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Abstract

Large language models (LLMs) have mani-
fested strong ability to generate codes for pro-
ductive activities. However, current bench-
marks for code synthesis, such as HumanEval,
MBPP, and DS-1000, are predominantly ori-
ented towards introductory tasks on algorithm
and data science, insufficiently satisfying chal-
lenging requirements prevalent in real-world
coding. To fill this gap, we propose NATU-
RALCODEBENCH (NCB), a challenging code
benchmark designed to mirror the complexity
and variety of scenarios in real coding tasks.
NCB comprises 402 high-quality problems in
Python and Java, meticulously selected from
natural user queries from online coding ser-
vices, covering 6 different domains. Noting
the extraordinary difficulty in creating testing
cases for real-world queries, we also introduce
a semi-automated pipeline to enhance the ef-
ficiency of test case construction. Comparing
with manual solutions, it achieves an efficiency
increase of more than 4 times. Our systematic
experiments on 39 LLMs find that performance
gaps on NCB between models with close Hu-
manEval scores could still be significant, indi-
cating a lack of focus on practical code synthe-
sis scenarios or over-specified optimization on
HumanEval. On the other hand, even the best-
performing GPT-4 is still far from satisfying
on NCB. The evaluation toolkit and develop-
ment set are available at https://github.
com/THUDM/NaturalCodeBench.

1 Introduction

Large language models (LLMs) pre-trained on ex-
tensive open code repositories (Chen et al., 2021;
OpenAI et al., 2023; Li et al., 2023a; Chowdhery
et al., 2023) have demonstrated impressive perfor-
mance on code synthesis and even achieve per-
formance comparable to average human level in
coding competitions (Li et al., 2022). Unlike open

*SZ, HZ, XL, and QZ contributed equally.
†Work done when SZ and ZQ interned at Zhipu AI.

text generation, which often underscores human
preferences as noted by (Ouyang et al., 2022), code
synthesis prioritizes accuracy and the fulfillment of
user intent, essential for practical production and
application.

As a result, evaluating code synthesis presents
unique challenges in the era of LLMs. Traditional
evaluation metrics by token matching (Papineni
et al., 2002; Lin, 2004; Popović, 2015) show a weak
correlation with human judgement (Evtikhiev et al.,
2023) and overlook functional correctness of the
generated code (Eghbali and Pradel, 2023; Tran
et al., 2019). Recently, execution-based evaluation
has gained increasing popularity, where code gener-
ated by models is tested through unit tests to verify
its functional correctness. It leads to the develop-
ment of several benchmarks, including HumanEval
(Chen et al., 2021), MBPP (Austin et al., 2021),
MBXP (Athiwaratkun et al., 2023), CodeContests
(Li et al., 2022), and DS-1000 (Lai et al., 2023).

Notwithstanding their commendable reliability
and accuracy, these benchmarks fall short to suffi-
ciently capture the wide range of needs and com-
plexity found in real-world engineering applica-
tions. They are primarily limited to well-defined
coding problems in algorithm, program basics,
or data science. For example, as shown in Fig-
ure 1, a problem from HumanEval (Chen et al.,
2021) tests the implementation of a basic func-
tion has_close_elements and takes floating-
point arguments as inputs. However, in practical
applications, user engineering requirements can
be much more complex and varied. In Figure 1,
we showcase an example adapted from a real user
query, where the user asks to read and parse XML
files given certain tags. Difficult and costly though
it is, curating a benchmark composed of such prob-
lems is meaningful for evaluating the real user ex-
perience of LLM code synthesis.

Contributions. In light of the challenge, we intro-
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Case of HumanEval Case of NaturalCodeBench

def has_close_elements(numbers: 
List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any 
two numbers closer to each other than 
given threshold.
"""

Hello, please write a Python function for me. The function should read a 
markdown file, add numbering like x.y.z... to the titles of each level, and 
then return the modified string. Please note not to write into the original file.
def add_section_numbering(markdown_file):
""" markdown_file is the path to the markdown file. Return modified 
markdown file content string
"""

Figure 1: Comparing HumanEval and NATURALCODEBENCH. In the scatter plot, the x-axis represents the
NATURALCODEBENCH score, and the y-axis indicates the HumanEval performance of various LLMs.

duce NATURALCODEBENCH (NCB), a challeng-
ing application-driven dataset for code synthesis
evaluation. NCB is dedicated to creating a reliable
evaluation environment that is more aligned with
real-world applications. We leverage an CodeGeeX
(Zheng et al., 2023b) online services to collect real
and diverse application-related user queries. After
filtering and reprocessing, 402 high-quality Python
and Java problems are compiled, covering 6 do-
mains including software, front-end, system admin-
istration, and artificial intelligence, highlighting
practical scenarios. Beyond basic data structures
like lists and numbers, the test inputs for NCB
problems include versatile file types and other com-
plex structures, making it more challenging.

The challenging nature of NCB necessitates
significant human labor in its annotation process
To improve construction efficiency, we tailor a
semi-automated annotation pipeline to curate high-
quality, testable, and useful queries with corre-
sponding test cases. Specifically, we employ GPT-4
(OpenAI et al., 2023) to generate reference solu-
tions followed by manual correction. Subsequently,
GPT-4, guided by the problem descriptions and
reference solutions, generates multiple test cases,

which are also refined with manual correction, for
each problem. Consequently, the annotators are
only required to correct any errors, substantially
reducing the time and manpower required. Compar-
ative experiments reveal that our semi-automated
pipeline can quadruple the construction speed of
the evaluation framework, as evidenced by tests
involving programming experts with or without the
pipeline.

