
Findings of the Association for Computational Linguistics: ACL 2024, pages 8002–8011
August 11-16, 2024 ©2024 Association for Computational Linguistics

Symmetric Dot-Product Attention for Efficient Training
of BERT Language Models

Martin Courtois, Malte Ostendorff, Leonhard Hennig, Georg Rehm
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), Berlin, Germany

Corresponding author: martin.courtois@dfki.de

Abstract

Initially introduced as a machine translation
model, the Transformer architecture has now
become the foundation for modern deep learn-
ing architecture, with applications in a wide
range of fields, from computer vision to natu-
ral language processing. Nowadays, to tackle
increasingly more complex tasks, Transformer-
based models are stretched to enormous sizes,
requiring increasingly larger training datasets,
and unsustainable amount of compute re-
sources. The ubiquitous nature of the Trans-
former and its core component, the attention
mechanism, are thus prime targets for effi-
ciency research. In this work, we propose an
alternative compatibility function for the self-
attention mechanism introduced by the Trans-
former architecture. This compatibility func-
tion exploits an overlap in the learned repre-
sentation of the traditional scaled dot-product
attention, leading to a symmetric with pairwise
coefficient dot-product attention. When applied
to the pre-training of BERT-like models, this
new symmetric attention mechanism reaches a
score of 79.36 on the GLUE benchmark against
78.74 for the traditional implementation, leads
to a reduction of 6% in the number of trainable
parameters, and reduces the number of training
steps required before convergence by half.

1 Introduction

Since its introduction in 2017, the Transformer ar-
chitecture powered by its scaled dot-product atten-
tion mechanism (Vaswani et al., 2017) has become
the core component of modern deep-learning ar-
chitectures and has enabled researchers to achieve
breakthroughs in both natural language processing
(NLP) and computer vision tasks such as language
modelling (Brown et al., 2020), machine transla-
tion (Raffel et al., 2019), speech processing (Rad-
ford et al., 2022), and image recognition (Dosovit-
skiy et al., 2020). One of the many successes of
the Transformer lies in its ability to operate and

learn in an unsupervised setting from unstructured
textual data, as well as its ability to handle com-
plex and varied structures such as graphs, images,
and sentences by increasing the model’s number
of layers. However, this trend has led to the emer-
gence of machine learning models so enormous
that the gap between the amount of compute re-
sources available to many research groups and the
amount needed to stay competitive is increasing
year after year (Togelius and Yannakakis, 2023),
and by training larger and larger models, brought
deep-learning’s energy consumption to unsustain-
able amounts (Thompson et al., 2021).

Efficient Transformer implementations are a pop-
ular area of research with many recent contribu-
tions on encoding and dense representation of to-
kens (Su et al., 2021), hardware-optimized imple-
mentation of attention (Dao et al., 2022), or imple-
mentations for long document processing (Beltagy
et al., 2020). While the attention mechanism itself
has been studied extensively (Niu et al., 2021), and
several improvements to its computational com-
plexity have been achieved (Kitaev et al., 2020;
Zhou et al., 2020), it is still primarily computed
via the dot-product between a query and a key (see
Figure 1). Vaswani et al. (2017) highlight the diffi-
culty of determining a proper compatibility func-
tion, and suggest that a more sophisticated compat-
ibility function than dot product may be beneficial.

In this work, we propose alternative compatibil-
ity functions for the attention mechanism, i. e., the
scaled dot-product attention mechanism. With this
approach, we aim to improve the training efficiency
of Transformer-based models and to reduce their
resource consumption. We especially focus on the
self-attention mechanism of BERT (Devlin et al.,
2018), a Transformer-based encoder model.

Our contributions can be summarized as follows:

• We introduce an alternative formula to replace
the scaled dot-product attention (Section 2)

8002



Figure 1: Scaled Dot-Product Attention (Vaswani et al.,
2017)

that takes advantage of the underlying sym-
metric structure of attention, in order to re-
duce the number of parameters and improve
the computational efficiency of the model.

• We benchmark our approach by training sev-
eral BERT models on three attention mech-
anism setups as well as two different model
sizes (Section 3).

