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Abstract
Despite the promising performance of state
space models (SSMs) in long sequence model-
ing, limitations still exist. Advanced SSMs like
S5 and S6 (Mamba) in addressing non-uniform
sampling, their recursive structures impede effi-
cient SSM computation via convolution. To
overcome compatibility limitations in paral-
lel convolutional computation, this paper pro-
poses a novel non-recursive non-uniform sam-
ple processing strategy. Theoretical analysis
of SSMs through the lens of Event-Triggered
Control (ETC) theory reveals the Non-Stable
State (NSS) problem, where deviations from
sampling point requirements lead to error trans-
mission and accumulation, causing the diver-
gence of the SSM’s hidden state. Our analy-
sis further reveals that adjustments of input se-
quences with early memories can mitigate the
NSS problem, achieving Sampling Step Adap-
tation (SSA). Building on this insight, we intro-
duce a simple yet effective plug-and-play mech-
anism, State Memory Replay (SMR), which uti-
lizes learnable memories to adjust the current
state with multi-step information for generaliza-
tion at sampling points different from those in
the training data. This enables SSMs to stably
model varying sampling points. Experiments
on long-range modeling tasks in autoregres-
sive language modeling and Long Range Arena
demonstrate the general effectiveness of the
SMR mechanism for a series of SSM models.

1 Introduction

Long sequence modeling has attracted extensive
interest due to its broad prospects in natural lan-
guage processing (Beltagy et al., 2020; Brown et al.,
2020; Ouyang et al., 2022). The mainstream ar-
chitectures for sequence modeling mainly focus
on attention-based Transformers (Vaswani et al.,
2017). However, the quadratic complexity of soft-
max attention brings a computational bottleneck

*Equal contributions.
†Corresponding authors: Bowen Zhou and Ligang Wu.

(Choromanski et al., 2020; Wang et al., 2020; Belt-
agy et al., 2020), which makes attention-based ar-
chitectures inefficient for handling long sequences.
Although the introduction of linear attention (Wang
et al., 2020) reduces the computational complex-
ity, it cannot well approximate the performance of
the vanilla Transformer. More importantly, purely
attention-based architectures cannot capture long-
range dependencies well. On the other hand, state
space model (SSM)-based architectures (Gu et al.,
2021a; Gupta et al., 2022) show superior perfor-
mance on the Long Range Arena (LRA) (Tay et al.,
2021) benchmark for long sequence modeling due
to their linear computational complexity and ex-
cellent long-range dependency capturing ability.
Existing SSM-based model architectures, such as
S5 (Smith et al., 2023) and S6 (Gu and Dao, 2023),
primarily rely on recursive structures to tackle the
varying sampling step issue. S5 introduced learn-
able step sizes for each step to improve the Sam-
pling Step Adaptation (SSA) capability of SSM.
S6 (Mamba) introduced data-dependent parameter
settings, which makes the state propagation of the
SSM model more flexible. However, this restricts
its inference computation to parallel scanning in-
stead of the original efficient convolution mode,
significantly hampering training efficiency and im-
posing a heavier inference burden when handling
long inputs at once.

To address the mentioned issues, we aim to pro-
pose a method that goes beyond recursive con-
straints to improve SSA capability. This strat-
egy seeks to enhance the SSM, making it more
adaptable and flexible for various parallel convo-
lution computation types, including advanced ar-
chitectures like S4 (Gu et al., 2022), Mega (Ma
et al., 2023), SPADE (Zuo et al., 2022), and more.
Specifically, we leverage the Event-Triggered Con-
trol (ETC) Theory (Heemels et al., 2012; Tabuada,
2007) to provide the first demonstration of the Non-
Stable State (NSS) problem in SSMs. We show
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that for a fixed-parameter SSM, varying sampling
steps, deviating from the model’s sampling point
requirements, triggers error propagation and accu-
mulation, ultimately leading to the divergence of
the hidden state. Our analysis further reveals that
adjustments based on early memories of the input
sequence can achieve SSA, effectively solving the
NSS problem. Inspired by this finding, we propose
a simple yet effective plug-and-play mechanism,
State Memory Replay (SMR), it can significantly
alleviate the NSS problem in SSMs by improving
SSM the capability of SSA thus bring further se-
quence modeling capabilities. In particular, SMR
can achieve better generalization ability at different
sampling points, especially when dealing with the
stochastic selected sampling points. We conduct
experiments on autoregressive language modeling
on Wikitext-103 (Merity et al., 2017) and long se-
quence modeling on LRA. The results show that
the SMR mechanism can bring better performance
to SSM-based model, on both autoregressive lan-
guage modeling and long sequence modeling tasks.
It can also further improve a series of competitive
SSM-based models such as S5, SPADE, Mega, and
S6, which verifies the generality and effectiveness
of the proposed SMR mechanism. In summary, our
main contributions are three folds:

• We are the first to identify the NSS issue in
SSMs. We theoretically analyze and experi-
mentally verify the issue from a novel perspec-
tive of ETC theory, demonstrating that inputs
that do not satisfy the stability condition can
lead to the divergence of the hidden states of
SSMs and affect model performance.

• Based on our theoretical analysis and exper-
imental results, we reveal that adjustment of
the input sequence with early memory can
achieve adaptive sampling adjustment capa-
bility to solve the NSS problem. Motivated by
this, we propose the SMR mechanism.