Based on NCB, we conduct extensive experi-
ments on a variety range of LLMs, encompass-
ing 39 APIs or open models. The results indi-
cate that although certain LLMs demonstrate com-
parable performance on established benchmarks
like HumanEval, they exhibit significant perfor-
mance disparities when evaluated using NCB. It
suggests that there may be inadequate focus on op-
timizing LLMs for practical coding applications,
or have conducted over-specified optimization on
HumanEval-style problems. More importantly,
even the best-performing GPT-4 only reaches about
a pass rate of 53%, demonstrating a large room for
LLMs to improve their coding skills to face real-
world coding challenges.

To facilitate community research, we pack up
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the whole NCB testing environment into a docker
image and make its development set publicly avail-
able. To sum up our contributions:
• We propose NATURALCODEBENCH, a bench-

mark that aligns with real-world applications,
comprising 402 problems in Python and Java
across 6 domains. We open source 140 prob-
lems (70 Python, 70 Java) as the development
set of NCB for research purposes, but keep the
262 problems of the test set closed to avoid
contamination.

• We introduce a semi-automated pipeline for
the construction of code synthesis benchmarks,
which significantly reduces time and manpower
costs without compromising the quality of test
cases. Comparative experiments reveal that
our semi-automated pipeline can quadruple the
construction speed of the evaluation framework

• We systematically benchmark the code genera-
tion capabilities of 39 LLMs using NCB. Be-
sides quantitative evaluation, we carry out a
deep insight into the present stage of develop-
ment in LLMs for code generation, and outline
potential pathways for future progress.

2 Benchmark Construction

The overview of NCB is shown in Figure 2. The
pipeline of constructing NCB consists of four steps:
1) collecting and filtering high-quality problems
from online services (Section 2.1) 2) construct-
ing a complete evaluation framework through a
semi-automated pipeline (Section 2.2) 3) designing
prompts to align different models (Section 2.3) 4)
translating all problems and instructions to produce
bilingual versions (Section 2.4).

2.1 Problem Selection

Collecting Real-World Problems. To establish a
meaningful and practical benchmark, we centered
on collecting real-world code problems frequently
encountered by users. To achieve this, the seed
problems of NCB are cleaned from the queries in
coding online services. A part of users have granted
permission for their data to be utilized exclusively
for research purposes. We have strictly adhered to
this directive by collecting only the relevant data
from these consenting users and have implemented
robust de-identification measures to eliminate any
possibility of information leakage. We collect a
varied collection of queries, spanning multiple pro-
gramming languages, problem types, and levels of

complexity. This diversity ensures that our bench-
mark accurately reflects a broad range of code is-
sues users encountering in practice. We specifically
concentrated on queries related to Python and Java,
chosen for their widespread use in different do-
mains.

Filtering Testable Problems. While it’s possible
to source inexhaustible queries from online ser-
vices, many of these queries posed by users are
either of low value or challenging to test the solu-
tion of these queries. For instance, some users may
only seek basic clarifications on a built-in function,
while others may not clearly articulate their objec-
tives. To sieve out unsuitable queries for our testing,
we’ve implemented a two-step filtering process. Ini-
tially, we employ GPT-3.5 to filter out low-quality
queries, which saves on labour. This is achieved
by adding specific criteria in the instruction, in-
structing GPT-3.5 to abandon those problems that
cannot meet all specified requirements. These cri-
teria are as follows: 1) Each query must involve at
least one task, where the user requests the model’s
assistance in solving one or more problems. 2)
Each query should be associated with several input-
output pairs, ensuring that a given input correspond
to a singular, definitive output. 3) The query must
not contain any elements of randomness or uncer-
tainty. The specifics of the instruction are detailed
in (Appendix A). Following this automated pre-
screening, we conduct a manual review to further
refine the selection, adhering to the outlined crite-
ria. This process yields a final set of 201 unique
Python and 201 unique Java problems. It is note-
worthy that over 80% of the initial queries failed to
meet our stringent requirements.

2.2 Semi-automated Pipeline

In this section, we will introduce our semi-
automated pipeline. To generate structurally com-
plex and accurate test cases by GPT-4, it is first
necessary to determine the arguments and return
values of functions, as well as the names of objects.
Therefore, a completely accurate reference solution
is required initially. We generate a solution using
GPT-4, then manually correct all errors. After this,
based on the problem description and the reference
solution, we instruct GPT-4 to generate multiple
test cases. These are then reviewed by program-
ming experts who correct errors and supplement
any deficiencies in the generated test cases.

Generating and Rewriting Reference Solution.
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2. Semi-Automated Pipeline

402 High-Quality Problems

Instruction: ...generate 
6 high-coverage and 4 
corner test cases … 

def testcase1():
…

    assert groundTruth …

1. Data Collection

Human
Annotated

33,120 Problems 
• Testable
• Useful
• Deterministic

Real-World 
Queries

Auto Filtering

 Mannully
 Selecting

Reference Solution
def groundTruth(file_path,tag_name)
    root = 
ET.parse(file_path).getroot()
    . . .
    for … in root.findall(tag_name):
        data_list.append(…)
    return data_list

Large 
Language 

Model
Problems in 6 Domains

Data Science

System Administration

Software Engineering

Artificial Intelligence

Front-End

Algorithm
Test Cases

Generate a 
solution and 
10 test cases

Annotators fixes all errors in 
the solution and test cases

Figure 2: Overview of NATURALCODEBENCH. 1) Data Collection: collecting real-world queries from coding
online services and selecting high-quality problems from the queries by GPT-3.5 and human annotators. 2) Semi-
Automated Pipeline: improving efficiency of constructing evaluation framework by generating a solution and test
cases with LLMs and then having them corrected by human annotators.

