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Abstract

Speculative decoding has emerged as a pow-
erful method to improve latency and through-
put in hosting large language models. How-
ever, most existing implementations focus on
generating a single sequence. Real-world gen-
erative AI applications often require multiple
responses and how to perform speculative de-
coding in a batched setting while preserving
its latency benefits poses non-trivial challenges.
This paper describes a system of batched spec-
ulative decoding that sets a new state of the
art in multi-sequence generation latency and
that demonstrates superior GPU utilization as
well as quality of generations within a time
budget. For example, for a 7.8B-size model
on a single A100 GPU and with a batch size
of 8, each sequence is generated at an average
speed of 5.8ms per token, the overall through-
put being 1.1K tokens per second. These re-
sults represent state-of-the-art latency and a
2.15× speed-up over optimized regular decod-
ing. Within a time budget that regular decoding
does not finish, our system is able to generate
sequences with HumanEval Pass@First of 43%
and Pass@All of 61%, far exceeding what’s fea-
sible with single-sequence speculative decod-
ing. Our peak GPU utilization during decoding
reaches as high as 15.8%, more than 3× the
highest of that of regular decoding and around
10× of single-sequence speculative decoding.

1 Introduction

In recent years, generative large language mod-
els (LLMs) have rapidly gained popularity due to
their ability to generalize across a wide variety
of tasks. These models are increasingly deployed
commercially for applications such as coding as-
sistants, writing aids, conversational agents, search
and summarization tools and more. The accuracy
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Figure 1: Comparing latency and GPU utilization of
auto-regressive regular decoding (RD), single-sequence
speculative decoding (SD) and our BASS method on two
models. RD and BASS are measured with exponentially
increasing batch sizes (BS).

performance of LLMs has been shown to scale with
model size, with larger models demonstrating im-
proved capabilities (Kaplan et al., 2020). However,
this improvement comes at the cost of greater la-
tency during inference and increased computational
requirements.

Most popular LLMs are transformer-based de-
coder models. The inference speed of these models
is often limited by memory bandwidth on typical
hardware like GPUs. This is because GPUs tend to
have much higher compute throughput relative to
memory bandwidth. The auto-regressive decoding
process of these models, where each output token
is generated sequentially conditioned on previous
tokens, means the entire model parameters need
to be fetched from memory for each generated to-
ken. This sequential nature prevents parallelization
during inference, resulting in under-utilization of
available compute resources. For example, for both
models in Figure 1, single-sequence regular decod-
ing utilizes only 0.4% of GPU FLOPS.

To improve GPU utilization, batching multiple
sequences is often employed to amortize the mem-
ory I/O costs across a batch and thereby utilize
more FLOPS per memory I/O. However, large
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batch sizes are needed to effective utilize GPU
compute, resulting in higher latency for individual
sequences that are batched as well as bigger mem-
ory footprints. With larger model sizes, memory
bottleneck becomes a challenge and limits allow-
able batch sizes. In Figure 1 for example, the high-
est GPU utilization by batched regular coding is
only 4.8% before going out-of-memory.

Speculative decoding has emerged as an effec-
tive approach to improve latency of LLMs by in-
creasing GPU utilization. The key idea is to draft
a few tokens (typically by using a smaller LLM)
and verify their correctness with the main LLM. By
processing the draft tokens in parallel, speculative
decoding amortizes the memory I/O of model pa-
rameters across the tokens. Despite its advantages,
speculative decoding has limitations: It processes
a single sequence at a time, restricting the paral-
lelism to the number of draft tokens. This caps the
potential GPU utilization improvements.

To address this, we present Batched Attention-
optimized Speculative Sampling (BASS) – a par-
allel speculative decoder that handles multiple se-
quences simultaneously. BASS increases GPU uti-
lization by parallelism across both the batch dimen-
sion and the draft-token dimension. We implement
customized CUDA kernels to handle ragged tensors
during attention calculation, which are a challenge
posed by batched speculative decoding, and de-
sign a heuristic to dynamically adjust draft length
for each step. As illustrated in Figure 1, BASS
achieves latency and GPU utilization that are sub-
stantially improved from prior regular and specu-
lative decoders. By comprehensive experiments
on three different models including CodeGen and
OPT, we study these trends as well as accuracy ben-
efits of BASS. We study the impact of draft model
design on overall system performance as well as
that of algorithmic choices in attention kernels and
draft lengths. BASS is applicable to both batch gen-
eration from a same prompt and batch generation
from a set of different prompts.

2 Background

2.1 Inference with LLMs

This paper focuses on transformer-based (Vaswani
et al., 2017) decoder-only generative LLMs. The
standard inference of these LLMs can be divided
into two phases: (a) context encoding (prefill)
phase where the input prompt is processed in par-
allel to encode contextual information, and (b) in-
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Figure 2: (a) Inference steps in regular decoding of an
LLM. (b) Operations in multi-head attention.

cremental decoding phase where the model auto-
regressively generates output tokens one by one
based on the encoded context (Figure 2(a)).

