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Abstract

Conceptual spaces represent entities in terms
of their primitive semantic features. Such rep-
resentations are highly valuable but they are
notoriously difficult to learn, especially when
it comes to modelling perceptual and subjec-
tive features. Distilling conceptual spaces from
Large Language Models (LLMs) has recently
emerged as a promising strategy, but existing
work has been limited to probing pre-trained
LLMs using relatively simple zero-shot strate-
gies. We focus in particular on the task of rank-
ing entities according to a given conceptual
space dimension. Unfortunately, we cannot
directly fine-tune LLMs on this task, because
ground truth rankings for conceptual space di-
mensions are rare. We therefore use more read-
ily available features as training data and anal-
yse whether the ranking capabilities of the re-
sulting models transfer to perceptual and sub-
jective features. We find that this is indeed the
case, to some extent, but having at least some
perceptual and subjective features in the train-
ing data seems essential for achieving the best
results.!

1 Introduction

Knowledge graphs (KGs) have emerged as the de
facto standard for representing knowledge in areas
such as Natural Language Processing (Schneider
et al., 2022), Recommendation (Guo et al., 2022)
and Search (Reinanda et al., 2020). However, much
of the knowledge that is needed in applications is
about graded properties, e.g. recipes being healthy,
movies being original or cities being kids-friendly.
Such knowledge is easiest to model in terms of
rankings: we can rank recipes according to how
healthy they are even if we cannot make a hard
decision about which ones are healthy and which
ones are not. For this reason, we argue that con-

'Our pre-processed datasets and code can be found at
https://github.com/niteshroyal/RankingUsinglLMs.

ceptual spaces (Gérdenfors, 2000) should be used,
alongside knowledge graphs, in many settings.

A conceptual space specifies a set of quality di-
mensions, which correspond to primitive semantic
features. For instance, in a conceptual space of
movies, we might have a quality dimensions re-
flecting how original a movie is. Entities are rep-
resented as vectors, specifying a suitable feature
value for each quality dimension. While the frame-
work of conceptual spaces is more general, we will
essentially view quality dimensions as rankings.

Conceptual spaces have the potential to play a
central role in various knowledge-intensive appli-
cations. In the context of recommendation, for
instance, they could clearly complement the factual
knowledge that is captured by typical KGs (e.g.
modelling the style of a movie, rather than who di-
rected it), making it easier to infer user preferences
from previous ratings. They could also be used to
make recommendations more controllable, as in the
case of critiquing-based systems, allowing users to
specify feedback of the form “like this movie, but
more kids-friendly” (Chen and Pu, 2012; Vig et al.,
2012). Conceptual spaces furthermore serve as a
natural interface between neural and symbolic rep-
resentations (Aisbett and Gibbon, 2001), and may
thus enable principled explainable Al methods.

However, the task of learning conceptual spaces
has proven remarkably challenging. The issue of
reporting bias (Gordon and Durme, 2013), in partic-
ular, has been regarded as a fundamental obstacle:
the knowledge captured by conceptual spaces is
often so obvious to humans that it is rarely stated
in text. For instance, the phrase “green banana” is
more frequent in text than “yellow banana” (Paik
et al., 2021), as the colour is typically not speci-
fied when yellow bananas are discussed. Paik et al.
(2021) found that predictions of Language Models
(LMs) about the colour of objects were correlated
with the distribution of colour terms in text corpora,
rather than with human judgements, suggesting that
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LMs cannot overcome the challenges posed by re-
porting bias. However, Liu et al. (2022a) found that
larger LMs can perform much better on this task.
Going beyond colour, Chatterjee et al. (2023) eval-
uated the ability of LLMs to predict taste-related
features, such as sweetness and saltiness, obtaining
mixed results: the rankings predicted by LLMs, in
a zero-shot setting, had a reasonable correlation
with human judgments but they were not consis-
tently better than those produced by a fine-tuned
BERT (Devlin et al., 2019) model.

In this paper, we analyse whether LLLMs can be
fine-tuned to extract better conceptual space rep-
resentations. The difficulty is that ground truth
rankings are typically not available when it comes
to perceptual and subjective features, outside a few
notable exceptions such as the aforementioned taste
dataset. We therefore explore whether more readily
available features can be used for fine-tuning the
model. For instance, we can obtain ground truth
rankings from Wikidata entities with numerical at-
tributes (e.g. the length of rivers, the birth date of
people, or the population of cities) and then use
these rankings to fine-tune an LLM. We further-
more compare two different strategies for ranking
entities with an LLM: the pointwise approach uses
an LLM to assign a score to each entity, given some
feature, while the pairwise approach uses an LLM
to decide which among two given entities has the
feature to the greatest extent. Our contributions
and findings can be summarised as follows:

* We evaluate on three datasets which have not
previously been used for studying language
models: a dataset of rocks, a dataset of movies
and books, and a dataset about Wikidata enti-
ties. We use these datasets alongside datasets
about taste (Chatterjee et al., 2023) and physi-
cal properties (Li et al., 2023).

* We analyse whether fine-tuning LLMs on fea-
tures from one domain (e.g. taste) can improve
their ability to rank entities in different do-
mains (e.g. rocks). We find this indeed largely
to be the case, as long as the training data also
contains perceptual or subjective features.

* We compare pointwise and pairwise ap-
proaches for ranking entities with LLMs. De-
spite the fact that pairwise approaches have
consistently been found superior for LLM-
based document ranking (Nogueira et al.,
2019; Gienapp et al., 2022; Qin et al., 2023),

when it comes to comparing entities, we find
the pointwise approach to be highly effective,
although the best results overall are still ob-
tained using a pairwise model.

* To obtain rankings from pairwise judgments,
we need a suitable strategy for aggregating
these judgments. We show the effectiveness
of an SVM based strategy for this purpose.
While this strategy is known to have desirable
theoretical properties, it has not previously
been considered in the context of language
models, to the best of our knowledge

2 Related Work

LMs as Knowledge Bases Our focus in this pa-
per is on extracting knowledge from language mod-
els. This idea of language models as knowledge
bases was popularised by Petroni et al. (2019),
who showed that the pre-trained BERT model cap-
tures various forms of factual knowledge, which
can moreover be extracted using a simple prompt.
Work in this area has focused on two rather distinct
goals. On the one hand, probing tasks, such as the
one proposed by Petroni et al. (2019), have been
used as a mechanism for analysing and comparing
different language models. On the other hand, ex-
tracting knowledge from LMs has also been studied
as a practical tool for building or extending sym-
bolic knowledge bases. This has been particularly
popular for capturing types of knowledge which
are not commonly found in traditional knowledge
bases, such as commonsense knowledge (Bosse-
lIut et al., 2019; West et al., 2022; Yu et al., 2023).
Several works have focused on distilling KGs from
language models (Cohen et al., 2023). Hao et al.
(2023) studied this problem for non-traditional rela-
tions such as “is capable of but not good at”. Along
the same lines, Ushio et al. (2023) have focused on
modelling relations that are a matter of degree, such
as “is a competitor of”’ or “is similar to”. We can
similarly think of the conceptual space dimensions
that we consider in this paper as gradual properties.