GPT-4 is instructed to generate a solution for each
problem in NCB. It is important to note that while
GPT-4 is highly capable, it is not infallible. There-
fore, each solution generated by GPT-4 is meticu-
lously examined by expert programmers to ensure
correctness. In cases where the generated code
contains errors, the expert programmers rewrite the
code to rectify these issues. This process ensures
the quality of the reference solutions. Even though
we did not use the reference solution in NCB for
evaluation, we provided them to facilitate the gen-
eration of test cases and future research.

Build High-Coverage and Corner Evaluation.
We employ GPT-4 to generate evaluation codes for
each problem. We construct a prompt using 1) the
description of the problem for GPT-4 to inspect;
2) the reference solution to demonstrate the names
and formats in the code; 3) an instruction to en-
courage GPT-4 to come up with effective test cases.
Specifically, each prompt start with an instruction
that ask GPT-4 to produce ten test cases based on
the description of problem and the reference so-
lution. Then, we present both the description of
problem and its reference solution. We finalize the
prompt with an initial segment of the evaluation
code to assist GPT-4 in accurately generating the
desired code format. Our objective is to harness
GPT-4’s advanced comprehension and analytical
abilities to learn valid format in the code and es-
sential functionalities of the reference solution to
enable the generation of superior test cases that are
adept at uncovering latent errors in code.

A complete and effective test should seek to iden-

tify potential bugs at different locations in the code,
while also finding inputs that might trigger errors in
the code. High coverage ensures that each test case
examines more code and branches, thereby facilitat-
ing the discovery of concealed errors. Meanwhile,
it is often observed that corner values in a prob-
lem’s input are most prone to trigger code errors.
Consequently, our instruction will cause some of
the test cases generated by GPT-4 to have higher
coverage, while the other part will be some corner
values contained in the problem, so as to obtain
more effective test cases.

Subsequently, expert programmers review and
correct any test cases with formatting and answer
errors. To ensure that the final evaluation frame-
work is error-free.

2.3 Alignment Between Different Models

In contrast to the problem format in HumanEval,
the majority of problems in our benchmark are
composed in natural language by actual users. Con-
sequently, there is no predetermined naming con-
vention for functions or classes created by mod-
els. This divergence can lead to inconsistencies
between the names generated by LLMs and those
referenced in test cases. To address this issue of
name misalignment, we present a representative
test case that includes the designated function or
class name and its usage within the test. We then
instruct the LLMs to adhere to the naming con-
vention specified in the provided test case when
generating solutions. It is important to note that the
test cases utilized for solution generation are not
employed in subsequent testing phases. The details
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of the instruction is showed in Appendix A.

2.4 Building Bilingual Benchmark

The majority of the questions we collected from
online services are in Chinese, which is not fair for
the LLMs that are primarily designed for English.
Therefore, we translate all the problems, resulting
in both Chinese and English versions.

3 Dataset Statistics

We provide more detailed statistics in Table 2.
NCB comprises a total of 402 problems col-
lected from online services, with 201 problems in
Python and 201 in Java, spanning across 6 domains:
Database, Artificial Intelligence, Data Science, Al-
gorithm and Data Structure, Front-End, Software
Engineering, and System Administration. This di-
versity also leads to complex input data types in
NCB, which are classified into 9 categories: num-
ber (int/float/boolean), string, list (array), dict, ten-
sor (matrix), data frame (table), plain text file, im-
age, and special format file. The first four are the
most common and simplest data types. Since a
boolean can be represented by 1 and 0, we consider
it as a type of number. Matrix and list are two simi-
lar types of data, but they are categorized separately
due to differences in their usage scenarios. Due to
the current popularity of deep learning, tensor has
become a very common data format. Therefore,
we have designated a separate category for tensor
and have included matrix within this category. The
last three are all file types, differentiated by their
processing methods. The content of a plain text
file is text and can be directly read. Figures require
processing of each pixel value. A special format
file refers to files that require specific methods for
processing, such as PDF and DOCX.

Each problem within the dataset has been care-
fully curated with a set of test cases to assess the
correctness of solutions. On average, there are 9.3
test cases associated with each problem. These
cases are strategically designed, with about 60% fo-
cused on enhancing statement and branch coverage,
and the remaining 40% dedicated to evaluating the
robustness of solutions against corner values. The
average word count for each problem in the NCB
is 78.3.

Compared with Other Benchmark. Table 1 com-
pares NCB to other benchmarks. It is noteworthy
that our benchmark offers a substantial supplement
to current benchmarks in terms of both problem and

data types. Unlike HumanEval and MBPP, which
consist of 96.9% and 89.5% algorithmic and basic
programming problems respectively, our bench-
mark features a more balanced distribution across
each domain.

In addition, NCB includes more data types. Fur-
thermore, NCB focuses on assessing the model’s
ability to handle multiple file formats, a type of
data that is both very commonly used in daily life
and relatively challenging to process. We note that
the problems involving files have fewer test cases,
since GPT-4 still struggles to fully generate various
types of file . This is also more challenging for
human annotators to design compared to simpler
data types.

On the other hand, NCB is also limited by its
size due to the high costs of problems collection
and the construction of the evaluation framework.
We are continuously working on expanding our
benchmark.