Consider a decoder-only transformer (Radford
et al., 2019) architecture with alternatively stacked
feed-forward network layers and attention layers.
In the attention mechanism (Figure 2(b)), key (ki),
value (vi), and query (qi) vectors are first computed
by projecting the token embeddings for each posi-
tion i. The queries are then used to calculate the
relevance of the current token with past positions,
by estimating their correlation with the past keys.

During the context encoding phase, all prompt
tokens are processed in parallel. The attention keys
and values for all context tokens (K and V tensors)
are cached during this phase. This phase exhibits
high GPU utilization.

The incremental decoding phase is bottlenecked
by memory I/O from repeated fetching of model
parameters and the KV cache as each output token
is decoded. This phase is typically the dominant
portion of inference time and exhibits low GPU
utilization. It is the focus of our optimizations.

2.2 Speculative decoding

Speculative decoding (Stern et al., 2018; Xia et al.,
2022; Leviathan et al., 2023; Chen et al., 2023)
is a popular technique to reduce latency of LLM
inference. As illustrated in Figure 3, the idea is to
use a small draft model to generate k draft tokens.
They are then processed by the main model as in-
cremental context encoding to decide which draft
tokens to accept.

The number of draft tokens to accept is decided
based on the probabilities of generating these to-
kens according to the main and draft models. In
the case of rejection, a corrected token is sampled
from the outputs of the main model. Overall, this
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Figure 3: Standard speculative decoding. The
draft model (Draft M) generates k draft tokens auto-
regressively, which are then processed by the main
model (M) in parallel to verify correctness.

decision process is stochastic and is designed to be
equivalent to sampling from the main model’s dis-
tribution (Leviathan et al., 2023; Chen et al., 2023).
For example, we may accept the first five tokens,
correct the sixth token, and then generate new draft
tokens from the seventh position.

Latency benefit comes from the higher GPU uti-
lization associated with incremental context encod-
ing rather than auto-regressive decoding. More
than 2× latency reduction has been reported in lit-
erature (Leviathan et al., 2023; Chen et al., 2023).

2.2.1 Limitations of speculative decoding
A major limitation of speculative decoding is that
batch size of the main model’s generation is prefer-
ably just 1, which is the setting in most existing
works. It is straightforward to see why. In a naive
implementation with batch size more than 1, we
stop accepting tokens at the first reject position in
the batch and hence lose some latency benefit. For
illustration, let’s make a simplistic assumption that
each token generated by the draft model has an
independent chance p of getting accepted, then the
number of output tokens per draft has a geometric
distribution with an expected value of 1/(1 − p).
For example, if p = 80%, then on average the
decoding process moves forward by 5 tokens per
draft. With a batch size of b, the probability of
acceptance per position becomes pb. For a batch
size of five as an example, the probability of accep-
tance per position becomes 33% and on average
the decoding process moves forward by merely 1.5
tokens per draft, and we have lost most, if not all,
of the latency benefit.

To retain the latency benefit with b > 1, we need

to accept variable numbers of draft tokens across
a batch. This poses challenges that no prior work
has addressed efficiently and the existing systems
remain single-sequence inference.

3 Batched Attention-optimized
Speculative Sampling

Batched Attention-optimized Speculative Sam-
pling (BASS) extends speculative decoding by en-
abling batch processing across multiple sequences.
While speculative sampling improves GPU utiliza-
tion for a single sequence, parallelism is limited
to the small number of draft tokens per sequence
(typically 5-10). Batching sequences with specu-
lative decoding can further maximize GPU usage.
To fully realize these benefits, specialized tensor
manipulations and CUDA kernels are required.

3.1 Challenges with batching

One challenge with batched speculative decoding
stems from the uncertainty in the numbers of ac-
ceptable draft tokens for each sequence, which vary
across the batch. LLM inference kernels are de-
signed to handle regular shaped tensors, primarily
driven by CUDA restrictions. If we enforce a uni-
form sequence length across the batch, that would
result in less accepted draft tokens and in diminish-
ing benefits as discussed in Section 2.2.1.

In order to maintain the performance gains of
speculative sampling, we need to be able to accept
variable numbers of tokens across the batch. This
will result in variable sequence lengths across the
batch and consequently ragged-shape K and V ten-
sors. In particular, this will affect the computations
in the attention layer where we may not be able to
batch the operations into a single kernel. Handling
this effectively needs careful design considerations.

