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Abstract

Text-based knowledge graph completion
(KGC) methods utilize pre-trained language
models for triple encoding and further fine-tune
the model to achieve completion. Despite their
excellent performance, they neglect the knowl-
edge context in inferring process. Intuitively,
knowledge contexts, which refer to the neigh-
boring triples around the target triples, are im-
portant information for triple inferring, since
they provide additional detailed information
about the entities. To this end, we propose a
novel framework named KnowC, which models
the knowledge context as additional prompts
with pre-trained language models for knowl-
edge graph completion. Given the substantial
number of neighbors typically associated with
entities, along with the constrained input to-
ken capacity of language models, we further
devise several strategies to sample the neigh-
bors. We conduct extensive experiments on
common datasets FB15k-237, WN18RR and
Wikidata5M, experiments show that KnowC
achieves state-of-the-art performance.

1 Introduction

Knowledge graphs are collections of facts, which
are represented as sets of triples (h, r, t), denoting
that the head entity h has a r relation with the tail
entity t. Knowledge graphs play important roles
in practical applications of many fields, such as
question answering (Bauer et al., 2018), recommen-
dation system (Zhang et al., 2016), and so on. In
real world scenarios, large-scale knowledge graphs
are usually incomplete, which hinders their perfor-
mance in downstream tasks. To solve this problem,
researchers propose many knowledge graph com-
pletion methods to infer the missing facts.

To complete the missing links in knowledge
graph, many researchers propose to embed enti-
ties and relations into vectors using representation
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techniques. In this way, the distribution of entities
and relations could be effectively modeled, which
further facilitates the completion task. Generally,
KGC methods of this kind could be divided into
embedding-based and text-based methods. Among
them, embedding-based methods aim to embed the
entities and relations into low-dimensional vectors
by the structure of the knowledge graph, such as
TransE (Bordes et al., 2013), ComplEx (Trouil-
lon et al., 2016), TuckER (Balazevic et al., 2019)
etc. On the other hand, text-based methods exploit
the available text such as name or description of
the entities and relations for inference (Xie et al.,
2016). Recently, benefit from the development of
pre-trained language models, text-based methods
achieve excellent performance in KGC task (Yao
et al., 2019; Wang et al., 2022).

However, existing text-based KGC methods
mainly focus on the triple text itself for inferring,
while neglect the knowledge context of the tar-
get triple, where knowledge context refers to the
neighboring triples around the target entities. Here
the target entity denotes the given entity for rela-
tion prediction, and the neighboring triples denote
triples directly connected to the target entity. In-
tuitively, these knowledge contexts are important
information for the inference of language model,
as they describe detailed supplemental information
about the target entities. For example, suppose
we need to infer the missing triple (James Harden,
Nationality, ?). We could only use the knowledge
implicitly inherited in the language model if we
have no additional information. In contrast, with
access of knowledge context (James Harden, Borns
In, Los Angeles) as additional information, it will
be much easier for language models to get the right
answer.

To this end, we propose a novel framework
named KnowC, which models the knowledge con-
text as additional prompts with pre-trained lan-
guage models for knowledge graph completion.
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Specifically, for a target triple to be predicted, we
sample the neighbors around the target entities as
knowledge context. We then use these knowledge
contexts as supplemental prompts, which are con-
catenated together with targets and fed into the
language models for encoding. Consequently, the
entities and relationships used for prediction are
incorporated with more supplementary information
related to them, thereby enhancing the feasibility
of arriving at accurate answers.

Despite this, there might be hundreds of neigh-
bors for a target entity in the knowledge graph,
whereas the language model has a limit on the
number of input tokens. To solve this problem, we
introduce several strategies for neighbor sampling:
random sampling, kNN sampling, and dynamic
sampling. Random sampling randomly samples
neighbors connected to the target entity, which con-
sumes least computation resource. kNN sampling
uses the target relationship as query and neighbors
relationships as keys to model the relevance be-
tween query-key pairs and select the most relevant
k neighbors (Khandelwal et al., 2019). Dynamic
sampling dynamically samples k neighbors from
the neighbor set in each epoch to mitigate the over-
fitting risk to specific neighbor configurations.