4 Experiments

4.1 Setup

We conducted comprehensive evaluations of 39
popular state-of-the-art models. For proprietary
models, our focus was on OpenAI’s GPT-4-Turbo-
0125, GPT-4-Turbo-1106, GPT-4, GPT-3.5-Turbo,
Anthropic’s Claude-2, ZhipuAI’s CodeGeeX3. In
the case of open-source models, we performed eval-
uations using the vLLM (Kwon et al., 2023) and
FastChat (Zheng et al., 2023a) framework. Our
evaluation primarily utilizes pass@k (Chen et al.,
2021) as the metric to accurately assess the func-
tional correctness of code generated by these mod-
els. For k equal to 1, we employ greedy-search
decoding. For random sampling, we demonstrate
the best pass@k results of the best-performing mod-
els with each LLM family for each k ∈ {10, 50},
where the sampling temperature is set to 0.2 and
topp to 0.9.

Our semi-automated pipeline is capable of re-
ducing the time required for benchmark construc-
tion without compromising the quality of test cases.
This paper primarily focuses on evaluating the effi-
ciency of benchmark construction and the quality
of test cases. Specifically, we adopt code coverage
(Ivanković et al., 2019), a widely used metric for
assessing the effectiveness of testing, as the crite-
rion for evaluating the quality of test cases. We
invite five programming experts, each tasked with
constructing the same five problems. Initially, we
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Benchmark
Instruction Information Evaluation

#Problem Domain #Data Type #Word Source #Test Case Method

Humaneval (Chen et al., 2021) 164 Algorithm 5 23.0 Hand-Written 7.7 Test-Case
MBPP (Austin et al., 2021) 974 Program Basics 5 15.7 Hand-Written 3.0 Test-Case
DS-1000 (Lai et al., 2023) 1,000 Data Sci. 6 140.0 StackOverflow 1.6 Test-Case + SFC.
APPS (Hendrycks et al., 2021a) 10,000 Algorithm 5 293.2 Competitions 13.2 Test-Case
Humaneval+ (Liu et al., 2023a) 164 Algorithm 5 23.0 Hand-Written 764.1 Augmented Test Cases

NaturalCodeBench 402 Application 6 78.3 Online Services 9.3 Test-Case

Table 1: Comparison between NATURALCODEBENCH and other benchmarks for code generation.

#Problems Avg. #Test Cases

Dataset Test Dev Total Test Dev Total

Software 88 44 132 9.7 8.6 9.3
Data Sci. 68 32 100 9.6 8.6 9.3
Algorithm 73 22 95 9.5 8.8 9.3
Sys. Admin. 17 16 33 9.6 8.5 9.1
AI. System 13 15 28 9.6 9.1 9.3
Front-End 3 11 14 10.0 8.7 9.0

Total/Avg. 262 140 402 9.6 8.7 9.3

Table 2: Detailed statistics of NATURALCODEBENCH.

ask each expert to manually write a standard solu-
tion and 5 test cases. Subsequently, for the same
problems, they complete the writing of standard
solutions and test cases using the semi-automated
pipeline. As it is challenging to ensure identical
test case coverage, we require that the test cases
written under both methods should not have a code
coverage of less than 80%. Then, for the sake of
convenient comparison, we calculate the scores
for each construction method in a straightforward
manner, which is outlined as follows:

Score =
LineCov.+BranchCov.

T imeCost
∗ 10

4.2 Results of LLMs
Table 3 and Table 6 shows the pass@1 results on
the test set and dev set of NCB, respectively. Con-
sidering the high consistency of results, we pri-
marily analyze the results on the test set. As ex-
pected, OpenAI’s GPT-4 achieves the highest score
of 52.8%. The performance of GPT-4-Turbo is very
close to that of GPT-4, differing only by 1.3% , with
GPT-4-Turbo performing better in Java but show-
ing a larger difference in Python. Among the open-
source models, DeepSeek-Coder-33B-Instruct per-
forms the best, reaching a score of 43.0%. How-
ever, the 9.8% score gap with GPT-4 remains sig-
nificant. On the other hand, it surpasses the 40.7%
achieved by GPT-3.5, exceeding it by 2.3%. In

summary, the performance of state-of-the-art open-
source models is now between GPT-3.5 and GPT-4,
yet the majority of open-source models still do not
match the performance of GPT-3.5.

When compared to a perfect score of 100%, it
is observed that even the best-performing model,
GPT-4, still falls significantly short. This is in
contrast to its performance in HumanEval, where
it has approached 90%.

Comparing the performance of models in Chi-
nese and English versions, it is evident that the vast
majority of models perform better in English. This
holds true even for the top models, GPT-4 and GPT-
4-Turbo, which outperform their average scores in
Chinese by 1.1% and 3.9%, respectively.

Furthermore, Table 3 systematically presents the
performance of various open-source models at dif-
ferent scales. Models smaller than 10B scored
between 0.0% and 23.9%, models between 10B
and 30B scored between 3.9% and 35.1%, models
between 30B and 60B scored between 21.8% and
43.0%, and models larger than 60B scored between
27.9% and 33.2%. It is evident that the scale of the
model still has a significant impact on performance.
Larger models generally outperform smaller mod-
els, indicating that increasing scale can indeed en-
hance a model’s capabilities. However, this is not
to say that scale is everything; more refined data
and training strategies can also significantly impact
a model’s performance. Some smaller models, such
as DeepSeek-Coder-6.7B-Instruct, can outperform
those larger than 30B by approximately 2.8% and
those larger than 60B by approximately 1.9%.

