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Abstract

Minimum Bayes-Risk (MBR) decoding is
shown to be a powerful alternative to beam
search decoding for a wide range of text gen-
eration tasks. However, MBR requires a huge
amount of time for inference to compute the
MBR objective, which makes the method infea-
sible in many situations where response time
is critical. Confidence-based pruning (CBP)
(Cheng and Vlachos, 2023) has recently been
proposed to reduce the inference time in ma-
chine translation tasks. Although it is shown to
significantly reduce the amount of computation,
it requires hyperparameter tuning using a devel-
opment set to be effective. To this end, we pro-
pose Adaptive Minimum Bayes-Risk (AMBR)
decoding, a hyperparameter-free method to run
MBR decoding efficiently. AMBR is derived
from the observation that the problem of com-
puting the sample-based MBR objective is the
medoid identification problem. AMBR uses
the Correlated Sequential Halving (CSH) algo-
rithm (Baharav and Tse, 2019), the algorithm
with the best performance guarantee to date for
the medoid identification problem, to compute
the sample-based MBR objective. We evaluate
AMBR on machine translation, text summariza-
tion, and image captioning tasks. The results
show that AMBR achieves on par with CBP,
with CBP selecting hyperparameters through
an Oracle for each given computation bud-
get. Our code is available at https://github.
com/CyberAgentAILab/adaptive-mbr.

1 Introduction

The goal of natural language generation is to gen-
erate text representing structured information that
is both fluent and contains the appropriate infor-
mation. One of the key design decisions in text
generation is the choice of decoding strategy. The
decoding strategy is the decision rule used to gener-
ate sequences from a probabilistic language model.
Beam search has been widely used in many close-
ended sequence generation tasks including machine

translation (Wu et al., 2016; Ott et al., 2019; Wolf
et al., 2020), text summarization (Rush et al., 2015;
Narayan et al., 2018), and image captioning (Ander-
son et al., 2017). However, beam search is known
to have several degeneration problems. For exam-
ple, Welleck et al. (2020) reports that beam search
can yield infinite-length outputs that the model as-
signs zero probability to.

Minimum Bayes-Risk (MBR) decoding has
recently gained attention as a decoding strategy
with the potential to overcome the problems of
beam search (Goodman, 1996; Kumar and Byrne,
2004; Eikema and Aziz, 2020, 2022; Freitag et al.,
2022; Bertsch et al., 2023). Unlike beam search
which seeks to find the most probable output, MBR
decoding seeks to find the output that maximizes
the expected utility. MBR decoding involves two
steps. It first samples outputs from the probabilis-
tic model and then computes the utility between
each pair of outputs to find the hypothesis with the
highest expected utility.

One of the most important shortcomings of MBR
decoding is its speed. The computational complex-
ity of MBR decoding is O(N ·G+N2 ·U), where
N is the number of samples to be used, G is the
time to generate a sample, and U is the time to
evaluate the utility function. As the utility function
is typically a time-consuming neural metric such
as BLEURT and COMET (Sellam et al., 2020; Pu
et al., 2021; Rei et al., 2020, 2022), O(N2·U) is the
dominant factor of the computational complexity.

Confidence-based pruning (CBP) has recently
proposed to reduce the number of evaluations of the
utility function (Cheng and Vlachos, 2023). CBP is
shown to be effective in machine translation tasks,
significantly reducing the required computation us-
ing both lexical and neural utility functions with a
negligible drop in the quality.

Although CBP is shown to be efficient, the per-
formance of CBP is significantly influenced by the
choice of hyperparameters. As such, CBP requires
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a development set for the tuning of these hyper-
parameters. Additionally, CBP cannot dictate the
speed at which it completes tasks. The hyperpa-
rameters of CBP only offer indirect control over
the number of evaluations.

To this end, we propose Adaptive Minimum
Bayes-Risk (AMBR) decoding, a hyperparameter-
free algorithm to compute the sample-based MBR
objective efficiently. AMBR reformulates the MBR
objective as the medoid identification problem
(Rdusseeun and Kaufman, 1987) and solves it us-
ing the Correlated Sequential Halving (CSH) al-
gorithm, the best algorithm to date to solve the
medoid identification problem (Baharav and Tse,
2019). The strength of AMBR is that it is free
from hyperparameters. Unlike CBP where it needs
to tune the hyperparameters to empirically deter-
mine the best set of hyperparameters to achieve the
desired trade-off between the speed and the qual-
ity, AMBR determines the best resource allocation
automatically from the computational budget spec-
ified by the user.

We evaluate the performance of AMBR in ma-
chine translation, text summarization, and image
captioning tasks. The empirical results show that
AMBR is on par with CBP with Oracle hyperpa-
rameters. They are roughly 4 to 8 times faster than
MBR with a marginal drop in the output quality.
The result indicates that using AMBR, MBR decod-
ing can be run efficiently for a given computation
budget specified on the fly without hyperparameter
tuning on a development set.

2 Background

Conditional text generation is the task of gener-
ating an output sequence h given an input se-
quence x. Probabilistic text generators define a
probability distribution Pmodel(h|x) over an out-
put space of hypotheses Y . In this paper, we denote
Pmodel(h|x) by Pmodel(h) for brevity. The goal of
decoding is to find the highest-scoring hypothesis
for a given input.

One of the most common decision rules is
maximum-a-posteriori (MAP) decoding. MAP de-
coding finds the most probable output under the
model:

hMAP = argmax
h∈Y

Pmodel(h). (1)

Although it seems intuitive to solve this MAP objec-
tive, prior work has pointed out two critical prob-
lems with this strategy. First, since the size of

hypotheses set |Y| is extremely large, solving it
exactly is intractable. Second, the MAP objective
often leads to low-quality outputs (Stahlberg and
Byrne, 2019; Holtzman et al., 2020; Meister et al.,
2020). In fact, Stahlberg and Byrne (2019) shows
that hMAP is often the empty sequence in their
experiment setting.

As such, beam search is commonly used as a
heuristic algorithm to solve decoding problems
(Graves, 2012; Sutskever et al., 2014). Beam search
is known to generate higher-quality sequences than
MAP decoding in a wide range of tasks. Still,
prior work has reported the degeneration issues of
beam search such as repetitions and infinite-length
outputs (Cohen and Beck, 2019; Holtzman et al.,
2020).

