
Findings of the Association for Computational Linguistics: ACL 2024, pages 7990–8001
August 11-16, 2024 ©2024 Association for Computational Linguistics

Efficient k-Nearest-Neighbor Machine Translation
with Dynamic Retrieval

Yan Gao1,2*, Zhiwei Cao1,2*, Zhongjian Miao1,2, Baosong Yang3, Shiyu Liu2, Min Zhang4, Jinsong Su1,2†

1School of Informatics, Xiamen University, China
2Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage of

Fujian and Taiwan, Ministry of Culture and Tourism, China
3Alibaba Group, China

4Institute of Computer Science and Technology, Soochow University, China
gaoyan@stu.xmu.edu.cn lines1@stu.xmu.edu.cn jssu@xmu.edu.cn

Abstract
To achieve non-parametric NMT domain adap-
tation, k-Nearest-Neighbor Machine Transla-
tion (kNN-MT) constructs an external datastore
to store domain-specific translation knowledge,
which derives a kNN distribution to interpolate
the prediction distribution of the NMT model
via a linear interpolation coefficient λ. Despite
its success, kNN retrieval at each timestep leads
to substantial time overhead. To address this
issue, dominant studies resort to kNN-MT with
adaptive retrieval (kNN-MT-AR), which dy-
namically estimates λ and skips kNN retrieval
if λ is less than a fixed threshold. Unfortunately,
kNN-MT-AR does not yield satisfactory results.
In this paper, we first conduct a preliminary
study to reveal two key limitations of kNN-MT-
AR: 1) the optimization gap leads to inaccurate
estimation of λ for determining kNN retrieval
skipping, and 2) using a fixed threshold fails to
accommodate the dynamic demands for kNN
retrieval at different timesteps. To mitigate
these limitations, we then propose kNN-MT
with dynamic retrieval (kNN-MT-DR) that sig-
nificantly extends vanilla kNN-MT in two as-
pects. Firstly, we equip kNN-MT with a MLP-
based classifier for determining whether to skip
kNN retrieval at each timestep. Particularly,
we explore several carefully-designed scalar
features to fully exert the potential of the clas-
sifier. Secondly, we propose a timestep-aware
threshold adjustment method to dynamically
generate the threshold, which further improves
the efficiency of our model. Experimental re-
sults on the widely-used datasets demonstrate
the effectiveness and generality of our model.1

1 Introduction

As an effective paradigm for non-parametric
domain adaptation, k-Nearest-Neighbor Ma-
chine Translation (kNN-MT) (Khandelwal et al.,

*These authors contributed equally.
†Corresponding author.
1Our code is available at https://github.com/

DeepLearnXMU/knn-mt-dr.

2020) derives from k-Nearest-Neighbor Language
Model (kNN-LM) (Khandelwal et al., 2019) and
has garnered much attention recently (Zheng et al.,
2021; Wang et al., 2022; Cao et al., 2023; Zhu
et al., 2023b). Typically, kNN-MT introduces
translation knowledge stored in an external datas-
tore to enhance the NMT model, which can conve-
niently achieve non-parametric domain adaptation
by changing external datastores.

In kNN-MT, a datastore containing key-value
pairs is first constructed with an off-the-shelf NMT
model, where the key is the decoder representa-
tion and the value corresponds to its target token.
During translation, the current decoder representa-
tion is used as a query to retrieve k nearest pairs
from the datastore, where retrieved values are con-
verted into a probability distribution. Finally, via a
linear interpolation coefficient λ, this distribution
is used to adjust the prediction distribution of the
NMT model. In spite of success, retrieving at each
timestep incurs substantial time overhead, which
becomes considerable as the datastore expands.

To address this drawback, researchers
have proposed two categories of approaches:
1) datastore compression that improves retrieval
efficiency by reducing the size of datastores (Mar-
tins et al., 2022a; Meng et al., 2022; Wang et al.,
2022; Dai et al., 2023; Zhu et al., 2023a; Deguchi
et al., 2023); 2) retrieval reduction that skips
some kNN retrieval to speed up decoding. In this
regard, the most representative work is kNN-MT
with adaptive retrieval (kNN-MT-AR) (Martins
et al., 2022a) that skips kNN retrieval when the
coefficient λ is less than a fixed threshold α.
However, kNN-MT-AR does not achieve desired
results as reported in (Martins et al., 2022a).

In this work, we mainly focus on the studies
of retrieval reduction, which is compatible with
the other type of studies. To this end, we first re-
implement kNN-MT-AR (Martins et al., 2022a)
and conduct a preliminary study to analyze its limi-

7990

https://github.com/DeepLearnXMU/knn-mt-dr
https://github.com/DeepLearnXMU/knn-mt-dr


tations. Through in-depth analyses, we show that 1)
the optimization gap leads to inaccurate estimation
of λ for determining kNN retrieval skipping; 2)
with the increase in timesteps, the demand for kNN
retrieval diminishes, which proves challenging for
the fixed threshold α to handle effectively.

To overcome the above defects, we then signifi-
cantly extend the vanilla kNN-MT into kNN-MT
with dynamic retrieval (kNN-MT-DR), which ac-
celerates the model decoding in two aspects. Con-
cretely, instead of relying on the interpolation co-
efficient λ, we introduce a MLP-based classifier
to explicitly determine whether to skip kNN re-
trieval as a binary classification task. Particularly,
instead of using the decoder representation as the
input of the classifier, we explore several carefully-
designed scalar features to fully exert the potential
of the classifier. Besides, we propose a timestep-
aware threshold adjustment method to dynamically
generate the threshold, so as to further improve the
efficiency of our model.

To summarize, main contributions of our work
include the following four aspects:

• Through in-depth analyses, we conclude two
defects of kNN-MT-AR: the optimization gap
leads to inaccurate estimation of λ for kNN
retrieval skipping, and a fixed threshold is un-
able to effectively handle the varying demands
of kNN retrieval at different timesteps.

• We propose to equip kNN-MT with an explicit
classifier to determine whether to skip kNN
retrieval, where carefully-designed features
enable our model to achieve a better balance
between model acceleration and performance.

• We propose a timestep-aware threshold adjust-
ment method to further improve the efficiency
of our model.

• Empirical evaluations on the multi-domain
datasets validate the effectiveness of our
model, as well as its compatibility with datas-
tore compression methods.