Table 5 shows the pass@k results of best-
performing LLMs with each LLM family on NCB,
where k ∈ {10, 50}. We found that under random
sampling, the scores of some models increased sig-
nificantly. For instance, Codellama-70B-Instruct,
unlike its performance on pass@1, clearly outper-
formed GPT-3.5 on both Pass@10 and Pass@50.
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Model Size NCB (zh) NCB (en) NCB Total HumanEval
∆RankPython Java Total Python Java Total Score Rank Score Rank

API LLMs

GPT-4 (OpenAI et al., 2023) N/A 53.4 51.1 52.3 55.7 51.1 53.4 52.8 1 80.5 5 4

GPT-4-Turbo-0125 (OpenAI et al., 2023) N/A 51.4 58.6 55.0 48.6 51.4 50.0 52.5 2 87.2 1 -1

GPT-4-Turbo-1106 (OpenAI et al., 2023) N/A 47.3 51.9 49.6 51.9 55.0 53.5 51.5 3 81.7 3 0

GPT-3.5-Turbo (OpenAI, 2022) N/A 39.7 38.9 39.3 42.0 42.0 42.0 40.7 8 65.2 18 10

Claude-3-Opus (Anthropic, 2023b) N/A 45.0 50.4 47.7 48.9 48.9 48.9 48.3 4 84.9 2 -2

Claude-3-Sonnet (Anthropic, 2023b) N/A 44.6 35.5 40.1 40.5 35.1 37.8 38.9 9 73.0 11 2

Claude-3-Haiku (Anthropic, 2023b) N/A 41.3 35.9 38.6 36.9 30.5 33.7 36.2 11 75.9 9 -2

Claude-2.1 (Anthropic, 2023a) N/A 33.6 32.8 33.2 34.4 36.6 35.5 34.4 13 71.2 16 3

GLM-4 (Zeng et al., 2023; Du et al., 2022) N/A 43.5 45.3 44.4 41.5 45.3 43.4 43.9 5 72.6 12 7

Gemini-1.5-Pro (Blog, 2024) N/A 41.5 43.1 42.3 45.0 39.7 42.3 42.3 7 71.9 14 7

CodeGeeX3 (Zheng et al., 2023b) N/A 29.0 29.0 29.0 36.6 32.8 34.7 31.9 18 69.5 17 -1

Open LLMs

Deepseek-Coder-Instruct (Guo et al., 2024) 33B 44.3 38.9 41.6 44.3 44.3 44.3 43.0 6 79.3 6 0

6.7B 38.9 29.8 34.4 35.9 35.9 35.9 35.1 12 78.6 7 -5

1.3B 18.3 24.4 21.4 27.5 25.2 26.4 23.9 22 65.2 19 -3

Llama-3-Instruct (AI@Meta, 2024) 70B 39.1 34.4 36.7 35.4 39.7 37.5 37.1 10 81.7 4 -6

8B 35.9 21.5 28.7 19.7 21.7 20.7 24.7 21 62.2 21 0

Deepseek-Chat (DeepSeek-AI, 2024) 67B 35.9 28.2 32.1 35.1 33.6 34.4 33.2 14 78.3 8 -6

7B 3.8 12.2 8.0 8.4 19.1 13.8 10.9 30 48.2 26 -4

Codellama-Instruct (Roziere et al., 2023)
70B 35.1 32.1 33.6 32.8 30.5 31.7 32.6 15 72.0 13 -2

34B 23.7 17.6 20.7 28.2 17.6 22.9 21.8 24 51.8 25 1

13B 20.6 16.8 18.7 26.7 19.1 22.9 20.8 25 42.7 26 1

7B 16.8 17.6 17.2 21.4 17.6 19.5 18.4 26 34.8 31 5

Phind-Codellama (Phind, 2023) 34B 34.4 29.0 31.7 33.6 32.1 32.9 32.3 16 71.3 15 -1

Qwen-1.5 (Bai et al., 2023a) 110B 35.4 28.2 31.8 38.5 26.7 32.6 32.2 17 52.4 24 7

Qwen-Chat (Bai et al., 2023b) 72B 28.2 29.8 29.0 24.4 29.0 26.7 27.9 19 64.6 20 1

7B 11.5 13.0 12.3 16.0 11.5 13.8 13.0 28 37.2 30 2

WizardCoder (Luo et al., 2023) 34B 24.4 22.9 23.7 29.8 22.1 26.0 24.8 20 73.2 10 -10

15B 29.0 17.6 23.3 25.2 19.1 22.2 22.7 23 59.8 22 -1

StarCoder (Li et al., 2023a) 15.5B 13.0 13.0 13.0 16.8 9.9 13.4 13.2 27 40.8 29 2

Mistral-Instruct (Jiang et al., 2023a) 7B 7.6 9.9 8.8 11.5 19.1 15.3 12.0 29 28.7 34 5

CodeGen2 (Nijkamp et al., 2023a)
16B 0.8 11.5 6.2 2.3 13.0 7.7 6.9 31 19.5 36 5

7B 2.3 5.3 3.8 6.9 5.3 6.1 5.0 32 18.3 37 5

3.7B 0.0 0.0 0.0 0.0 3.1 1.6 0.8 38 15.9 38 0

1B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39 11.0 39 0

Phi (Li et al., 2023b) 2.7B 5.3 3.1 4.2 3.1 5.3 4.2 4.2 33 53.7 23 -10

1.3B 0.0 0.8 0.4 3.8 0.0 1.9 1.2 37 41.4 28 -9

CodeGen (Nijkamp et al., 2023b) 16B 0.8 5.3 3.1 0.3 9.2 4.8 3.9 34 32.9 32 -2

6B 0.0 0.0 0.0 2.3 3.8 3.1 1.5 35 29.3 33 -2

2B 0.0 0.0 0.0 2.3 3.8 3.1 1.5 36 24.4 35 -1

Table 3: Evaluating LLMs on the test set of NATURALCODEBENCH. All results are pass@1 on greedy decoding.
Dev set results are reported in Table 6. Compared to HumanEval (Chen et al., 2021), some LLMs present significant
variations 7913



We compared the Python scores on the test set
of NCB with the performances of models on Hu-
manEval, as shown in the Figure 1. Most models
are located in the upper triangular area of the graph,
with many models scoring high on HumanEval but
exhibiting relatively lower performance on NCB.

