomposition Prompting Multi-Candidate Selection Prompting

Answer:	English	and	Creole

Answer:	English	and	Creole
Answer:	English	and	Creole

Figure 7: Different existing prompting methods to be analyzed. Each rounded rectangle represents one round
of prompting. The intermediate answers will then be utilized in the final prompt to extract the answer to the
original question. Highlighted text denotes the sentences provided to the model as the prompt. The loop icon in
self-consistency prompting denotes re-sampling with the same prompt multiple times.
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Figure 8: Accuracy and averaged confidence scores of
different confidence extraction methods and prompting
methods. In an ideal case with perfect calibration, the
gap between these two scores should be zero.

address this, our proposed FaR prompting elicits
the models to generate relevant internal knowledge
and sources that serve as the proxy for such golden
human-annotated facts.

A.5 Influence of Final-step Prompt Length

We identify the final prompt length as another con-
founder in our experiments: although different
prompting styles are initialized with the same max
length to output the thoughts, the thoughts injected
in the final prompt asking for answers to the origi-
nal questions may still have varied length.
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SQA
WQ

Prompt
CoT
FaR

Figure 9: Expected Calibration Error (ECE) of CoT and
FaR prompting with varying final prompt lengths on
StrategyQA (SQA) and WQ.

To remove the potential influence of actual
prompt length, we further compare CoT and FaR
with varying prompt lengths of the final step, ask-
ing the model for the answers. Figure 9 presents
the change of the ECE with respect to varying final-
step prompt length. The table shows that FaR (dash
lines) consistently outperforms CoT (solid lines) on
different datasets and lengths. We can also observe
that longer prompt length does not always lead
to lower error, further validating our experimental
results in Section 2.4 by removing the potential
confounder: final prompt length.

A.6 Influence of the Number of
Demonstrations

We identify the number of demonstrations in the
prompt context as another important factor influ-
encing the model calibration.
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Method Accuracy ECE-Token. ECE-P(True) MacroCE-Token. MacroCE-P(True)

Standard 60.3 25.5 35.1 67.8 41.5

Knowledge 69.9 27.8 38.1 78.9 68.9
Knowledge+Explain 65.1 18.9 35.4 52.2 76.8
CoT 67.2 25.0 34.3 82.6 42.0
Self-Ask 60.7 17.6 35.3 58.5 74.7
Self-Ask (aggregate) 60.4 17.0 35.0 60.0 72.0

Self-Con. 63.3 35.9 33.5 97.9 37.2
Pseudo-ToT 58.5 23.4 42.7 68.0 78.9

FaR(final) 64.0 13.9 31.6 52.9 41.0

Table 8: Expected Calibration Error (ECE) and Macro-average Calibration Error (MacroCE) of different prompting
methods. The down arrow denotes the lower, the better. The best performance of each column is in bold. Token.
and P(True) denote the use of Token Prob. and P(True) as the confidence extraction methods, respectively.
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Figure 10: Expected Calibration Error (ECE) and
Macro-average Calibration Error (MacroCE) of stan-
dard prompting with a varying number of demonstra-
tions with Standard Prompting.

Figure 10 presents the change of the ECE and
MacroCE with respect to the changing number of
demonstrations with standard prompting. From the
figure we can observe that: increasing the number
of demonstrations helps reduce the error measured
by ECE but not the error measured by MacroCE.

The reason can be that similar to the influence
of the number of demonstrations on performance,
demonstrations help the models do well on the
questions that are answerable and show good con-
sistency and robustness on these questions. The
overall calibration is also improved with more ro-
bust answers. However, for extremely hard cases
where the model can not solve at all, increasing
the number of demonstrations can not help solve

the task, but may still lead to increased confi-
dence, hence the instance-level calibration is not
improved.