• SMR is able to enhance the existing SSM se-
ries models to improve sampling point gener-
alization and sequence modeling capabilities
in some real-world tasks with varying design
sampling points, including autoregressive lan-
guage modeling and long sequence modeling,
without affecting computational efficiency.

2 Preliminaries: State Space Models

The state space model is formally defined by eq.(1)
and eq.(2):

ẋ(t) = Ax(t) +Bu(t), (1)

y(t) = Cx(t) +Du(t), (2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n,
D ∈ Rm×m, u(·) : R 7→ Rm denotes the input
sequence with dimension m, and x(·) : R 7→ Rn

is the latent state.

S4 Previous works (Gu et al., 2021b, 2022)
formed the S4 model, which constructed a set of
Structured State-Space Sequence Model (S4) pa-
rameters for each dimension of the input u to con-
struct an Single-Input, Single-Output (SISO) sys-
tem, i.e., for an input u : R → Rm, the same set of
SSM parameters is broadcasted to each dimension
u(p) : R → R. Specifically, they employed the
bilinear method to perform discretization:

xk = Axk−1 +Bu
(p)
k , (3)

yk = Cxk, (4)

where A = (I−∆t/2 ·A)−1(I+∆t/2 ·A), B =
(I −∆t/2 ·A)−1∆B ∈ Rn×1, C = C ∈ Rn×1.
The matrix D is omitted here because it can be
viewed as a residual connection. For each element
u(p), p ∈ 1, 2, . . .m, t is a fixed discretization step,
the same for each step. Then, the S4 became a
parameterized model with trainable parameters A,
B, C, and ∆t. By assuming x0 = 0, we can
obtain:

yk = CA
k−1

Bu1 + · · ·+CABuk−1 +CBuk,
(5)

thus the output could be calculated efficiently by
convolution y = K ∗ u, where

K ∈ RL := KL(A,B,C) :=
(
CA

i
B
)
i∈[L−1]

=
(
CB,CAB, . . . ,CA

L−1
B
)
,

(6)
is the convolution kernel and L is the sequence
length. With their proposed Normal Plus Low-
Rank (NPLR) parameterization, the S4 Convolu-
tion could be calculated in Õ(L+m) operations.

S5 Given the uniform time step employed by S4
for each time interval, it encounters difficulties
when confronted with irregularly sampled data. To
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overcome this limitation, S5 (Smith et al., 2023)
introduced adaptive and learnable step sizes for
each time step, enhanced its capability to effec-
tively handle irregularly sampled data. Further-
more, S5 extended the S4-established Single-Input
Single-Output (SISO) system to a more versatile
Multiple-Input, Multiple-Output (MIMO) system.
Specifically, by diagonalizing the SSM dynamics,
they reparameterized matrix A as a diagonal matrix.
Simultaneously, B ∈ Rn×m and C ∈ Rn×m are
configured as matrices rather than the vectorized
B and C settings used in S4. However, introduc-
ing variable step sizes for different time steps con-
strains the efficient convolutional computation of
the SSM, forcing it to resort to a slower recurrent-
based computation. Even with the diagonalized
state transition matrix setting, the computational
complexity can only be reduced to O(mL), thereby
restricted the training efficiency of the SSM.

S6 (Mamba) The SSM parameters in S4 and
S5 are fixed after training, making them data-
independent. This somewhat restricts the flexibil-
ity of both models. In contrast, S6, as known as
Mamba (Gu and Dao, 2023), overcomes this limita-
tion by introducing data-dependent S4 parameters.
It achieves this by employing trainable linear layers
to maps the input to each step’s B, C, and time
step ∆t in S4. Additionally, S6 extended its param-
eters to be time-variant, transforming from a time-
invariant system (as in S4 and S5) to a time-variant
one. This enhancement allows S6 to conduct more
flexible sequence modeling. However, due to its
time-dependent parameterization, S6 cannot effi-
ciently perform SSM computations using convolu-
tion, maintaining a computational complexity of
O(mL) resulting in slower training compared to
S4.

3 SSA via State Memory Replay

In this section, we aim to reveal the problem
of NSS in SSM caused by changes in sampling
points through ETC theory (Heemels et al., 2012;
Tabuada, 2007) (Section 3.1). We demonstrate that
unstable hidden states lead to errors in SSM (Sec-
tion 3.2). Furthermore, through the analysis based
on ETC theory, we propose a simple but effective
step-size adaptation mechanism, SMR, to enhance
the model’s SSA capability thus alleviate the NSS
problem in SSM with fixed step setting (Section
3.3). Experimental results indicate that the SMR
mechanism can not only enhance the SSA capabil-

ity of SSM with fixed parameters but can also be
extended to other SSM-based models, improving
their SSA capabilities (Section 3.4).