Another challenge is the choice of draft lengths.
Although prior experimental systems tend to use
a fixed draft length, real-life deployment requires
adaptive draft lengths because different prompts
may lead to different degrees of alignment between
draft and main models during generation and hence
different optimal draft lengths. For efficient incre-
mental context encoding by the main model, we
need to choose a uniform draft length across the
batch at each step, and this decision needs to bal-
ance the needs of the multiple sequences.
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Figure 4: Attention calculation in BASS: (a) Attention
compute flow, (b) BASS-PAD launches one kernel for
QK GEMM and one kernel for PV GEMM by padding
the K, V and P tensors to the maximum sequence
length across the batch, and (c) BASS-SPLIT launches
one kernel per sequence and thereby accommodates
variable sequence lengths.

3.2 Proposed method

The attention computation flow, illustrated in Fig-
ure 4(a), involves a GEMM1 operation between the
query tensor Q of the current tokens and the key
tensor K of all tokens processed so far, a softmax
operation that outputs P = softmax(QTK/c),
and another GEMM operation between P and value
tensor V of all tokens processed so far. There are
three ragged tensors, K, V and P . We propose
two variants: BASS-PAD and BASS-SPLIT as il-
lustrated in Figure 4(b) and Figure 4(c) respec-
tively. They implement the two GEMMs differ-
ently and share the same softmax operation: we
simply launch separate softmax kernels, one for
each sequence.

In the BASS-PAD approach, we pad the K, V
and P tensors along the sequence length dimen-
sion to match the longest sequence of the batch
and use the padded tensors for computations. We
assign zero probabilities for the padded tokens in
P . BASS-PAD does not incur additional cost of
launching kernels, but we waste some compute
to perform dummy computations with the padded
elements.

1General matrix multiplication (GEMM).

The BASS-SPLIT approach is derived from the
insight that attention operation is not associated
with any model parameters and therefore applying
batching to attention has no benefit of reducing the
amount of GPU memory reads. In this approach,
we break up the KQ GEMM and the PV GEMM
into smaller per-sequence kernels, so that we can
handle the variable sequence-length dimension in
K, V and P tensors, as shown in Figure 4(c). Note
that these separate kernels can be launched and
executed in parallel. Since there is no sharing of
memory reads among these separate kernels, the
only extra cost that we pay is the cost of launching
them. BASS-SPLIT does not waste any compute.

BASS-PAD and BASS-SPLIT apply to both the
main and the draft models and apply to both token
generation and incremental context encoding. With
either approach, we can now let each sequence
proceed at its own pace according to its own reject
points and let sequences in the batch have different
lengths.

Note that other steps, including the feed-forward
network, the KQV projection layer, and the pro-
jection layer at end of attention, all remain the
same and remain regularly batched to share mem-
ory reads of model parameters.

The comparison between BASS-PAD and BASS-
SPLIT depends on the application scenario. We
find BASS-PAD more attractive when the sequence
lengths are closer to each other and BASS-SPLIT
more favorable when the sequence lengths across
batch vary by a large margin. Most results in Sec-
tion 4 are based on BASS-PAD and their compari-
son results are in Section 4.6.

Algorithm 1 A heuristic to adjust draft length

ldraft ← l0
s← 0
for each speculative decoding step do

x1, · · · , xb ← numbers of accepted tokens
if max (x1, · · · , xb) = ldraft then

ldraft ← min (ldraft + lincre, llimit)
s← 0

else
ldraft ← ldraft − ⌈ldraft/lmod⌉ − s
ldraft ← max (1, x1, · · · , xb, ldraft)
s← 1

end if
end for

Algorithm 1 describes the heuristic that we use
to dynamically adjust draft lengths. The rationale is
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to increase draft length when at least one sequence
has accepted all draft tokens in the last speculative
decoding step and to decrease it otherwise. The
speed of decrease is larger when the current draft
length is larger and when it is a consecutive step of
decrease. However, the next draft length is never
decreased to be less than the max number of ac-
cepted tokens in the batch. We empirically chose
the parameters of l0 = 7, lincre = 2, lmod = 10
and llimit = 32. Comparisons against constant draft
lengths are in Section 4.6.

The degree of alignment between draft and main
models varies across prompts, across different se-
quences from the same prompt, and also within the
same sequence. When generating commonly used
sentences or boilerplate code for example, the align-
ment tends to be strong and the optimal draft length
is long. When generating uncommon sentences or
novel code segments, the alignment tends to be
weak and the optimal draft length is short. The ef-
fect of Algorithm 1 versus a fixed draft length is to
dynamically get closer to the optimal draft length in
both scenarios, so that the system generates longer
drafts where possible yet does not waste compute
to generate throw-away tokens.

4 Experiments

In this section we demonstrate the benefits of BASS
over batched auto-regressive regular decoding (RD)
and single-sequence speculative decoding.