2.1 Minimum Bayes-Risk (MBR) Decoding
Unlike MAP decoding which searches for the
most probable output, MBR decoding seeks to
find the output that maximizes the expected util-
ity, thus minimizing the risk equivalently (Kumar
and Byrne, 2002, 2004). The procedure is made
of two components: a machine translation model
and a utility metric. The model Pmodel(y|x) esti-
mates the probability of an output y given an input
sentence x. The utility metric u(y,y′) estimates
the quality of a candidate translation y given a
reference translation y′. Given a set of candidate
hypothesesH ⊆ Y , we select the best hypothesis
according to its expected utility with respect to the
distribution of human references Phuman.

hhuman = argmax
h∈H

E
y∼Phuman

[u(h,y)]. (2)

Because Phuman is unknown, MBR instead uses the
model probability Pmodel to approximate Phuman:

hmodel = argmax
h∈H

E
y∼Pmodel

[u(h,y)]. (3)

For the rest of the paper, we denote Pmodel as P
for simplicity if not confusing. As integration over
Y is computationally intractable, Eq. (3) is approx-
imated by a Monte Carlo estimate (Eikema and
Aziz, 2022; Farinhas et al., 2023) using a pool of
referencesR sampled from P :

hMC = argmax
h∈H

1

|R|
∑

y∈R
u(h,y). (4)

In this paper, we investigate algorithms to compute
hMC efficiently.
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2.2 Computational Complexity of MBR
Decoding

The shortcoming of the MBR is that it requires
a huge amount of computation at inference time.
The computational complexity of MBR is O(|H ∪
R| ·G+ |H||R| · U) where G is the upper bound
of the time to generate a hypothesis, and U is the
upper bound of the time to evaluate the utility func-
tion for a pair of hypotheses (Eikema and Aziz,
2022). Sample-based MBR typically uses the same
set of hypotheses for the candidate set H and the
reference poolR (H = R). In this way the compu-
tational complexity is O(N ·G+N2 · U), where
N = |H| = |R|. Thus, The bottleneck of the com-
putation is typically the evaluation of the utility
function.

Several approaches have been proposed to im-
prove the efficiency of MBR decoding before
confidence-based pruning (Eikema and Aziz, 2022;
Freitag et al., 2022). N-by-S (NbyS) seeks to
reduce the total number of evaluations by reduc-
ing the reference pool (Eikema and Aziz, 2022).
Eikema and Aziz (2022) provides empirical ev-
idence showing that increasing the number of
candidates is more effective than increasing the
number of references. The computational com-
plexity of N-by-S with S′(< N) references is
O(N · G + NS′ · U). Coarse-to-Fine (C2F) re-
duces the size of the candidate and reference hy-
potheses using a coarse utility function (Eikema
and Aziz, 2022). It first runs coarse evaluation us-
ing a faster utility function (e.g. non-neural lexical
scoring function). It then selects the top-scoring
hypotheses as a pruned candidate set and reference
set. Finally, it runs the MBR decoding with the
finer utility function using the pruned candidate
and reference set to output the best hypothesis. In
this way, the total computation required by C2F is
O(N · G + N2 · U ′ + N ′S′ · U) where U ′ is the
computational cost of the coarse utility function,
N ′, S′(≤ N) are the size of the pruned candidate
and reference set.

Reference Aggregation (RA) computes the
MBR score against aggregated reference represen-
tations to reduce the computational complexity to
O(N ·G+N ·UA), where UA is the upper bound
on the complexity of evaluating the aggregated util-
ity function (Vamvas and Sennrich, 2024). The
shortcoming of RA is that it is not applicable to
non-aggregatable utility functions. For example,
MetricX-23 (Juraska et al., 2023) is a transformer-

based metric where the input is a sequence of em-
beddings of the tokens instead of the embedding
of the whole sentence, making it non-aggregatable.
Another example is where the utility function in-
volves a reward function. See Appendix A for
details.

3 Confidence-Based Pruning (CBP)

Confidence-based pruning (CBP) is recently pro-
posed by Cheng and Vlachos (2023) to significantly
reduce the number of evaluations of the utility func-
tion. The idea is to iteratively evaluate the hypothe-
ses with a subset of the reference set to prune the
hypotheses not promising enough.

CBP keeps a current candidate setHi and a cur-
rent reference setRi during the run. The candidate
set starts from the whole candidates (H0 = H)
and the reference set starts empty (R0 = ∅). At
every iteration i, it draws samples and adds them to
the reference set until the size of the reference set
reaches the limit ri, where {ri} are hyperparame-
ters. Then it computes the incumbent best solution
h∗
i at i-th iteration:

h∗
i = argmax

h∈Hi

1

|Ri|
∑

y∈Ri

u(h,y). (5)

Then it generates a series of bootstrap reference
sets R̂b

i which is a with-replacement size-|R| re-
sample ofRi. Using a series of bootstrap reference
sets, it computes the estimated win ratio of each
hypothesis against h∗

i inHi:

w(h) =
1

B

B∑

b=1

1[
∑

y∈R̂b
i

u(h,y) ≥
∑

y∈R̂b
i

u(h∗
i ,y)],

(6)
where B is the number of bootstrap reference sets.
Then, it prunes all candidates from the candidate
set with the win ratio lower than 1− α, where α is
a hyperparameter. It repeats the process until the
size of the candidate set reaches 1 or the sample
size scheduler terminates.

Although CBP is shown to be significantly more
efficient than the standard MBR, there are several
shortcomings. First, it requires a hyperparameter
tuning using the development set. The sample size
scheduler ri and the confidence threshold α need to
be tuned to optimize the performance. The number
of bootstrap reference sets B is also a hyperparam-
eter that needs to be tuned according to the quality
and the speed trade-off. Note that the optimal set
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Algorithm 1: Adaptive MBR (AMBR)
(Correlated Sequential Halving for MBR)

Input: a set of candidatesH, referencesR, and a
budget T

Output: a hypothesis hAMBR

1: H0 ← H
2: R0 ← ∅
3: N = max(|H|, |R|)
4: for i = 0 to ⌈logN⌉ − 1 do
5: ti = min(max(⌊ T

|Hi|⌈logn⌉⌋, 1), n)
6: Let Ji be a set of ti − |Ri| references sam-

pled fromR \Ri without replacement
7: Ri+1 = Ji ∪Ri

8: for h ∈ Hi do
9: Û(h)← 1

|Ri+1|
∑

y∈Ri+1
u(h,y)

10: end for
11: if ti = n then
12: return argmaxh∈Hi

Û(h)
13: else
14: Let Hi+1 be the set of ⌈|Hi|/2⌉ candi-

dates inHi with the largest Û(h)
15: end if
16: end for
17: return argmaxh∈Hi Û(h)

of hyperparameters is influenced by the desired
speed-up. If one wants to choose 2x speed-up and
4x speed-up according to the situation, one needs
to search for two sets of hyperparameters for each
budget constraint. Additionally, CBP cannot give a
budget constraint and optimize under that. Because
the hyperparameters of CBP only indirectly control
the number of evaluations it needs to finish, a user
has no direct control over the desired speed-up.

4 Adaptive Minimum Bayes Risk
(AMBR) Decoding

We propose Adaptive Minimum Bayes-Risk
(AMBR) decoding, a variant of MBR that can effi-
ciently compute the MBR objective under a budget
on the maximum number of evaluations that a user
can specify. The advantages of AMBR over CBP
are twofold. First, AMBR has no hyperparame-
ter. The schedules of the number of references
and the candidates are automatically determined
by the algorithm. Second, a user can enforce the
upper bound of the computation budget to AMBR.
AMBR enforces the budget constraint and the al-
gorithm automatically schedules how to use the
limited resource accordingly.