4.3 Performance mismatch on HumanEval
and NCB

We show the rank orders of all tested LLMs in Ta-
ble 3 with regard to HumanEval and NCB, as well
as the difference of rank orders. We also plot the
corresponding performances on two benchmarks
to scatter diagram in Figure 1. Based on the table
and figure, we have some interesting findings.

Performances of most LLMs on two benchmarks
grow linearly proportional, and the differences of
scores’ rank order are around 0. It demonstrates
that NCB can indeed reflect the coding abilities of
LLMs as HumanEval does in most cases.

However, we observe that some model series,
notably the Phi, Deepseek-Chat, and WizardCoder,
consistently exhibit a propensity to achieve supe-
rior rankings on the HumanEval dataset as opposed
to the NCB across various scales, as shown in the
Table 3. Additional model families, including
CodeGen and Llama-3-Instruct, similarly display
the trend, though to a reduced degree.

There might be a few potential hypotheses
for the observation. First, as problems in
NCB are more difficult and derived from natural
user prompts, compared to those in HumanEval,
LLMs with poorer generalization and instruction-
following capabilities tend to perform worse. We
find in preliminary experiments that problems in
NCB cannot be properly solved by pre-trained base
LLMs via mere in-context learning as HumanEval
does, which indicates that to solve NCB problems
requires stronger alignment and generalizability
than HumanEval needs.

Second, it is possible that training sets of
some LLMs are over-specifiedly optimized for
HumanEval-style problems. On one hand, pre-
training data of certain LLMs may be contami-
nated. As GPT-4 (OpenAI et al., 2023) reported,
25% of HumanEval has been contaminated in their
pre-training corpus. On the other hand, instruc-
tion fine-tuning dataset may also be polluted. For
example, Phi (Li et al., 2023b) reports a consid-
erable amount of synthetic prompts resonating to
some test samples in HumanEval. In (Yang et al.,
2023b), the authors report leakage unidentifiable

by n-gram overlap when using popular rephrasing
techniques to create training sets. The performance
discrepancy between HumanEval and NCB in our
experiments is also an evidence of the potential
contamination.

4.4 Results of Semi-automated Construction

In Table 4, we can observe that the coverage of
hand-written test cases is almost identical to that
of test cases constructed through a semi-automatic
pipeline, yet the time required for the former sig-
nificantly exceeds the time needed for constructing
test cases via the semi-automatic pipeline. Specif-
ically, test cases can be constructed via the semi-
automated pipeline in just 40 minutes, whereas
manual writing requires 175.9 minutes, a differ-
ence of more than 4x. Consequently, the scores
obtained for test cases constructed using the semi-
automated pipeline are far higher than those for
manually written test cases, with an average differ-
ence of 37.6. In summary, constructing test cases
through the semi-automatic framework can achieve
significantly higher efficiency without substantial
loss in quality compared to manual writing.

5 Related Work

LLMs for code. Significant advancements in
LLMs (Vaswani et al., 2017, Devlin et al., 2019,
Brown et al., 2020) are transforming everyday life,
particularly in the field of coding, driven by the vast
amount of openly available codebases and the push
to enhance productivity among developers. Code-
specific LLMs have proven their ability to perform
various tasks such as code generation (Chen et al.,
2021, Iyer et al., 2018, Li et al., 2022), program
repair (Jiang et al., 2023b, Wei et al., 2023, Xia
et al., 2023, Xia and Zhang, 2022), automated test-
ing (Deng et al., 2023a, Deng et al., 2023b, Liu
et al., 2023c, Xia et al., 2024, Yang et al., 2023a),
code translation (Roziere et al., 2020, Roziere et al.,
2022) and code summarization (Ahmed and De-
vanbu, 2023, Lu et al., 2021). Notably, prominent
LLMs including CODEX (Chen et al., 2021), Code-
Gen (Nijkamp et al., 2023b), INCODER (Fried
et al., 2023), and PolyCoder (Xu et al., 2022) have
been developed and rigorously tested, particularly
in code generation. This area, often referred to
as the ultimate goal in computer science research
since the early days of AI in the 1950s, involves
the model producing code snippets from natural
language explanations of the required functional-
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Hand-Written Semi-Automated

Time Cost Line Branch Score Time Cost Line Branch Score

Expert_1 179.5 97.6 95.9 10.8 36.0 97.0 96.9 53.9
Expert_2 195.0 97.6 95.0 9.9 41.0 88.1 91.7 43.9
Expert_3 145.0 84.5 84.0 11.6 26.0 82.0 85.0 64.2
Expert_4 180.0 90.9 100.0 10.6 41.0 84.4 91.7 42.9
Expert_5 180.0 98.1 83.3 10.1 56.0 100.0 100.0 35.7

Total/Avg. 175.9 93.7 91.6 10.5 40.0 90.3 93.1 48.1

Table 4: Test case construction comparison between by Semi-Automated Pipeline and Hand-Written

ity. The landscape of code LLMs is currently ex-
periencing a surge, with new models being intro-
duced regularly. This includes both proprietary
ones (Moradi Dakhel et al., 2023, OpenAI et al.,
2023) and open-source ones (Lin, 2004, Nijkamp
et al., 2023b, Touvron et al., 2023, Li et al., 2023a,
Anonymous, 2024, Rozière et al., 2024), marking
a trend of frequent releases in this domain.