4.1 Setup

Inference setup and CUDA kernels: All exper-
iments throughout this paper are conducted on a
single A100 GPU with 40GB memory. All infer-
ence runs, except for the “vLLM” rows in Tables 1
and 2, use a modified version of DeepSpeed2 (DS),
including both regular decoding and BASS runs.
As can be seen in the tables, the regular decoding
latencies are at the state of the art and comparable
to those reported in (Aminabadi et al., 2022; Yao
et al., 2022) for both FP16 and INT8. The vLLM
runs use the latest vLLM version3 (v0.3.0) and all
sequences start immediately and hence result in
the best possible latencies. Our modifications to
DeepSpeed include:

• Kernels for quantizing both weights and ac-
tivations to INT8 for all linear layers. We

2https://github.com/microsoft/DeepSpeed
3https://github.com/vllm-project/vllm

use CUTLASS4 INT8→INT32 kernels for
GEMM calls and modify them and other lay-
ers to fuse quantization and de-quantization
operators.

• Kernels for attention calculations to address
the ragged-tensor challenge in batched specu-
lative decoding without sacrificing latency, as
discussed in Section 3.

Models and tasks: We report experimental results
on three main models with their respective draft
models and tasks5:

• OPT 13B as the main model and OPT 125M
or 350M as the draft model (Zhang et al.,
2022). Following the same experimental set-
ting as (Chen et al., 2023), we use the XSum
task with 11,334 test examples (Narayan et al.,
2018), use 1-shot prompting, generate 128 to-
kens per sequence, and use ROUGE-2 (Lin,
2004) as the metric to verify accuracy.

• CodeGen-Mono 16B as the main model and
CodeGen-Mono 350M as the draft model. We
use the HumanEval task with 164 examples
and use the Pass@K accuracy metric (Chen
et al., 2021), and we generate 256 tokens for
each sequence.

• A 7.8B model trained on text and code as the
main model and one of three draft models with
sizes 310M, 510M and 1B. We again use the
HumanEval task.

Latency metrics: We use the metric of per-token
latency for each generated sequence 6. For regular
decoding, this value is the same across a batch. For
speculative decoding, it varies within a batch and
therefore we report three metrics: per-token latency
of the first finished sequence in a batch, per-token
latency of the last finished sequence in a batch, and
per-token latency averaged across a batch, where
each of the three is then averaged across examples
in a task dataset.

4https://github.com/NVIDIA/cutlass
5While the three tasks are the scenario of batch generation

from a same prompt, please note that BASS is also applicable
to batch generation from a set of different prompts.

6It is important to note that we do not divide latency by
batch size, which was done in some papers, e.g., (Su et al.,
2023). Fundamentally, our definition is a latency metric while
the definition in (Su et al., 2023) is a throughput metric. With
our definition, per token latency increases as the batch size
increases because the amount of FLOPS during the per token
latency is multiplied by batch size, and this applies to both
regular decoding and speculative decoding.
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Prec. Batch Method ROUGE-2 Mean per-token latency & Speedup
First Last All

FP16

1
RD (DS) 0.086 23.4 ms 1× 23.4 ms 1× 23.4 ms 1×
RD (vLLM) 0.083 24.0 ms 0.98× 24.0 ms 0.98× 24.0 ms 0.98×
BASS (ours) 0.084 10.8 ms 2.16× 10.8 ms 2.16× 10.8 ms 2.16×

2
RD (DS) 0.085 25.9 ms 1× 25.9 ms 1× 25.9 ms 1×
RD (vLLM) 0.084 23.9 ms 1.08× 23.9 ms 1.08× 23.9 ms 1.08×
BASS (ours) 0.084 9.4 ms 2.74× 12.6 ms 2.05× 11.0 ms 2.34×

4
RD (DS) 0.085 27.0 ms 1× 27.0 ms 1× 27.0 ms 1×
RD (vLLM) 0.084 24.3 ms 1.11× 24.3 ms 1.11× 24.3 ms 1.11×
BASS (ours) 0.084 9.6 ms 2.81× 16.6 ms 1.62× 12.7 ms 2.13×

INT8

1 RD (DS) 0.085 17.4 ms 1× 17.4 ms 1× 17.4 ms 1×
BASS (ours) 0.087 8.5 ms 2.05× 8.5 ms 2.05× 8.5 ms 2.05×

2 RD (DS) 0.086 20.1 ms 1× 20.1 ms 1× 20.1 ms 1×
BASS (ours) 0.087 7.8 ms 2.57× 10.7 ms 1.87× 9.3 ms 2.16×

4 RD (DS) 0.086 21.1 ms 1× 21.1 ms 1× 21.1 ms 1×
BASS (ours) 0.087 8.2 ms 2.58× 14.8 ms 1.43× 11.2 ms 1.88×

8 RD (DS) 0.086 23.5 ms 1× 23.5 ms 1× 23.5 ms 1×
BASS (ours) 0.087 9.6 ms 2.44× 21.7 ms 1.08× 14.5 ms 1.62×

Table 1: OPT 13B accuracy and latency on XSum with auto-regressive regular decoding (RD) with DeepSpeed
(DS) and vLLM, and BASS. Temperature is 0.2, nucleus top p is 0.95, and draft model is OPT 125M.