2 Related Work

Datastore Compression. In this aspect, the size
of the datastore for kNN retrieval is decreased to
make retrieval efficient. For example, Martins et al.
(2022a) compress the datastore by greedily merg-
ing neighboring pairs that share the same values,
and applying PCA algorithm (Wold et al., 1987)
to reduce the dimension of stored keys. Mean-

while, Zhu et al. (2023a) prune the datastore based
on the concept of local correctness, while Wang
et al. (2022) presents a cluster-based compact net-
work to condense the dimension of stored keys,
coupled with a cluster-based pruning strategy to
discard redundant pairs. Additionally, some stud-
ies opt for dynamically adopting more compact
datastores. For instance, for each token in the input
sentence, Meng et al. (2022) identify the relevant
parallel sentences that contain this token and then
collect corresponding word-aligned target tokens
to construct a smaller datastore. Subsequently, Dai
et al. (2023) conduct sentence-level retrieval and
dynamically construct a compact datastore for each
input sentence. With the same motivation, Deguchi
et al. (2023) suggest retrieving target tokens from
a subset of neighbor sentences related to the in-
put sentence, where a look-up table based distance
computation method is used to expedite retrieval.

Retrieval Reduction. In this regard, some kNN
retrieval is reduced to decrease time overhead for
retrieval. For instance, Martins et al. (2022b) adopt
chunk-wise kNN retrieval rather than timestep-
wise one, and Martins et al. (2022a) explore two ap-
proaches to reduce the frequency of kNN retrieval
operations: 1) one introduces a caching mechanism
to speed up decoding, where the cache mainly con-
tains retrieved pairs from previous timesteps, and
skip kNN retrieval if the distance between the query
and any cached key is less than a predefined thresh-
old; 2) the other proposes to conduct kNN retrieval
when the interpolation coefficient λ is less than a
predefined threshold α, which, however, does not
achieve satisfactory results.

Our work mainly focuses on the second type of
studies mentioned above. We first conduct a pre-
liminary study to in-depth analyze two limitations
of the λ-based kNN retrieval skipping. To address
these limitations, we introduce a classifier to ex-
plicitly determine whether to skip kNN retrieval as
a classification task. Notably, almost concurrently
with our work, Shi et al. (2023) also use a classi-
fier to speed up model decoding, sharing a similar
motivation with ours. However, our work not only
achieves better results, but also significantly differs
from theirs in the following three aspects:

First, we explore several carefully-designed
scalar features as the input for the classifier, which
are crucial for achieving better performance. Sec-
ond, when training the classifier, we adopt more
reasonable criteria to construct training samples.

7991



To be specific, in addition to skipping retrieval
when the target token ranks the 1st position in the
NMT prediction distribution, we believe that the
model should also skip when the target token can
not be obtained through kNN retrieval. Finally,
based on the observation that the demand for kNN
retrieval diminishes as timesteps increase, we pro-
pose a timestep-aware threshold method to further
improve the efficiency of our model.

3 Preliminary Study

3.1 Background

Typically, given an off-the-shelf NMT model fθ, a
vanilla kNN-MT model is constructed through the
following two stages:

Datastore Construction. At this stage, all paral-
lel sentence pairs in the training corpus C={(x,y)}
are first fed into the NMT model fθ in a teacher-
forcing manner (Williams and Zipser, 1989). At
each timestep t, the decoder representation ht and
its corresponding target token yt are collected to
form a key-value pair, which is then added to the
key-value datastore D={(ht, yt) | ∀yt∈y, (x,y)},
where ht=fθ(x,y<t).

Translating with Retrieved Pairs. During infer-
ence, the datastore is used to assist the NMT model.
Specifically, the decoder representation ĥt is used
as a query to retrieve k pairs Nt={(hi, yi)}ki=1

from D, which are then converted into a proba-
bility distribution over the vocabulary, abbreviated
as kNN distribution:

pkNN(ŷt|x,y<t) ∝
∑

(hi,yi)∈Nt

1(ŷt=yi)exp(
−d(hi, ĥt)

τ
),

(1)

where 1(∗) is an indicator function, d(hi, ĥt) mea-
sures the Euclidean distance between the query ĥt
and the key hi, and τ is a predefined temperature.
Finally, kNN-MT interpolates pkNN with the pre-
diction distribution pNMT of the NMT model as a
final translation distribution:

p(ŷt|x,y<t) = λpkNN + (1−λ)pNMT, (2)

where λ denotes a predefined interpolation coeffi-
cient tuned on the validation set.

kNN-MT with Adaptive Retrieval Obviously,
the retrieval of kNN-MT at each timestep incurs

α IT Koran Law Medical Subtitles
0.25 0.27 0.14 0.04 0.12 0.50

0.50 0.50 0.54 0.26 0.43 0.60

0.75 0.51 0.59 0.40 0.42 0.60

Table 1: F1 scores of the λ-based kNN retrieval skipping
of kNN-MT-AR (Martins et al., 2022a) on the test sets.

significant time overhead. To address this limita-
tion, Martins et al. (2022a) follow (He et al., 2021)
to explore kNN-MT with adaptive retrieval (kNN-
MT-AR). Unlike the vanilla kNN-MT, they dynam-
ically estimate the interpolation coefficient λ using
a light MLP network, which takes several neural
and count-based features as the input. Then, they
not only interpolate the kNN and NMT prediction
distributions with λ, but also skip kNN retrieval
when λ is less than a fixed threshold α. During
training, they minimize the cross-entropy (CE) loss
over the interpolated translation distribution.

Unfortunately, extensive results on several
commonly-used datasets indicate that kNN-MT-
AR does not achieve satisfactory results.

3.2 Limitations of kNN-MT-AR.

In this subsection, we conduct a preliminary study
to explore the limitations of kNN-MT-AR. We
strictly follow the settings of (Martins et al., 2022a)
to re-implement their kNN-MT-AR, and then con-
duct two groups of experiments on the commonly-
used multi-domain datasets released by Aharoni
and Goldberg (2020).

As reported by Martins et al. (2022a), dynam-
ically determining whether to skip kNN retrieval
based on λ leads to significant performance degra-
dation. In the first group of experiments, to further
provide evidence of this conclusion, we perform
decoding on the test sets in a teacher-forcing man-
ner and analyze the F1 scores of λ-based kNN
retrieval skipping. As shown in Table 1, F1 scores
remain relatively low no matter which thresholds
and datasets are used.