We demonstrate that our new attention formula re-
duces the number of parameters of the model by
6%, and achieves a reduction of the number of train-
ing steps required for model convergence by 50%
without sacrificing accuracy (Section 4). Finally,
we discuss the effects of our proposed compatibil-
ity function on training efficiency, and situate our
approach within the context of research on efficient
Transformer-based models (Section 5).

2 Improving the Attention Mechanism

Modern Transformer-based models are neural net-
works that rely on the scaled dot-product attention
mechanism introduced by Vaswani et al. (2017).
We propose two variations of this mechanism: a
symmetric dot-product and a symmetric with pair-
wise factors dot-product, that lead to a reduction
in the number of parameters of the self-attention
layer.

2.1 Scaled Dot-Product Attention

The scaled dot-product attention given by the fol-
lowing equation (Equation 1) is an operator on
three input matrices, queries Q, keys K and values
V . We focus on the dot product QKT between
queries Q and keys K, which is responsible for
measuring the compatibility between tokens. The

compatibility A is an operator on two input tokens
(x, y ∈ Rh), that computes the dot-product of the
projections of x and y respectively through the op-
erators Q and K:

Attn(Q,K, V ) = softmax

(
QKT

√
d

)
V (1)

Given two linear operators Q : Rh → Rd and
K : Rh → Rd, we define a compatibility operator
A : Rh × Rh → R, such that:

A(x, y) = Q(x) ·K(y)T (2)

We challenge the necessity of using two differ-
ent operators to compute the affinity of the self-
attention encoder layer of the Transformer block.
Since both Q and K are operators on the same
token space, it is reasonable to assume that the
representations they learn share some features. In
that case, since the original expression (Equation 1)
does not enforce any feature sharing, it may possess
redundant parameters that will need to be learned
twice.

We attempt to make this feature sharing property
explicit in the compatibility operator expression,
in order to remove redundant parameters, reduce
overall model size, and improve convergence rate.

2.2 Symmetric Dot-Product attention

A simple way to make the feature sharing property
explicit, is to enforce the following relation Q = K
between the two operators. This ensures that Q
and K share features and results in the symmetric
compatibility operator:

Asym(x, y) = Q(x) ·Q(y)T (3)

2.3 Pairwise Dot-Product Attention

One aspect that needs to be considered is the
amount of features shared between the two opera-
tors. Complete overlap in terms of features may be
detrimental to the overall performance of the atten-
tion mechanism, e. g., it could prevent the model
to learn asymmetric relationships. Thus, we sug-
gest the following compatibility operator where the
amount of feature sharing is learned during training.
To achieve this, we start with an operator L that
will be shared, and we define operators Q and K as
a composition of L with a base change, resulting in
the following compatibility operator (Equation 5):

8003



Function Expression Parameters

original Q(x)K(y)T O(3h2)
symmetric Q(x)Q(y)T O(2h2)
pairwise Q(x)SQ(y)T O(2h2 + h2/n)

Table 1: Parameter count of the attention layer per com-
patibility function.

Given a linear operator L : Rh → Rd and two
square matrices Wq,Wk ∈ Rd×d, we define two
linear operators Q : Rh → Rd and K : Rh → Rd,
such that:

Q(x) = L(x) ·Wq

K(x) = L(x) ·Wk

(4)

Let S ∈ Rd×d be the product S = Wq ·W T
k , we

define a compatibility operator A : Rh ×Rh → R,
such that:

A(x, y) = Q(x) ·K(y)T

A(x, y) = L(x) ·Wq ·W T
k · L(y)T

A(x, y) = L(x) · S · L(y)T
(5)

This operator can be interpreted as a weighted dot-
product whose weights are stored in S, a matrix
of pairwise factors. To make the expression con-
sistent with the previously established expressions
(Equation 2 and Equation 3), we relabel the L op-
erator with the letter Q, resulting in the following
pairwise compatibility operator (Equation 6):

Apair(x, y) = Q(x) · S ·Q(y)T (6)

2.4 Parameter Count
For a Transformer block of n heads, with input
size h and attention size d, we give the parame-
ter count formula for a complete block (with pa-
rameters from Q, K and V ). We note that most
Transformer implementations impose d = h/n.