4.2 Performance on summarization

Table 1 shows the accuracy and latency results of
the OPT 13B model on the summarization task of
the XSum dataset, with OPT 125M as the draft
model. As expected, the results suggest neutral
accuracy between regular decoding and speculative
decoding, while speculative decoding provides up
to 2.81× speed up for finishing the first sequence
and up to 2.34× speed up on average for all se-
quences. In a real-life application, and particularly
in the scenario of generating multiple sequences
for the same prompt, we can respond to the user
as soon as the first sequence finishes while the
other additional recommendations continue to gen-
erate. Therefore, speeding up the first sequence by
2.05×–2.81× implies a significant improvement in
user-perceived latency.

The latency divergence between the first and last
finished sequences increases with batch size. How-
ever, the last sequence latency is not as important
in a real-life application because, when generating
multiple sequences for the same prompt, we can
simply choose a cut-off latency limit and return,
e.g., five finished sequences out of a batch of eight.

4.3 Performance on code generation

Table 2 shows the accuracy and latency results of
the CodeGen-Mono 16B model on the HumanEval
task, with CodeGen-Mono 350M as the draft model.
The trends are similar to Table 1: accuracy is neu-
tral between regular decoding and speculative de-
coding; the first finished sequence is sped up by up
to 2.65×, representing a significant improvement

in user-perceived latency; the average latency of
all sequences is reduced by up to 2.43×; the la-
tency divergence between the first and last finished
sequences increases with batch size.

Unlike Table 1, the accuracy metric in Table 2
increases with batch size: it is the percentage of ex-
amples where at least one correct generation exists
in the batch. It represents an accuracy benefit of
batched over single-sequence speculative decoding
and more results will be presented in Section 4.5.

Overall the speed-up ratios in Table 2 are less
than those in Table 1, and we hypothesize that the
main factor is the larger size of the draft model.

Table 3 shows the accuracy and latency results
of a custom 7.8B model, which was trained on text
and code, on the HumanEval task, with a 310M-
size draft model which is the first in Table 4. The
overall trends are similar to those in Table 2 except
that the speed-up ratios are substantially higher: the
first finished sequence is sped up by up to 3.23×,
and the average latency of all sequences is reduced
by up to 2.94×. We hypothesize that the draft
model architecture choice is the main reason and
we will look at impact of draft model designs next.

4.4 Impact of draft model choices
Table 4 compares three draft models, all GPT2-
like models with different architecture parameters
as listed in the first three rows. They are trained
with the same data and for the same amount of
tokens. According to the fifth row, i.e., their stand-
alone accuracy performance on HumanEval, the
second draft model is more performant, likely due
to its greater depth. This is also supported by the
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Prec. Batch Method Pass@Batch Mean per-token latency & Speedup
First Last All

FP16

1
RD (DS) 30.5% 23.6 ms 1× 23.6 ms 1× 23.6 ms 1×
RD (vLLM) 31.0% 26.7 ms 0.88× 26.7 ms 0.88× 26.7 ms 0.88×
BASS (ours) 30.5% 10.2 ms 2.31× 10.2 ms 2.31× 10.2 ms 2.31×

2
RD (DS) 36.6% 26.3 ms 1× 26.3 ms 1× 26.3 ms 1×
RD (vLLM) 35.9% 28.2 ms 0.93× 28.2 ms 0.93× 28.2 ms 0.93×
BASS (ours) 36.0% 9.9 ms 2.65× 11.7 ms 2.25× 10.8 ms 2.43×

4
RD (DS) 39.0% 27.0 ms 1× 27.0 ms 1× 27.0 ms 1×
RD (vLLM) 40.4% 28.9 ms 0.93× 28.9 ms 0.93× 28.9 ms 0.93×
BASS (ours) 40.2% 10.8 ms 2.50× 15.6 ms 1.73× 13.0 ms 2.07×

8
RD (DS) 42.7% 28.9 ms 1× 28.9 ms 1× 28.9 ms 1×
RD (vLLM) 45.1% 29.7 ms 0.97× 29.7 ms 0.97× 29.7 ms 0.97×
BASS (ours) 45.1% 11.5 ms 2.51× 19.4 ms 1.49× 14.9 ms 1.94×

INT8

1 RD (DS) 32.3% 16.8 ms 1× 16.8 ms 1× 16.8 ms 1×
BASS (ours) 31.7% 9.3 ms 1.82× 9.3 ms 1.82× 9.3 ms 1.82×

2 RD (DS) 36.6% 19.6 ms 1× 19.6 ms 1× 19.6 ms 1×
BASS (ours) 36.0% 9.3 ms 2.11× 10.9 ms 1.79× 10.1 ms 1.94×

4 RD (DS) 38.4% 20.4 ms 1× 20.4 ms 1× 20.4 ms 1×
BASS (ours) 39.0% 9.8 ms 2.07× 13.2 ms 1.54× 11.2 ms 1.81×

8 RD (DS) 44.5% 21.9 ms 1× 21.9 ms 1× 21.9 ms 1×
BASS (ours) 42.7% 11.1 ms 1.98× 18.8 ms 1.17× 14.3 ms 1.53×

Table 2: CodeGen-Mono 16B accuracy and latency on HumanEval with auto-regressive regular decoding (RD) with
DeepSpeed (DS) and vLLM, and BASS. Temperature is 0.2, nucleus top p is 0.95, and draft model is CodeGen-
Mono 350M.