Where the aforementioned approaches explicitly
extract knowledge from an LM, the knowledge cap-
tured by LMs has also been used implicitly, by ap-
plying such models in a wide range of knowledge-
intensive applications, including closed-book ques-
tion answering (Roberts et al., 2020), knowledge
graph completion (Yao et al., 2019), recommenda-
tion (Sun et al., 2019; Geng et al., 2022), entity
typing (Huang et al., 2022) and ontology alignment
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(He et al., 2022), to name just a few.

Conceptual Space of LMs There is an ongoing
debate about the extent to which LMs can truly
capture meaning (Bender and Koller, 2020; Ab-
dou et al., 2021; Patel and Pavlick, 2022; Sggaard,
2023). Within this context, several authors have
analysed the ability of LMs to predict perceptual
features. As already mentioned, Paik et al. (2021)
and Liu et al. (2022a) analysed the ability of LMs
to predict colour terms. Abdou et al. (2021) anal-
ysed whether the representation of colour terms in
LMs can be aligned with their representation in the
CIELAB colour space. Patel and Pavlick (2022)
similarly showed that LLMs can generate colour
terms from RGB codes in a few-shot setting, even if
the codes represent a rotation of the standard RGB
space. They also show a similar result for terms
describing spatial relations. Zhu et al. (2024) have
similarly shown that LLMs can understand colour
codes, by using them to generate HSL codes for
everyday objects, or by asking models to choose
the most suitable code among two alternatives.

Beyond the colour domain, Li et al. (2023) con-
sidered physical properties such as height or mass.
While they found LLMs to struggle with such prop-
erties, Chatterjee et al. (2023) reported better re-
sults on the same datasets, especially when using
GPT-4. Focusing on visual features, Merullo et al.
(2023) showed that the representations of concepts
in vision-only and text-only models can be aligned
using a linear mapping. Chatterjee et al. (2023)
focused on the taste domain, modelling properties
such as sweet. They found that GPT-3 can model
such properties to a reasonable extent, but not better
than a fine-tuned BERT model.

Gupta et al. (2015) already considered the prob-
lem of modelling gradual properties in the context
of static word embeddings, although their analysis
was limited to objective numerical features. Derrac
and Schockaert (2015) similarly learned conceptual
space dimensions for properties such as “violent”
in a semantic space of movies, while Rubinstein
et al. (2015) assessed the ability to predict (grad-
ual) commonsense properties from word embed-
dings. More recently, Grand et al. (2022) also used
linear projections to map word embeddings to di-
mensions capturing gradual feature (e.g. size). Erk
and Apidianaki (2024) argue for the importance
of using human ratings to learn such projections.
Note that all these approaches essentially learn a
linear classifier or regression model for each prop-

erty independently, and can thus not generalise to
new properties. A related line of work has focused
on modelling the rankings associated with scalar
adverbs (Lorge and Pierrehumbert, 2023) and ad-
jectives (Samir et al., 2021).

3 Extracting Rankings

We consider the following problem: given a set of
entities £ and a feature f, rank the entities in £
according to the their value for the feature f. In
some cases, f will refer to a numerical attribute.
For instance, £ may be a set of countries and f the
population of a country, where the task is then to
rank the countries according to their population. In
other cases, f will rather refer to a gradual property.
For instance, £ may be a set of food items and f
may be the level of sweetness. Let us write f(e)
for the value of feature f for entity e.

We consider two broad strategies for solving
the considered ranking task with LLMs. First, we
can use LLMs to map each entity e to some score
w(e), with the assumption that w(e;) < w(ez)
iff f(e1) < f(e2). This pointwise approach to
learning to rank is considered in Section 3.2. Sec-
ond, we can use LLMs to solve a binary classifica-
tion problem: given two entities e; and e, decide
whether f(e;) < f(e2) holds. This pairwise ap-
proach needs to be combined with a strategy for
aggregating the LLM predictions into a single rank-
ing. The main disadvantage is that a large number
of judgements need to be collected for this to be
effective, which means that such approaches are
less efficient than pointwise strategies. However,
in the context of document retrieval, pairwise ap-
proaches have been found to outperform pointwise
approaches (Nogueira et al., 2019; Gienapp et al.,
2022; Qin et al., 2023). We discuss pairwise and
pointwise strategies in Sections 3.1 and 3.2 respec-
tively. Finally, Section 3.3 describes how we estab-
lish baseline results using ChatGPT and GPT4.

3.1 Pairwise Model

The problem of predicting whether f(e1) < f(e2)
holds can be straightforwardly cast as a sequence
classification problem. To this end, we use a
prompt of the following form:

This question is about two [ENTITY TYPE]:
[Is/Does/Was] [ENTITY 1] [COMPARATIVE
FEATURE] than [ENTITY 2]?

Note that the exact formulation depends on the type
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of feature which is used for ranking. For instance,
some instantiations of the prompt are as follows:

» This question is about two rivers: Is River
Thames longer than Seine?

» This question is about two companies: Was
Meta founded after Alphabet?

 This question is about two food items: Does
banana taste sweeter than chicken?

In initial experiments, we used prompts with a more
uniform style (e.g. “should [ENTITY 1] be ranked
higher than [ENTITY 2] in terms of [FEATURE]”).
However, this inevitably leads to less natural sound-
ing prompts for certain features, which may affect
performance. Moreover, such prompts were some-
times found to be ambiguous (e.g. does “ranked
higher in terms of date of birth” mean younger peo-
ple should be ranked highest?). To obtain judg-
ments about entity pairs, we use a standard se-
quence classification approach, where a linear layer
with sigmoid activation is applied to the final hid-
den state. The model is trained using binary cross
entropy using a set of training examples.

Aggregating judgments We typically want to
rank a given set of entities, rather than judging
the relative position of two particular elements.
This means that we need a strategy for aggregating
(noisy) pairwise judgments into a single ranking.
This problem has received extensive attention in
the literature, where standard techniques include
spectral ranking (Vigna, 2016) and maximum like-
lihood estimation w.r.t. an underlying statistical
model. However, existing approaches often con-
sider a stochastic setting, where we may have ac-
cess to several judgments for the same entity pair
(e.g. when ranking sports teams based on the out-
comes of head-to-head matches).