After getting the text embeddings of entities and
relations, we fine-tune the language model for in-
ference. We optimize the model with InfoNCE
contrastive loss, following recent state-of-the-art
researches (Wang et al., 2022). To evaluate the
effectiveness of KnowC, we conduct extensive ex-
periments on common datasets: WN18RR, FB15k-
237, and Wikidata5M, and compare its MRR and
Hits@k metrics with several benchmarks. Exper-
imental results show that KnowC gets excellent
performance.

Our main contributions can be summarized as
follows:

• We propose a novel framework that models
the knowledge context of target entities as
additional prompts with pre-trained language
models for knowledge graph completion.

• We further introduce several strategies for
neighbor sampling to deal with the input token
number limitation problem, where sampling
strategies include random sampling, kNN
sampling, and dynamic sampling.

• We conduct extensive experiments on com-
mon datasets: WN18RR, FB15k-237, and

Wikidata5M to evaluate the effectiveness of
KnowC, results show that KnowC gets excel-
lent performance.

2 Related Work

2.1 Pre-trained Language Models

Benefit from the success of Transformer (Vaswani
et al., 2017) architecture, recently a diverse array
of Transformer-based pre-trained language mod-
els have emerged, each contributing to the rapid
progress in natural language processing. Among
them, BERT (Devlin et al., 2019) introduces bidi-
rectional context by pre-training on masked lan-
guage modeling tasks, which helps it to understand
intricate language context. GPT (Radford et al.,
2018), on the other hand, focuses on the autore-
gressive generation pre-training with large num-
ber of parameters, enabling it to produce creative
generated texts. T5 (Raffel et al., 2020) unifies
text-to-text tasks by casting various problems into
a uniform format, exhibiting its versatility in natu-
ralanguage processing. XLNet (Yang et al., 2019b)
employs permutation language modeling to capture
bidirectionality without compromising on autore-
gressive synthesis. RoBERTa (Liu et al., 2019)
refines BERT’s training methodology to enhance
performance, while ALBERT (Lan et al., 2020)
introduces parameter-sharing techniques for effi-
ciency. There are also many other state-of-the-art
pre-trained language models that focus on limited
resource scenerios (Sanh et al., 2019; Sun et al.,
2020).

2.2 Knowledge graph completion with PLMs

To leverage the remarkble representation capabil-
ity of these pre-trained language models, many
researchers propose to apply them for knowledge
graph completion task. Generally, these models
fine-tune the PLMs on the KGC task to leverage
both the implicit knowledge in PLMs and the struc-
tured knowledge in KGs. KG-BERT (Yao et al.,
2019) first uses PLMs to perform KGC, which sim-
ply splices the labels of entities and relations in
triples as the input to PLMs. Based on KG-BERT,
MTL-KGC (Kim et al., 2020) further introduces
multi-task learning to learn more relational prop-
erties and lexical similarities in KGs. PKGC (Lv
et al., 2022) converts triples into natural prompt
sentences to mitigate the gap between structured
knowledge and natural language, and further intro-
duces soft prompts to better express the semantics
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of triples. SimKGC (Wang et al., 2022) proposes
several negatives to improve the contrastive learn-
ing efficiency, and changes the loss function to
InfoNCE to make the model focus on hard nega-
tives. GHN (Qiao et al., 2023) further leverages
a sequence-to-sequence architecture to generate
high-quality hard negative samples.

2.3 Contrastive Learning

Contrastive Learning effectively enhances represen-
tation learning by emphasizing disparities between
positives and negatives. In the realm of Natural
Language Processing, contrastive learning tech-
niques generally aim to capitalize the difference
between sentence pairs from text data in differ-
ent tasks (Gao et al., 2021; Wang et al., 2021b;
Ni et al., 2022), surpassing many non-contrastive
methods on semantic similarity evaluation. Con-
trastive learning is also used to improve the effi-
cacy of dense passage retrieval for open-domain
question answering (Karpukhin et al., 2020; Qu
et al., 2021; Xiong et al., 2020), where positive pas-
sages encapsulate those housing accurate answers.
In knowledge graph completion field, contrastive
learning is widely used for knowledge graph com-
pletion, in which typical methods focus on hard
negative mining for better triple representation
(Wang et al., 2022; Qiao et al., 2023).

3 Method

3.1 Preliminaries

A Knowledge Graph G comprises a collection of
triples T ⊆ E ×R× E , where E signifies a set of
entities, and R signifies a set of relations. Concep-
tually, a knowledge graph can be visualized as a
directed graph, where vertices correspond to enti-
ties, and directed edges connecting vertices signify
relationships between the corresponding entities.
A triple (h, r, t) encodes the presence of a relation
r from the head entity h to the tail entity t, where
h, t ∈ E and r ∈ R. The n-hop neighboring triples
of a target entity h is defined as En(h), where En(·)
is the set of n-hop neighbors.