AMBR is derived from the observation that
MBR decoding is the medoid identification prob-
lem (Kaufman and Rousseeuw, 1990): the problem
of computing hMC (Eq 4) is tantamount to deter-
mining the medoid of H. The medoid, denoted
as y∗, is defined as the point in a dataset Y that
minimizes the sum of distances to all other points:1

x = argmin
x∈X

∑

y∈Y
d(x,y). (7)

Let d = −u, X = H, and Y = R. Then, the
problem can be translated into the following:

y∗ = argmax
y∈H

∑

y′∈R
u(y,y′). (8)

This is exactly the objective defined in Eq. (4).
Our approach is to use the best algorithm pro-

posed so far for solving the medoid identification
problem and repurpose it for MBR decoding. The
algorithm with the best performance guarantee to
date for solving the medoid identification is the
Correlated Sequential Halving (CSH) algorithm
(Baharav and Tse, 2019). We describe the proce-
dure of AMBR in Algorithm 1. AMBR keeps a
current candidate setHi which starts withH and a
current reference set Ri which starts as an empty
set. First, it picks ti hypotheses from R and adds
them to the current reference setRi+1 where ti is
automatically determined by the number of candi-
dates and the budget. Then it computes u(h,y) for
all h in the current candidate setHi and for all y in
the current reference setRi+1. The average utility
of h ∈ Hi over the current reference set is stored in
Û(h). Then, it runs the halving operation, pruning
the lower half of the candidates according to the
current estimate Û . Ties are broken arbitrarily. It
repeats this process for up to ⌈logN⌉ − 1 times
and returns the candidate with the best estimate in
Hi at that point.

The procedure of Algorithm 1 is identical to
the procedure of CSH with modification to the no-
tations to place it in the context of the decoding
problem. Our contribution is the reinvention of
CSH which is proposed as a solution to the medoid
identification problem as a tool to compute the
MBR objective adaptively by converting the sum
of distances to the expected utility.

1The formulation of Eq. (7) represents the same class of
problem as the standard formulation of medoid identification
problem where it assumes X = Y . See Appendix B for the
details.
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4.1 Analytical Result
CSH has a theoretical guarantee of the probability
of choosing the hypothesis with the highest utility
in its original form (Baharav and Tse, 2019). The
original form of CSH is recovered by replacing
Line 7 of Algorithm 1 with the following equation:

Ri+1 = Ji. (9)

AMBR using Eq (9) (AMBR-Replace) inherits the
theoretical guarantee of CSH:

Lemma 1. Assuming T ≥ N logN , AMBR re-
placing Line 7 with Eq. (9) (AMBR-Replace) cor-
rectly identifies hMC with probability at least
1 − logN exp(− T

logNC) where C is an instance
dependent variable determined by u andH.

See Theorem 2.1. of Baharav and Tse (2019)
for proof and a detailed description of the instance-
dependent variable C.

Note that the theoretical guarantee is proven for
AMBR-Replace (AMBR using Eq. 9). However,
it has not been proven for Algorithm 1 (AMBR).
Still, we remain optimistic that a similar guarantee
holds for AMBR. To the best of our knowledge, no
counterexamples exist to disprove this. The theo-
retical guarantee is thus proven to AMBR-Replace
which is an inferior version of AMBR. The inferi-
ority of AMBR-Replace stems from its process of
discarding samples at every iteration, leading us to
expect a less accurate estimate of the candidates’
value. Therefore, we anticipate that the proposed
algorithm outperforms the algorithm with a theo-
retical guarantee. In this way, although we lack a
formal guarantee for AMBR, we do have a guaran-
tee for a less effective version of it. This provides
an informal justification for the effectiveness of
AMBR. This derivation is noted in Remark 1 in
Baharav and Tse (2019).

5 Experiments

We evaluate the performance of the efficient MBR
decoding algorithms on machine translation, text
summarization, and image captioning tasks. We
evaluate the performance of the MBR decoding al-
gorithms under a budget constraint on the number
of evaluations. We evaluate with a budget size of
1/32, 1/16, 1/8, 1/4, 1/2 of N(N − 1), the num-
ber of evaluations of the standard N × N MBR
with N samples.2 We use epsilon sampling with
ϵ = 0.02 as a sampling algorithm (Hewitt et al.,

2We assume u(h,h) is a constant for all h ∈ H.

2022; Freitag et al., 2023). Temperature is fixed
to 1.0. We use the same set of samples for all the
algorithms.

We compare the performance of (Standard)
MBR, N-by-S (NbyS), Coarse-to-fine (C2F),
confidence-based pruning (CBP), and AMBR. Stan-
dard MBR refers to the implementation of MBR
which uses the same set of samples for the candi-
date and reference set. We run standard MBR with
the number of samples N ′ ∈ {1...N}. The number
of evaluations for standard MBR is N ′(N ′ − 1).
We implement N-by-S in a way that uses all the
samples H as the candidate set and reduces the
size of references according to the budget. That
is, it randomly subsamples S′ hypotheses fromH
to be the reference set so that S′ is the smallest
integer such that (N − 1)S′ ≥ T . For C2F, we
set S′ = N and N ′ to be the smallest integer
such that N ′(N − 1) ≥ T . We run a hyperpa-
rameter sweep for CBP to find the best hyperpa-
rameters. We search over r0 ∈ {1, 2, 4, 8} and
α ∈ {0.8, 0.9, 0.99}. Following Cheng and Vla-
chos (2023), we set the schedule of the size of the
references ri to double each step: ri = 2ir0. The
number of bootstrap reference sets is 500. We en-
force the budget constraint to CBP by terminating
the iteration once the number of evaluations reaches
T . We run CBP with each set of hyperparameters
on the test set to find the best hyperparameters. The
result of the hyperparameter search is described in
Appendix D. We observe that the best set of hyper-
parameters of CBP is dependent on the size of the
budget. As such, we report the Oracle score, the
best score over all combinations of hyperparame-
ters for each budget. AMBR is implemented as in
Algorithm 1 without using Eq. (9). Thus, Lemma 1
does not apply to the algorithm we evaluate in this
section. We run NbyS, CBP, and AMBR five times
for each budget size and report the average, mini-
mum, and maximum scores over the runs.

We use Huggingface’s Transformers library for
running all the experiments (Wolf et al., 2020).
All the experiments are conducted using publicly
available pretrained models and datasets for repro-
ducibility. Due to limitations in computational re-
sources, we evaluate the first 1000 entries of each
dataset.

5.1 Machine Translation
We evaluate the performance on machine trans-
lation tasks using WMT’21 test dataset. We use
German-English (De-En) and Russian-English (Ru-
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Figure 1: COMET-20 score on WMT’21 De-En and Ru-En using the WMT 21 X-En model. The shaded regions
show the minimum and the maximum values over five runs. The horizontal axis shows the reduction in the number
of evaluations compared to the standard MBR with all samples.