Prec. Batch Method Pass@Batch Mean per-token latency & Speedup
First Last All

BF16

1 RD (DS) 36.6% 14.4 ms 1× 14.4 ms 1× 14.4 ms 1×
BASS (ours) 34.1% 4.6 ms 3.10× 4.6 ms 3.10× 4.6 ms 3.10×

2 RD (DS) 45.7% 14.6 ms 1× 14.6 ms 1× 14.6 ms 1×
BASS (ours) 45.1% 4.6 ms 3.16× 5.3 ms 2.74× 5.0 ms 2.94×

4 RD (DS) 48.8% 15.1 ms 1× 15.1 ms 1× 15.1 ms 1×
BASS (ours) 51.8% 4.7 ms 3.23× 7.0 ms 2.17× 5.7 ms 2.64×

8 RD (DS) 55.5% 16.0 ms 1× 16.0 ms 1× 16.0 ms 1×
BASS (ours) 53.7% 5.5 ms 2.92× 9.1 ms 1.75× 7.1 ms 2.25×

16 RD (DS) 59.1% 16.9 ms 1× 16.9 ms 1× 16.9 ms 1×
BASS (ours) 57.9% 7.3 ms 2.31× 13.0 ms 1.31× 9.6 ms 1.77×

INT8

1 RD (DS) 34.8% 11.0 ms 1× 11.0 ms 1× 11.0 ms 1×
BASS (ours) 36.6% 3.7 ms 2.99× 3.7 ms 2.99× 3.7 ms 2.99×

2 RD (DS) 40.9% 11.3 ms 1× 11.3 ms 1× 11.3 ms 1×
BASS (ours) 43.3% 3.7 ms 3.03× 4.4 ms 2.59× 4.1 ms 2.79×

4 RD (DS) 46.3% 11.8 ms 1× 11.8 ms 1× 11.8 ms 1×
BASS (ours) 47.6% 4.1 ms 2.84× 5.7 ms 2.07× 4.8 ms 2.44×

8 RD (DS) 51.2% 12.3 ms 1× 12.3 ms 1× 12.3 ms 1×
BASS (ours) 55.5% 4.5 ms 2.73× 7.5 ms 1.66× 5.8 ms 2.15×

16 RD (DS) 57.3% 13.6 ms 1× 13.6 ms 1× 13.6 ms 1×
BASS (ours) 57.3% 6.3 ms 2.16× 10.6 ms 1.29× 8.0 ms 1.70×

Table 3: A 7.8B code model’s accuracy and latency on HumanEval with regular decoding (RD) with DeepSpeed
(DS) and vLLM, and BASS. Temperature is 0.2, nucleus top p is 0.95, and draft model is the first in Table 4.

sixth row which shows the chance of a draft token
getting accepted during speculative decoding, and
indeed the second draft model aligns better with the
main model. However, because the second draft
model itself takes higher latency to generate draft
tokens, the overall latency of speculative decoding
is increased despite accepting more draft tokens.

Table 5 is a similar comparison between two
OPT draft models. Surprisingly OPT 350M
is worse than OPT 125M in both stand-alone
ROUGE-2 score on XSum and token acceptance

rate which represents worse alignment with the
main model of OPT 13B.

4.5 Benefits of batched speculative decoding

Figure 5 emulates a real-life application scenario
where a service returns code recommendations to
a user within a time budget. One of the recom-
mendations is first displayed and the user has the
option to flip through others. Ranking (here simply
mean-logP based) is applied to pick the first dis-
played one. The Pass@First metric is the probabil-
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draft model A B C
#layer 4 8 4
#head 16 16 32
hidden dimension 2048 2048 4096
#param 310M 510M 1B
HumanEval pass@1 5.1% 11.4% 5.8%
token acceptance rate 87.4% 88.5% 87.2%

batch size 1 1.9 2.6 2.5
draft batch size 2 2.0 2.6 2.6
PTL batch size 4 2.0 2.7 2.7
(ms) batch size 8 2.0 2.7 2.8

batch size 16 2.1 3.0 3.1
batch size 1 3.7 4.5 4.5

1st Seq batch size 2 3.7 4.4 4.8
PTL batch size 4 4.1 5.0 5.2
(ms) batch size 8 4.5 5.9 6.0

batch size 16 6.3 7.6 7.7

Table 4: Comparisons between three draft models. PTL
stands for per-token latency, and 1st Seq PTL stands for
that of the first finished sequence with BASS.