In real-world scenarios, knowledge graphs are al-
ways incomplete, leaving a multitude of unknown
triples. To address this, knowledge graph com-
pletion task aims to identify these missing rela-
tionships given an incomplete knowledge graph.
Following the prevalent entity ranking evaluation
framework, the prediction of tail entities (h, r, ?)
needs to rank all entities given a head-relation pair

(h, r), and the head entity prediction (?, r, t) is
similar. In this study, we follow the settings of
(Malaviya et al., 2020), where we construct a in-
verse counterpart (t, r−1, h) for each triple (h, r, t),
with r−1 representing the inverse relation of r. This
reformulation greatly simplifies the task, making
it to focus solely on tail entity prediction while
effectively accounting for both directions.

3.2 Model Architecture
The overall framework of KnowC is illustrated in
Figure 1. Following SimKGC (Wang et al., 2022),
the architecture of our model adopts a bi-encoder
design. To be specific, we instantiate two distinct
BERT encoders with the same pre-trained language
model, where the first encoder BERThr is used to
encode the head-relation pair (h, r), and the second
encoder BERTt is used to encode the tail t. After
initialization, the parameters of these two encoders
are updated separately.

For a triple (h, r, t), the first encoder BERThr

generates the joint embedding of the head entity
h and the relation r. To achieve this, we con-
catenate the textual descriptions of entity h and
relation r as the input of the encoder. Specifi-
cally, to model the knowledge context around the
entity, we use the neighboring triples connected
to the entity as additional prompts for comple-
ment. Suppose there are k neighboring triples di-
rectly connected to the entity h, we explicitly use
these triples by concatenating them in the form of
h′ = h : r1, t1; r2, t2; · · · ; rk, tk. In this way, we
get more knowledge triples related to this entity,
which serve as additional prompts that describe
the supplemental information of h. By incorporat-
ing these neighboring triples as additional prompts,
we expect our model to obtain a more comprehen-
sive understanding of the entity’s semantic within
the broader knowledge graph, which improves the
model’s capacity for contextualized knowledge rep-
resentation, potentially contributing to the learning
of interdependencies between relations. We then
introduce a special [SEP] symbol between the head
description h′ and the relation r. Subsequently, the
concatenated texts are tokenized and further fed
into BERThr for encoding. Rather than directly uti-
lizing the first token’s hidden state of the last layer,
we use mean pooling followed by L2 normalization
to get the embedding ehr, since it has shown better
performance (Reimers and Gurevych, 2019). By
merging the entity h and relation r, the encoder
BERThr generates a relation-aware embedding for
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Figure 1: Illustration of the KnowC framework for knowledge graph completion. Given an triple (James Harden,
nationality, ?) to be predicted, our model first sample the neighbors around the head entity “James Harden” and the
candidate tail entity “America”, incorporating them into the original description of these entities. We then feed them
into pre-trained language models and encode them into embdddings. Finally, the model predicts the score of each
triple and select the triple with largest score as prediction.

the head entity.
The tail entity t is encoded in the similar way

with the head entity h. That is, we also concatenate
the knowledge contexts of t in the form of t′ = t :
r1, h1; r2, h2; · · · ; rk, hk. The tail texts t′ are then
fed into BERTt to compute the embedding et for
the tail entity t.

3.3 Neighbor Sampling

As shown in previous part, in KnowC we need to
model the knowledge contexts, namely the neigh-
boring triples, as additional prompts to facilitate the
completion task. In this paper, we use 1-hop neigh-
boring triples, i.e., triples directly connected to
the target entities as implementation of knowledge
context. In practical knowledge graphs, however,
entities may have a large amount of neighboring
triples, while the pre-trained language models have
limited input token number. This requires us to
sample neighbors so as to restrict the token number
as well as the computation complexity. For this
purpose, we sample the neighboring triples within
a threshold k, and propose several strategies for
neighbor sampling.

3.3.1 Random Sampling.
We sample k neighbors at the beginning of the
training process, and keep the neighbor set fixed
throughout epochs. The fixed neighbor set could
ensure that the relationships established between
entities remain consistent throughout the iterative

learning process. In this way, we aim to provide
the model with a stable knowledge context, thereby
improves the stability and robustness of the training
process.