As shown in Table 1, the symmetric compatibil-
ity operator uses two thirds of the original number
of parameters. For the pairwise compatibility op-
erator, the parameter count also depends on the
number of attention heads, it converges towards
2/3 of the original number of parameters as the
number of attention heads increases.

In this section, we introduced two alternative
compatibility functions for the attention mecha-
nism, a symmetric dot-product operator and a sym-
metric with pairwise factors dot-product operator.

Config Operator Parameters

BERTsmall

original 28,795,194
symmetric 27,744,570 (3.65%)
pairwise 27,875,642 (3.19%)

BERTbase

original 109,514,298
symmetric 102,427,194 (6.47%)
pairwise 103,017,018 (5.93%)

Table 2: Parameter count per model configuration and
compatibility function (relative amount of parameters
saved compared to the original). Bertsmall: nlayers: 4,
nheads: 8, hidden size: 512, intermediate size: 2048.
Bertbase: nlayers: 12, nheads: 12, hidden size: 768,
intermediate size: 3072.

In the following sections we will refer to them re-
spectively as the symmetric operator and the pair-
wise operator, we will refer to the traditional scaled
dot-product operator as the original operator.

3 Experiments

To evaluate the symmetric and pairwise operators
against the original operator, we train and eval-
uate several Transformer-based encoder models,
each using a different compatibility operator as
part of the self-attention mechanism. The models
are trained under the same conditions. First, we
pre-train the models, because we want to measure
the evaluation loss during training to see if our mod-
ifications have an impact on the training efficiency
and the accuracy of the model. Then, we evaluate
each model on the GLUE benchmark (Wang et al.,
2019b) to evaluate the model’s accuracy on rele-
vant downstream tasks, such as, sentence accept-
ability (Warstadt et al., 2018), sentiment analysis
(Socher et al., 2013), sentence similarity (Cer et al.,
2017), and natural language inference (Williams
et al., 2018; Rajpurkar et al., 2016). Finally, we se-
lect model checkpoints during training and evaluate
those checkpoints on GLUE to measure the models’
accuracy on downstream tasks during training.

3.1 Pre-Training Dataset
To pre-train our models, we select a subset of 30
million English documents from the OSCAR cor-
pus (Abadji et al., 2022; Jansen et al., 2022) by
applying content quality filters (see Appendix A).
Using OSCAR data instead of the BookCorpus
(Zhu et al., 2015) and Wikipedia dumps is recom-
mended for training BERT models (Geiping and
Goldstein, 2023) and ensures that the amount of

8004



documents is large enough for single epoch train-
ing.

This training dataset is tokenized using the pre-
trained bert-base-uncased tokenizer (Devlin et al.,
2018) and sentences are aggregated into groups
of 512 tokens. After tokenization, the resulting
dataset contains 137 million training samples, 70
billion tokens and 10,000 test samples.

3.2 Model Architectures
We prepare three variations of the BERT model
(Devlin et al., 2018) using the original, the sym-
metric and the pairwise operators. We also train on
two model sizes, bert-small and bert-base.

As shown in Table 2, the symmetric and pair-
wise operators lead to significant reduction in the
number of parameters, 3.65% and 3.19% for the
bert-small model, 6.47% and 5.93% for the bert-
base model.

In the following sections, we refer to a bert-base
model as BERTbase when it uses the original op-
erator, BERTbase,sym or BERTbase,pair when it
uses the symmetric or pairwise operator respec-
tively.

3.3 Pre-Training Setup
We follow the pre-training setup described by De-
vlin et al. (2018). The models are trained on a pure
masked language modeling task with masking prob-
ability of 0.15 and batch size of 256 samples per
training steps. Models are trained on 200,000 steps
with a linear learning rate of 10−4 and learning rate
warm-up during the first 10,000 steps. For the opti-
mizer, we use Adam (Kingma and Ba, 2014) with
weight decay, β1 = 0.9, β2 = 0.999, ϵ = 10−12,
resulting in models pre-trained on 26 billion to-
kens. We measure evaluation cross-entropy loss
during training to assess the training efficiency of
our models.