En) language pairs. We use the WMT 21 X-En
model and M2M100 418M model to sample se-
quences for both language pairs (Tran et al., 2021;
Fan et al., 2021). We load the WMT 21 X-En
model in 4-bit precision to reduce the GPU mem-
ory consumption. We use COMET-20 as the utility
function and the evaluation metric (Rei et al., 2020).
We use the BLEU score as a coarse utility function
of C2F. As a reference, the COMET-20 scores of
the greedy MAP decoding are 56.84 for De-En and
54.71 for Ru-En.

AMBR is on par with Oracle CBP. Figure 1
shows the results with varying evaluation budgets
with a fixed number of samples (N = 64, 128) us-
ing the WMT 21 X-En model. We observe that
AMBR achieves the best COMET score and the
error rate compared to the others. The error rate
is the ratio of selecting a hypothesis different from
the standard MBR using all 128 (64) samples. It
achieves almost the same score as the standard
MBR with all samples within 1/4−1/8 number of
evaluations, resulting in 4− 8 times speed up com-
pared to standard MBR. We observe qualitatively
the same result on the M2M100 model (see Ap-
pendix E.3). Additional evaluations on WMT’21

En-De and En-Ru are described in Appendix E.2.

AMBR scales with the number of samples given
enough budget. To evaluate the scalability of
AMBR on the number of samples, we evaluate the
COMET scores with varying numbers of samples
with a fixed amount of evaluation budgets using
the M2M100 418M model. Figure 2 shows the
COMET scores with varying numbers of samples
with a fixed amount of evaluation budgets on De-
En. The COMET score of AMBR scales with the
number of samples if and only if the number of
evaluations is large enough. This is to be expected
as Lemma 1 only holds when the budget is large
enough. The same trend is observed on Ru-En
(Appendix E.4).

5.2 Text Summarization

We evaluate the performance of AMBR on text
summarization tasks using SAMSum (Gliwa et al.,
2019) and XSum dataset (Narayan et al., 2018).
We use BART models fine-tuned on each dataset
(Lewis et al., 2020). We use InfoLM (Colombo
et al., 2022) with the Fisher-Rao distance (Rao,
1987) as a utility function as it is shown to have
a high correlation with human judgment on text
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Figure 2: Evaluation of AMBR with a varying number of samples with a fixed evaluation budget on WMT’21
De-En with COMET-20 score using the M2M100 418M model. The shaded regions show the minimum and the
maximum values over five runs.

summarization tasks. We generate N = 64 sam-
ples as a candidate set for each input. Following
Eikema and Aziz (2022), we use the F1 score of
the unigram as a coarse utility function of C2F.

The results are summarized in Figure 3. Despite
AMBR reduces the error rate significantly (Figure
3c and 3f), it only slightly improves upon standard
MBR with respect to InfoLM and ROUGE-L score
(Figure 3a, 3b, 3d, and 3e). We speculate that
this is because many of the top-scoring samples
are similar in quality measured by InfoLM and
ROUGE-L.

C2F can surpass the score of standard MBR
under conditions Interestingly, we observe that
C2F surpasses the performance of standard MBR
with all samples on ROUGE-L for XSum dataset.
We speculate that C2F may improve upon MBR
because it effectively ensembles two utility func-
tions. Because the F1 score of the unigram may be
more aligned to ROUGE-L score than InfoLM is,
it can pick sentences favored by ROUGE-L metric.
As such, C2F can not only speed up the compu-
tation of the MBR objective but also improve the
alignment to the target metric.

5.3 Image Captioning
We evaluate the performance of AMBR on im-
age captioning task using MS COCO dataset (Lin

et al., 2014). We use BLIP-2 (Li et al., 2023a)
with Flan T5-xl (Chung et al., 2022) fine-tuned for
MS COCO loaded in 4-bit precision. We use a
cosine similarity of the textual CLIP embeddings
as the utility function (Radford et al., 2021; Hessel
et al., 2021). We use RefCLIPScore and BLEU as
an evaluation metric (Hessel et al., 2021; Papineni
et al., 2002). We generate N = 64 samples for
each image. We use the F1 score of the unigram as
a coarse utility function of C2F.

The empirical result is shown in Figure 3.
AMBR achieves roughly 4 to 8 times speed-up
compared to MBR with a marginal drop in Ref-
CLIPScore and BLEU score (Figure 3g and 3h).
We observe C2F to improve upon standard MBR
with respect to BLEU score (Figure 3h). As in text
summarization (Section 5.2), We speculate that this
is because the F1 score has a better alignment with
the BLEU score than the CLIP embeddings so that
the coarse utility function is effectively serving as
another utility function.

6 Related Work

MBR has been investigated in many NLP tasks in-
cluding parsing (Goodman, 1996), speech recogni-
tion (Goel and Byrne, 2000), bilingual word align-
ment (Kumar and Byrne, 2002), and machine trans-
lation (Kumar and Byrne, 2004). MBR has recently
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Figure 3: (a) InfoLM score, (b) ROUGE-L score, and (c) error rate on SAMSum dataset. (d) InfoLM score, (e)
ROUGE-L score, and (f) error rate on XSum dataset. (g) RefCLIPScore, (h) BLEU score, and (i) error rate on MS
COCO dataset. The shaded regions show the minimum and the maximum values over five runs. The error rate is
defined as the ratio of selecting a hypothesis different from the one selected by standard MBR using all the samples
(N = 64).

gained attention in machine translation as a deci-
sion rule as a method to overcome some of the
biases of MAP decoding in NMT (Eikema and
Aziz, 2020; Müller and Sennrich, 2021; Eikema
and Aziz, 2022).

Freitag et al. (2022) and Fernandes et al. (2022)
show that using neural-based utility functions such
as BLEURT (Sellam et al., 2020; Pu et al., 2021)
and COMET (Rei et al., 2020, 2022) rather than lex-
ical overlap metrics (e.g. BLEU) further improves
MBR.

CSH (Baharav and Tse, 2019) is not the only
algorithm proposed to solve the medoid identifica-
tion problem. There are several other algorithms
to solve the medoid identification (Eppstein and
Wang, 2006; Okamoto et al., 2008; Bagaria et al.,
2018). We pick to use CSH as it has the best theo-
retical performance.

Algorithms to solve the problem of identifying

the best option out of the candidates with a bud-
get constraint (fixed-budget best-arm identification
problems) are known to be highly sensitive to the
choice of the hyperparameters if they have ones
(Carpentier and Locatelli, 2016; Kaufmann et al.,
2016). In fact, we observe that the effectiveness of
CBP hinges on the appropriate selection of hyper-
parameters, given each budget constraint.

7 Conclusions

We propose Adaptive Minimum Bayes-Risk
(AMBR) decoding, a hyperparameter-free algo-
rithm for efficient MBR decoding. AMBR consid-
ers the problem of computing the MBR objective
as the medoid identification problem and uses the
known best algorithm to solve it. The strength of
the AMBR is that it doesn’t need a development
set to tune the set of hyperparameters. AMBR au-
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tomatically computes the strategy on the fly given
the budget specified by the user.