For the above results, we believe that there are
two reasons leading to the inaccurate estimation of
λ, which in turn makes λ unsuitable for deciding
whether to skip kNN retrieval.

In addition to lacking the information of kNN
distribution for λ estimation2, we believe that the
optimization objective of minimizing the CE loss
over the translation distribution may be unsuit-
able to train an accurate λ estimator for deter-

7992



mining kNN retrieval skipping. To verify this
claim, we consider whether to skip kNN retrieval
as a standard binary classification task and use a
binary CE loss to train a classifier for λ estimation.
Note that this classifier is also based on MLP and
contains the same input as kNN-MT-AR. To avoid
description confusion, we denote the λ trained by
kNN-MT-AR and the above binary CE loss as Tran-
λ and Bina-λ, respectively. Then, we calculate the
average absolute value of the difference between
Bina-λ and Tran-λ at all timesteps. The statistical
results show that the average difference is 0.1495,
and 29.12% of timesteps exhibit a difference ex-
ceeding 0.2. These findings indicate significant
differences between Bina-λ and Tran-λ.

In the second group of experiments, we conduct
experiments with vanilla kNN-MT on the valida-
tion sets to explore the impact of kNN retrieval
during different timestep intervals. Specifically,
we limit the model to only perform kNN retrieval
in specific timestep intervals, where each inter-
val starts from 0 and increases by 5 timesteps in
length, and we only use instances with a translation
length no less than the interval’s right endpoint.
From Figure 1, we observe that with the increase in
timesteps, the performance gain caused by kNN re-
trieval gradually decreases across all datasets. This
observation reveals that the demand for kNN re-
trieval varies at different timesteps, which can
not be handled well by the fixed threshold α in
kNN-MT-AR.

In summary, the above two defects seriously
limit the practicality of kNN-MT-AR. Therefore,
it is of great significance to explore more effective
skipping kNN retrieval methods for kNN-MT.

4 Our Model

In this section, we significantly extend kNN-MT
into kNN-MT-DR in the following two aspects.

4.1 Classifier for Determining kNN Retrieval
Skipping

Unlike kNN-MT-AR leveraging the interpolation
coefficient λ for determining whether to skip kNN
retrieval, we directly equip kNN-MT with a bi-
nary classifier to determine whether to skip at each
timestep. This classifier comprises a two-layer
MLP network with ReLU activation. At timestep

2Due to the consideration of model efficiency, kNN-MT-
AR do not exploit the kNN retrieval information to estimate
λ, which has been shown to be effective in previous stud-
ies (Zheng et al., 2021; Jiang et al., 2022).

[0,5] [0,10] [0,10] [0,15] [0,15] [0,20] [0,20] [0,25] [0,25] [0,30] [0,30] [0,35]
0.0

0.5

1.0

1.5

2.0

2.5

B
LE

U

IT
Koran
Medical
Law
Subtitles

Figure 1: The changes of BLEU improvements between
adjacent intervals. [0,5] means that kNN-MT only con-
ducts retrieval when timestep ranges from 0 to 5. We
only display the results for the first three BLEU im-
provements between adjacent intervals on the Subtitles,
since the ratio of examples with length >= 25 is only
about 1.35%.

t, we conduct kNN retrieval only if the prediction
probability of the classifier on conducting kNN
retrieval exceeds a timestep-aware threshold αt,
otherwise we will directly skip kNN retrieval. In
the following, we will discuss the classifier, which
involves the construction of training samples, input
features, and the training objective.

Construction of Training Samples To train the
classifier, one crucial step is to construct training
samples. In this regard, within the exploration
of kNN-LM, He et al. (2021) propose to con-
struct training examples with two distinct labels,
namely, “conducting retrieval” and “skipping re-
trieval”, by comparing the prediction probabilities
of kNN and NMT distributions on the target token
yt: when pkNN(yt) is greater than pNMT(yt), then
kNN retrieval should be conducted, otherwise it
can be skipped. However, such a criterion still
leads to a lot of redundant kNN retrieval. For
example, when the target token yt has the high-
est probability in the NMT prediction distribu-
tion, there is no need to perform kNN retrieval,
even if pkNN(yt)≥pNMT(yt). Taking the IT valida-
tion set as an example, 69.8% of timesteps satisfy
pkNN(yt)≥pNMT(yt), among which 77.9% of the
timesteps have yt ranking the 1st position in the
NMT prediction distribution. Based on the above
analysis, we traverse the parallel sentence pairs
in the validation set, and collect various informa-
tion at each timestep to construct training samples
according to the following criteria:

• kNN retrieval should be skipped if one of the
two conditions is satisfied: 1) yt ranks the 1st
position in the NMT prediction distribution,

7993



and 2) yt does not appear in the pairs obtained
via kNN retrieval. Obviously, kNN retrieval
yields no benefit in both conditions.

• kNN retrieval should be conducted if yt is not
the top-1 token in the NMT prediction distri-
bution and it occurs in the kNN retrieval pairs.
In this situation, conducting kNN distribution
has the potential to improve translation.

Input Features. Unlike kNN-MT-AR, which
uses the decoder representation and vectors
mapped by other scalar features as the input, we
consider several carefully-designed scalar features
as the input for the classifier directly. By doing so,
we reduce the input dimension, achieving effective
training and enabling efficient inference. Here, we
give detailed descriptions to these features:

• pNMT(ŷt): the probability of the top-1 pre-
dicted token ŷt in the NMT prediction distri-
bution. The higher the prediction confidence
of the NMT model, the more likely the ŷt
to be the correct one. In this situation, kNN
retrieval is more likely to be skipped.

• ∥ĥt∥2: the L2 norm of current decoder repre-
sentation. Inspired by (Liu et al., 2020), we
use the vector norm of the decoder representa-
tion ĥt to measure the translation difficulty at
current timestep: the larger ∥ĥt∥2, the more
difficult the translation is.

• max(attn): the maximal weight of the cross-
attention in the last layer of the decoder dur-
ing current decoding timestep. A large weight
means that the NMT model is relatively cer-
tain about which source token to be translated.
In this case, the translation difficulty is often
relatively low.

Finally, these features are concatenated and normal-
ized with batch normalization (Ioffe and Szegedy,
2015) before being the input for the classifier.