3.3.2 kNN Sampling.
We use PLMs to measure the similarities between
relations by embedding the descriptions of relations
into embedding and calculating a cosine similar-
ity matrix for them. Here we neglect the entities
for similarity calculation, for incorporating enti-
ties together with relation involves a combinational
search, leading to exponential computational com-
plexity. We use this precomputed similarity matrix
to construct a relation similarity dictionary, and se-
lect k nearest neighbors by order of this dictionary
from the neighbor set. By this similarity calcula-
tion, we expect the target entity and relationship
to find the neighboring triples that have the most
relevant semantics for inference. In this way, the
model could focus on neighboring triples that are
more important for the prediction despite the large
neighbor set scale.

3.3.3 Dynamic Sampling.
In each epoch, we dynamically sample k neighbors
from the neighbor set. This dynamic sampling pro-
cess is executed in a random fashion, imparting
a distinctive neighbor set within each individual
epoch. This dynamic strategy endows our training
process with more adaptability and diversity. And
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Entities Relations Train Valid Test
WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466
Wikidata5M-Trans 4,594,485 822 20,614,279 5,163 5,163
Wikidata5M-Ind 4,579,609 822 20,496,514 6,699 6,894

Table 1: Statistics of the datasets used in this paper. “Wikidata5M-Trans” and “Wikidata5M-Ind” refer to the
transductive and inductive settings, respectively.

by introducing randomness, we effectively mitigate
the overfitting risk to specific neighbor configura-
tions, fostering more understanding of the underly-
ing relationships within the knowledge graph. As a
result, we expect the model to discern meaningful
patterns and extracting valuable information from
different knowledge contexts, which contributes to
its capacity for generalization.

3.4 Training and Inference
Following (Yang et al., 2019a; Chen et al., 2020),
we use InfoNCE loss with additive margin during
training:

L = − log
e(ϕ(h,r,t)−γ)/τ

e(ϕ(h,r,t)−γ)/τ +
∑|N |

i=1 e
ϕ(h,r,t′i)/τ

(1)
Here ϕ(h, r, t) is the function that calculates the
score for a candidate triple, which is defined as the
cosine similarity, i.e. ϕ(h, r, t) = cos(ehr, et) ∈
[−1, 1]. (h, r, t′) are negative samples, here we
use three kinds of negatives samples, including
In-batch Negatives, Pre-batch Negatives and Self-
Negatives introduced in SimKGC (Wang et al.,
2022). The additive margin γ > 0 encourages
the model to assign larger scores for positive triples
(h, r, t), which explicitly improves the separation
between positive and negative embeddings. The
temperature τ could scale the loss function, and an
appropriate temperature could help the model to
focus on hard negatives.

As stated previously, we only need to predict the
tail entity given head h and relation r. For tail en-
tity prediction (h, r, ?), we compute the similarity
between the head-relation embedding ehr and the
tail embedding et to select the entity with largest
score as prediction:

argmax
ti

cos(ehr, eti), ti ∈ E (2)

As spatial locality is a common characteristic ob-
served in knowledge graphs, in which entities lo-
cated closely tend to exhibit stronger relationships

compared to those farther apart, we also use Graph-
based Re-ranking (Wang et al., 2022). That is, we
explicitly increase the score of n-hop neighbors by
α ≥ 0 in prediction:

argmax
ti

cos(ehr, eti) + α1(ti ∈ En(h)) (3)

where En(h) is the set of n-hop neighbors of the
entity h.

4 Experiments

4.1 Experiment Setup

4.1.1 Datasets
We utilize three distinct datasets for our evalua-
tion process, namely WN18RR (Dettmers et al.,
2018), FB15k-237 (Toutanova et al., 2015), and
Wikidata5M (Wang et al., 2021c). The detailed
statistics are comprehensively presented in Table 1.
Compared to WN18RR and FB15k-237 datasets,
the Wikidata5M dataset has a significantly larger
scale. The Wikidata5M dataset offers two distinc-
tive settings: transductive and inductive, denoted
as “Wikidata5M-Trans” and “Wikidata5M-Ind” re-
spectively. In the transductive setting, all entities
present in the test set are also presented within the
training set. While in the inductive setting, there
is no entity overlap between the training and test
sets. With regards to textual descriptions, for the
WN18RR and FB15k-237 datasets, we leverage
the textual data provided by KG-BERT (Yao et al.,
2019). As for the Wikidata5M dataset, there are
inherent comprehensive descriptions for all entities
and relations.