draft model A B
#layer 12 24
#head 12 16
hidden dimension 768 1024
#param 125M 350M
XSum ROUGE-2 0.023 0.015
token acceptance rate 78.5% 76.3%

batch size 1 3.1 6.9
draft batch size 2 5.0 8.6
PTL batch size 4 5.0 8.5
(ms) batch size 8 5.1 8.9

batch size 1 8.5 14.2
1st Seq batch size 2 7.8 14.7
PTL batch size 4 8.2 15.7
(ms) batch size 8 9.6 16.6

Table 5: Comparisons between two OPT draft models.
PTL stands for per-token latency, and 1st Seq PTL stands
for that of the first finished sequence with BASS.

ity that the first displayed recommendation solves
the problem correctly. The Pass@Finished metric
is the probability that at least one of the finished
recommendations within the time budget solves
the problem correctly. These two metrics together
quantify the accuracy quality of the service.

Figure 5 uses an end-to-end time budget of 2.5
seconds to generate 256-long sequences for any
given prompt from HumanEval. According to Ta-
ble 3, regular decoding under any setting would
be unable to finish before time runs out, while
single-sequence speculative decoding is able to re-
turn one recommendation and its Pass@First and
Pass@Finished are the same and correspond to
the left end point of the curves. With BASS and
as the batch size increases, Pass@Finished is in-
creased up to 61% and Pass@First is increased
up to 43% with a simple ranking strategy using
model confidence of mean-logP value. Both num-

Figure 5: A 7.8B code model’s accuracy on HumanEval
with BASS, within a time budget of 2.5 seconds. t is
temperature.

bers are substantially higher than the mid-thirties
accuracy by single-sequence speculative decoding.
A real-life application would use a domain-specific
stopping criteria instead of a fixed length and a
more sophisticated ranking method, but the relative
comparisons among the competing methods are as
captured by Figure 5 and BASS is clearly superior.

4.6 Ablation studies

In Table 6, we compare latency when certain al-
ternative implementation choices are used. With
BASS-SPLIT, we launch per-sequence kernels to
handle ragged tensors as illustrated in Figure 4(c).
The results suggest that the cost of launching more
CUDA kernels in BASS-SPLIT out-weights the
cost of wasted compute in BASS-PAD. Note that
this relation is task dependent and may change
when the sequence lengths across a batch vary by a
large margin. For example, when applied on tasks
of batch generation from a set of different prompts,
the advantages of BASS-SPLIT could out-weights
the cost. With “fixed draft size”, we use a constant
draft length instead of Algorithm 1 that dynami-
cally modifies draft length. The results suggest that
both the efficient attention calculation and the draft-
length heuristic are important to the performance
of BASS.

5 Related Work

Efficient inference of LLMs has been a popular
research topic in recent years. Model quantiza-
tion techniques (Yao et al., 2022; Lin et al., 2023;
Frantar et al., 2022; Kuzmin et al., 2022) employ
lower-precision representations for model parame-
ters (e.g., INT8, INT4, FP8) without significantly
compromising accuracy. Pruning (Frantar and Alis-
tarh, 2023) reduces memory footprints via sparsity.
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OPT 13B, XSum 1st Seq PTL (ms)
batch 2 4 8

BASS 7.8 8.2 9.6
BASS-SPLIT 8.6 9.2 11.3
fixed draft size 4 8.9 9.6 11.3
fixed draft size 6 8.9 9.0 10.2
fixed draft size 8 8.9 9.1 10.3
CG 16B, HumanEval 1st Seq PTL (ms)

batch 2 4 8
BASS 9.3 9.8 11.1
BASS-SPLIT 10.1 11.7 12.7
fixed draft size 4 9.7 10.2 12.3
fixed draft size 6 9.1 9.7 11.6
fixed draft size 8 9.7 9.5 13.1
Code 7.8B, HumanEval 1st Seq PTL (ms)

batch 2 4 8
BASS 3.7 4.1 4.5
BASS-SPLIT 4.0 4.4 5.2
fixed draft size 4 4.6 5.1 6.3
fixed draft size 6 4.3 4.9 5.8
fixed draft size 8 4.0 4.3 5.1

Table 6: Ablation studies on latency impact of imple-
mentation choices. 1st Seq PTL is per-token latency of
the first finished sequence. BASS is the default setting
used in all other tables.

Sparse attention techniques (Beltagy et al., 2020;
Child et al., 2019) limit the number of tokens to
attend to in order to reduce the complexity of at-
tention layers, and thereby extend the maximum
allowable sequence length.