3.1 Non-Stable-States Phenomenon
With the help of the ETC theory, we provide a
simple example to elucidate the phenomenon of
NSS. In this context, ETC theory ensures the sys-
tem’s states remain stable by sampling the input
control signal using triggered events. To maintain
stability, the selection of sampling points, such as
t1, t2, . . . , must meet specific criteria. Typically, a
Lyapunov function LV is employed to assess stabil-
ity (Heemels et al., 2012), outside the stable point,
it is monotonically decreasing, and the minimum
value of 0 is achieved at the stable point. Sampling
points that result in a decreasing trend of LV are
selected to ensure system stability. Specifically,
consider the linear system described in eq.(1). As-
suming the input control signal satisfies the linear-
ity u(t) = Tx(t), where T ∈ Rm×n, then eq.(1)
becomes:

ẋ(t) = Ax(t) +BTx(t). (7)

It can be easily verified that LV (t) = xTPx is
a Lyapunov function, where symmetric positive
definite matrix P ∈ Rn×n satisfies:

(A+BT )⊤P + P (A+BT ) = −M , (8)

to keep dLV (t)
dt ≤ 0,∀x, where M ∈ Rn×n is

also a symmetric positive definite matrix. Note that
the actual sampled input u(ti) is sampled at the
sampling points {ti}i∈N, we denote the sampling
error:

e(t) = x(ti)−x(t), ∀t ∈ [ti, ti+1), i ∈ N, (9)

then eq.(7) could be reformulated as:

ẋ(t) = Ax(t) +BT (x(t) + e(t)). (10)

Taking the derivative of LV , we have:

d

dt
LV (t) = −x(t)TMx(t) + 2x(t)⊤PBTe(t).

(11)
Therefore, set t0 = 0, we have the following trig-
gering condition to ensure system stability:

ti+1 = inf
{
t ∈ R | t > ti ∧ κx(t)⊤Mx(t)

−2x(t)⊤PBTe(t−) ≤ 0
}
,

(12)
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Figure 1: An example of the issue of NSS in SSM.

where κ ∈ (0, 1) is a optional constant, e(t−) rep-
resents the left-hand limit of error e at point t. In
other words, new control signals are inputted just
before the system becomes unstable. In this way,
the sampled input control sequence obtained can
ensure exponential stability of the system:

LV (t) ≤ LV (0)e
(κ−1)ιt, (13)

where ι is an positive constant. More specifically,
we provide an example of a 1-D input where the
selected parameters are as follows:

A =

[
0 1
2 −3

]
,M =

[
0.5 0.25
0.25 1.5

]
,

P =

[
1 0.25

0.25 1

]
,B =

[
0
1

]
,T =

[
1
−4

]
,

The selected time window is [0, 10], with a time
grid width of 0.01. Subsequently, we conduct sim-
ulation experiments on the system, and the results
is shown in the leftmost of Fig.1, the triggering
moment is marked with a gray dashed line. Under
the sampled input obtained from ETC, the system’s
state eventually reaches the stabilization.

NSS: Instability Arising from sampling Grid
variation. To further substantiate this conclusion,
we present an illustrative example. Specifically,
we introduce minor perturbations to the sampled
data points, strictly constrained within the tempo-
ral grid width. The second plot in Fig.1 illustrates
the comparison between the perturbed input and
the original input, where the disturbance is almost
imperceptible. When utilizing the unaltered sam-
pled data points obtained prior to perturbation as
input, the third figure in Fig.1 visually represents
the system’s sustained stability. Nevertheless, upon
the introduction of perturbated sampled data points
into the system, as depicted in the rightmost in
Fig.1, it becomes apparent that the system’s stabil-
ity cannot be guaranteed, leading to an exponential
growth in magnitude reaching 106. This means that
when the actual sampling points do not align with

the desired sampling grid, it will result in highly
unstable states. For SSM models formulated as in
eq.(1) and eq.(2), encountering such an issue would
lead to unavoidable numerical errors (Proposition
1).

3.2 Theoretical Understanding of NSS

Based on the aforementioned considerations and
insights, our understanding of the NSS problem in
SSM models is as follows: For SSM models with
fixed parameters, the NSS problem may arise when
the input does not satisfy stability conditions. Once
the sampling error propagates over an extended pe-
riod along with the hidden states, numerical errors
inevitably occur, as affirmed by Proposition 1.
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Figure 2: An illustrative instance of the NSS issue in
S4 is presented here. Statesraw and StatesPert denote
the value of latent states of the model when applied to
the original fitting data and the data subject to sampled
perturbations, respectively.

Proposition 1 Given bounded inputs satisfying
∥u∥ ≤ ζ, ∥C∥ ≤ c and ∥B∥ < b, and defining
the observation error caused by sampling points
as εi = u′i − ui, it can be concluded that when
limt→∞ ∥xt∥ > bζ

1−|λmax| , where λmax represents

the largest eigenvalue of matrix A, the prediction
error ∥y′t − yt∥ will accumulate over time steps.

To ascertain the presence of an NSS issue within
the SSM model, we devise a simple sequence mod-
eling task. We sample 100 equidistant points from
the function sin(5πt) to serve as input u. Then, we
employ a single-layer S4 model for fitting, which
underwent training for 2000 epochs, yielding the
results displayed in the leftmost in Fig.2. Following
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a methodology akin to the previous example, we
apply perturbations smaller than the sampling win-
dow width to the sampled points {ti}i∈[99]. Sub-
sequently, we conduct sampling on the perturbed
points {t′i}i∈[99].

This process generates a set of perturbed inputs,
denoted as u′, as illustrated in the second figure in
Fig.2, where the sampling points underwent slight
alterations. Subsequently, we employ the trained
S4 model to predict u′, resulting in a numerical
instability, as evident in the third figure in Fig.2.

We graphically represent the latent states before
and after perturbation in the rightmost figure in
Fig.2. In both instances, unstable states were ob-
served, and notably, the total magnitude of the state
increased following the perturbation. We extend
this verification to a 5-layer S4 model and observe
analogous findings. The outcomes are detailed in
Appendix A.2.