Classifier Training. To achieve efficient domain
adaptation for NMT, we fix the parameters of NMT
model and only update those of classifier during
training. Following He et al. (2021), we select 90%
of the validation set to train the classifier, and use
the remaining 10% for validation. Then, accord-
ing to the above criterion, we construct training
samples with different labels at each timestep to
train our classifier. Considering the significant im-

balance between two classes of training samples3,
we adopt Focal Loss (Lin et al., 2017) to train our
classifier as follows:

L(pc) = −αc(1− pc)
γlog(pc), (3)

where c=0/1 denotes the label of skip-
ping/conducting kNN retrieval, pc is the
prediction probability of the classifier on the label
c, αc is a weighting factor controlling the balance
between different kinds of samples, and γ is a
hyper-parameter adjusting the impacts of loss
functions of easy and hard samples (Lin et al.,
2017).

4.2 Timestep-aware Threshold Adjustment

As analyzed in Section 3.2, the benefit of kNN
retrieval diminishes with the increase in timesteps,
indicating that using the fixed threshold α is not
the most reasonable choice. To deal with this issue,
we propose a timestep-aware threshold adjustment
method to accommodate the varied demands of
kNN retrieval. Formally, we heuristically define a
dynamic threshold function specific to the timestep:

αt = αmin + clip(
t

T
; 0, 1)2 × (0.5− αmin) (4)

where clip(x; a, b) clamp x within the range of
[a, b], t is the decoding timestep, αmin is the lower
limit of threshold, and T is the average length of
sentences in the validation set. Apparently, with
the increase of t, αt will gradually increase until it
reaches 0.5.

5 Experiments

5.1 Setup

Datasets. We conduct experiments on the multi-
domains dataset released by Aharoni and Goldberg
(2020). The dataset comprises German-English
parallel corpora across five domains: Koran, IT,
Medical, Law, and Subtitles, the detailed statistics
can be found in Appendix A. We employ Byte Pair
Encoding (Sennrich et al., 2016) to split words into
subwords. Finally, we use two metrics to evaluate
the translation quality: SacreBLEU4 (Post, 2018)
and COMET5 (Rei et al., 2020).

3Through data analysis, we find that only 16.8% of training
samples require kNN retrieval in the IT validation set.

4https://github.com/mjpost/sacrebleu
5https://github.com/unbabel/COMET

7994

https://github.com/mjpost/sacrebleu
https://github.com/unbabel/COMET


Model IT Koran Law Medical Subtitles Average
Base NMT 38.35 / 82.74 16.26 / 72.04 45.48 / 85.66 39.99 / 83.13 29.27 / 79.76 33.87 / 80.67
Vanilla kNN-MT 45.83 / 85.19 20.37 / 72.30 61.16 / 87.46 54.22 / 84.73 31.28 / 80.13 42.57 / 81.96

kNN-MT-AR(α=0.25) 43.20 / 84.57 19.57 / 72.27 59.89 / 87.57 53.12 / 84.97 30.46 / 80.04 41.25 / 81.88
kNN-MT-AR(α=0.50) 41.19 / 84.05 17.23 / 72.25 58.83 / 87.50 51.22 / 84.69 29.45 / 79.87 39.58 / 81.67
kNN-MT-AR(α=0.75) 39.05 / 83.30 16.40 / 72.09 51.11 / 86.65 45.14 / 84.08 29.30 / 79.82 36.20 / 81.19
Faster kNN-MT 44.25 / 84.59 18.82 / 72.07 58.97 / 87.36 51.02 / 84.45 30.76 / 80.04 40.76 / 81.70
SK-MT1 46.11 / 84.39 17.13 / 72.16 60.43 / 87.46 53.98 / 84.22 28.63 / 77.52 41.26 / 81.15
SK-MT2 46.28 / 85.41 18.18 / 72.17 61.55 / 87.68 55.42 / 84.90 28.14 / 78.28 41.91 / 81.69
Ours 45.48 / 84.60 20.34 / 72.40 60.10 / 87.39 51.97 / 84.36 31.24 / 80.14 41.83 / 81.78

Table 2: BLEU / COMET scores of various models on the multi-domain test sets.

Model Configuration. We develop our model
with kNN-BOX6 (Zhu et al., 2023c) and use
Faiss (Johnson et al., 2019) to build the datastore
and search nearest neighbors. To ensure fair com-
parisons, we adopt the same settings as the previous
study (Khandelwal et al., 2020). Concretely, we set
the number of retrieved pairs to 8, the temperature
τ to 100 for Koran and 10 for the other datasets,
and λ to 0.7 for IT, Subtitles, 0.8 for the other
datasets. We use a two-layer MLP network with
ReLU activation (Agarap, 2018) to construct our
classifier, of which hidden size is set to 32 because
it is not sensitive in our model. Besides, we set the
hyper-parameter αmin to 0.45 for Koran, Subtitles,
0.4 for the other datasets.7

Baselines. Our baselines include:

• Base NMT (Ng et al., 2019). Following Khan-
delwal et al. (2020), we use the WMT’19
German-English news translation task winner
as the base NMT model.

• Vanilla kNN-MT (Khandelwal et al., 2020).
It serves as a baseline, upon which we develop
our model.

• kNN-MT-AR (Martins et al., 2022a). It per-
forms retrieval only when the interpolation
coefficient λ is less than a predefined thresh-
old α. Note that it is our most important base-
line. Particularly, we report the performance
of kNN-MT-AR with α set to 0.25, 0.50, and
0.75, respectively.

• Faster kNN-MT (Shi et al., 2023). It is a
concurrent work with ours, where a two-layer
MLP network takes decoder representation as
the input to determine whether to skip kNN
retrieval at each timestep.

6https://github.com/NJUNLP/knn-box
7The details of tuning αmin are reported in Appendix C.

• SK-MT (Dai et al., 2023). It dynamically
constructs a compact datastore by conduct-
ing sentence-level retrieval for each input sen-
tence. Specially, we report the performance
of SK-MT1 with m = 2, k = 1 and SK-MT2

with m = 16, k = 2.

5.2 Main Results

To comprehensively evaluate various models, we
report their translation quality and decoding speed.

Translation Quality. Table 2 presents BLEU and
COMET scores of various models on the multi-
domain test sets. We observe that both kNN-MT-
AR and Faster kNN-MT suffer from significant
performance declines compared to Vanilla kNN-
MT, echoing with the results reported in previous
studies (Martins et al., 2022a; Shi et al., 2023). In
contrast, our model exhibits the least performance
degradation. Specifically, our model achieves aver-
age BLEU and COMET scores of 41.83 and 81.78
points, with only 0.74 and 0.18 points lower than
those of Vanilla kNN-MT, respectively. Although
SK-MT2 performs better than our model, experi-
ments in Section 5.4 find that it is not compatible
with Adaptive kNN-MT, while our model signifi-
cantly outperforms SK-MT2 when using Adaptive
kNN-MT as the base model.