Our setting is slightly different, as we can realis-
tically only obtain judgments for a small sample of
entity pairs. In particular, we ideally need methods
with Q(n) sample complexity, i.e. methods that
can perform well with a number of judgements that
is linear in the number of queries. Wauthier et al.
(2013) discuss two such methods. Let us write
e1,..., ey for the entities to be ranked. The first
method uses a linear SVM to learn a weight vec-
torw = (wq, ..., wy). Let x; be an n-dimensional
one-hot vector, which is 1 in the " coordinate
and 0 elsewhere. If we have a pairwise judgement

f(ei) < f(e;) then this is translated into the con-
straint that w(xj —x;) > 0. A standard SVM can
then be used to find the vector w that maximises
the margin between positive and negative exam-
ples. Entity e; is ranked based on its corresponding
weight w;. The second method simply scores each
entity e; based on the number of pairwise compar-
isons where e; was ranked higher/lower. Specif-
ically, let us define s;; = 1 if entities e; and e;
have been compared, and s;; = 0 otherwise. Fur-
thermore, we define ¢;; = 1if f(e;) > f(e;),
according to a pairwise comparison that was made,
and ¢;; = —1 otherwise. Then we can choose the
weights as:

>4 SijCij
Zj;éi Sij

Ww; =

We will refer to this strategy as Count.

3.2 Pointwise Model

For the pointwise model, we need to learn a scoring
function w : £ — R. To this end, we use a prompt
of the following form:

Is [ENTITY 1] among [SUPERLATIVE FEA-
TURE] [ENTITY TYPE]?

For instance, Is River Thames among the longest
rivers? For each entity e;, we obtain a score
w(e;) € R by applying a linear layer to the final
hidden state. Intuitively, w(e;) captures the (latent)
quality of e; w.r.t. the considered feature. Since we
cannot obtain ground truth labels for this score, we
again rely on pairwise comparisons for training the
model. Specifically, we estimate the probability p;;
that f(e;) > f(e;) holds as:

Pij = U(w(ez‘) - w(ej))

Then we use binary cross entropy as follows:

L= _(th‘j log pij + (1 — ;) log(1 _pz’j)>
i#]

where t;; = 1if f(e;) > f(e;) and t;; = 0 oth-
erwise, and the summation ranges over all distinct
entity pairs e;, e; within the given mini-batch. Note
that while we use pairwise comparisons for train-
ing the model, it is still a pointwise approach as the
model produces scores for individual entities.
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3.3 Baselines

To put the performance of the fine-tuning strategies
from Sections 3.1 and 3.2 into context, we compare
them with two conversational models: ChatGPT
(gpt-3.5-turbo) and GPT-4 (gpt-4). We use both
models in a zero-shot setting. For this purpose, we
use the same prompt as in Section 3.1 but append
the sentence Only answer with yes or no. Despite
this instruction, the models occasionally still gener-
ated a different response, typically expressing that
the question cannot be answered. For such entity
pairs, we replace the generated response with a
randomly generated label (yes or no).?

4 Datasets

In our experiments, we will rely on the following
datasets, either for training or for testing the mod-
els. Each dataset consists of a number of rankings,
where each ranking is defined by a set of entities
and a feature along which the entities are ranked.

Wikidata We have obtained 20 rankings from
numerical features that are available on Wikidata®.
For instance, we obtained a ranking of rivers by
comparing their length.* If there were more than
1000 entities with a given feature value, we se-
lected the most 1000 popular entities. To estimate
the popularity of an entity, we use their QRank>,
which counts the number of page views of the cor-
responding entry in sources such as Wikipedia. For
the entity type person, we limited the analysis to
people born in London (which made it possible
to retrieve the required information from Wikidata
more efficiently). We similarly only considered
museums located in Italy. For some experiments,
we split the collected data in two datasets, called
WD1 and WD2. This will allow us to test whether
models trained on one set of features (i.e. WD1)
generalise to a different set of features (i.e. WD2).
WDI contains rankings which were cut off at 1000
elements, whereas WD2 contains rankings with
fewer elements. We will write WD to refer to the
full dataset, i.e. WD1 and WD2 combined.

Taste Following Chatterjee et al. (2023), we use
a dataset with ratings about the taste of 590 food

2Statistics about how often this was needed can be found
in the appendix.

3https ://www.wikidata.org/wiki/Wikidata:
Main_Page

“The entity types and corresponding features are listed in
the appendix.

https://qrank.wmcloud.org

items along six dimensions: sweetness, sourness,
saltiness, bitterness, fattiness and umaminess. The
dataset was created by Martin et al. (2014), who
used a panel of twelve experienced food assessors
to rate the items. We use the version of the dataset
that was cleaned by Chatterjee et al. (2023), who
altered some of the descriptions of the items to
make them sound more natural in prompts.®

Rocks Nosofsky et al. (2018) created a dataset
of rocks, with the aim of studying how cognitively
meaningful representation spaces for complex do-
mains can be learned. A total of 30 rock types
were studied (10 igneous rocks, 10 metamorphic
rocks and 10 sedimentary rocks). For each type
of rock, 12 pictures were obtained, and each pic-
ture was annotated along 18 dimensions. However,
only 7 of the considered dimensions allow for rank-
ing all types: lightness of colour, average grain
size, roughness, shininess, organisation, variabil-
ity of colour and density. For our experiments,
we only considered these dimensions. The dataset
from Nosofsky et al. (2018) contains ratings for
each of the 12 pictures of a given rock type, where
each picture was assessed by 20 annotators. To
construct rankings of rock types, we average the
ratings across the 12 pictures. As such, we end up
with 7 rankings of 30 rock types.

Tag Genome Vig et al. (2012) collected a
dataset’ of movies, called the Tag Genome, by ask-
ing annotators to what extent different tags apply to
different movies, on a scale from 1 to 5. From these
tags, we first selected those that correspond to ad-
jectives and for which ratings for at least 15 movies
were available. We then manually identified 38 of
these adjectives which correspond to ordinal fea-
tures. More recently, Kotkov et al. (2022) created
a similar dataset for books. We again selected ad-
jectives for which at least 15 items were ranked,
and manually identified 32 adjectives that corre-
spond to ordinal features. A list of the adjectives
that we considered is provided in the appendix. It
should be noted that most items are only judged by
a single annotator, and the judgements were more-
over obtained using crowdsourcing. The movies
and books datasets are thus clearly noisier than
the taste and rocks datasets. For this reason, we

%Available from https://github.com/
ExperimentsLLM/EMNLP2023_PotentialOfLLM_
LearningConceptualSpace.