3.4 Benchmark Fine-Tuning Setup
After pre-training, the models are fine-tuned and
benchmarked on the GLUE dataset (Wang et al.,
2019b) to assess their natural language understand-
ing (NLU) capabilities. Each model is fine-tuned
on the provided downstream task training dataset
for 5 epochs, with a batch size of 16 and a linear
learning rate of 1 · 10−5. This benchmarking step
is repeated on 5 downstream trials with different
seeds. We measure individual task’s scores, bench-
mark average and standard deviation across all tri-
als. For each model, we measure: the combined

F1 and accuracy on the Microsoft Research Para-
phrase Corpus mrcp (Dolan and Brockett, 2005),
Matthews correlation on the Corpus of Linguistic
Acceptability cola (Warstadt et al., 2018), matched
and mis-matched accuracy on the Multi-Genre Nat-
ural Language Inference Corpus mnli (Williams
et al., 2018), accuracy on the Quora Question Pairs
dataset qqp1, accuracy on the Recognizing Tex-
tual Entailment dataset rte (Dagan et al., 2006;
Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009), the combined Pearson and
Spearman correlation on the Semantic Textual Sim-
ilarity Benchmark stsb (Cer et al., 2017), accuracy
on the Stanford Question Answering Dataset qnli
(Rajpurkar et al., 2016), and accuracy on the Stan-
ford Sentiment Treebank sst2 (Socher et al., 2013).
The Winograd schema challenge wnli task has been
excluded from the evaluation following the recom-
mendation of Devlin et al. (2018).

Compared to the original BERT setup or more
recent compute optimized fine-tuning setups (Geip-
ing and Goldstein, 2023), we choose to fine-tune
for a longer time (5 epochs instead of 3) and with
a lower learning rate (1 · 10−5 instead of 4 · 10−5),
to have a more stable fine-tuning experience and
reduce the risk of lucky seeding. With this choice,
we aim to have a fairer evaluation of the models.

3.5 Checkpoint Benchmarking

We want to evaluate how downstream accuracy
evolves during pre-training. We extract check-
points during training and evaluate them on the
GLUE benchmark. Each checkpoint is fine-tuned
and evaluated on GLUE using the previously estab-
lished fine-tuning setup.

4 Results

In this section, we present the results of our experi-
ments, the pre-training of our three variants (Fig-
ure 2), the scores they reach on the GLUE bench-
mark (Table 3) once fully trained and the evolution
of the GLUE score during training (Figure 3).

4.1 Pre-Training Experiment

Figure 2b shows that the symmetric and pairwise
variant converge much faster than the original vari-
ant for the BERTbase model. The evaluation loss
of the original variant remains on the initial plateau
until step 25,000, when it sharply decreases. The

1https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

8005

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs


0K 10K 20K 30K 40K 50K 60K
0

1

2

3

4

5

6

7

8

190K 200K
Steps

Ev
al

ua
tio

n 
Lo

ss

BERTsmall, pair

BERTsmall, sym

BERTsmall

(a) BERTsmall

0K 10K 20K 30K 40K 50K 60K
0

1

2

3

4

5

6

7

8

190K 200K
Steps

Ev
al

ua
tio

n 
Lo

ss

BERTbase, pair

BERTbase, sym

BERTbase

(b) BERTbase

Figure 2: BERT pre-training evaluation loss. Models are trained for 200,000 steps, the evaluation loss is the
cross-entropy loss. We observe that the models using the symmetric and pairwise operators converge faster than the
original model.

symmetric variant remains on the initial plateau
until step 13,500 and the pairwise variant until step
12,000. We also note that the original and pairwise
variants will eventually reach the same evaluation
loss plateau, while the symmetric variant remains
above the two other variants with an additional
absolute error of 0.1.

Comparing Figures 2a and 2b, we observe the
impact of model size on training efficiency. When
the model size increases, the original variant’s ini-
tial plateau is expanded from step 12,000 to step
25,000, while the symmetric and pairwise variant
were almost unaffected.