Decoding Speed. Model efficiency is a crucial
performance indicator for kNN-MT. As imple-
mented in previous studies (Zheng et al., 2021;
Deguchi et al., 2023), we try different batch sizes:
1, 16, 32, 64 and 128, and then report the model
efficiency using “#Tok/Sec”: the number of transla-
tion tokens generated by the model per second.

Experimental results are listed in Table 3. We
have the following interesting findings: First, re-
gardless of the batch size used, our model is more

7995

https://github.com/NJUNLP/knn-box


Model IT Koran Law Medical Subtitles
Batch Size = 128

Base NMT 3270.84 3912.95 3690.85 3152.59 4004.40

Vanilla kNN-MT 2584.31 3287.24 2300.23 2363.00 478.99

kNN-MT-AR 2724.76 3069.38 2241.93 2382.52 886.16

Faster kNN-MT 2912.67 3609.53 2923.79 2676.11 999.57

SK-MT1 524.65 537.06 533.52 560.14 264.30

SK-MT2 385.95 408.21 423.16 428.63 236.42

Ours 2944.38 3522.49 2933.76 2605.12 1002.13

Batch Size = 64
Base NMT 3150.95 3730.90 3607.41 3111.54 3377.17

Vanilla kNN-MT 2506.85 2945.54 2252.18 2329.36 445.88

kNN-MT-AR 2789.59 2678.89 2125.88 2323.60 794.04

Faster kNN-MT 2783.62 3124.68 2726.92 2592.75 898.26

SK-MT1 518.82 525.16 524.28 547.08 258.02

SK-MT2 381.87 396.00 411.91 420.05 224.41

Ours 2798.39 3132.26 2755.02 2575.40 901.33

Batch Size = 32
Base NMT 2559.84 2933.82 2995.43 2688.93 2635.05

Vanilla kNN-MT 2001.80 2360.50 1908.76 1955.65 408.54

kNN-MT-AR 2067.55 1792.74 1925.76 1694.34 676.28

Faster kNN-MT 2131.48 2432.76 2225.68 2047.19 735.26

SK-MT1 486.17 500.06 494.30 523.16 247.17

SK-MT2 360.76 374.32 392.97 400.63 203.85

Ours 2117.94 2392.60 2226.63 2031.51 737.85

Batch Size = 16
Base NMT 1577.03 1878.36 1959.55 1737.23 1686.02

Vanilla kNN-MT 1378.65 1429.78 1318.55 1366.35 340.96

kNN-MT-AR 1369.49 1437.82 1244.21 1323.07 506.17

Faster kNN-MT 1396.32 1451.95 1455.46 1406.26 538.65

SK-MT1 410.57 409.76 431.25 440.31 220.65

SK-MT2 318.62 340.16 354.70 355.37 176.17

Ours 1441.66 1487.54 1472.04 1395.21 546.22

Batch Size = 1
Base NMT 159.24 168.84 173.22 171.12 159.04

Vanilla kNN-MT 136.19 139.02 142.91 138.31 42.75

kNN-MT-AR 127.23 130.35 127.93 128.09 57.98

Faster kNN-MT 139.54 140.85 147.18 140.68 58.46

SK-MT1 89.76 103.97 96.42 92.52 35.26

SK-MT2 84.10 97.01 89.82 85.72 32.68

Ours 139.84 140.18 147.44 139.84 58.62

Table 3: Decoding speed (#Tok/Sec↑) of various models
using different batch sizes on the multi-domain test sets.
Here, we only display the decoding speed of kNN-MT-
AR(α=0.25), since kNN-MT-AR(α=0.5) and kNN-MT-
AR(α=0.75) exhibit significant performance degrada-
tion, as reported in Table 2. All results are evaluated on
an NVIDIA RTX A6000 GPU.

Model BLEU
Faster kNN-MT 44.25

Ours 45.48

Our Criteria⇒Conventional Criteria 43.90

Dynamic Threshold⇒Fixed Threshold 44.28

Focal Loss⇒Weighted CE Loss 44.79

w/o pNMT(ŷt) 44.62

w/o ∥ĥt∥2 45.01

w/o max(Attn) 45.12

Table 4: Ablation studies on the IT test set.

efficient than both Vanilla kNN-MT, kNN-MT-
AR(α=0.25), SK-MT1 and SK-MT2.

Second, as the batch size increases, the efficiency

advantage of our model becomes more apparent.
On most datasets, we find that the acceleration
ratios of our model with large batch sizes (64 or
128) are significantly higher than those with small
batch sizes (1 or 16). Finally, with the increase of
the datastore size, the efficiency advantage of our
model also becomes more significant. As analysed
in Appendix A, the datastore in Subtitles contains
the maximum number of pairs while the datastore
in Koran is the smallest. Correspondingly, our
model has the most significant acceleration effect
on the Subtitles dataset, while the acceleration ef-
fect on the Koran dataset is the least significant.

Based on the above experimental results, we
believe that compared with baselines, ours can
achieve better balance between model performance
degradation and acceleration.

5.3 Ablation Studies
Following previous studies (Zheng et al., 2021;
Jiang et al., 2022), we compare our model with its
variants on the IT test set. As shown in Table 4, we
consider the following variants:

• Our Criteria⇒Conventional Criteria. As
mentioned in Section 4.1, we adopt new cri-
teria to determine whether kNN retrieval in
training samples can be skipped. To verify the
effectiveness of our criteria, we compare our
criteria with the conventional criteria as men-
tioned in He et al. (2021): the kNN retrieval
should be conducted if pkNN(yt)≥pNMT(yt),
otherwise it can be skipped. We first report
the proportion changes between two labels of
training samples on the IT dataset. Using the
conventional criteria, the proportion of train-
ing samples labeled as skipping retrieval is
about 30.2%, which is significantly smaller
than the proportion 83.2% in our criteria. Ob-
viously, more kNN retrieval can be skipped
with our criteria. Second, we focus on the
change of model performance. From Line
2, we observe that the conventional criteria
leads to a significant performance degenera-
tion, which strongly reveals the effectiveness
of our critera.