"Available from https://grouplens.org/datasets/
movielens/tag-genome-2021/.
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Llama2-7B  80.5 61.0 62.8 532 472 52.6 582 650 62.0 60.2 56.4 42.0 53.6 61.2 722 593 52.8 68.0 70.0 50.0 59.4
Llama2-13B 79.8 587 52.8 704 512 52.8 652 672 66.4 49.6 432 52.6 57.0 57.2 652 609 550 69.6 764 584 60.5
Llama3-8B  78.6 59.9 63.8 74.6 582 58.0 63.8 644 59.0 58.0 452 53.2 574 532 644 657 565 832 702 61.6 62.5
Mistral-7B~ 78.3 61.4 70.2 69.4 64.8 59.2 67.8 68.8 61.0 574 424 47.8 61.0 524 56.0 624 59.3 856 70.0 61.0 62.8
PAIRWISE
Llama2-7B  81.8 61.6 59.0 59.8 52.0 53.8 60.8 61.8 50.8 62.6 522 46.6 56.0 558 64.4 57.0 60.1 862 812 68.0 61.6
Llama2-13B 82.8 68.0 58.6 67.4 50.8 53.6 67.6 67.6 50.2 66.8 584 52.0 55.8 58.8 68.8 583 55.6 93.8 912 662 64.6
Llama3-8B  83.5 662 68.2 79.8 612 56.8 722 69.2 58.6 75.0 60.6 53.0 54.6 58.8 73.6 625 56.7 940 942 63.2 68.1
Mistral-7B 822 642 59.4 69.0 524 524 668 63.0 58.6 550 52.6 47.8 54.8 52.0 58.8 533 52.3 92.6 88.0 68.2 622
BASELINES
ChatGPT 553 609 60.4 584 524 51.0 532 542 604 602 57.0 514 532 552 628 638 67.2 77.8 70.8 58.6 59.2
GPT-4 77.2 783 76.6 80.6 62.6 562 69.2 73.8 728 702 56.6 624 594 63.6 74.0 67.4 669 99.2 952 64.0 71.3
Table 1: Comparison of different models in terms of accuracy (%), when classifying pairwise judgments. The

pointwise and pairwise models are trained on the training split of WD1.

will only consider aggregated results across all tags
when evaluating on these datasets. We will write
TG to refer to the combined dataset, containing
both the books and movies rankings.

Physical Properties Following Li et al. (2023),
we consider three physical properties: mass, size
and height. The ground truth for mass dataset was
obtained from a dataset about household objects
from Standley et al. (2017). Following Chatterjee
et al. (2023), we removed 7 items, because their
mass cannot be assessed without the associated
image: big elephant, small elephant, Ivan’s phone,
Ollie the monkey, Marshy the elephant, boy doll

and Dali Clock. The resulting dataset has 49 items.

For size and height, we use the datasets from Liu
et al. (2022b) as ground truth. These datasets each
consist of 500 pairwise judgements.

5 Experiments

We now evaluate the performance of the fine-tuning
strategies on the considered datasets.®

Comparing Models Table 1 compares a number
of different models. We test four different LLMs:
the 7B and 13B parameter Llama 2 models, the 8B
parameter Llama 3 model®, and the 7B parameter

80ur datasets, code and pre-trained models will be shared
upon acceptance.

We use the llama-2-7b-hf, 1lama-2-13b-hf, and
meta-llama/Meta-Llama-3-8B models available from
https://huggingface.co/meta-1lama.

Mistral model'?. We evaluate the different models
in terms of their accuracy on pairwise judgements.
To this end, for a given dataset, we randomly sam-
ple pairs of entities e;,e; and construct queries
asking whether f(e;) > f(e;). For WD, Taste
and Rocks, we sample 500 such pairs for each of
the features. Since the TG dataset has a total of
70 features, we limit the test set to 100 pairs per
feature. For this analysis, we have split the WD/
dataset into two parts: 80% of the entities, for each
feature, are used for training the models. The re-
maining 20% are used as a test set. All models are
fine-tuned on the training split of WD/ (apart from
the baselines, which are evaluated zero-shot). This
allows us to see how well the models perform on
the features they were trained on (for WDI-test)
and how they generalise to unseen properties.

The aim of the analysis in Table 1 is to assess
whether models can be successfully fine-tuned us-
ing a relatively small training set (i.e. WDI-train),
involving only well-defined numerical features. In
particular, we want to test whether models which
are fine-tuned on such features would also gener-
alise to more subjective and less readily available
ones, similar to the easy-to-hard generalisation that
has been observed for LLLMs in other tasks (Hase
et al., 2024). The results show that this is indeed
the case, at least to some extent. Overall, we can

OWe use the mistral-7b-v@.1 model available from
https://huggingface.co/mistralai/Mistral-7B-ve.
1.
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TG 68.3 68.2 75.6 80.0 62.8 58.8 71.4 69.8 70.6 73.0 58.2 62.0 58.6 58.8 732 - - 844 832 584
Taste 64.0 643 - - - - - - 632 772 61.6 650 540 584 72.6 652 56.0 774 87.8 51.2
WD+TG+Taste - - - - - - - - 692 80.0 644 598 594 65.6 73.0 - - 840 91.0 55.6
WD+TG+Rocks - - 740 81.6 66.2 57.8 732 704 - - - - - - - - - 912 894 56.8
WD+Taste+Rocks - - - - - - - - - - - - - - - 685 60.1 852 91.8 56.0

Table 2: Comparison of different models in terms of accuracy (%), when classifying pairwise judgments. All results

are for the pairwise model with Llama3-8B.

) 7] %

i 3 32 £ £ ¢z

= L @ = L

wn 3 A & - =
Pointwise 59.3 59.9 24.0 32.1 44.1 604
SVM (5 samples) 60.4 659 48.0 38.3 59.6 62.3
SVM (30 samples) 66.4 73.5 50.9 454 63.9 67.2
Count (5 samples) 59.9 66.5 47.3 41.1 59.5 60.5
Count (30 samples) 65.3 72.2 48.8 449 63.0 66.8
Ada” 175 85 122 164 22.5 10.7
Babbage™ 19.5 51.1 20.2 22.0 22.6 16.0
Curie* 36.0 46.3 32.8 23.2 22.6 31.7
Davinci™ 55.0 63.2 333 27.2 57.0 52.0

Table 3: Comparison of ranking strategies, in terms of
Spearman p%. Baseline results marked with * were
taken from Chatterjee et al. (2023). All other results are
obtained with Llama3-8B trained on WD+TG+Rocks.

see that Mistral-7B achieves the best results among
the pointwise models, while Llama3-8B achieves
the best results among the pairwise models. The
pointwise Mistral-7B model outperforms the pair-
wise Mistral-7B model, which is surprising given
that pairwise models generally perform better in
ranking tasks. The performance of the models
across different features is not always consistent.
Each model achieves close to random chance on
some of the features, but the features where one
model performs poorly are not always the same
features where other models perform poorly. How-
ever, for bitterness and roughness, the accuracy
of all models is below 61%. Furthermore, sour-
ness and organisation also stand out as being more
challenging. Regarding the baselines, GPT-4 gen-
erally performs better than the fine-tuned models.
Nonetheless, the pairwise Llama3-8B and point-
wise Mistral-7B models outperform GPT-4 in sev-
eral cases. ChatGPT performs worse on most fea-

tures, but achieves the best results for books.