Experimental result shows that the performance
of AMBR is on par with CBP with hyperparameters
picked by an Oracle on machine translation tasks.
AMBR outperforms CBP on text summarization
and image captioning tasks, using the same set of
hyperparameters as in machine translation tasks for
CBP. We speculate that CBP requires a different
set of hyperparameters for each task to perform on
par with AMBR.

We believe that AMBR will be a practical choice
for future MBR decoding because of its applicabil-
ity and significant performance improvements.

8 Limitations

Even with the improvement, AMBR is still many
times more costly to run than beam search.

Using Eq. (9), the computational complexity of
the evaluation of the utility function of AMBR is
O(N logN · U) to achieve the theoretical guar-
antee. This is still larger than the complexity of
generation which is O(N ·G). Therefore, the eval-
uation procedure is still the bottleneck of MBR to
scale with the number of samples.

Although our focus is on reducing the computa-
tion of the utility function of MBR decoding, it is
not the only way to speed up the text generation.
Finkelstein and Freitag (2024) shows that by self-
training a machine translation model by its own
MBR-decoded output, it can improve the perfor-
mance of more efficient decoding methods such as
beam search. Yang et al. (2023) proposes the use
of Direct Preference Optimization (Rafailov et al.,
2023) to train the model to learn the ranking of the
sequences according to the MBR objective. Foks
(2023) shows that by training a model to predict
the Monte Carlo estimate of the Bayes risk, we can
directly estimate the Bayes risk using the trained
model without running Monte Carlo estimation,
resulting in O(N · G + N · U ′) where U ′ is the
inference time of the trained model.

We measure the number of evaluations of the
utility function as a metric of efficiency. Practi-
cally, the computation of the utility function is not
linear to the number of calls. One can optimize
the implementation by batching and caching the
computation effectively. For example, the sentence
embeddings of embedding-based utility functions
such as COMET can be cached to significantly
speed up the computation of the utility (Amrhein

and Sennrich, 2022; Cheng and Vlachos, 2023).
The paper focuses on how to effectively use the

given budget and lacks a discussion on what to set
the budget to. Baharav and Tse (2019) suggests
the doubling trick (Besson and Kaufmann, 2018)
to find the appropriate budget size. That is, we run
the algorithm with a certain budget T , and then
double the budget to 2T and rerun the algorithm.
If the two answers are the same, then we output it.
Because the probability of selecting the same incor-
rect answer twice in a row is very low, it is likely to
be the best hypothesis. Empirical evaluation of the
strategies to decide the budget size is future work.

The other question is on what to set the number
of samples to. Figure 2 shows that having too many
samples is not necessarily beneficial when the eval-
uation budget is too small. Finding the optimal
number of samples given a budget on computation
is an open question.

We consider the Monte Carlo estimate hMC as
the target objective function to compute. Evalua-
tion of AMBR using other objective functions such
as model-based estimate (Jinnai et al., 2024) is fu-
ture work.

Although AMBR is based on the best algorithm
known to solve the medoid identification problem,
it does not use any task-dependent knowledge to
speed up the algorithm. One may exploit the do-
main knowledge of the task to further improve upon
it (e.g. reference aggregation; Vamvas and Sen-
nrich, 2024).
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Reward Model for Alignment

Reference aggregation is not applicable using an
utility function that is not aggregatable. In the
following experiment, we show an instance of an
utility function that is practically useful but not
aggregatable.

We evaluate the performance of MBR and its
variants on Alpaca Eval dataset (Li et al., 2023b).
The task is to generate a response to a human query
that follows the human preference. One of the pop-
ular decoding strategy for LLMs is best-of-n strat-
egy (Stiennon et al., 2020; Nakano et al., 2022).
Best-of-n generates multiple outputs and simply
picks the output with the highest reward value ac-
cording to a reward function R that is trained to
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predict the human preference:

hbon = argmax
h∈H

R(y). (10)

MBR decoding is also shown to be an efficient strat-
egy on text generation tasks using large language
models (LLMs) (Li et al., 2024).3 We compare the
performance of epsilon sampling, best-of-n, MBR
without using a reward function (Li et al., 2024),
MBR with reference aggregation without using a
reward function (RA-MBR) (Vamvas and Sennrich,
2024), MBR using a reward function, and AMBR
using a reward function. We implement MBR using
a reward function as follows:

hreward = argmax
h∈H

1

|R|
∑

y∈R
u(h,y)·R(y). (11)

Note that hreward is not immediately aggregatable
as most of the state-of-the-art reward functions are
based on transformer architecture where the input
is a sequence of token embeddings instead of a sen-
tence embedding. Thus, RA-MBR is not directly
applicable when combined with a reward function.
We use Mistral-7B-Instruct-v0.1 (Jiang et al., 2023)
as the text generation model. We generate 128 sam-
ples with epsilon sampling with ϵ = 0.01 for best-
of-n and MBRs. We use sentence BERT (Reimers
and Gurevych, 2019) as the utility function u. We
compute the embedding of each output using the
sentence BERT and compute the cosine similarity
of each pair of outputs. We use ALL-MPNET-BASE-
V2 model as it has shown to be one of the most
effective in sentence embedding tasks.4 We use
SteamSHP-Large as a reward function (Ethayarajh
et al., 2022). The budget of AMBR is set to 10000.
The output is evaluated using an OASST reward
model as the gold reference (Köpf et al., 2023).5

We use OASST as it is shown to be one of the most
accurate reward model in prior work (Touvron et al.,
2023; Cui et al., 2023).

Figure 4 is the summary of the reward scores.
While MBR and RA-MBR without using a reward
model has lower score than best-of-n, MBR with
a reward function has higher score than best-of-
n. RA-MBR achieves mostly the same score as
MBR as the utility function is a cosine similarity

3MBR decoding is called Sampling-and-voting (Algorithm
1) in (Li et al., 2024).

4https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

5OpenAssistant/reward-model-deberta-v3-large-v2

0.0 0.5 1.0 1.5 2.0 2.5
Average Gold Reference Reward

AMBR (reward)

MBR (reward)

RA-MBR

MBR

best-of-n

Epsilon

Alpaca Eval

Figure 4: Average reward according to OASST (gold
reference reward) on Alpaca Eval dataset.

of the sentence embedding itself. Thus, linear ag-
gregation of the references results in exactly the
mean of the references in the embedding space.
Still, because it does not use the reward function,
its score is lower than best-of-n and MBRs with
reward functions.

The analysis shows that in this setting, non-
aggregatable utility function has a potential to
achieve higher performance than aggregatable one,
and thus reference aggregation is not applicable but
AMBR is.