4.2 GLUE Benchmark Fine-Tuning
Table 3 shows that the pairwise variant performs
better than the original variant with an increase
of 0.6 points on the average GLUE score for both
model sizes. The symmetric variant, however, is
outperformed by the original variant in both cases,
with a drop of 4 points on the average GLUE score.
We also observe that both proposed variants have a
lower standard deviation on the bert-base model.

4.3 GLUE Benchmarking Along Training
Steps

Figure 3 shows that the improved training effi-
ciency observed during pre-training translates to a
faster convergence rate on the GLUE benchmark
as well. The pairwise and original variants both
reach a final average GLUE score of approximately
79. The pairwise variant achieves 95% (a score of
75) of its final value after 30,000 steps, the original
variant reaches the same score after 65,000 steps.

0K 25K 50K 75K 100K 125K 150K 175K 200K

60

65

70

75

80

BERTbase, pair

BERTbase, sym

BERTbase

Steps

GL
UE

 a
ve

ra
ge

 sc
or

e

Figure 3: Average GLUE score over training steps.
Checkpoints are sampled during training and evaluated
on the GLUE benchmark. The red dashed line corre-
spond to 95% of the final GLUE average score.

We also observe a smoother evolution of the
accuracy for the pairwise variant compared to the
original variant. The experiment also highlights the
performance drop of the symmetric variant when
compared to the original variant.

5 Discussion

5.1 Pre-training Efficiency

During the pre-training experiment, we ob-
served that both variants BERTbase,sym and
BERTbase,pair outperformed the original variant
BERTbase in terms of convergence rate (they
initiated the learning and reached their respec-
tive plateau faster), for a bert-base model the
convergence rate seems to be two times faster.

8006



Model GLUE Score mrpc cola mnli(m/mm) qqp rte stsb qnli sst2

BERTsmall 72.72 (0.07) 81.04 21.39 77.16/77.76 86.08 54.87 82.20 85.45 88.49
BERTsmall,sym 69.61 (0.32) 76.81 10.29 75.25/75.72 85.13 55.74 77.83 82.79 86.90
BERTsmall,pair 73.38 (0.37) 82.34 24.21 76.37/76.89 86.67 56.25 84.13 84.97 88.60

BERTbase 78.74 (0.63) 85.30 44.35 81.66/82.07 88.86 59.42 87.30 88.76 90.92
BERTbase,sym 74.82 (0.36) 78.36 35.22 78.66/79.05 87.70 53.43 84.47 86.90 89.56
BERTbase,pair 79.36 (0.37) 87.83 46.91 81.60/82.02 88.89 60.58 86.88 88.78 90.78

Table 3: Average GLUE scores Average score over the GLUE benchmark per model with individual task breakdown.
BERTbase,pair achieves the best GLUE Score of 79.36 with a standard deviation of 0.37, in comparison to
BERTbase,pair which achieve a GLUE Score of 78.74 with a standard deviation of 0.63.

However, BERTbase and BERTbase,pair ulti-
mately met around the same evaluation loss, while
BERTbase,sym performed a little worse.

One obvious explanation for the improved con-
vergence rate can be found in the reuse of the Q
operator, this can impact convergence rate in three
way:

• The accumulation of two loss gradients per
forward/backward pass instead of a single one,
resulting in an effect similar (but not exactly
equivalent) to doubling the learning rate for
the parameters of the Q operator.

• The reduction in the number of parameters.

• Sharing representation for both Q and K op-
erators. If they do learn a subset of the same
features, then enforcing a shared representa-
tion for both of them will reduce the amount
of learning required.

These effects explain why both BERTbase,sym

and BERTbase,pair converge much faster than
BERTbase.

While converging faster than BERTbase,
BERTbase,sym did not reach the same evaluation
loss. It is fair to assume that this is a modelling
issue and not a size issue since BERTbase,pair out-
performed BERTbase,sym with a similar number
of parameters. Thus, we can conclude that symme-
try is not a desired property of the compatibility
function of the attention mechanism.