Comparing Training Sets The fine-tuned mod-
els in Table 1 generally underperform GPT-4. This
may be partially explained by the fact that a small
training set was used, which moreover only cov-
ered numerical features. In Table 2, we evaluate
the impact of using different training sets. For this
analysis, we use the pairwise Llama3-8B model,
the best fine-tuned model in Table 1. Our focus is
on seeing whether models trained on one domain
can generalise to other domains. To put the results
in context, we also compare with a model that is
not fine-tuned but includes three in-context demon-
strations (shown as few-shot); see Appendix A for
details. The results are again evaluated in terms of
accuracy, using the same pairwise judgements as
for Table 1. WD refers to the full dataset (including
both the training and test splits of WD-1).

We can see in Table 2 that training on larger
datasets indeed leads to considerably better results.
While this is not unexpected, we can also make
more striking observations. For instance, the model
that was trained on WD+TG+Taste achieves strong
results on Rocks, despite covering very different
features. Similarly, the model that was trained on
TG alone achieves strong results for both Taste and
Rocks. This suggests that the fine-tuned models are
indeed capable of generalising to unseen domains.
However, to achieve strong results, it appears to be
important that the training data contains subjective
or perceptual features. In particular, training on
WD alone leads to clearly worse results on Taste
and Rocks. The best results in Table 2 generally
outperform the GPT-4 results from Table 1. As
the training and test sets cover disjoint domains,
the results reflect the knowledge that is captured
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Feature

Top ranked entities

Bottom ranked entities

Sweetness

caramel custard, sweet cookies with chocolate, sweet pancake
with sugar, syrup with water, macaroons, white chocolate, ice
cream, litchi juice, ice cream bars, fruit candy

hake in tinfoil, unsalted pasta, tripe, raw horseradish with salt,
mixed salad starch based with cold cuts, gizzards, roast beef, dry
sausage, pasta with salt, burbot

Saltiness

dry-cured ham, parmesan cheese, canned sardines, canned an-
chovies, cooked ham, salty crackers, fried anchovies, cooked
ham with salted butter, kidneys with gravy, gorgonzola cheese

strawberry with sugar, pear, grape juice, pineapple juice, fruit
crumble, strawberry juice, strawberry, banana, apple juice, blue-
berry

Scary

Shining, The (1980), Silence of the Lambs, The (1991), Ex-
orcist, The (1973), Psycho (1960), Ring, The (2002), Grudge,
The (2004), Amityville Horror, The (2005), Texas Chainsaw
Massacre, The (1974), Descent, The (2005), American Were-
wolf in London, An (1981)

Stand by Me (1986), Kung Fu Panda (2008), Super Size Me
(2004), Station Agent, The (2003), Miss Congeniality (2000),
School of Rock (2003), Roger and Me (1989), Jerry Maguire
(1996), Ninotchka (1939), Driving Miss Daisy (1989)

Funny

Blazing Saddles (1974), This Is Spinal Tap (1984), Monty
Python’s The Meaning of Life (1983), Young Frankenstein
(1974), Monty Python and the Holy Grail (1975), Fish Called
‘Wanda, A (1988), Jackass Number Two (2006), Some Like It
Hot (1959), Ferris Bueller’s Day Off (1986), There’s Some-
thing About Mary (1998)

Night of the Living Dead (1968), Battleship Potemkin (1925),
House of Flying Daggers (Shi mian mai fu) (2004), Jesus Camp
(2006), War of the Worlds (2005), Fire in the Sky (1993), Pretty
Baby (1978), Ring, The (2002), Titanic (1997), United 93 (2006)

Population

People’s Republic of China, India, Pakistan, Egypt, Nigeria,
Russia, United States of America, Brazil, Mexico, Turkey

Dominica, Niue, Tuvalu, Antigua and Barbuda, Cook Islands, Sint
Maarten, Nauru, Liechtenstein, Republic of Artsakh, Andorra

Table 4: We show the top and bottom ranked entities for five features: sweetness and saltiness from the food
dataset, scary and funny from movies, and countries population from WD2. Results were obtained with the pairwise
Llama3-8B model trained on WD+TG+Rocks for sweetness and saltiness, trained on WD+Taste+Rocks for scary

and funny, and trained on WD1 for population.

by the LLMs themselves, rather than knowledge
that was injected during the fine-tuning process.
This suggests that pre-trained LLMs capture more
perceptual knowledge than it may initially appear.

Comparing Ranking Strategies Table 3 com-
pares different strategies for generating rankings.
The pointwise model can be directly used for this
purpose. For the pairwise model, we show re-
sults with the SVM strategy and the Count strategy.
We furthermore vary the number of pairwise judg-
ments per entity (5 or 30) for Count and SVM.
For this experiment, we use the pointwise and
pairwise Llama3-8B models that were trained on
WD+TG+Rocks. We evaluate the different mod-
els by comparing the predicted rankings with the
ground truth in terms of Spearman p. We can see
that the pairwise approaches consistently outper-
form the pointwise model. The SVM method gen-
erally performs better than the Count method, espe-
cially in the case where 30 judgments per entity are
obtained. We also compare with the GPT-3 results
reported by Chatterjee et al. (2023), finding that the
pairwise Llama model consistently performs best.

Qualitative Analysis Table 4 shows the 10 high-
est and lowest ranked entities for some selected
features, according to the rankings from the SVM
method with the pairwise Llama3-8B model. The
results for sweetness and saltiness were obtained
with the model that was trained on WD+TG+Rocks.

The rankings for scary and funny movies were
obtained with the model that was trained on
WD+Taste+Rocks. The ranking for population was
obtained with the model that was trained on WD1.
The table shows that the model was successful in
selecting these top and bottom ranked entities. The
top-ranked entities for sweetness, for instance, are
all clearly sweet food items, while none of the
bottom ranked entities are. Similar observations
can be made for the other features. The model is
sometimes less successful in distinguishing middle-
ranked entities from bottom-ranked entities. For
instance, most cheeses appear at the bottom of the
ground truth ranking, whereas the model predicted
these to be somewhere closer to the middle.!! For
population, we can see that while the top-ranked
entities are all countries with a high population,
their relative ranking is not accurate.

To further test the ability of the model to gen-
eralise to unseen properties, Table 5 shows results
that were obtained for a number of selected fea-
tures, focusing primarily on commonsense proper-
ties. For instance, for the first example, we com-
pared a number of items according to their suitabil-
ity as a present for a 10-year-old girl. To obtain
the rankings, we exhaustively compared every pair
of entities (from the considered set) and used the
SVM method. The results were obtained with the

"' A more detailed analysis can be found in the appendix.
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Feature

Ranking

Is X more suitable as a present for a
10-year-old girl than Y'?