Therefore, as our analysis reveals, SSMs indeed
exhibit the issue of NSS, leading to larger errors
when confronted with data exhibiting changes in
sampling points. While S5, employing a strategy
of assigning different step sizes at each step, can
adapt to irregularly sampled data, the fixed SSM pa-
rameters during the inference phase still fail to en-
sure adaptive adjustments to various sampling data,
thereby not completely avoiding NSS problems.
On the other hand, S6 introduces data-dependent
SSM parameterization, ensuring adaptive adjust-
ments during the state transition process. However,
this constraint limits S6 from efficiently computing
in a convolutional form. In the subsequent analysis,
we leverage ETC theory to provide insights and
propose a strategy for adaptively adjusting inputs,
aiming to address the NSS problem in SSM.

3.3 State Memory Replay Mechanism
We initiate our investigation by conducting a pre-
liminary analysis rooted in ETC theory to derive
insights for formulating adjust strategies. We exam-
ine an input perturbation denoted as ε at the sam-
pling point, where u(t+tε) = u(t)+u̇(t)tε+o(tε).
Assuming a tiny perturbation ε(t), we have u′(t) =
u(t) + ε(t). Hence, the observed state z(t) can be
expressed as z(t) = x(t) − e(t), and we also de-
fine the discrepancy between the observed state and
the actual state as the error e(t) = x(t)− z(t).

Drawing inspiration from ETC theory, the Lya-
punov function L is utilized as an indicator of ob-
servation error stability in the system. A smaller
absolute value of e(t) indicates a reduced impact

Figure 3: Illustration of the proposed SMR Mechanism.

of noise and uncertainty on system performance, as
demonstrated in (Vallarella and Haimovich, 2019).
Then, we have Theorem 1.

Theorem 1 For the input reply factor hτ (t) =
h([t − τ, t]) : [t − τ, t] → R, the adjusted in-
put uadj(t) = hτ (t)u(t), where z(t) is the state
value of observer, considering the Lyapunov func-
tion Le(t) = e⊤(t)Pe(t), we have:

dLe(t)

dt
≤ e⊤(t)

(
PA+A⊤P

)
e(t)

+ 2ℏ(t)
(∫ t

0
∥k(t− l)∥ |ε(l)| dl + ∥B∥ |ε(t)|

)
,

(14)
where ℏ(t) = ∥hτ∥∞ ∥e(t)∥ and P is a positive
definite symmetric matrix and k(·) : R → Rn is a
fixed coefficient function determinded by the SSM
parameters.

Remark 1. Theorem 1 suggests that imposing ad-
ditional constraints on the input controller hτ can
improve the convergence of the system. In par-
ticular, when hτ (·) ≡ 1 (which corresponding to
S4), we have ∥hτ∥∞ = 1. The control factor hτ is
required to incorporate information from the time
interval [t−τ, t]. To accomplish this, a convolution
Convτ with a kernel of length τ , denoted as Kτ ,
can be utilized. Moreover, an activation function,
denoted as σ, can be employed to ensure that the
condition ∥hτ∥∞ = ∥σ ◦ Convτ∥∞ < 1 is satis-
fied. This condition contributes to the enhancement
of system stability.

To meet this need, considering the analysis in Re-
mark 1, we propose the design of a convolutional
learnable variables that incorporates multi input
states, enabling adaptive learning and refinement.

Building upon Theorem 1, we understand the
importance of having learnable variables that can
incorporate multi input states to control how sam-
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pling information behaves, allowing for automatic
adjustments. To fulfill this requirement, consider-
ing the analysis in Remark 1, we propose the SMR
mechanism aimed at addressing the NSS problem
caused by variations in sampling points. The SMR
mechanism incorporates learnable memories to en-
hance the SSM model with multiple memory steps,
through a convolutional learnable variables that
incorporates multi input steps, enabling adaptive
learning and refinement, as depicted in Fig.3. For-
mally,our proposed SMR mechanism can be for-
mulated as:

xk = Axk−1+

BukσSig(Kτ ∗ (u1, . . . , u1︸ ︷︷ ︸
τ

, . . . , uT ))k, (15)

where τ represents the convolutional kernel length,
and σSig(·) refers to the Sigmoid function. In partic-
ular, integrating SMR into S4 ensures the efficient
computation of SSM through convolutional opera-
tions. Simultaneously, it introduces enhanced flex-
ibility to the SSM, enabling it to adapt to diverse
sampling intervals and changing sample points. To
validate the efficacy of SMR in mitigating NSS
issues in SSMs, we conduct training and testing
by incorporating SMR into the 1-layer S4 model,
following the previously mentioned experimental
configurations. The results are presented in Fig.4.
The model’s fitting results on u′ is displayed in the
left of Fig.4, demonstrating the successful mitiga-
tion of unstable numerical outputs and a substantial
reduction in prediction errors. The results illustrate
in the second figure of Fig.4 clearly indicate that
the latent states of S4+SMR have achieved stabil-
ity, characterized by a significantly reduced total
volume of the absolute state values, shrinking from
2 × 102 as shown in Fig.2 to 7.98. This implies
that the integration of SMR significantly addresses
the NSS issues in S4. Furthermore, experiments
conducted on a 5-layer S4+SMR architecture also
showed alleviation of NSS issues and improved
predictive accuracy on perturbed data, the detailed
results are presented in Appendix A.2. By incor-
porating the SMR (as its code shown in the code
in List 1) into the SSMs at the positions indicated
in Fig. 5, it is easily to integrate the SMR into a
variety of SSMs.