B Formulation of Medoid Identification
Problem

We show that the Eq. (7) represents the same class
of problem as the standard formulation of the
medoid identification problem where X = Y is
assumed. Let (d,X, Y ) be an instance of general-
ized medoid identification problem (Eq. 7):

x∗ = argmin
x∈X

∑

y∈Y
d(x,y).

Let X ′ = X ∪ Y and d′ as follows:

d′(x,y) =





∞ if x /∈ X

0 if x ∈ X ∧ y /∈ Y

d(x,y) otherwise.

(12)

Then, (d′, X ′, X ′) returns the same solution as
(d,X, Y ). Thus, Eq. (7) represents the same class
of problem as the standard formulation of the
medoid identification problem where X = Y is
assumed.

C Walltime

We describe the wall clock time of AMBR in Ta-
ble 1. We run with COMET as the utility function
on WMT’21 De-En. We set r = 1 and α = 0.99
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Run time (seconds)

Standard CBP AMBR

GenerateH 41964 41964 41964
Compute utility 123471 52219 50740

Table 1: Summary of wall clock time of AMBR on
1000 inputs with N = 128 for WMT’21 De-En. All
experiments are run on an NVIDIA A2 GPU.

for CBP. We set the budget size of AMBR to 1/8
of the number of evaluations of the standard MBR.
We cache the sentence embedding on computing
COMET to speed up the utility function calls (Am-
rhein and Sennrich, 2022; Cheng and Vlachos,
2023). The batch size for generating H is set to
4. We set the batch size for the computation of
COMET to 64. In our code base, we compute
the generation probability of the sampled sequence
when generating H, which is also included in the
wall time in the Table. Note that the wall clock time
depends on various factors including the code base
and the hardware. All experiments are conducted
using an NVIDIA A2 GPU.

D Hyperparameters for
Confidence-Based Pruning

The performance of CBP with varying hyperparam-
eters is present in Table 2 (machine translation),
Table 3 (text summarization), and Table 4 (image
captioning). The average score over five runs is
reported. Smaller r0 and α tend to achieve higher
COMET scores when the budget is small and larger
r0 and α achieve higher scores when the budget is
large enough.

E Additional Evaluations

We describe additional experiments to evaluate the
performance of the MBR decoding algorithms.

E.1 Error Rate on WMT’21 De-En and
Ru-En

Figure 5 shows the error ratio for WMT’21 De-
En and Ru-En. Interestingly, although AMBR
achieves a higher or equivalent COMET score to
CBP (Oracle), the error ratio is higher than CBP
(Oracle). This suggests that when AMBR fails to
find the best hypothesis, it tends to find a hypothe-
sis close to the best hypothesis in quality.

E.2 Evaluation on WMT’21 En-De and
En-Ru

To evaluate the performance of AMBR in gener-
ating non-English languages, we run experiments
on WMT’21 En-De and En-Ru datasets. We use
the WMT 21 En-X model for generating the sam-
ples (Tran et al., 2021). For CBP, we search over
r0 ∈ {1, 2, 4} and α ∈ {0.8, 0.9, 0.99}. Other ex-
perimental details are the same as in Section 5.1.
Figure 6 reports the COMET scores. AMBR and
CBP significantly reduce the number of evaluations
compared to standard MBR with a marginal drop in
the COMET score. NbyS and C2F are less efficient
than AMBR and CBP. The performance of AMBR
is roughly on par with CBP. The result of the hy-
perparameter search for CBP is described in Table
5. The best set of hyperparameters is dependent to
the size of the budget.

E.3 Evaluation on M2M100 418M Model
To compare the performance of the methods on a
smaller translation model, we evaluate using the
M2M100 418M model. Figure 7 shows the results.
Overall, we observe qualitatively the same results
as using the WMT 21 En-X model (4.7B). AMBR
and CBP significantly reduce the number of evalu-
ations compared to standard MBR with a marginal
drop in the COMET score. NbyS and C2F are less
efficient than AMBR and CBP in WMT’21 tasks.
The performance of AMBR is on par with CBP
with hyperparameters set by Oracle.

E.4 Scaling with the Number of Samples on
Ru-En

Figure 8 shows the result on WMT’21 Ru-En with
varying sample sizes with a fixed evaluation bud-
get on the M2M100 418M model. We observe
the same trends as in WMT’21 De-En (Figure 2).
AMBR scales with the number of samples if there
is enough evaluation budget.

F Pretrained Models used in the
Experiments

We list the pretrained models we used in the exper-
iments in Table 6.

8561



#Evaluations Mean 1/32 1/16 1/8 1/4 1/2
r0 α COMET Rank COMET Rank COMET Rank COMET Rank COMET Rank COMET Rank

WMT’21 De-En (N = 128)

1 0.80 64.00 2 62.14 2 64.21 2 64.56 1 64.56 2 64.55 9
1 0.90 63.76 4 61.43 4 63.80 5 64.50 5 64.53 11 64.55 8
1 0.99 63.33 8 60.36 7 63.02 10 64.22 10 64.47 13 64.58 1
2 0.80 63.85 3 61.60 3 64.08 3 64.50 3 64.54 6 64.55 13
2 0.90 63.72 5 61.23 5 63.78 6 64.43 7 64.59 1 64.57 3
2 0.99 63.37 6 60.50 6 63.18 8 64.11 12 64.52 12 64.56 5
4 0.80 63.35 7 59.33 10 63.83 4 64.48 6 64.55 5 64.55 11
4 0.90 63.31 9 59.19 13 63.75 7 64.50 4 64.54 7 64.56 4
4 0.99 63.17 10 59.47 8 63.07 9 64.20 11 64.54 8 64.55 10
8 0.80 63.12 11 59.33 9 62.67 13 64.50 2 64.56 3 64.55 12
8 0.90 63.10 12 59.27 11 62.80 12 64.32 9 64.55 4 64.56 6
8 0.99 63.06 13 59.22 12 62.89 11 64.08 13 64.54 9 64.58 2

AMBR 64.31 1 63.81 1 64.23 1 64.42 8 64.53 10 64.55 7

WMT’21 Ru-En (N = 128)

1 0.80 63.33 2 61.73 2 63.39 3 63.82 3 63.86 5 63.87 10
1 0.90 63.20 4 61.20 4 63.20 5 63.84 2 63.88 3 63.88 4
1 0.99 62.83 6 60.17 7 62.79 8 63.45 13 63.85 6 63.90 1
2 0.80 63.23 3 61.20 3 63.42 2 63.84 1 63.83 8 63.87 11
2 0.90 63.14 5 60.93 5 63.27 4 63.80 5 63.83 9 63.87 8
2 0.99 62.80 7 60.27 6 62.66 10 63.45 12 63.72 13 63.87 9
4 0.80 62.74 9 58.98 12 63.17 6 63.77 6 63.92 1 63.87 7
4 0.90 62.75 8 59.25 10 63.02 7 63.70 9 63.88 2 63.89 3
4 0.99 62.65 10 59.27 9 62.68 9 63.58 10 63.81 10 63.90 2
8 0.80 62.54 13 58.95 13 62.31 12 63.75 8 63.81 11 63.87 12
8 0.90 62.57 12 59.04 11 62.30 13 63.76 7 63.85 7 63.88 6
8 0.99 62.63 11 59.39 8 62.46 11 63.57 11 63.86 4 63.88 5