• Dynamic Threshold⇒Fixed Threshold. We
replace the proposed dynamic threshold αt

mentioned in Section 4.2 with the originally-
used fixed threshold α=0.5 in this variant. As
shown in Line 3, we observe that removing
the dynamic threshold leads to a performance

7996



Model IT Koran Law Medical Subtitles Average
SK-MT1 46.11 / 84.39 17.13 / 72.16 60.43 / 87.46 53.98 / 84.22 28.63 / 77.52 41.26 / 81.15
SK-MT2 46.28 / 85.41 18.18 / 72.17 61.55 / 87.68 55.42 / 84.90 28.14 / 78.28 41.91 / 81.69
Adaptive kNN-MT 47.26 / 85.99 20.15 / 73.22 62.68 / 88.07 56.49 / 85.25 31.49 / 80.25 43.61 / 82.56

+ kNN-MT-AR(α=0.25) 44.34 / 84.92 20.19 / 72.40 61.86 / 87.66 55.46 / 84.76 30.64 / 79.92 42.50 / 81.93
+ kNN-MT-AR(α=0.50) 41.34 / 84.51 17.04 / 72.05 59.71 / 87.37 52.33 / 84.59 29.37 / 79.83 39.96 / 81.67
+ kNN-MT-AR(α=0.75) 39.22 / 83.69 16.48 / 72.06 51.28 / 86.60 45.23 / 84.08 29.30 / 79.81 36.30 / 81.25
+ Faster kNN-MT 45.38 / 85.43 19.04 / 72.98 59.95 / 87.73 53.09 / 84.91 30.63 / 80.06 41.62 / 82.22
+ Ours 46.94 / 85.46 20.05 / 73.26 61.17 / 87.75 54.58 / 84.98 31.35 / 80.38 42.82 / 82.37

Table 5: BLEU / COMET scores of various models based on Adaptive kNN-MT.

Model IT Koran Law Medical Subtitles
SK-MT1 524.65 537.06 533.52 560.14 264.30

SK-MT2 385.95 408.21 423.16 428.63 236.42

Adaptive kNN-MT 2583.92 3320.01 2292.75 2368.51 484.62

+ kNN-MT-AR(α=0.25) 2646.95 3098.34 2191.50 2235.01 873.98

+ Faster kNN-MT 2923.62 3665.24 2901.53 2733.55 952.27

+ Ours 2971.77 3569.44 2883.89 2712.45 1075.36

Table 6: Decoding speed (#Tok/Sec↑) of various models based on Adaptive kNN-MT. Note that we also omit the
results of kNN-MT-AR(α=0.5) and kNN-MT-AR(α=0.75). Here, we set the batch size as 128.

Model IT Koran Law Medical Subtitles Average
PLAC 46.81 / 85.65 20.51 / 73.21 62.89 / 88.01 56.05 / 85.16 31.59 / 80.36 43.57 / 82.48

+ Ours 46.83 / 85.40 20.36 / 73.25 61.66 / 87.82 54.82 / 85.01 31.28 / 80.29 42.99 / 82.35
PCK 47.27 / 86.43 19.93 / 72.96 62.91 / 88.03 56.46 / 85.15 31.69 / 80.53 43.65 / 82.62

+ Ours 46.85 / 85.97 19.99 / 73.24 61.98 / 88.05 55.34 / 85.11 31.20 / 80.44 43.07 / 82.56

Table 7: BLEU / COMET scores of PLAC (Zhu et al., 2023a) and PCK (Wang et al., 2022), alongside these
integrated with ours.

Model IT Koran Law Medical Subtitles
PLAC 2684.36 3398.53 2433.44 2383.00 749.49

+Ours 3027.95 3596.20 3025.14 2713.74 1461.30

PCK 2873.40 3535.19 2673.76 2617.73 979.52

+Ours 3072.21 3588.76 3009.64 2720.04 1801.97

Table 8: Decoding speed (#Tok/Sec↑) of PLAC (Zhu
et al., 2023a) and PCK (Wang et al., 2022), alongside
these integrated with ours. Here, we set the batch size
as 128.

decline, demonstrating the effectiveness of
our threshold adjustment method.

• Focal Loss⇒Weighted CE Loss. To make a
fair comparison, we follow Shi et al. (2023)
to adopt a weighted CE loss, which sets γ as
0 in Equation 3. Back to Table 4, we find
that this variant is inferior to our model in
terms of translation quality. However, it still
surpasses Faster kNN-MT with a large margin,
confirming the significant advantage of our
model in translation quality.

• w/o Input Features. To verify the benefit
of our carefully-designed features, we thor-
oughly construct several variants, each of
which discards one kind of feature to train
the classifier. As shown in Lines 6-8, all vari-
ants exhibit performance drops with varying
degrees. Thus, we confirm all features are
useful for our classifier.

5.4 Experiments on Adaptive kNN-MT

Adaptive kNN-MT (Zheng et al., 2021) is a widely-
used variant of kNN-MT and significantly outper-
forms Vanilla kNN-MT in terms of performance.
It introduces a meta-k network, a two-layer MLP
incorporating distances and counts of all kNN re-
trieval pairs, to dynamically estimate λ. Our model
can also utilize Adaptive kNN-MT as the base
models. When using Adaptive kNN-MT as the
base model, we dynamically estimate λ solely for
timesteps considered to conduct kNN retrieval. Ad-
ditionally, we explore the performance of Adaptive
kNN-MT as the base model for kNN-MT-AR. To

7997



Model IT Koran Law Medical Subtitles
Vanilla kNN-MT 45.72 / 467.21 19.38 / 534.79 61.22 / 456.88 54.11 / 501.02 31.62 / 515.47

kNN-MT-AR(α=0.25) 43.56 / 569.73 19.10 / 598.69 59.42 / 533.70 51.20 / 530.95 30.78 / 634.12
Faster kNN-MT 43.79 / 762.51 17.82 / 1108.25 58.82 / 1155.10 50.51 / 1076.66 30.71 / 1048.35
SK-MT1 45.36 / 306.53 16.24 / 236.57 60.21 / 310.59 53.78 / 346.35 26.87 / 265.72
SK-MT2 45.51 / 258.14 17.12 / 184.36 60.62 / 277.27 55.10 / 277.27 28.40 / 214.33
Ours 45.24 / 886.54 19.17 / 880.50 60.23 / 949.79 52.59 / 1040.25 31.12 / 1078.92

Table 9: BLEU↑ and #Tok/Sec↑ of various models on the all-domain datastore.

ensure fairness, we employ the λ of kNN-MT-AR
to determine whether to skip kNN retrieval, and
interpolate using the λ of Adaptive kNN-MT.