4.1.2 Evaluation Metrics
Following previous researches, our Knowledge
Graph Completion model is evaluated via the en-
tity ranking task. Specifically, for each test triple
(h, r, t), we need to predict the tail entity t given
the head entity h and the relation r, and the head
entity predicition could be attained by triple revers-
ing as stated in Method section. For evaluation of
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Method
WN18RR FB15k-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
embedding-based methods
TransE (2013) 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1
DistMult (2014) 44.4 41.2 47.0 50.4 28.1 19.9 30.1 44.6
RotatE (2018) 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3
TuckER (2019) 47.0 44.3 48.2 52.6 35.8 26.6 39.4 54.4
text-based methods
KG-BERT (2019) 21.6 4.1 30.2 52.4 - - - 42.0
MTL-KGC (2020) 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8
StAR (2021a) 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2
SimKGC (2022) 66.6 58.7 71.7 80.0 33.6 24.9 36.2 51.1
GHN (2023) 67.8 59.6 71.9 82.1 33.9 25.1 36.4 51.8
KnowCrand 68.2 60.4 73.1 81.9 34.2 25.4 37.1 51.8
KnowCkNN 68.7 60.5 74.1 83.2 34.4 25.6 37.3 52.2
KnowCdyn 69.9 62.3 74.9 83.9 34.0 25.0 37.2 52.3

Table 2: Experiment results on WN18RR and FB15k-237 dataset. KnowCrand, KnowCkNN, and KnowCdyn refer
to random sampling, kNN sampling, and dynamic sampling, respectively. The bold represents the best performance.

the prediction performance, we use four automated
evaluation metrics following most researchers: the
mean reciprocal rank (MRR), as well as Hits@k
(H@k), where k ∈ {1, 3, 10}. MRR quantifies the
average reciprocal rank of test triples, while H@k
quantifies the percentage of accurate entity predic-
tions within the top-k ranks. Note that both MRR
and H@k are computed under the filtered setting
(Bordes et al., 2013), which ignores the scores at-
tributed to all known true triples within the training,
validation, and test datasets. To ensure comprehen-
sive analysis, we average the prediction metrics of
head entity and tail entity.

4.1.3 Implementation Details

Our experiment setting mainly follows SimKGC
(Wang et al., 2022): The encoders are initialized
with the bert-base-uncased model. The encoder
model could be easily replaced by any other ad-
vanced re-trained language models to enhance per-
formance. To ensure a consistent evaluation, most
hyperparameters, except for the learning rate and
training epochs, remain identical across all datasets,
thereby avoiding dataset-specific tuning. In opti-
mization process, we use grid search for the ideal
learning rate. For neighboring triple sampling, we
tune the sampled neighbor size from 1 to 10. For
target entity descriptions and neighboring triples,
we impose a truncation limit of 100 tokens. The
temperature parameter τ is initialized with 0.05,
and the additive margin γ for the InfoNCE loss is
set to 0.02. The weight of re-ranking operation dur-

ing inference is set to 0.05. For optimization, we
employ the AdamW optimizer with linear learning
rate decay. The batch size for model training is set
to 1024, and we train the model using distributed
training across 4 NVIDIA A40 GPUs. For the
WN18RR, FB15k-237, and Wikidata5M datasets,
we train for 50, 10, and 1 epochs, respectively.

4.2 Experiment results

4.2.1 Baselines
We choose both embedding-based methods and
text-based methods as baselines for performance
comparison. For embedding-based methods, we se-
lect four classical methods, including TransE (Bor-
des et al., 2013), DistMult (Yang et al., 2014), Ro-
tatE (Sun et al., 2018) and TuckER (Balazevic et al.,
2019). For text-based methods, we select several
recent representative methods that use PLMs, in-
luding KG-BERT (Yao et al., 2019), MTL-KGC
(Kim et al., 2020), KEPLER (Wang et al., 2021c),
StAR (Wang et al., 2021a), SimKGC (Wang et al.,
2022) and GHN (Qiao et al., 2023). For perfor-
mance comparison, we directly reuse the numbers
reported by SimKGC (Wang et al., 2022) and GHN
(Qiao et al., 2023).