3.4 Empirical Validation of SMR for SSA
To further investigate the impact of the SMR mech-
anism on enhancing the SSM model’s SSA capabil-
ity, we utilize a Pendulum dataset (Schirmer et al.,

2022; Smith et al., 2023) characterized by irregu-
larly sampled points and varying sampling inter-
vals, to construct a regression task. The dataset
comprises sequences of pendulum images with a
length of L = 50 as input. Each image, sized
24× 24, is sampled at non-uniform time intervals
ranging from T = 0 to T = 100. Notably, the
sampling points for each data instance exhibit vari-
ability. Some images in the sequence are intention-
ally corrupted by random noise, introducing "oc-
clusion" and resulting in more irregular sampling
trajectories. The prediction target ytar ∈ R50×2

is the sine and cosine values corresponding to the
position of the pendulum in each image of the input
sequence u ∈ R50×576. Examples of this dataset
can be found in Appendix A.3.

Figure 4: Comparative results of S4 incorporated with
SMR (S4+SMR) on the aforementioned examples. The
pair of figures displays the prediction outcomes of
S4+SMR for the perturbed input u′ (left) and the la-
tent states when provided with inputs u and u′ (right).

To prevent model overfitting at each time point
due to an excessive amount of constructed train-
ing data, ensuring that only models with strong
generalization capabilities for changing sample
points can effectively handle the task, we opt for a
more challenging setup compared to the setting in
(Schirmer et al., 2022) with 2000 training data and
1000 testing data points. Specifically, we allocate
500 training data sequences and 200 testing data se-
quences to make the task more challenging. In this
task, we conduct comparative experiments with
S4, both with and without the SMR mechanism.
Additionally, to explore the generalization of our
SMR mechanism to a broader range of SSM-based
models, we include the more flexible SSM mod-
els, S5 and S6, in the comparison. Furthermore,
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Figure 5: Schematic diagram of various SSMs after incorporating SMR.

we select two models that combine Attention with
convolution-based SSM, Mega (Ma et al., 2023)
and SPADE (Zuo et al., 2022), known for their
competitive language modeling and long sequence
modeling capabilities. We integrate SMR before
Mega’s EMA operation and before SPADE’s S4
module to investigate the impact of SMR on vari-
ous structures of SSMs.

For the given model M, we choose the Mean
Squared Error (MSE) computed on the test set V ,
i.e., 1

|V|
∑

{u,ytar}∈V (M(u)− ytar)
2, as the evalu-

ation criterion. We report the best result obtained
throughout 100 training epochs in Tab.1. The inte-
gration of SMR brings about a significant improve-
ment in S4’s SSA capability. Notably, this enhance-
ment is not exclusive to S4, even S5 shows a con-
siderable performance boost upon incorporating
SMR. To be more specific, the test MSE decreases
by 8.31 for S5, indicating that SMR significantly
improves S5’s capability to handle variations in
sampling points. Additionally, S6, SPADE, and
Mega all demonstrate a decrease in Test MSE after
integrating SMR. This suggests that our proposed
SMR not only assists convolution-based SSMs in
enhancing its SSA capability but also generalizes
to recurrence-based SSMs, offering widespread im-
provements.

4 Experiments

As stated previously, the integration of SMR further
enhances SSM’s SSA capability, thereby providing
increased flexibility in sequence modeling capabil-
ities. To further assess the improvement in sequen-
tial modeling capacity brought about by SMR for
SSM-based models, we have chosen two more prac-
tical sequence modeling tasks: autoregressive lan-

Table 1: The test MSE on the pendulum dataset, where
"w/ SMR" and "w/o SMR" respectively indicate the
cases with and without the incorporation of the SMR
mechanism. "Mode" represents the computation mode
of the SSM.

Mode Model Test MSE
w/o SMR w/ SMR

Convolution
S4 10.99 2.14

Mega 1.72 1.61
SPADE 2.58 2.17

Recurrence S5 10.40 2.09
S6 5.17 4.46

Table 2: Perplexity (PPL) on Wikitext-103. The results
on the left and right of "/" correspond to w/o SMR and
w/ SMR, respectively. "Mode" represents the computa-
tion mode of the SSM.

Mode Model PPL(val) PPL(test)
- Trans 24.42 24.81
- LS 23.71 24.13

Convolution
S4 39.32/36.48 40.02/38.16

Mega 26.30/25.28 26.75/25.67
SPADE 24.18/23.68 24.55/23.99

Recurrence S5 33.52/33.29 35.09/34.72
S6 23.97/23.85 24.95/24.78

guage modeling and long-term dependency model-
ing. Our experimental setup follows that outlined
in Section 3.4. For S4 (Gu et al., 2022), S5 (Smith
et al., 2023), S6 (Gu and Dao, 2023), SPADE (Zuo
et al., 2022) and Mega (Ma et al., 2023), we con-
ducted ablation experiments with and without SMR
inclusion to evaluate the generalizability benefits
that the SMR mechanism confers upon SSM-based
models in these sequence modeling tasks. To better
illustrate the significance of the benefits brought by
SMR, we introduced the comparative results on the
respective tasks the Vanilla Transformer (Vaswani
et al., 2017) and the state-of-the-art (on WikiText-
103) Transformer-based model, Transformer-LS
(LS) (Zhu et al., 2021). All experiments were con-
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class SMR(nn.Module):
def __init__(self , in_features , out_features , kernel_size , linear = False):