1. lego, 2. bicycle, 3. lipgloss, 4. puppy, 5. airpods, 6. guitar, 7. helicopter, 8.
Famous Five Collection - Enid Blyton, 9. broom, 10. watch, 11. gold fish, 12.
salmon fish, 13. knife, 14. crocodile, 15. coffee mug, 16. Sidney Sheldon Series

Does X require more urgent medical
treatment than Y?

1. cardiac arrest, 2. brain haemmorage, 3. stroke, 4. infection, 5. flu, 6. cataract
surgery, 7. cough and cold, 8. dental fillings, 9. fist bump, 10. paper cut

Is X more important than Y post
marathon?

1. run marathon, 2. hydrate, 3. indulge in alcohol, 4. partying, 5. shopping, 6. rest,
7. skip meal, 8. snacking, 9. haircut

Is X cheaper to live than Y'?

1. Mexico City, 2. Budapest, 3. Bali, 4. Bangalore, 5. Bangkok, 6. Paris, 7.
Singapore, 8. New York, 9. Los angeles, 10. Tokyo

Does X burn more calories than Y'?

1. running, 2. swimming, 3. stair climbing, 4. eating, 5. strolling, 6. tai chi, 7.
pilates, 8. drinking beer, 9. sleeping, 10. watching netflix

Does the salary of X exceed that of
Y?

1. entrepreneur, 2. doctor, 3. lawyer, 4. consultant, 5. engineer, 6. scientist, 7.
lecturer, 8. soldier, 9. mechanic, 10. dance teacher

Is X more suitable for long-distance
travel with a family than Y'?

1. spaceship, 2. minivan, 3. aeroplane, 4. freight train, 5. local train, 6. speed boat,
7. submarine, 8. taxi, 9. quad bike, 10. motor cycle

Is X more likely than Y to be the
first thing you do in the morning?

1. hygiene routine, 2. hitting disco, 3. watch movies, 4. making bed, 5. socialize,
6. getting ready for shopping, 7. attend in-person class, 8. have snack, 9. checking
emails, 10. karaoke

Is X more important than Y when
selecting a primary school for chil-
dren?

1. alumni network, 2. parent’s income, 3. academic reputation, 4. nearby shopping
centre, 5. swimming pool facilities, 6. breakfast club availability, 7. playground, 8.
classroom size, 9. parking facilities, 10. school location

Is X more urgent than Y when
considering home improvement
projects?

1. bathroom renovation, 2. repairing broken windows, 3. fixing a leak, 4. installing
new locks, 5. landscaping the backyard, 6. repairing door lock, 7. installing new
furniture, 8. installing new light, 9. painting ceilings, 10. changing carpet

Table 5: Examples of entity rankings for selected (commonsense) features. Results were obtained with the pairwise

Llama3-8B model trained on WD+TG+Rocks.

pairwise Llama3-8B model that was trained on
WD+TG+Rocks. These examples illustrate that the
model often struggles with commonsense features.
For instance, spaceship is listed as the most suit-
able vehicle for long-distance travel with a family,
the school location is considered to be the least im-
portant criterion for selecting a primary school and
a bathroom renovation is considered to be more
urgent than fixing a leak. The disappointing results
for commonsense features are somewhat surpris-
ing, although Chatterjee and Schockaert (2023)
similarly found that ChatGPT struggled with com-
monsense properties.

6 Conclusions

We have studied the problem of ranking entities
along conceptual space dimensions, such as sweet-
ness (for food), roughness (for rocks) or scary (for
movies). We found that fine-tuning LL.Ms on data
from one domain (e.g. taste) is a viable strategy for
learning to extract rankings in unrelated domains
(e.g. rocks), as long as both domains are percep-
tual. In contrast, LLMs that were fine-tuned on
objective numerical features from Wikidata were

less successful when applied to perceptual domains.
When comparing pairwise and pointwise strategies,
surprisingly, we found that pointwise methods were
as successful as pairwise methods for making pair-
wise judgements (i.e. should entity e; be ranked be-
fore entity es), although pairwise methods still had
the advantage when such judgments were aggre-
gated. Overall, our results suggest that the current
generation of open-source LLMs, such as Llama
and Mistral, can be effectively used for construct-
ing high-quality conceptual space representations.
However, further work is needed to construct more
comprehensive training sets. Encouragingly, we
found that subjective (and relatively noisy) rank-
ings, such as those from the movies and books
datasets, can also be effective, while being much
easier to obtain than perceptual features.

Acknowledgments This work was supported by
EPSRC grants EP/V025961/1 and EP/W003309/1.

Limitations

The performance of LLMs is highly sensitive to the
prompting strategy. While we have made efforts to
choose a reasonable prompt, it is likely that better
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results are possible with different choices. Further-
more, while we have tested a number of different
LLMs, it is possible that other (existing or future)
models of similar sizes may behave qualitatively
different. Care should therefore be taken when
drawing any conclusions about the limitations of
LLMs in general. Moreover, the limitations we
have identified might be particular to the specific
fine-tuning techniques that we have used, rather
than reflecting limitations of the underlying LLM:s.
When it comes to modelling subjective features,
such as those in the movies and books datasets,
it is important to acknowledge that people may
have different points of view. When using concep-
tual space representations extracted from LLMs in
downstream applications, we thus need to be aware
that these representations are biased and, at best,
can only represent a majority opinion.
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A Further Details

Training Details To train the four base models,
we used the QLoRa method, which allows con-
verting the floating-point 32 format to smaller data
types. In particular, for all three models, we used 4-
bit quantization for efficient training. In the QLoRa
configuration, r (the rank of the low-rank matrix
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ChatGPT 0.10 0.10 0.00 0.00 0.40 0.00 0.00 0.20 0.00 0.00 0.40 0.20 0.20 0.20 0.20 0.47 1.00 0.20 0.00 0.40

GPT-4

2.04 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 4.16 0.00 0.00 0.00

Table 6: Percentage of cases where ChatGPT and GPT-4 refused to answer a question about a pairwise comparison

between two entities.

used in the adapters) was set to 32, « (the scal-
ing factor for the learned weights) was set to 64,
and dropout was set to 0.05. We applied QLoRa
to all the linear layers of the models, including
q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj,
down_proj, and Im_head. The models were trained
with a batch size of 8. We used 20% of the WD1
training split as a validation set. Based on this val-
idation set, we fixed the number of training steps
to 12500 for the pairwise models and 1500 for the
pointwise models. Note that we need fewer training
steps for the pointwise model, because each mini-
batch consists of 8 entities, and we consider all
pairwise combinations of these entities. In contrast,
for the pairwise model, each mini-batch consists
of 8 pairwise combinations. We also observed that
the pointwise model converges more quickly than
the pairwise model.