Since its introduction, speculative decoding has
seen numerous variations and improvements. Some
proposals take a draft-model-free approach, by us-
ing an n-gram model to predict draft tokens (Fu
et al., 2023), or by using the model embedding
to predict drafts (Cai et al., 2024; Li et al., 2024).
SpecInfer (Miao et al., 2023) uses a draft tree to
generate and organize multiple drafts for the main-
model sequence in order to maximize the number
of tokens accepted per step. Su et al. (2023) study
the relation between batch size and the optimal
fixed draft length for max throughput; it is how-
ever based on a primitive prototype implementa-
tion: rejected draft tokens are masked rather than
discarded, which achieve sequence lengths that are
uniform across a batch yet are unnecessarily large
and inefficient. The above works on speculative de-
coding are orthogonal to the discussions and ideas
in this paper and can be combined. The conclusion
presented in (Su et al., 2023) may change with the
kernel implementations in this paper.

6 Conclusion

This paper presents Batched Attention-optimized
Speculative Sampling (BASS), a system that ad-

vances the state of the art in fast multi-sequence
generation by LLMs. By addressing the unique
challenges of extending speculative decoding to
batched inference without sacrificing latency, we
demonstrate superior latency, GPU utilization as
well as accuracy of generations within a time limit.

7 Limitations

This work, while advancing the state of the art,
does not solve the efficient inference challenge of
LLMs. For example, GPU utilization during the
context encoding phase of LLM inference can be
over 70% in our system, while the best achievable
utilization during the incremental decoding phase
is 15.8% in this paper. Although this is already
significantly better than previous works, there is
clearly substantial room to innovate and improve.

8 Ethical Impact

This work aims to increase the efficiency of de-
ploying LLMs by utilizing the compute resources
efficiently. It can reduce carbon emissions associ-
ated with LLM deployment. Additionally, driving
down infrastructure costs can potentially encour-
age broader LLM adoption. Impact of increased
LLM usage on the society and associated risks are
difficult to forecast.
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A Appendix

A.1 Quantization schemes and mechanisms

This section describes the quantization schemes
and kernels used for INT8 inference. Since granu-
lar assignment of precision improves the accuracy
of quantized models, we assign the quantization
ranges to the smallest granularity that allows us to
compute the matrix multiplications in integer arith-
metic, i.e., the granularity is set to the inner-product
dimension. This translates to per-channel quantiza-
tion for weights, dynamic per-token quantization
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Figure 6: Inference data-flow with quantization

for activation, and dynamic per-head and per-token
quantization for keys, queries, and values.

To mitigate the overheads associated with quan-
tize and dequantize operations in the inference
pipeline on a GPU, we have employed kernel fu-
sion techniques as shown in Figure 6. This in-
volves amalgamating multiple operations to min-
imize CUDA kernel calls and memory fetches,
thereby minimizing computation time.

Dynamic quantization can incur substantial over-
heads unless it is integrated with other operations
in the inference pipeline. We fuse the quantize
operation with layer-norm, GeLU, and transpose
operations across the network. This approach elim-
inates the need for redundant memory reads, for
example, reading the same data for layer-norm and
quantization separately.

We use CUTLASS INT8 GEMM kernels to fuse
the dequantize operation and other element-wise
computations, such as bias and residual additions
with the GEMM operations. To optimize perfor-
mance for small batch sizes, we adopt a strategy of
pre-multiplying the weights and activation scales
during the activation quantization operation, and
subsequently retrieving them during the epilogue
phase of the GEMM operations. The resulting
fused GEMM blocks yield floating-point precision
outputs, namely FP16, BF16 or FP32, depending
on the selected format.

A.2 Draft model choice and training
For a draft model to be effective we need to max-
imize the number of tokens accepted by the main
model while maintaining low per-token latency.
Given the requirement, we have investigated archi-
tecture selection and observed that, at a fixed pa-
rameter count, having more attention heads (wider
model) is better than having more layers with

fewer attention heads (deeper model) since we have
similar representation capabilities with wider-but-
shallow models as narrow-but-deep models but at a
much lower latency. We summarize the draft model
architecture choices in Table 4.

We trained each of these draft models using the
same data for the main model with a context size of
2048 and a global 512 batch size across 8 servers
each with 8 40GB Nvidia A100 GPUs. This trans-
lates to approximately 1 million tokens per batch.
Using a learning rate of 3.5 × 10−4 we train for
300k steps. We use AdamW optimizer (Kingma
and Ba, 2014) with β1 = 0.9, β2 = 0.95, and
ϵ = 10−8. The warm-up steps were set to 2000,
and a cosine annealing learning rate schedule was
employed after reaching the peak learning rate. The
minimum learning rate was set to 10% of the peak
learning rate. We use BF16 (Kalamkar et al., 2019)
precision and set gradient clipping to 1.0 to enhance
training stability.

8224