super(SMR , self).__init__ ()
self.conv = nn.Conv1d(in_features , out_features , kernel_size , stride =1)
self.use_linear = linear
if linear:

self.linear = nn.Linear(in_features , out_features)
self.pad = (kernel_size - 1, 0)

def forward(self , x):
# Input shape: (B, H, L)
# Output shape: (B, H, L)
if self.use_linear:

factor = self.linear(self.conv(F.pad(x, self.pad , mode=’constant ’, value
=0.0)).transpose(1, 2)).transpose(1, 2)

else:
factor = self.conv(F.pad(x, self.pad , mode=’constant ’, value =0.0))

return torch.sigmoid(factor) * x

Listing 1: The code of SMR

Table 3: Experimental results on the LRA Benchmark. The results on the left and right of "/" correspond to w/o
SMR and w/ SMR, respectively. "Mode" represents the computation mode of the SSM.

Mode Model Text ListOps Retrieval Image Pathfinder AVG
- Transformer 61.95 38.37 80.69 65.26 40.57 57.37
- LS 66.62 40.30 81.68 69.98 47.60 61.24

Convolution
S4 86.47/89.09 57.06/59.01 86.74/89.28 87.20/88.97 85.99/89.01 80.69/83.07

Mega 89.97/90.36 57.67/59.45 90.17/90.64 86.82/88.21 93.40/93.78 83.61/84.49
SPADE 86.29/87.06 58.75/59.52 88.62/89.01 88.05/89.29 92.77/93.34 82.90/83.64

Recurrence S5 84.20/87.08 58.25/59.08 87.99/89.37 87.51/89.31 87.42/88.05 81.07/82.58
S6 83.52/84.14 55.62/56.15 83.28/83.66 82.96/83.23 85.54/85.80 78.18/78.60

ducted on four Tesla A800 GPUs.

4.1 Autoregressive language modeling

To evaluate the ability of autoregressive lan-
guage modeling, we conducted experiments on the
WikiText-103 dataset (Merity et al., 2017). This
dataset comprises 103 million word-level tokens
extracted from Wikipedia articles. In accordance
with (Qin et al., 2023), all models were trained on
the WikiText-103 dataset for 50, 000 steps, using
a learning rate of 5e − 4. The sequence length is
set to 512, and weight decay is set to 0.1 for all
models. Consistent with the configuration detailed
in (Chen, 2021), all models were uniformly set up
with six layers and a hidden dimension of 512. The
performance of autoregressive language modeling
is assessed by reporting perplexity (PPL) scores on
both the validation and test sets. For more detailed
information regarding the experiments, please refer
to Appendix A.3.

Tab.2 showcases consistent improvements in
both validation and test perplexity (PPL) for all
SSM-based models subjected to the experiments
after incorporating the SMR mechanism. While S4,
due to its fixed parameters and constant time-step
settings, faces limitations in language tasks, inte-
grating SMR yields a significant reduction of 2.84
and 1.86 in validation and test PPL, respectively.

Notably, SMR incorporation in SPADE leads to a
further 0.56 decrease in test PPL, even surpassing
the performance of Transformer-LS. These find-
ings solidify that the SMR mechanism enhances
the flexibility of SSM models, ultimately contribut-
ing to advancements in the autoregressive language
modeling capabilities of SSM-based architectures.

4.2 Long-range dependency modeling

To further assess the impact of SMR on long se-
quence modeling, we conducted experiments on
five Long Range Arena (LRA) benchmark tasks:
ListOps (Nangia and Bowman, 2018), Byte-level
Text Classification (Maas et al., 2011), Byte-level
Document Retrieval (Radev et al., 2013), Sequence
CIFAR-10 (Krizhevsky and Hinton, 2009), and
Pathfinder (Linsley et al., 2018). All models used
consistent block and hidden dimension settings for
each task. Detailed configurations in Appendix A.4.
Results in Tab.3 demonstrate that SMR integration
consistently improves the performance of various
SSM-based models. Notably, SMR achieves an
average performance gain of 2.38 and 1.51 on tasks
S4 and S5, respectively. Furthermore, SMR con-
tributes to performance improvements in models
S6, Mega, and SPADE. These findings suggest that
SMR universally enhances the long sequence mod-
eling capabilities of SSM-based models.
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4.3 The Impact of SMR on Training Speed

To propose a strategy that improves the flexibility
of SSM without impacting their training efficiency,
we investigated whether integrating the SMR mech-
anism could enhance sequence modeling capabil-
ities while maintaining training speed. Therefore,
we conducted experiments on the Wikitext-103
dataset, comparing the relative training speed ra-
tios of various models with and without the SMR
mechanism. Due to the fact that our implemen-
tation of S4 and S5 were solely based on torch
without utilizing the acceleration provided by re-
lated CUDA extension, we included a version of
S6 implemented purely with torch as a baseline
(1.0× speed) for a more direct speed comparison
between models. Experimental results, presented
in Tab.4, demonstrate that SMR incorporation does
not significantly decrease SSM training speed and
preserves the relative speed relationships among
different SSM-based models. This suggests SMR
serves as an effective way to enhance the sequence
modeling capabilities of SSM without compromis-
ing its training efficiency.

Table 4: Comparison of training speeds on Wikitext-103.
We use the S6 implemented purely in torch incorporated
as the baseline (1.0×) and report the relative training
speed ratios with respect to this value. "Mode" repre-
sents the computation mode of the SSM.