4.2.2 Main Results
The experiment results on WN18RR and FB15k-
237 datasets are in Table 2, and the results on
large scale knowledge graph Wikidata5M are in
Table 3. We denote KnowC with three variant sam-
pling strategies by KnowCrand, KnowCkNN, and

8624



Method
Wikidata5M-Trans Wikidata5M-Ind

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
embedding-based methods
TransE (2013) 25.3 17.0 31.1 39.2 - - - -
RotatE (2018) 29.0 23.4 32.2 39.0 - - - -
text-based methods
KEPLER (2021c) 21.0 17.3 22.4 27.7 40.2 22.2 51.4 73.0
SimKGC (2022) 35.8 31.3 37.6 44.1 71.4 60.9 78.5 91.7
GHN (2023) 36.4 31.7 38.0 45.3 - - - -
KnowCrand 42.0 37.2 43.8 50.8 73.0 62.9 80.1 92.4
KnowCkNN 42.6 37.3 44.7 52.5 73.2 63.1 80.3 92.5

Table 3: Experiment results on Wikidata5M with transductive and inductive setttings. KnowCrand and KnowCkNN

refer to random sampling and kNN sampling, respectively. Since we only train one epoch on these two datasets, we
omit the dynamic sampling in this table. The bold represents the best performance.

KnowCdyn, respectively. Note that we only run
one training epoch on Wikidata5M datasets in both
transductive and inductive settings, therefore there
is no dynamic sampling on these two datasets. As
shown in these two tables, our proposed Model
KnowC outperforms all the state-of-the-art text-
based methods on all datasets. And compared to
the embedding-based methods, KnowC gets the
best performance on WN18RR, Wikidata5M-Trans
and Wikidata5M-Ind datasets, but performs slightly
poorer than embedding-based methods. One possi-
ble explanation could be that the graph of FB15k-
237 dataset is much denser, and contains fewer en-
tities. Due to the limited entity number, text-based
methods are difficult to exert their comprehensive
semantic understanding ability. On the contrary,
embedding-based methods are able to learn com-
plex structures, especially in this transductive set-
ting with small-scale dataset.

We then report the results for three variants of
KnowC on datasets of different scale. As Table
2 shows: Generally, KnowCrand always performs
worse compared to the other two variants, which is
in accordance with expectation since random fixed
sample set is more likely to have less semantic-
relevant triple prompts that are potentially helpful
for target triple prediction. Specifically, the variant
KnowCdyn gets the best on WN18RR dataset com-
pared to other two variant, while on FB15k-237
it’s the variant KnowCkNN that performs better.
One possible reason could be that the graph for
the FB15k-237 dataset is much denser compared
to WN18RR, in which the kNN sampling is more
helpful since it gives us a heuristic algorithm to find
more relevant neighboring triples. Besides, it has
been shown that there are unpredictable links based

on the available information in the FB15k-237 (Cao
et al., 2021). Therefore, adding neighboring triples
as knowledge context may not improve the perfor-
mance on FB15k-237 dataset so much compared
to WN18RR.

As Table 3 shows: On the large scale dataset
Wikidata5M, KnowC gets the best performance
above any other state-of-the-art methods, especially
with the transductive setting. On Wikidata5M-
Trans dataset, KnowC outperforms the second best
method by a large margin, with MRR, Hits@1,
Hits@3 and Hits@10 rising for 6.2, 5.6, 6.7 and
7.2, respectively. And on Wikidata5M-Ind dataset,
KnowC also obtains the best results on all met-
rics. Here embedding-based methods are inher-
ently unable to perform inductive KGC. Text-based
methods, in contrast, exhibit its superiority in this
setting. In inductive setting, text-based methods
could still run inference, since the language models
could match text descriptions and assign semantics
even if there are unseen entities in test set during
training.

4.3 Ablation Study

batch size MRR Hits@1 Hits@3 Hits@10
256 69.1 60.8 74.6 83.3
512 69.9 62.3 74.6 83.3

1024 69.9 62.3 74.9 83.9

Table 4: Experiment results on WN18RR with different
batch size.