We also report the translation quality and decod-
ing speed, as shown in the Table 5 and Table 6,
respectively. Our model also demonstrate the least
performance decline and achieve the most efficient
decoding speed. Although Faster kNN-MT demon-
strates comparable decoding speeds to ours, our
model achieves superior performance.

5.5 Compatibility with Datastore
Compression Methods

In this group of experiments, we choose
PLAC (Zhu et al., 2023a) and PCK (Wang et al.,
2022) as the basic models for our compatibility ex-
periment, both of which are derived from Adaptive
kNN-MT. Typically, PLAC prunes the datastore
by eliminating pairs with high knowledge margin
values, while PCK introduces a cluster-based com-
pact network to condense the dimension of stored
keys and utilizes a cluster-based pruning strategy
to discard redundant pairs.

Tables 7 and 8 report the translation quality and
decoding speed, respectively. We can observe that
our model can further improve the efficiency of
these two models, with slight drops in translation
quality. Thus, we confirm that ours is also compati-
ble with both PLAC and PCK.

5.6 All-Domains Datastore Experiment

To provide more evidences for the efficiency of our
model, we follow Khandelwal et al. (2020) to con-
duct the experiment on the all domains datastore.
We report the BLEU scores and decoding speed as
shown in Table 9. Although SK-MT2 significantly
outperforms ours in the medical domain, it exhibits
a significant slowdown in decoding speed across all
domains. In contrast, our model achieves the best
balance between translation quality and decoding
speed.

5.7 Evaluation on Other Languages

In order to further validate the generality of our
model, we adopt the same settings as the previous
study (Zhu et al., 2023a) to perform experiments on
Chinese-to-English translation using the Laws and
Thesis domains from the UM dataset(Tian et al.,
2014). As reported in Table 10, it is observable that
ours achieves a more efficient decoding speed with
almost no loss in performance.

Model Laws Thesis
Base NMT 14.48 / 5578.24 12.23 / 5985.98
Adaptive kNN-MT 31.61 / 3142.54 15.96 / 3389.67

kNN-MT-AR(α=0.25) 27.66 / 3233.05 13.54 / 3555.49
Faster kNN-MT 27.86 / 3619.14 13.45 / 3882.05
SK-MT1 27.02 / 604.16 15.18 / 589.71
SK-MT2 27.21 / 547.20 15.33 / 564.37
Ours 31.72 / 3457.92 15.83 / 3989.80

Table 10: BLEU↑ and #Tok/Sec↑ of various models on
the UM dataset.

6 Conclusion and Future Work

In this work, we first in-depth analyze the limita-
tions of kNN-MT-AR, and then significantly ex-
tend the vanilla kNN-MT to kNN-MT-DR in two
aspects. First, we equip the model with a classi-
fier to determine whether to skip kNN retrieval,
where several carefully-designed scalar features
are exploited to exert the potential of the classifier.
Second, we propose a timestep-aware threshold
adjustment method to further refine kNN retrieval
skipping. Extensive experiments and analyses ver-
ify the effectiveness of our model.

Inspired by (Li et al., 2023), we will further im-
prove our model by incorporating more source-side
information into our classifier. Besides, we aim to
generalize our model to kNN-LM (Khandelwal
et al., 2019) and multilingual scenario (Stap and
Monz, 2023), so as to validate its generalizability.

7998



Limitations

As our model integrates an additional classifier,
there is an associated increase in time consumption.
Notably, as the size of the datastore decreases, the
time overhead for kNN retrieval diminishes and
classifier-related time cost becomes more apparent,
which results in a less pronounced acceleration in
decoding. Besides, the experiments of decoding
speed are evaluated solely on a single computer,
while the time overhead of kNN retrieval may dif-
fer across different hardware, yielding varied accel-
eration results.

Acknowledgements

The project was supported by National Natural Sci-
ence Foundation of China (No. 62036004, No.
62276219), and the Public Technology Service Plat-
form Project of Xiamen (No. 3502Z20231043).
We also thank the reviewers for their insightful
comments.

References
Abien Fred Agarap. 2018. Deep learning using rectified

linear units (relu). arXiv preprint arXiv:1803.08375.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proc. of ACL.

Zhiwei Cao, Baosong Yang, Huan Lin, Suhang Wu,
Xiangpeng Wei, Dayiheng Liu, Jun Xie, Min Zhang,
and Jinsong Su. 2023. Bridging the domain gaps in
context representations for k-nearest neighbor neural
machine translation. In Proc. of ACL.

Yuhan Dai, Zhirui Zhang, Qiuzhi Liu, Qu Cui, Weihua
Li, Yichao Du, and Tong Xu. 2023. Simple and
scalable nearest neighbor machine translation. In
Proc. of ICLR.

Hiroyuki Deguchi, Taro Watanabe, Yusuke Matsui,
Masao Utiyama, Hideki Tanaka, and Eiichiro Sumita.
2023. Subset retrieval nearest neighbor machine
translation. In Proc. of ACL.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2021. Efficient nearest neighbor lan-
guage models. In Proc. of EMNLP.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In Proc. of ICML.

Hui Jiang, Ziyao Lu, Fandong Meng, Chulun Zhou, Jie
Zhou, Degen Huang, and Jinsong Su. 2022. Towards
robust k-nearest-neighbor machine translation. In
Proc. of EMNLP.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Trans. on Big Data.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Nearest neigh-
bor machine translation. In Proc. of ICLR.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. In Proc. of ICLR.

Xuanhong Li, Peng Li, and Po Hu. 2023. Revisiting
source context in nearest neighbor machine transla-
tion. In Proc. of EMNLP.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object
detection. In Proc. of ICCV.

Xuebo Liu, Houtim Lai, Derek F. Wong, and Lidia S.
Chao. 2020. Norm-based curriculum learning for
neural machine translation. In Proc. of ACL.

Pedro Martins, Zita Marinho, and André FT Martins.
2022a. Efficient machine translation domain adapta-
tion. In Proc. of the 1st Workshop on Semiparametric
Methods in NLP: Decoupling Logic from Knowledge.