AMBR 63.61 1 63.12 1 63.51 1 63.80 4 63.80 12 63.80 13

WMT’21 De-En (N = 64)

1 0.80 61.06 2 52.54 2 61.35 2 63.34 3 64.01 2 64.04 11
1 0.90 60.68 3 51.76 3 60.52 5 63.17 5 63.90 8 64.07 2
1 0.99 59.57 9 47.93 12 59.48 6 62.67 9 63.70 12 64.07 3
2 0.80 60.18 4 48.26 7 61.05 3 63.55 2 63.97 3 64.07 4
2 0.90 59.97 5 48.00 11 60.53 4 63.28 4 63.94 6 64.08 1
2 0.99 59.59 8 48.26 8 59.13 7 62.79 8 63.72 11 64.04 10
4 0.80 59.67 7 48.43 5 58.79 9 63.16 6 63.94 5 64.05 7
4 0.90 59.69 6 48.65 4 58.64 13 63.13 7 63.96 4 64.06 5
4 0.99 59.40 11 48.11 9 58.65 11 62.43 10 63.77 10 64.03 12
8 0.80 59.43 10 48.28 6 58.69 10 62.26 11 63.90 9 64.04 9
8 0.90 59.35 12 48.02 10 58.64 12 62.10 13 63.90 7 64.06 6
8 0.99 59.25 13 47.24 13 59.06 8 62.24 12 63.65 13 64.05 8

AMBR 63.29 1 61.49 1 63.10 1 63.80 1 64.02 1 64.03 13

WMT’21 Ru-En (N = 64)

1 0.80 60.63 2 53.30 2 60.65 3 62.79 3 63.18 4 63.23 5
1 0.90 60.44 3 52.63 3 60.50 4 62.70 5 63.13 7 63.24 2
1 0.99 59.13 10 48.31 11 58.99 7 62.12 9 62.99 13 63.21 11
2 0.80 59.68 4 48.00 13 60.93 2 63.02 1 63.19 3 63.24 3
2 0.90 59.58 5 48.58 7 60.18 5 62.68 6 63.23 1 63.22 9
2 0.99 59.20 8 48.40 9 59.31 6 62.07 10 63.01 12 63.22 10
4 0.80 59.26 7 48.32 10 58.82 9 62.72 4 63.20 2 63.23 4
4 0.90 59.27 6 48.70 4 58.87 8 62.45 7 63.09 10 63.23 6
4 0.99 59.17 9 48.65 5 58.71 11 62.15 8 63.10 9 63.22 8
8 0.80 59.03 13 48.19 12 58.65 13 61.92 11 63.14 6 63.25 1
8 0.90 59.11 11 48.61 6 58.78 10 61.82 13 63.11 8 63.21 12
8 0.99 59.06 12 48.52 8 58.70 12 61.87 12 63.02 11 63.20 13

AMBR 62.53 1 60.85 1 62.46 1 62.96 2 63.17 5 63.22 7

Table 2: Evaluation of confidence-based pruning (CBP) with varying hyperparameters. r0 is the number of
references at the first iteration. α is the threshold of the win rate on pruning. The average COMET-20 score over
five runs is reported. Rank denotes the rank of the average COMET-20 score over a set of runs of CBP and AMBR.
Mean column reports the average COMET score over 1/32, 1/16, 1/8, 1/4, 1/2.
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#Evaluations Mean 1/32 1/16 1/8 1/4 1/2
r0 α InfoLM Rank InfoLM Rank InfoLM Rank InfoLM Rank InfoLM Rank InfoLM Rank

SAMSum (N = 64)

1 0.80 1.864 4 1.982 13 1.896 2 1.850 4 1.802 2 1.792 3
1 0.90 1.868 8 1.976 12 1.902 4 1.856 7 1.812 7 1.794 8
1 0.99 1.870 10 1.960 8 1.909 5 1.863 11 1.821 11 1.798 11
2 0.80 1.860 2 1.955 2 1.902 3 1.845 2 1.803 3 1.793 6
2 0.90 1.866 6 1.958 5 1.909 6 1.856 6 1.813 8 1.793 5
2 0.99 1.871 12 1.960 9 1.916 11 1.858 8 1.821 12 1.797 10
4 0.80 1.864 3 1.961 10 1.915 10 1.847 3 1.806 4 1.793 4
4 0.90 1.865 5 1.956 3 1.912 7 1.854 5 1.811 6 1.793 7
4 0.99 1.872 13 1.957 4 1.922 13 1.860 10 1.822 13 1.801 13
8 0.80 1.867 7 1.961 11 1.916 12 1.859 9 1.809 5 1.792 1
8 0.90 1.869 9 1.958 6 1.913 9 1.864 13 1.816 9 1.795 9
8 0.99 1.870 11 1.959 7 1.912 8 1.864 12 1.818 10 1.799 12

AMBR 1.823 1 1.902 1 1.820 1 1.802 1 1.796 1 1.792 2

XSum (N = 64)

1 0.80 1.954 3 2.069 13 1.997 3 1.935 2 1.889 2 1.880 4
1 0.90 1.961 8 2.066 12 1.998 4 1.952 7 1.904 7 1.882 8
1 0.99 1.964 12 2.057 10 2.006 9 1.961 13 1.910 9 1.888 13
2 0.80 1.952 2 2.056 9 1.993 2 1.943 3 1.891 3 1.878 1
2 0.90 1.959 6 2.052 3 2.003 5 1.950 5 1.909 8 1.881 6
2 0.99 1.963 11 2.053 8 2.008 12 1.955 10 1.912 10 1.886 11
4 0.80 1.956 4 2.057 11 2.005 8 1.943 4 1.893 4 1.880 3
4 0.90 1.960 7 2.053 7 2.008 11 1.954 8 1.903 6 1.882 7
4 0.99 1.963 10 2.052 5 2.006 10 1.951 6 1.920 13 1.885 10
8 0.80 1.957 5 2.052 2 2.004 6 1.954 9 1.896 5 1.879 2
8 0.90 1.962 9 2.052 4 2.004 7 1.956 11 1.914 11 1.883 9
8 0.99 1.965 13 2.053 6 2.012 13 1.960 12 1.915 12 1.886 12

AMBR 1.913 1 1.990 1 1.913 1 1.892 1 1.886 1 1.881 5

Table 3: Evaluation of confidence-based pruning (CBP) with varying hyperparameters on SAMSum and XSum. r0
is the number of references at the first iteration. α is the threshold of the win rate on pruning. The average InfoLM
over five runs is reported. Rank denotes the rank of the average score over a set of runs of CBP and AMBR. Mean
column reports the average InfoLM score over 1/32, 1/16, 1/8, 1/4, 1/2.