Code Synthesis Benchmarks. As the capabili-
ties of models advance, researchers are develop-
ing more challenging and versatile benchmarks for
code generation. Initially, the earlier focus was
on domain-specific languages (Zelle and Mooney,
1996), while the subsequent effort launched a Text-
to-SQL benchmark to evaluate the capacity for gen-
erating comprehensive SQL programs (Yu et al.,
2018). An investigation (Yin et al., 2018) assesses
the ability to compose brief yet broadly applicable
Python snippets. More recent studies (Hendrycks
et al., 2021b, Li et al., 2022) have tested models’
proficiency in solving competitive programming
challenges using Python. A leading and exten-
sively researched benchmark in this domain is Hu-
manEval (Chen et al., 2021), which features 164
Python function signatures accompanied by doc-
strings and corresponding test cases for validating
correctness. Additionally, each problem in Hu-
manEval includes a reference solution. The MBPP
(Austin et al., 2021) dataset, another Python-centric
collection, was developed by having participants
contribute 974 programming challenges. Each chal-
lenge encompasses a problem description (i.e., doc-
string), a function signature, and three test cases.
There are also benchmarks for other programming
languages, such as HumanEval-X (Zheng et al.,
2023b) for C++, JavaScript, and Go, CodeContests
(Li et al., 2022) for C++ and Java, and MultiPL-E
(Cassano et al., 2022), which expands HumanEval
and MBPP to 18 languages.

More recent efforts have introduced benchmarks
that more closely mirror real-world coding scenar-
ios that require interactive coding. For example,
AgentBench (Liu et al., 2023b) introduces interac-
tive tasks regarding unix shell and MySQL. SWE-
Bench (Jimenez et al., 2023) compiles GitHub is-
sues, their associated codebases, and tests, to gauge
LLMs’ effectiveness in practical software engineer-
ing tasks.

6 Conclusion

We propose NATURALCODEBENCH for evaluating
the code generating ability of LLMs. Our bench-
mark comprises a total of 402 problems selected
from coding online services, and it supports au-
tomatic evaluation of code generated by LLMs.
We have also proposed a semi-automated pipeline
for efficiently constructing the entire benchmark,
achieving an efficiency gain of more than 4x com-
pared to manual construction. We hope that NCB
can provide a fair environment for the comparison
between models, and our pipeline can also pro-
vide inspiration to other complex tasks or domains
where evaluation costs are high.
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Limitations

Here, we discuss several limitations of this work.

To cover more domains. Although our problems
are derived from real-world application scenarios,
due to the difficulty of constructing accurate and
efficient evaluation environments, we are unable to
test some types of problems, such as those involv-
ing interface creation, web services, etc., which are
also common problem types in actual applications.
This results in some biases in our evaluation, which
may affect the accuracy of the evaluation of cer-
tain models. We will leave these issues for future
research.

To reduce the cost. The semi-automated pipeline
can significantly reduce the time and human re-
sources required to construct an evaluation frame-
work, but the cost of accessing OpenAI’s API re-
mains expensive, and it does not completely elimi-
nate the use of human resources.
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A Instructions in NATURALCODEBENCH

To enhance the efficiency of benchmark construc-
tion and reduce human labor costs, we utilized
the extensive knowledge storage and natrual lan-
guage understanding capabilities of LLMs during
the benchmark construction process. Below are the
details of the instructions used in the construction
process:
• Figure 3 shows the instruction we employed to

swiftly filter out queries unsuitable for testing.
• Figure 13 shows how we instruct the GPT-4 to

generate diverse and high-quality testcases.
• Figure 4 illustrates how we address the issue of

misalignment between class or function names
generated by the LLMs and the names in the
test cases.

I will give you a #Given Prompt# which ask the LLM to generate 
code. Please verify whether the #Given Prompt# satisfies the 
following requirements:
1. #Given Prompt# should contain a task, that is, the user asks the 
model to help solve one or some problems.
2. It is easily to find the type of input and ouput in the #Given 
Prompt#
3. There is no randomness or uncertainty in the #Given Prompt#
If the #Given Prompt# satisfies the above requirements, reply 
"yes", otherwise reply "no". YOU CAN ONLY GENERATE "yes" or 
"no", OTHER TOKENS ARE NOT ALLOWED.

#Given Prompt#:
{{given_prompt}}

#Response#:

Figure 3: The instruction used to quickly filter out low-
quality queries

Your task is to generate {{language}} code to solve the 
following problem. The generated code must be 
placed between the ```{{language}} and ```, and only 
one code block is allowed: 
{{prompt}}

You need to follow the function names or class names 
in the test cases. The generated code should not 
contain any test cases: 
{{test_demo}}

Figure 4: The instruction used to align the names of
classes or functions generated by the LLMs with the
names in the test cases.

B Examples

B.1 Examples of Semi-Automated Pipeline

In this section, we present two examples, one each
for Python and Java, of semi-automated pipeline

with one test case to illustrate how we construct
test cases and rectify errors therein.

Figure 5 shows the Python example. Following
the provision of problem description and reference
solution, GPT-4 writes the majority of the test case,
including the execution procedure and test case
input. However, GPT-4 could not guarantee the
correctness of each test case, resulting in the gener-
ation of erroneous expected outputs. At this point,
our programming experts only needed to correct
the incorrect expected outputs.