Mode Model Relative Speed
w/o SMR w/ SMR

Convolution
S4 8.72× 8.43×

Mega 6.48× 6.31×
SPADE 7.29× 6.92×

Recurrence
S6 (in torch)1 1.0× -

S5 6.18× 5.87×
S6 2.99× 2.49×

5 Conclusion

In this paper, we investigated the NSS issue in
SSMs for long sequence modeling, we found that
when input data deviates from the model’s sam-
pling requirements, it leads to error accumulation
and hidden state divergence. Our analysis further
revealed that early memory adjustments in the in-
put sequence can achieve adaptive sampling, effec-
tively solving the NSS problem. Inspired by this,
we proposed a simple yet efficient plug-and-play
mechanism, SMR. Theoretical analysis and experi-
ments demonstrated that SMR effectively alleviates
NSS, enhancing the generalization ability of SSMs
to diverse sampling points and leading to superior

1https://github.com/alxndrTL/mamba.py.git

sequence modeling performance. We evaluated
SMR on various SSM-based models, including the
convolution-based and recurrence-based SSMs, ap-
plying it to both autoregressive language modeling
(on Wikitext-103) and the LRA benchmark. The re-
sults demonstrate that SMR significantly improves
the performance of SSM-based models on these
tasks, solidifying its effectiveness and broad appli-
cability.

6 Limitations

This study investigates the NSS issue of SSMs for
long sequence modeling from a novel theoretical
perspective of ETC theory. We first conduct prelim-
inary experimental analysis and theoretical verifi-
cation to validate the existence of NSS. Inspired by
the analysis, we design a simple yet effective SMR
mechanism and verify its effectiveness on datasets
with different sampling resolutions. Furthermore,
experiments demonstrate significant improvements
on convolution-based SSMs S4, Mega and SPADE,
as well as recurrence-based SSMs S5 and S6 on
benchmarks such as wikitext and LRA.

However, the current study is preliminary. In the
future, we can extend this technology to interactive
learning frameworks (Qi et al., 2024a), explore
continual SSM frameworks (Qi et al., 2024b), and
design more robust and secure models (Qi et al.,
2024d; Gao et al., 2023; Qi et al., 2024c), applying
them to scenarios such as knowledge discovery (Qi
et al., 2023).

In conclusion, our research points out the NSS
issue in SSMs and demonstrates that incorporat-
ing this factor into new long sequence model ar-
chitectures is a promising direction that requires
extensive exploration. We believe that these new
findings can better promote the optimization and
upgrading of SSM-based architectures.
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A Appendix

A.1 Proofs
Proof of Proposition 1 Denote the sampled u′t = ut + εt, where εt is the sampling error caused by
variation in the sampling points. Consider the propagation of the error in the output values {yk}Lk=1:




y′1
y′2
...
y′L


 =




CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...
CA

T−1
B CA

T−2
B · · · CB







u1 + ε1
u2 + ε2

...
uT + εt


 , (16)

then

∥y′t − yt∥ =
∥∥∥CA

t−1
Bε1 +CA

t−2
Bε2 + · · ·+CBεt

∥∥∥

≤
∥∥C

∥∥
∥∥∥At−1

∥∥∥
∥∥B

∥∥ |ε1|+
∥∥C

∥∥
∥∥∥At−2

∥∥∥
∥∥B

∥∥ |ε2|+ · · ·+
∥∥C

∥∥∥∥B
∥∥ |εt|

≤ |λmax|t−1 cbε1 + |λmax|t−2 cbε2 + · · ·+ cbεt.

(17)

Note that if λmax ≥ 1, limt→∞ ∥y′t − yt∥ becomes unbounded. If |λmax| < 1, then we have

∥xt∥ =
∥∥∥AL−1

Bu1 +A
L−2

Bu2 + · · ·+But

∥∥∥

≤
∥∥∥AL−1

∥∥∥
∥∥B

∥∥ |u1|+
∥∥∥AL−2

∥∥∥
∥∥B

∥∥ |u2|+ · · ·+
∥∥B

∥∥ |ut|

≤ |λmax|L−1 bζ + |λmax|L−2 bζ + · · ·+ bζ,

(18)

thus

lim
t→∞

∥xt∥ ≤ lim
t→∞

(
|λmax|L−1 bζ + |λmax|L−2 bζ + · · ·+ bζ

)
=

bζ

1− |λmax|
< lim

t→∞
∥xt∥, (19)

which contradicts the assumption, therefore there must be |λmax| >= 1, which also implies that
limt→∞ ∥y′t − yt∥ is unbounded.

Remark Note that imposing the constraint |λmax| < 1 on the state space model will cause the initial
input ut0 to tend to zero as it propagates (At−t0But0 −→

t−t0→∞
0). This causes all previous states to rapidly

decay to 0 during the propagation, thus severely limits the long-term memory capacity of the model.