OpenAl Models Table 6 shows for how many
cases ChatGPT and GPT-4 failed to answer with
yes or no, when asked about pairwise comparisons.
Overall, such cases were rare. The highest number
of failures was seen for TG dataset, which appears
to be related to the subjective nature of the features
involved.

Datasets Table 7 gives an overview of the prop-
erties that were selected for the WD1 and WD2
datasets, along with the corresponding number of
entities. Table 8 and 9 similarly show the tags that
have been considered for the Movies and Books
datasets, along with the number of corresponding
entities.

Few-shot Baseline For the few-shot configura-
tion in Table 2, we use the pre-trained Llama3-8B
model with the following prompt:

Answer the following with Yes or No only. In the
worst case, if you do not know the answer
then choose randomly between Yes and No.

This question is about two rivers: Is Nile
longer than Indus?

Yes

Entity type Feature Size
mountain elevation 1000
building height 1000
river length 1000
person # social media followers 1000
2 city population 1000
= species mass 1000
organisation inception date 1000
person date of birth 1000
museum latitude 1000
landform area 1000
country population 196
musical object inception date 561
chemical element atomic number 166
chemical element discovery date 113
& building # elevators 151
Z director # academy awards 65
actor # academy awards 74
food water footprint 56
composer # grammy awards 71
food Scoville grade 43

Table 7: Overview of the datasets based on Wikidata.

This question is about two countries: Is Japan
more populated than India?

No

This question is about two countries: Is China
larger than India?

Yes

Note that the same three in-context examples were
provided for all datasets.

B Additional Analysis

Analysis using Llama2-13B In the main paper,
we primarily used Llama3-8B for the experiments.
Tables 11 and 12 show the corresponding results for
Llama2-13B, focusing respectively on analysing
the impact of using different training sets and on
comparing different ranking strategies. Table 14
shows the 10 highest and lowest ranked entities,
according to the rankings from the SVM method
with the pairwise Llama2-13B model. These ex-
amples can be contrasted with the Llama3 results
from Table 4.
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Tag #Movies Tag #Movies
scary 82 grim 20
funny 217 gritty 34
gory 33 inspirational 90
dark 139 intelligent 18
beautiful 117 intense 53
intellectual 32 melancholic 17
artistic 91 predictable 121
absurd 20 pretentious 29
bleak 23 quirky 151
bloody 27 realistic 74
boring 186 romantic 46
claustrophobic 19 sad 130
clever 68 satirical 106
complex 23 sentimental 28
controversial 44 surreal 241
dramatic 24 suspenseful 19
emotional 34 tense 40
enigmatic 36 violent 132
frightening 18 witty 47

Table 8: Considered set of tags for the Movies dataset.

Tag #Books Tag #Books
absurd 106 literary 525
beautiful 28 philosophical 80
bizarre 37 political 138
controversial 40 predictable 27
cool 31 quirky 20
crazy 23 realistic 36
dark 659 romantic 125
educational 121 sad 154
funny 331 satirical 23
futuristic 157 short 30
gritty 18 silly 25
hilarious 66 strange 22
inspirational 195 surreal 28
intellectual 17 unique 31
intense 27 weird 46
interesting 33 witty 17

Table 9: Considered set of tags for the Books dataset.

Error Analysis Table 10 presents an error analy-
sis for the same five rankings that were considered
in Table 14. Specifically, in Table 10 we focus
on the entities where the difference between the
predicted ranking position and the position of the
entity in the ground truth ranking is highest. On
the left, we show entities which are ranked too high
(i.e. where the model predicts the entity has the
feature to a greater extent than is the case accord-
ing to the ground truth). On the right, we show
entities which are ranked too low. In the case of
sweetness, we can see that the model consistently
ranks cheeses to high. They are predicted to be
in ranking positions 150-250, whereas the ground
truth puts them at 500-590. In the case of saltiness,
we can see that sweet drinks and pastries are ranked
too high. For instance, cola soda is ranked in po-

.
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Figure 1: Scatter plot comparing the popularity of Wiki-
data entities (X-axis) with the prediction error (Y-axis)
for the countries population feature.

sition 108 whereas the ground truth puts it at 517
(out of 590). Overall, these results suggest that the
model struggles with certain food groups. For the
features scary, funny and population, clear patterns
are harder to detect.

Impact of Entity Popularity The reliability of
LLMs when it comes to modelling entity knowl-
edge has been found to correlate with the popular-
ity of the entities involved (Mallen et al., 2023).
To analyse this aspect, Figure 1 compares entity
popularity with prediction error, for the countries
population feature from the WD2 dataset. For this
analysis, we have used the pairwise Llama2-13B
model that was trained on the WD1-training split.
We obtained a ranking of all countries using the
SVM method with 20 samples. On the X-axis, the
entities are ranked from the most popular to the
least popular. On the Y-axis, we show the predic-
tion error for the corresponding entity, measured as
the difference between the position of the entity in
the predicted ranking and its position in the ground
truth ranking. Based on this analysis, no clear cor-
relation between entity popularity and prediction
error can be observed.

Accuracy Variability Table 13 shows standard
deviations across four runs for one of the best-
performing models. As can be seen, the standard
deviations are relatively small, indicating that the
main differences across the models are not due to
random variations.
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Feature Entities ranked too high Entities ranked too low

Sweetness coulommiers cheese, chaource cheese, mimolette cheese, martini with lemon juice, martini, cod fritters, champignons
pasta with soy sauce, latte without sugar, reblochon cheese,  crus with vinaigrette, hamburger, salty crackers, light lager,
plain yogurt, mont d’or cheese, saint-agur cheese, faisselle andouillette sausage, soft boiled eggs, omelette with vinegar

Saltiness marinated mussels, liquorice candy, fortified wines, kir, ori-  carrot puree with cream, mix vegetables salad, moussaka,
ental pastries, cola soda, petit suisse with sugar, petit suisse ~ guacamole, pies, zucchini, stuffed zucchini, quiches, bulgur,
with sugar and cream, aperitif with anise, petit suisse broccoli with cream

Scary Pirates of the Caribbean: The Curse of the Black Pearl (2003),  Final Fantasy: The Spirits Within (2001), Eye of the Needle
Interview with the Vampire: The Vampire Chronicles (1994),  (1981), Sunless (Sans Soleil) (1983), Outland (1981), Super
Scream (1996), Terminator, The (1984), Quills (2000), Bat-  Size Me (2004), Slumdog Millionaire (2008), Underworld
man Begins (2005), Evil Dead II (Dead by Dawn) (1987),  (2003), Roger & Me (1989), One Hour Photo (2002), Close
Dawn of the Dead (1978), Spirited Away (Sen to Chihiro no  Encounters of the Third Kind (1977)
kamikakushi) (2001), Requiem for a Dream (2000)