5.2 GLUE Benchmark
The evaluation of the three variants on the GLUE
benchmark shows that BERTbase,pair is more ac-
curate than BERTbase, reaching an average score
of 79.39 against 78.74 respectively. The evalua-
tion also shows that the standard deviation of the
average score across five trials is lower for both

BERTbase,pair and BERTbase,sym, with a stan-
dard deviation of 0.37 and 0.36 against 0.63 for
BERTbase.

This confirms that the training efficiency im-
provement observed on the pre-training task trans-
lates to the fine-tuning task and leads to improve-
ment on the downstream task’s accuracy. With the
added benefit of making the fine-tuning task more
stable, as shown by the lower standard deviation.

We also note that the fairly small 0.1 dif-
ference in evaluation loss during training for
BERTbase,sym has translated to a 4 points accu-
racy drop on the evaluation benchmark, echoing
our remark on the need to model asymmetric rela-
tionships.

With these results, we experimentally prove that
our pairwise operator improves the training effi-
ciency of Transformer-based models, leading to
a faster convergence rate and overall lower train-
ing loss. These improvements also translate to
downstream task benchmarks. Models using the
pairwise compatibility operator are indeed more
accurate than the ones using the original compati-
bility operator.

5.3 GLUE Evaluation During Pre-Training

Running the benchmark evaluation on our three
models at several steps of the pre-training exper-
iment shows that the training efficiency we ob-
served translates well into downstream accuracy.
Our BERTbase,sym and BERTbase,pair converge
faster towards their respective final values, sim-
ilarly to the training loss observed on the pre-
training task. BERTbase reaches 95% of its fi-
nal value after 65,000 steps and BERTbase,pair

after 30,000 steps. While BERTbase eventu-
ally catches up and improves on BERTbase,sym,
BERTbase,pair is consistently the better model.

This final experiment highlights the improved

8007



training efficiency induced by the pairwise com-
patibility operator. The faster convergence rate ob-
served during pre-training is also observed on the
downstream task evaluation, confirming the conver-
gence rate improvement by a factor of two for the
BERTbase,pair model.

6 Related Work

While the Transformer architecture (Vaswani et al.,
2017) popularized the use of the attention mecha-
nism, and contributed to its adoption in the field of
NLP, the attention mechanism was first introduced
to NLP with recurrent neural networks applied to
machine translation (Bahdanau et al., 2016). In
this setting, the compatibility operator is a simple
multi-layer perceptron with non-linear activation
operating on the concatenation of inputs encoded
by the recurrent neural network. This definition
of the attention mechanism was then extended to
other compatibility operator: Luong et al. (2015)
mention the use of the dot-product between the re-
current neural network’s hidden state, propose to
explicitly integrate token positions into the com-
patibility operator, and even suggest the use of
a general dot-product operator score(ht, hs) =
hTt Whs. Those initial influences have also been
documented by Galassi et al. (2020) and Niu et al.
(2021), where the general dot-product appears as
a weighted dot-product between query and keys
f(q,K) = qTWK. Thus the pairwise compati-
bility operator we introduce is an evolution of the
general dot-product, where we constrain it to a sin-
gle and shared linear operator Q before applying
the bilinear form of matrix S, resulting in the fol-
lowing operator A(x, y) = Q(x)SQ(y)T .

To the best of our knowledge, our work is the
first application of the general dot-product with en-
forced symmetry to the self-attention mechanism of
the Transformer architecture. While we focused on
the compatibility operator, recent improvements
have been made on other parts of the attention
mechanism. Namely, He and Hofmann (2023) pro-
posed to simplify the entire Transformer block by
carefully removing components and achieved an
impressive 15% weight reduction, while still rely-
ing on the traditional scaled dot-product.