Pedro Henrique Martins, Zita Marinho, and André FT
Martins. 2022b. Chunk-based nearest neighbor ma-
chine translation. In Proc. of EMNLP.

Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu, Xiaofei
Sun, Tianwei Zhang, and Jiwei Li. 2022. Fast near-
est neighbor machine translation. In Proc. of ACL
Findings.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proc. of MT.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proc. of MT.

Ricardo Rei, Craig Stewart, Ana C. Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proc. of EMNLP.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. of ACL.

Xiangyu Shi, Yunlong Liang, Jinan Xu, and Yufeng
Chen. 2023. Towards faster k-nearest-neighbor ma-
chine translation. arXiv preprint arXiv:2312.07419.

David Stap and Christof Monz. 2023. Multilingual k-
nearest-neighbor machine translation. In Proc. of
EMNLP.

Liang Tian, Derek F Wong, Lidia S Chao, Paulo
Quaresma, Francisco Oliveira, and Lu Yi. 2014. Um-
corpus: A large english-chinese parallel corpus for
statistical machine translation. In Proc. of LREC.

7999



Dexin Wang, Kai Fan, Boxing Chen, and Deyi Xiong.
2022. Efficient cluster-based k-nearest-neighbor ma-
chine translation. In Proc. of ACL.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural Computation.

Svante Wold, Kim Esbensen, and Paul Geladi. 1987.
Principal component analysis. Chemometrics and
intelligent laboratory systems.

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang,
Boxing Chen, Weihua Luo, and Jiajun Chen. 2021.
Adaptive nearest neighbor machine translation. In
Proc. of ACL.

Wenhao Zhu, Shujian Huang, Yunzhe Lv, Xin Zheng,
and Jiajun Chen. 2023a. What knowledge is needed?
towards explainable memory for knn-mt domain
adaptation. In Proc. of ACL Findings.

Wenhao Zhu, Jingjing Xu, Shujian Huang, Lingpeng
Kong, and Jiajun Chen. 2023b. Ink: Injecting knn
knowledge in nearest neighbor machine translation.
In Proc. of ACL.

Wenhao Zhu, Qianfeng Zhao, Yunzhe Lv, Shu-
jian Huang, Siheng Zhao, Sizhe Liu, and Jiajun
Chen. 2023c. knn-box: A unified framework
for nearest neighbor generation. arXiv preprint
arXiv:2302.13574.

A Dataset Statistics

The number of parallel sentence pairs in different
datasets and the sizes of the constructed datastores
are shown in Table 11.

Dataset IT Koran Law Medical Subtitles
Train 223K 18K 467K 248K 14.46M
Valid 2K 2K 2K 2K 2K
Test 2K 2K 2K 2K 2K
Size 3.6M 0.5M 19.1M 6.9M 180.7M

Table 11: The statistics of datasets in different domains.
We also list the size of the datastore, which is the number
of stored pairs.

B Effect of Datastore Size

As analyzed in Section 5.2, our speed advantage
becomes more significant with the increase of data-
store size. To further verify this, we construct data-
stores of varying sizes by randomly deleting pairs
from the original datastore, and employ the pruned
datastores for kNN retrieval. The results of decod-
ing speed on the Subtitles dataset are reported in
Figure 2. As expected, we observe that our model
consistently surpasses kNN-MT, regardless of the

20M 50M 100M 180.7M
Datastore Size

500

1000

1500

2000

2500

3000

3500

#T
ok

/S
ec

Ours
Vanilla kNN-MT

Figure 2: Decoding speed(#Tok/Sec↑) of Vanilla
kNNMT and ours. Here, we set the batch size as 128.

datastore size. Furthermore, the efficiency advan-
tage of our model over kNN-MT becomes more
evident with the increase of datastore size. These
results further confirm that the pronounced speed
advantage of our model as the datastore expands.

C Hyper-Parameter Tuning

The performance and efficiency of our model
is significantly impacted by the hyper-parameter
αmin, and we tune αmin among the subset of
{0.45, 0.40, 0.35} on the validation set.

We report the BLEU scores and #Tok/Sec, as
shown in Table 12. As αmin decreases, the incre-
ment in BLEU scores gradually diminishes, while
the drop in decoding speed becomes more pro-
nounced. So we set the hyper-parameter αmin

to 0.45 for Koran, Subtitles, and 0.40 for other
datasets to achieve a balance between performance
and efficiency.

Note that as the validation set is utilized in train-
ing the classifier network, there exists a potential
risk of overfitting when tuning αmin, which may
result in a suboptimal selection of αmin.

Datasets 0.45 0.40 0.35
IT 42.03 / 2978.73 42.30 / 2940.88 42.23 / 2878.88
Koran 19.53 / 3452.23 19.50 / 3415.35 19.58 / 3408.09
Law 58.66 / 3137.26 59.20 / 3097.68 59.31 / 3001.18
Medical 51.45 / 3155.22 51.75 / 3069.02 51.86 / 2989.31
Subtitles 32.05 / 1027.21 32.13 / 898.61 32.09 / 771.34

Table 12: BLEU↑ and #Tok/Sec↑ of our model on the
multi-domain validation sets with different αmin. Here,
we set the batch size as 128.

D Compatibility with INK

INK (Zhu et al., 2023b) achieves excellent per-
formance by performing parameter-efficient fine-

8000



Model IT Koran Law Medical
INK 49.06 / 2842.24 22.35 / 3401.44 63.51 / 2922.82 57.41 / 2687.21
INK with Robust kNN-MT 49.97 / 1489.68 20.90 / 1839.12 65.41 / 1053.55 58.30 / 1391.53

+ Ours 49.72 / 2065.52 21.40 / 2243.05 65.17 / 1734.07 57.98 / 1788.20

Table 13: BLEU↑ and #Tok/Sec↑ of models on the multi-domain test sets. We are unable to provide the results
on the Subtitles domain, since INK needs to fine-tune the base NMT model and reconstructs the datastore at each
epoch, which is extremely time-consuming on the Subtitles domain.

tuning on the base NMT model using domain-
specific data through knowledge distillation, and its
variant equipped with Robust kNNMT (Jiang et al.,
2022) achieves the state-of-the-art performance, we
conduct compatibility experiments on this variant
with our model and report the BLEU scores and
decoding speed as shown in Table 13. We can ob-
serve that our model can improve the efficiency
with only a slight drop in translation quality. Thus,
we confirm that our model is compatible with INK.

8001