Funny Fargo (1996), Original Kings of Comedy, The (2000), Meet ~ Ref, The (1994), American Psycho (2000), Run Lola Run
the Spartans (2008), Simpsons Movie, The (2007), Happy  (Lola rennt) (1998), Charter Trip, The (a.k.a. Package Tour,
Gilmore (1996), Jackass Number Two (2006), Who Framed  The) (1980), Bend It Like Beckham (2002), License to Drive
Roger Rabbit? (1988), Tenacious D in The Pick of Destiny ~ (1988), Battleship Potemkin (1925), Jesus Camp (2006), Slap
(2006), Men in Black (a.k.a. MIB) (1997), EIf (2003) Shot (1977), Night of the Living Dead (1968)

Population ~ Djibouti, Qatar, Eritrea, Botswana, Papua New Guinea, Burundi, Rwanda, Switzerland, Wales, Kingdom of the

Gabon, Libya, Mongolia, Mauritania, Namibia

Netherlands, Belgium, England, Italy, Netherlands, Czech
Republic

Table 10: Llama2-13B error analysis, showing the entities with the maximum difference in rank position between
the ground truth ranking and the predicted ranking.
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WD1-train 82.8 68.0 58.6 674 50.8 53.6 67.6 67.6 502 66.8 584 52.0 55.8 58.8 68.8 58.3 55.6 93.8 91.2 66.2
WD - - 552 64.8 51.2 53.8 624 63.0 46.8 68.8 60.8 60.0 504 64.8 70.6 653 623 78.0 79.4 60.4
TG 63.3 569 712 71.6 60.0 588 69.0 656 712 69.6 48.8 60.6 57.6 558 66.0 - - 50.6 54.6 552
Taste 62.1 51.1 - - - - - - 664 722 56.8 60.8 58.6 532 74.0 66.2 55.7 53.0 614 582
WD+TG+Taste - - - - - - - - 612 70.6 57.0 59.2 62.8 57.6 784 - - 778 854 622
WD+TG+Rocks - - 740 724 60.0 60.2 70.6 72.2 - - - - - - - - - 856 832 620
WD+Taste+Rocks - - - - - - - - - - - - - - - 691 652 894 91.2 63.8

Table 11: Comparison of different models in terms of accuracy (%), when classifying pairwise judgments. All
results are for the pairwise model with Llama2-13B.

2

wv w

wn 3 A & - =
Pointwise 51.0 64.8 32.5 352 52.0 61.7
SVM (5 samples) 62.1 62.2 42.6 44.6 56.4 63.0
SVM (30 samples) 66.0 64.7 47.6 47.0 60.6 65.8
Count (5 samples) 59.0 57.4 46.7 41.7 53.5 60.1
Count (30 samples) 64.8 64.7 49.1 47.2 59.9 64.7
Ada* 17.5 85 122 164 22.5 10.7
Babbage™ 19.5 51.1 20.2 22.0 22.6 16.0
Curie* 36.0 46.3 32.8 23.2 22.6 31.7
Davinci* 55.0 63.2 33.3 27.2 57.0 52.0

Table 12: Comparison of ranking strategies, in terms
of Spearman p%. Baseline results marked with * were
taken from Chatterjee et al. (2023). All other results are
obtained with Llama2-13B trained on WD+TG+Rocks.
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Taste

Phys

Sweetness
Saltiness
Sourness
Bitterness

Umaminess

Mass

Fattiness
Height

Size

WD+TG+Rocks 73.8 £0.6 81.8£0.6 63.7+25 57.9+0.6 729+£03 70.0+£04 89.9+09 89.2+0.8 582+14

Table 13: Mean accuracy and standard deviations across four runs for the pairwise Llama3-8B model.

Feature Top ranked entities Bottom ranked entities

Sweetness ~ mango, dried date, white chocolate, peach , pineapple in  minced beef patty, grilled calf livers, squid, sandwich with
syrup, fruit candy, syrup with water, ice cream, strawberry,  cold cuts, gizzards, croque-monsieur, roast rabbit, stir-fried
sweet pancake with maple syrup bacon, roast beef , calf head with vinaigrette

Saltiness green olives, extruded salty crackers, soy sprouts with soy  clafoutis, raspberry cake, stewed apple, raspberry with
sauce, canned anchovies, canned sardines, pasta with soy  whipped cream, white chocolate, strawberry with cream and
sauce, salted pies, marinated mussels, potato chips, salted  sugar, mix fruits juice, apple, raspberry, strawberry
cake

Scary Descent, The (2005), Grudge, The (2004), Exorcist, The  Super Size Me (2004), Station Agent, The (2003), Ray (2004),
(1973), Silence of the Lambs, The (1991), Ring, The (2002),  Dances with Wolves (1990), Jerry Maguire (1996), Driving
Texas Chainsaw Massacre, The (1974), Shining, The (1980),  Miss Daisy (1989), School of Rock (2003), Kung Fu Panda
Seven (a.k.a. Se7en) (1995), Amityville Horror, The (2005),  (2008), Miss Congeniality (2000), Ninotchka (1939)
American Werewolf in London, An (1981)

Funny Ace Ventura: When Nature Calls (1995), Ace Ventura: Pet  Spanish Prisoner, The (1997), Son of Dracula (1943), Ghost
Detective (1994), Hot Shots! Part Deux (1993), Army of = Dog: The Way of the Samurai (1999), Ferngully: The Last
Darkness (1993), South Park: Bigger, Longer and Uncut  Rainforest (1992), High Crimes (2002), Cadillac Man (1990),
(1999), Auntie Mame (1958), Blazing Saddles (1974), Clerks ~ Bad Boys II (2003), House of Wax (1953), Fire in the Sky
(1994), Grand Day Out with Wallace and Gromit, A (1989),  (1993), Step Up 2 the Streets (2008)
Hitchhiker’s Guide to the Galaxy, The (2005)

Population  India, Nigeria, People’s Republic of China, Iran, Pak- Dominica, Nauru, Andorra, Cook Islands, Saint Vincent and

istan, United States of America, Russia, Indonesia, Egypt,
Bangladesh

the Grenadines, Seychelles, Palau, Northern Mariana Islands,
Liechtenstein, Niue

Table 14: We show the top and bottom ranked entities for five features: sweetness and saltiness from the food
dataset, scary and funny from movies, and countries population from WD2. Results were obtained with the pairwise
Llama2-13B model trained on WD+TG+Rocks for sweetness and saltiness, trained on WD+Taste+Rocks for scary
and funny, and trained on WD1 for population.
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