7 Conclusions

In this work, we revisited the traditional scaled
dot-product used in the Transformer self-attention
mechanism. We challenged the use of two dis-

tinct operators to compute the dot-product between
queries and keys, in favor of single shared opera-
tor and a weighted dot-product with pairwise fac-
tors. By doing so, we enforced a symmetric struc-
ture to the compatibility operator of the attention
mechanism, reducing the number of parameters
used in the Transformer layer by a third. As a re-
sult, when applied to BERT models, our pairwise
compatibility operator reduces the overall num-
ber of parameters of the model by 6%, reduces
the number of pre-training steps required by half
and improves accuracy on the GLUE benchmark,
making Transformer-based encoders more efficient,
faster to train and lowering their resource require-
ments. We believe our work can be applied to
other Transformer architectures like decoder and
encoder-decoder models, as well as to other NLP
tasks like machine translation and language model-
ing. And, more generally, to the concept of atten-
tion as a whole, where it would bring improvement
in other fields such as computer vision.

For future work, we plan to evaluate the pairwise
dot-product attention mechanism on larger models
reaching into the billion parameters, and to evaluate
our attention mechanism on other benchmarks, like
SuperGLUE (Wang et al., 2019a) and SQuAD2.0
(Rajpurkar et al., 2018). We plan on implementing
the pairwise compatibility operator for the cross-
attention mechanism, and evaluating it on decoder
and encoder-decoder tasks like language modeling
and machine translation. Finally, we want to eval-
uate our pairwise dot-product attention not only
on natural language processing tasks, but also on
tasks from other fields, computer vision, time series
forecasting and reinforcement learning.

Limitations

Our work focuses only on the application and eval-
uation of alternative compatibility functions for the
self-attention mechanism of Transformer-based en-
coder models, benchmarked on NLU tasks. While
our work has shown positive results on this specific
use case, we cannot draw any conclusion on its
application to decoder models and pure language
modeling tasks, or encoder-decoder model and ma-
chine translation tasks. Those use cases rely on the
cross-attention mechanism for which the shared
representation we exploit with our pairwise com-
patibility operator may not be appropriate.

While we suggest that the Q and K operators
learn a shared representation, we did not perform

8008



any analysis of the original scaled-dot product at-
tention or of our pairwise dot-product attention.
The parameter redundancy of multi-head attention
models has been covered in Bian et al. (2021).
However, to our knowledge the parameter redun-
dancy between the query and the key operator of a
single head has not been studied.

While our work showed positive improvements
on the training efficiency of BERT-like models of
fairly small sizes (100 million parameters), it is not
enough to draw conclusions on its efficiency on
very large models (e.g., 10 billion parameters).

We decided to benchmark our models on GLUE,
as it is the most popular benchmark for NLU evalu-
ation. However, this benchmark as been largely
surpassed by modern machine learning models.
For that reason, new benchmarks have been in-
troduced, such as SuperGLUE (Wang et al., 2019a)
or SQuAD2.0 (Rajpurkar et al., 2018).

Reproducibility Statement

All software related to our experiments with the
attention mechanism is available online2. It uses
the PyTorch (Paszke et al., 2017) and Hugging
Face Transformer (Wolf et al., 2020) frameworks.
The necessary steps to recreate the training dataset
are documented3, the dataset used for training is
available on Hugging Face4.

Acknowledgements

The work presented in this paper has re-
ceived funding from the German Federal Min-
istry for Economic Affairs and Climate Action
(BMWK) through the project OpenGPT-X (project
no. 68GX21007D), and has been supported by the
German Federal Ministry of Education and Re-
search as part of the project TRAILS.

References
Julien Abadji, Pedro Ortiz Suarez, Laurent Romary, and

Benoît Sagot. 2022. Towards a cleaner document-
oriented multilingual crawled corpus. In Proceedings
of the Thirteenth Language Resources and Evalua-
tion Conference, pages 4344–4355, Marseille, France.
European Language Resources Association.

2https://github.com/mcrts/
ACL2024-SymmetricAttentionBert

3https://github.com/mcrts/
ACL2024-SymmetricAttentionBert/tree/main/data

4https://huggingface.co/datasets/mcrts/
OSCAR-2301_en_30M

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. Neural machine translation by jointly
learning to align and translate.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1.