We conduct experiments to study the effect of
batch size, which is shown in Table 4. In this part,
we evaluate a diverse range of batch sizes. As
shown in this table, larger batch size helps the
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triple (David H. Riddle, child, Matthew Riddle (biblical scholar))
description David Hunter Riddle (April 14, 1805 – 1888) was the ninth and last president of Jefferson College ...
head neighbors ...
tail neighbors (Matthew Riddle (biblical scholar), father, David H. Riddle) ...
SimKGC harriet eaton stanton blatch
KnowC Matthew Riddle (biblical scholar)
triple (Ian Underwood, spouse, Ruth Underwood)
description Ian Robertson Underwood (born May 22, 1939) is a woodwind and keyboards player...
head neighbors ...
tail neighbors (Ruth Underwood, spouse, Ian Underwood) ...
SimKGC gail zappa
KnowC Ruth Underwood
triple (Slavyanovo, Targovishte Province, located in the administrative territorial entity, targovishte district)
description Slavyanovo is a village ... located in Popovo Municipality of the Targovishte Province.
head neighbors (Slavyanovo, Targovishte Province, located in the administrative territorial entity, popovo municipality) ...
tail neighbors (targovishte district, contains administrative territorial entity, popovo municipality) ...
SimKGC popovo, bulgaria
KnowC targovishte district

Table 5: Examples of KnowC prediction results on the test set of the Wikidata5M-Trans dataset.

model to improve its prediction ability to some
extent. This could be attributed to the increased
negative sample number with larger batch size.

4.4 Analysis

We further choose several KnowC prediction re-
sults on the test set of the Wikidata5M-Trans
dataset for analysis. Table 5 shows several ex-
amples that KnowC successfully predicts while
SimKGC fails. We find that the model could to
some extent understand the relationship patterns,
including inversion, symmetry, and composition.

4.4.1 Inversion
In the first case, the model needs to predict the tail
entity given the head entity “David H. Riddle” and
the relation “child”. The description of “David H.
Riddle” is “David Hunter Riddle (April 14, 1805 –
1888) was the ninth and last president of Jefferson
College from 1862 until its union with Washing-
ton College to form Washington Jefferson”, which
contains no information about the relationship of
“David H. Riddle”. However, by incorporating the
neighbor information (Matthew Riddle (biblical
scholar), father, David H. Riddle), the model suc-
cessfully predicts the right answer. Besides, this
prediction indicates that the model effectively han-
dles the inversion relationship pattern between “fa-
ther” and “child”.

4.4.2 Symmetry
Similarly, in the second case, the model needs to
predict the missing triple (Ian Underwood, spouse,
?). These is also no information about his marry

information, therefore it’s impossible to infer the
answer solely based on this description. While in
the neighbor sets, there is a triple (Ruth Underwood,
spouse, Ian Underwood) that denotes Ian Under-
wood is the spouse of Ruth Underwood, by which
the model could easily get the right answer. This
also shows that the model could understand that
“spouse” is an symmetry relationship pattern.

4.4.3 Composition
In the third case, the missing triple to be predicted
is (Slavyanovo, Targovishte Province, located in
the administrative territorial entity, ?). By the de-
scription “located in Popovo Municipality of the
Targovishte Province”, SimKGC simply predicts
the target as “popovo, bulgaria” by word matching.
In contrast, KnowC could combine the informa-
tion of both description and neighboring triples
(Slavyanovo, Targovishte Province, located in the
administrative territorial entity, popovo municipal-
ity) and (targovishte district, contains administra-
tive territorial entity, popovo municipality), then
composes these relationships to get the right an-
wser “targovishte district”.

5 Conclusion

In this paper, we propose a novel text-based knowl-
edge graph completion method. We use neighbor-
ing triples as supplementary prompts as additional
detailed information about the entities to benefit
the completion task. We also design several sam-
pling strategies to limit the input token as well as
to help the model improve generalization ability.
We conduct extensive experiments to evaluate the
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excellent performance of our model on knowledge
graph completion task.

6 Limitations

Our method exploits the knowledge context in
knowledge graphs as information compensation
for knowledge graph completion, which inevitably
increases the input token length compared to
SimKGC. However, Despite the transformers have
a quadratic complexity with respect to token length,
the inference time with different input token length
actually exhibit little difference owing to the par-
allel computation of GPU for matrix multiplica-
tion. Besides, recent studies show that there are
better ways to linearize the triples, such as using
natural language templates to replace the original
relationships, which could be a direction for further
researching.
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A Details of Implementation

A.1 Hyperparameters
We thoroughly list the hyperparameters used for
each dataset in Table 6.