Proof of Theorem1 Taking into account the error propagation in latent states of the SSM model, the
grid deviation error emerges from signal misalignment and can be considered as an additional disturbance
term. Assuming that the actual sampled value, denoted as u′, satisfies the relationship u′t = ut+ εt, where
εt represents the error term, we can have




x1

x2
...

xT


 =


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




u1 + ε1
u2 + ε2

...
uT + εt


 , (20)

observe that
xt = A

t−1
B(u1 + ε1) +A

t−2
B(u2 + ε2) + · · ·+B(ut + εt)

= A
t−1

Bu1 +A
t−2

Bu2 + · · ·+But + L(ε1, ε2, . . . , εt),
(21)

where L(ε1, ε2, . . . , εt) = A
t−1

Bε1+A
t−2

Bε2+ · · ·+Bεt. Consider its continuous form and drawing
upon the controller concept in ETC theory, we consider the following state propagation:

ẋ(t) = A

(
x(t) +

∫ t

0
k(t− l)ε(l)dl

)
+Bu(t), (22)
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where k is a coefficient matrix that varies over time, and has the same shape as B.
Owing to the accumulation of errors in the time domain, we introduce a modifiable factor denoted as

h([t− τ, t]) with backtracking capability to regulate the input. Specifically, the controlled input is defined
as uadj(t) = h([l − τ, l])u(t). then we have

ẋ(t) = A

(
x(t) +

∫ t

0
k(t− l)h([l − τ, l])ε(l)dl

)
+Bh([t− τ, t])u(t), (23)

then hτ (t) has the ability to adjust the errors with coefficients carrying temporal phases. Taking into
account the following observer used for sampling:

ż(t) = Az(t) +Bh([t− τ, t])(u(t) + ε(t)), (24)

denote e(t) = x(t)− z(t), we have

ė(t) = Ae(t) +A

∫ t

0
k(t− l)h([l − τ, l])ε(l)dl −Bh([t− τ, t])ε(t). (25)

Consider the Lyapunov function Le(t) = e⊤(t)Pe(t), where P is a positive definite symmetric matrix,
we can obtain

dLe(t)

dt
= 2e⊤(t)P ė(t)

= 2e⊤(t)P
(
Ae(t) +A

∫ t

0
k(t− l)h([l − τ, l])ε(l)dl −Bh([t− τ, t])ε(t)

)

= e⊤(t)
(
PA+A⊤P

)
e(t) + Λ(t),

(26)

where

Λ(t) = 2e⊤(t)A
∫ t

0
k(t− l)h([l − τ, l])ε(l)dl − e⊤(t)Bh([t− τ, t])ε(t)

= 2 ∥e(t)∥ ∥A∥
∫ t

0
∥k(t− l)∥ |h([l − τ, l])| |ε(l)| dl + ∥e(t)∥ ∥B∥ |h([t− τ, t])| |ε(t)|

≤ 2 ∥hτ∥ ∥e(t)∥
(∫ t

0
∥k(t− l)∥ |ε(l)| dl + ∥B∥ |ε(t)|

)
.

(27)

Hence, selecting a value of |h([t− τ, t])| < 1 strengthens the stability of the system, while h([t−τ, t]) ≡ 1
corresponds to the case without a controller. Additionally, choosing a larger τ value can further enhance
the control performance.
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Figure 6: Comparative results for w/ and w/o SMR in 5-layer S4, the incorporation of SMR alleviate the NSS
problem.

Figure 7: Input example of the used Pendulum dataset.

A.2 NSS in 5-layers S4

Due to space constraints, we present the analysis of
the deep S4 model here. Specifically, we conducted
an experiment on a 5-layer S4 model, extending
from the experiment described in Section 2.3. We
plotted the results of the hidden states in the first
layer and observed the presence of the NSS issue
in the 5-layer S4 model, as depicted in Fig.6(b).
Notably, the S4 model without SMR exhibited a
significant NSS phenomenon. In contrast, the S4
model incorporated with SMR demonstrated highly
stable hidden states, as illustrated in Fig.6(d). The
sum of absolute values of the states at each time
step decreased from 102 to 101, and the output error
under perturbation was also reduced (Fig.6).

A.3 Example of Pendulum Dataset

We present the input examples of the pendulum
dataset used in Section 3.4 in Fig.7. The sampling
intervals are not constant but variable, and the in-
troduction of random noise in the image sequence
makes the actual sampling intervals even more ran-

Table 5: Detailed training settings used in our experi-
ments.

Autoregressive language modelling

Data used Wikitext-103
Tokenizer method BPE

Vocab size 50265
Sequence length 512

Batch size 64
Total updates 50,000
Warmup steps 3,000

Peak learning rate 5e-4
Lr scheduler Inverse sqrt
Optimizer Adam
Adam ϵ 1e-8

Adam (β1, β2) (0.9, 0.98)
Weight decay 0.1

Gradient clip norm 1.0
Dropout 0.1

dom. All models are uniformly adjusted to 4 blocks
with a hidden dimension of 64, and optimized us-
ing the AdamW optimizer with a learning rate of
1e− 4.
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Table 6: Detailed training settings used in LRA tasks.

Retrieval ListOps Text Image Pathfinder

Num blocks 6 6 4 6 4
Embedding dimension 256 128 128 512 128

Max length 4000 2048 4096 1024 1024
Batch size 16 50 50 50 64

Total epochs 20 40 50 200 200
Learning rate 1e-3 3e-3 1e-3 4e-3 4e-3
Weight decay 0.0 0.04 5e-2 3e-2 3e-2

Dropout 0.0 0.0 0.1 0.1 0.1

A.4 Experiment Details
Here, we provide specific configurations for the ex-
periments mentioned in Section 4. The experimen-
tal settings for autoregressive language modeling
are detailed in Tab.5, while the parameter configu-
rations for various tasks on the LRA are presented
in Tab.6.
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