A.7 Full Results of ECE and MacroCE of
different prompting methods

In the main paper, we analyze the influence of
prompting methods on confidence calibration from
different perspectives, where for simplicity the re-
sults are presented by aggregating over different
dimensions (e.g., averaging the metrics over differ-
ent confidence extraction methods, or over different
baselines). For completeness and for future refer-
ence, we report the full results of different prompt-
ing strategies (including our FaR) under different
confidence extraction methods in Table 8, where
we report both ECE and MacroCE.

In terms of confidence calibration, Table 8 shows
that FaR (final) performs the best or the second
best in all settings. On the other hand, in terms of
model performance in accuracy, we also observe
that FaR (final) outperforms 5 out of 8 baselines,
but is slightly worse when compared to CoT or
Knowledge-based prompting. The reason can be
that (i) further constraints are applied to the model-
generated thoughts and limit the degree of freedom
in search; (ii) the model tends to provide conserva-
tive answers. The slight loss in accuracy may be
viewed as a kind of “calibration tax” for achiev-
ing better calibration. Nevertheless, as discussed
in Section 3.3, the conservative answers with ex-
pressed concerns can trigger and guide external
knowledge augmentation on the (hard) examples
with significant performance gain.
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Question (Label) Facts Sources Reflection Output

Would Persephone
be a good consul-
tant to a landscape
architect? (True)

1. Goddess of Spring
and Vegetation: Perse-
phone is often... 2.
Queen of the under-
world...

1. Homer’s Hymn to
Demeter: this ancient
text... 2.Ovid’s Meta-
morphoses: this col-
lection of narratives...

1. Connection to Veg-
etation and Renewal:
Persephone’s role... 2.
Cultural and Histori-
cal Influence:...

False. There will
need to be further re-
search.

Would an owl mon-
key enjoy a straw-
berry? (True)

1. Diet of Owl Mon-
keys: Owal monkeys
primarily have a diet...
2. Taste Preferences of
Primates...

1. Scientific journals
and articles on pri-
matology... (pubmed.
ncbi.nlm.nih.gov)
2. Zoological Associa-
tion websites...

1. Sweet Taste Pref-
erence in Primates...
2. Digestive Capabil-
ities...

It is not possible to
answer with current
evidence this ques-
tion.

Does Post Malone
have a fear of nee-
dles? (False)

1. Tattoo Collection:
he has a significant
number of tattoos... 2.
Public Statements:...

1. Interviews and Pro-
files: publications like
Rolling Stone, Bill-
board, GQ... 2. Social
Media: his accounts
on platforms...

1. Nature of Tattoos:
tattoos are created by
repeatedly inserting a
needle... 2. Lack of
Public Statements re-
garding a fear of nee-
dles:...

False, but there is
not yet sufficient ev-
idence to answer.

Should a Celiac
sufferer avoid
spaghetti? (True)

1. Definition of Celiac
Disease: Celiac dis-
ease is an autoim-
mune... 2. Gluten in
Wheat and Gluten-free
Alternatives:...

The recommendation
on avoiding traditional
spaghetti is supported
by reputable sources
like Mayo Clinic and
NIDDK...

1. Nature of Celiac
Disease:... Health Im-
plications of Gluten
Consumption: contin-
uous consumption of
gluten...

False (It depends on
the ingredients of
the spaghetti)

Table 9: Examples of the model output on the fact, reflection, and answer steps of FaR prompting. Detailed
explanations on each point from the model are omitted for the presentation purpose.

A.8 Full Examples of FaR Prompting
In Figure 2 and Table 4, we demonstrate the gen-
eral ideas about how FaR prompting works and
how the model answers questions while expressing
necessary concerns. Recall that FaR sequentially
prompts the LLM for (i) facts, (ii) sources; (iii)
reflection, and (iv) answers. In Table 9, we further
provide the outputs at each of these steps for the
examples in Table 4. We can observe that the out-
put concern is relevant to the facts elicited in the
context. For example, for the question, Should a
Celiac sufferer avoid spaghetti?, the model says it
depends on the ingredients, which relates to Gluten-
free alternatives for spaghetti that is discussed in
the fact step output of the model.
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