Yuchen Bian, Jiaji Huang, Xingyu Cai, Jiahong Yuan,
and Kenneth Church. 2021. On attention redundancy:
A comprehensive study. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 930–945, Online. As-
sociation for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluat-
ing predictive uncertainty, visual object classification,
and recognising tectual entailment, pages 177–190.
Springer.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on
Paraphrasing.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

8009

https://aclanthology.org/2022.lrec-1.463
https://aclanthology.org/2022.lrec-1.463
https://github.com/mcrts/ACL2024-SymmetricAttentionBert
https://github.com/mcrts/ACL2024-SymmetricAttentionBert
https://github.com/mcrts/ACL2024-SymmetricAttentionBert/tree/main/data
https://github.com/mcrts/ACL2024-SymmetricAttentionBert/tree/main/data
https://huggingface.co/datasets/mcrts/OSCAR-2301_en_30M
https://huggingface.co/datasets/mcrts/OSCAR-2301_en_30M
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2004.05150
https://doi.org/10.18653/v1/2021.naacl-main.72
https://doi.org/10.18653/v1/2021.naacl-main.72
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135


Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2020. An image
is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929.

Andrea Galassi, Marco Lippi, and Paolo Torroni. 2020.
Attention in natural language processing. IEEE trans-
actions on neural networks and learning systems,
32(10):4291–4308.

Jonas Geiping and Tom Goldstein. 2023. Cramming:
Training a language model on a single gpu in one day.
In International Conference on Machine Learning,
pages 11117–11143. PMLR.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9. Association for Computa-
tional Linguistics.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment, volume 7, pages 785–794.

Bobby He and Thomas Hofmann. 2023. Sim-
plifying transformer blocks. arXiv preprint
arXiv:2311.01906.

Tim Jansen, Yangling Tong, Victoria Zevallos, and Pe-
dro Ortiz Suarez. 2022. Perplexed by Quality: A
Perplexity-based Method for Adult and Harmful Con-
tent Detection in Multilingual Heterogeneous Web
Data. arXiv e-prints, page arXiv:2212.10440.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR,
abs/1508.04025.

Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. 2021. A
review on the attention mechanism of deep learning.
Neurocomputing, 452:48–62.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. In NIPS
2017 Workshop on Autodiff.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. CoRR, abs/1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. 2021. Roformer: Enhanced transformer with
rotary position embedding. CoRR, abs/2104.09864.

Neil C. Thompson, Kristjan Greenewald, Keeheon Lee,
and Gabriel F. Manso. 2021. Deep learning’s dimin-
ishing returns: The cost of improvement is becoming
unsustainable. IEEE Spectrum, 58(10):50–55.

Julian Togelius and Georgios N. Yannakakis. 2023.
Choose your weapon: Survival strategies for de-
pressed ai academics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019a. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. CoRR, abs/1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Interna-
tional Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
CoRR, abs/1805.12471.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

8010

http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
https://openreview.net/forum?id=BJJsrmfCZ
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://doi.org/10.1109/MSPEC.2021.9563954
https://doi.org/10.1109/MSPEC.2021.9563954
https://doi.org/10.1109/MSPEC.2021.9563954
http://arxiv.org/abs/2304.06035
http://arxiv.org/abs/2304.06035
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
http://arxiv.org/abs/1805.12471
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101


Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
2020. Informer: Beyond efficient transformer
for long sequence time-series forecasting. CoRR,
abs/2012.07436.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

A OSCAR Filters

To ensure high quality of our training dataset, we
filter OSCAR dumps with the following rules:

• From the UT1 Blocklists project5, we exclude
the following categories:

– “agressif”
– “adult”
– “cryptojacking”
– “dangerous_material”
– “phishing”
– “warez”
– “ddos”
– “hacking”
– “malware”
– “mixed_adult”
– “sect”

• We exclude documents whose harmful per-
plexity score is below 5.0 and above 100,000.

• Following recommendation from Abadji et al.
(2022), we exclude documents which have
been flagged with quality warnings.

5http://dsi.ut-capitole.fr/blacklists/index_
en.php

8011

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/2012.07436
http://arxiv.org/abs/2012.07436
http://dsi.ut-capitole.fr/blacklists/index_en.php
http://dsi.ut-capitole.fr/blacklists/index_en.php