#Evaluations Mean 1/32 1/16 1/8 1/4 1/2
r0 α RCLIP Rank RCLIP Rank RCLIP Rank RCLIP Rank RCLIP Rank RCLIP Rank

MS COCO (N = 64)

1 0.80 39.27 3 38.09 13 39.10 2 39.60 2 39.76 2 39.81 4
1 0.90 39.22 7 38.10 12 38.99 5 39.49 7 39.72 8 39.81 2
1 0.99 39.21 10 38.28 5 38.86 10 39.44 11 39.69 11 39.78 12
2 0.80 39.29 2 38.23 8 39.08 3 39.58 3 39.75 4 39.81 3
2 0.90 39.26 4 38.23 10 39.01 4 39.56 5 39.73 7 39.80 6
2 0.99 39.22 8 38.33 2 38.89 6 39.42 13 39.67 12 39.78 11
4 0.80 39.26 5 38.29 3 38.88 7 39.56 4 39.75 3 39.81 1
4 0.90 39.24 6 38.28 4 38.88 8 39.52 6 39.74 6 39.80 7
4 0.99 39.19 12 38.23 9 38.81 13 39.46 8 39.69 10 39.76 13
8 0.80 39.21 9 38.21 11 38.86 9 39.45 9 39.75 5 39.80 9
8 0.90 39.20 11 38.24 7 38.84 11 39.44 10 39.69 9 39.81 5
8 0.99 39.19 13 38.25 6 38.82 12 39.42 12 39.65 13 39.79 10

AMBR 39.65 1 39.33 1 39.61 1 39.74 1 39.78 1 39.80 8

Table 4: Evaluation of confidence-based pruning (CBP) with varying hyperparameters on MS COCO. r0 is the
number of references at the first iteration. α is the threshold of the win rate on pruning. The average RefCLIPScore
(RCLIP) over five runs is reported. Rank denotes the rank of the average score over a set of runs of CBP and AMBR.
Mean column reports the average RCLIP score over 1/32, 1/16, 1/8, 1/4, 1/2.
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#Evaluations Mean 1/32 1/16 1/8 1/4 1/2
r0 α COMET Rank COMET Rank COMET Rank COMET Rank COMET Rank COMET Rank

WMT’21 En-De (N = 128)

1 0.80 49.12 2 47.33 2 49.45 1 49.57 6 49.59 7 49.65 8
1 0.90 48.88 4 46.44 4 49.09 5 49.58 4 49.65 3 49.65 7
1 0.99 48.41 6 45.17 6 48.45 8 49.22 9 49.55 10 49.65 1
2 0.80 49.01 3 46.88 3 49.26 2 49.58 5 49.66 1 49.65 6
2 0.90 48.83 5 46.29 5 48.98 6 49.61 3 49.62 5 49.65 2
2 0.99 48.36 7 44.90 7 48.27 10 49.38 8 49.58 8 49.65 9
4 0.80 48.23 8 42.98 10 49.23 3 49.63 1 49.65 2 49.65 6
4 0.90 48.16 9 43.06 9 48.91 7 49.52 7 49.64 4 49.65 4
4 0.99 48.04 10 43.32 8 48.42 9 49.22 10 49.60 6 49.65 3

AMBR 49.32 1 48.56 1 49.23 4 49.61 2 49.56 9 49.63 10

WMT’21 En-Ru (N = 128)

1 0.80 63.26 2 61.80 2 63.48 4 63.69 9 63.66 9 63.71 5
1 0.90 63.07 5 60.84 5 63.41 6 63.73 3 63.66 8 63.70 7
1 0.99 62.65 6 59.35 6 62.70 10 63.75 1 63.76 1 63.70 9
2 0.80 63.18 3 61.25 3 63.50 3 63.72 5 63.72 2 63.71 3
2 0.90 63.10 4 60.86 4 63.54 1 63.70 7 63.70 4 63.72 2
2 0.99 62.63 7 59.33 7 62.74 8 63.74 2 63.61 10 63.71 4
4 0.80 62.47 8 57.76 8 63.51 2 63.71 6 63.68 6 63.71 6
4 0.90 62.35 9 57.42 10 63.23 7 63.73 4 63.66 7 63.70 8
4 0.99 62.27 10 57.66 9 62.71 9 63.58 10 63.72 3 63.69 10

AMBR 63.54 1 63.11 1 63.46 5 63.70 8 63.69 5 63.74 1

Table 5: Evaluation of confidence-based pruning (CBP) with varying hyperparameters on WMT’21 En-De and
En-Ru. r0 is the number of references at the first iteration. α is the threshold of the win rate on pruning. The average
COMET-20 score over five runs is reported. Rank denotes the rank of the average score over a set of runs of CBP
and AMBR. Mean column reports the average COMET score over 1/32, 1/16, 1/8, 1/4, 1/2.

WMT’21 (Section 5.1) Tran et al. (2021) https://huggingface.co/facebook/wmt21-dense-24-wide-x-en
WMT’21 (Section 5.1) Fan et al. (2021) https://huggingface.co/facebook/m2m100_418M
WMT’21 (Section E.2) Tran et al. (2021) https://huggingface.co/facebook/wmt21-dense-24-wide-en-x
SAMSum (Section 5.2) https://huggingface.co/philschmid/bart-large-cnn-samsum

XSum (Section 5.2) Lewis et al. (2020) https://huggingface.co/facebook/bart-large-xsum
MS COCO (Section 5.3) Li et al. (2023a) https://huggingface.co/Salesforce/blip2-flan-t5-xl-coco
MS COCO (Section 5.3) (CLIPScore) Hessel et al. (2021) https://huggingface.co/openai/clip-vit-large-patch1

Table 6: List of pretrained models we used in the experiments.
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Figure 5: The error rate on WMT’21 De-En and Ru-En using the WMT 21 X-En model. The shaded regions show
the minimum and the maximum values over five runs. The error rate is the ratio of selecting a hypothesis different
from the standard MBR using all samples. The horizontal axis shows the reduction in the number of evaluations
compared to the standard MBR with all samples.
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Figure 6: COMET-20 score and error rate on WMT’21 En-De and En-Ru using WMT 21 En-X model (4.7B). The
shaded regions show the minimum and the maximum values over five runs. The error rate is the ratio of selecting a
hypothesis different from the standard MBR using all 128 samples. The horizontal axis shows the reduction in the
number of evaluations compared to the standard MBR with all 128 samples.
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Figure 7: COMET-20 score and error rate on WMT’21 De-En and Ru-En using the M2M100 418M model. The
shaded regions show the minimum and the maximum values over five runs. The error rate is the ratio of selecting a
hypothesis different from the standard MBR using all 128 samples. The horizontal axis shows the reduction in the
number of evaluations compared to the standard MBR with all 128 samples.
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Figure 8: COMET-20 score on WMT’21 Ru-En with varying number of samples using M2M100 418M model. The
shaded regions show the minimum and the maximum values over five runs.
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