Hyperparameter WN18RR FB15k-237 Wikidata5M
number of GPUs 4 4 4

initial temperature τ 0.05 0.05 0.05
gradient clip 10 10 10
warmup steps 400 400 400

batch size 1024 1024 1024
max token number 100 100 100

re-ranking weight α 0.05 0.05 0.05
re-ranking hop 5 2 2

dropout 0.1 0.1 0.1
weight decay 10−4 10−4 10−4

InfoNCE margin 0.02 0.02 0.02
pooling method mean mean mean

learning rate 5× 10−5 10−5 3× 10−5

Table 6: Experiment results on Wikidata5M-Trans with
different batch size.

A.2 More Implementation Details
For inverse relation r−1, we add a prefix word "in-
verse" to the text description of relation r. For ex-
ample, if the text description of relation r is "mem-
ber of", the inverse relation r−1 is "inverse member
of".

To sample neighboring triples, We need to con-
struct graph structure for knowledge graphs in ex-
periments. Specifically, for WN18RR and FB15k-
237 datasets, we use undirected graph structure; for
Wikidata5M-Trans and Wikidata5M-Ind datasets,
we use directed graph structure.

B More Experiment Results

B.1 Effect of Context Triple Number
To study the effect of context triples, we conduct
experiments for neighboring triples k with differ-
ent neighbor numbers, in which we use kNN to
sample neighbors. We draw a line chart to make
the variation trend much clearer, which is shown in
Figure 2.

As shown in this figure, the performance of
Hits@k improves steadily with the increase of
neighbor numbers, which indicates that increasing
the neighbor sampling number could potentially
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Figure 2: Experiment results on WN18RR with different
number of neighboring triples.

increase the performance of the model. We find
that the model performs slightly worse with k = 1
compared to the model without neighbor sampling.
We further check the neighbors used for inference
in WN18RR, and find that there are many 1-n re-
lations in WN18RR dataset. Due to the existence
of these relationships, the entities tend to choose
triple with the same relation with current head re-
lation pair for target entity prediction, since the
same relation have the largest similarity score. Un-
der this circumstance, the model is more easily to
abuse this neighboring triple for inference, which
is likely to lead to overfitting problem. In contrast,
with the increase of neighbor number, the entity
could get more comprehensive information around
it to implement inference, thereby improve the per-
formance.

B.2 Effect of Batch Size
We conduct experiments to study the effect of
batch size on large-scale dataset Wikidata5M-
Trans, where the results are shown in Table 7. As

batch size MRR Hits@1 Hits@3 Hits@10
256 41.5 36.2 43.4 51.4
512 42.1 36.8 44.4 51.9

1024 42.6 37.3 44.7 52.5

Table 7: Experiment results on Wikidata5M-Trans with
different batch size.

shown in this table, larger batch size improves
the model’s capacity steadily. Compare the per-
formance of batch size 1024 with 256, we could
find that the larger batch size improves the MRR,
Hits@1, Hits@3, Hits@10 by 0.9, 1.1, 1.3, and 1.1,
respectively, which illustrates its great influence.
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In this paper we do not use batch size larger than
1024 for experiments.

B.3 Effect of Graph Structure
We conduct experiments to study the effect of graph
structure, including directed graph and undirected
graph, for neighbor sampling. The experiment re-
sults on WN18RR and Wikidata5M are shown in
Table 8 and Table 9, respectively.

graph structure MRR Hits@1 Hits@3 Hits@10
Directed 67.6 59.4 73.0 81.6

Undirected 69.9 62.3 74.9 83.9

Table 8: Experiment results on WN18RR with both
directed and undirected graph structure.

As shown in Table 8, compared to the directed
graph, undirected graph seems to get better per-
formance on WN18RR dataset. One possible ex-
planation could be that the structure of WN18RR
is much sparser, in which entities may not have
enough neighbors that could serve as supplemental
information. Under this circumstance, undirected
graph has more neighboring triples for complement,
thereby improves the prediction performance.

graph structure MRR Hits@1 Hits@3 Hits@10
Directed 42.6 37.3 44.7 52.5

Undirected 42.4 37.0 44.6 52.6

Table 9: Experiment results on Wikidata5M-Trans with
both directed and undirected graph structure.

In contrast, as Table 9 shows, directed graph
seems to have better overall performance on
Wikidata5M-Trans dataset. This could be due to
that the structure of Wikidata5M-Trans is denser,
which has more neighboring triples as additional in-
formation. Besides, the direction of relations might
be more important in this dataset.
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