Figure 6 shows the Java exmaple. In this prob-
lem, where the input type involves more complex
file formats, our semi-automatic pipeline is unable
to directly generate the input files corresponding
to each test case. Therefore, in this instance, our
programming experts need to not only supplement
the missing procedures in the test cases but also
create an input file for each test case. However,
GPT-4 has provided reference content for the input
files in the comments, so our programming experts
do not need to design the inputs themselves.

B.2 Example Problems

Here, we present an example problem and test cases
for each of the 6 domains.

Figure 7 shows a problem of Algorithm and Data
Structure, querying the pattern of a sequence trans-
formation and the total number of all transforma-
tions.

Figure 8 illustrates an example problem in soft-
ware engineering, requiring the addition of tags to
different titles in a markdown file according to their
levels.

Figure 9 presents an example problem in data
science, asking to select the row with the highest
temperature from the temperature CSV files of each
city and write these rows into a new CSV file.

Figure 10 depicts an example problem in front-
end development, requiring the replacement of
given special tags within a string with specific
HTML formats.

Figure 11 shows an example problem in artifi-
cial intelligence, requiring the calculation of the
distance between each point of two tensors, where
the dimension of each tensor is batchsize * n * 3,
with the third dimension representing the coordi-
nates of the points.

Figure 12 presents an example problem in sys-
tem administration, inquiring how to rename all the
files within a folder according to a given rule.
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Model
Dataset

NCB(zh) NCB(en)

Python Java Python Java

Pass@10 Pass@50 Pass@10 Pass@50 Pass@10 Pass@50 Pass@10 Pass@50

GPT-4 (OpenAI et al., 2023) Test 62.4 67.9 64.6 71.8 65.3 70.2 62.7 67.9
Dev 53.3 55.7 69.2 72.9 51.8 54.3 62.0 64.3

GPT-3.5-Turbo (OpenAI, 2022) Test 46.5 48.9 49.3 56.5 53.5 55.7 51.5 57.3
Dev 44.0 47.7 45.5 51.4 43.6 47.1 48.4 50.0

Deepseek-Coder-33B-Instruct (Guo et al., 2024) Test 55.7 61.8 48.0 51.1 56.6 64.9 52.8 59.5
Dev 48.1 51.4 46.8 51.4 46.5 48.6 46.7 50.0

Codellama-70B-Instruct (Roziere et al., 2023) Test 49.6 56.5 52.7 61.8 51.0 62.6 48.2 58.0
Dev 47.5 54.3 53.9 62.9 47.6 54.3 50.5 60.0

Phind-Codellama-34B (Phind, 2023) Test 42.3 46.6 39.4 45.8 40.6 43.5 47.6 56.5
Dev 45.4 50.0 41.7 45.7 44.0 45.7 49.4 51.4

Deepseek-67B-Chat (DeepSeek-AI, 2024) Test 44.3 48.9 40.8 47.8 47.3 51.9 40.9 45.8
Dev 42.3 47.1 44.5 47.1 37.9 41.4 43.6 50.0

Qwen-72B-Chat (Bai et al., 2023b) Test 34.9 37.4 36.5 39.7 32.7 35.9 36.5 38.2
Dev 43.4 47.1 31.4 38.6 41.0 44.3 31.5 35.7

StarCoder (Li et al., 2023a) Test 23.1 28.2 23.3 29.8 24.1 31.3 26.8 32.1
Dev 29 32.9 27.3 32.9 35.5 41.4 27.0 30.0

Mistral-7B-Instruct (Jiang et al., 2023a) Test 15.5 18.3 17.3 20.6 19.6 22.9 22.0 24.4
Dev 18.2 21.4 16.3 20.0 19.7 24.3 17.8 21.4

CodeGen2-16B (Nijkamp et al., 2023a) Test 8.6 16.8 18.0 22.9 13.0 19.1 21.0 26.0
Dev 11.6 21.4 12.8 15.7 16.0 24.3 18.5 24.3

CodeGen-16B (Nijkamp et al., 2023b) Test 4.6 9.2 13.3 18.3 9.9 15.3 17.5 21.4
Dev 10.7 17.1 15.6 18.6 16.1 22.9 17.4 21.4

Phi-2 (Li et al., 2023b) Test 14.5 21.4 5.5 7.6 11.9 19.8 10.7 14.5
Dev 15.3 27.1 5.1 7.1 10.9 18.6 6.4 7.1

Table 5: Pass@k results of best-performing LLMs with each LLM family on NaturalCodeBench.

C Extra Results

Table 6 shows the pass@1 results on the develop-
ment set of NCB. The results on the development
set are essentially consistent with those on the test
set, with some changes in the ranking among sev-
eral models. This is due to differences in the dis-
tribution of problems across domains between the
development set and the test set.

Table 5 shows the pass@k results of best-
performing LLMs with each LLM family on NCB,
where k ∈ {10, 50}. We do not evaluate the per-
formance on pass@k for ErnieBot4, CodeGeeX3,
Claude-3, Gemini-1.5-Pro and Llama-3-Instruct
due to limitations on the use of API and other re-
sources.

7922



Model Size NCB(zh) NCB(en) Total
Python Java Total Python Java Total

API LLMs

GPT-4 (OpenAI et al., 2023) N/A 50.0 64.3 57.2 47.1 57.1 52.1 54.6
GPT-4-Turbo-1106 (OpenAI et al., 2023) N/A 54.3 55.7 55.0 50.0 54.3 52.2 53.6
GPT-4-Turbo-0125 (OpenAI et al., 2023) N/A 51.5 55.7 53.6 48.6 51.4 50.0 51.8
GPT-3.5-Turbo (OpenAI, 2022) N/A 38.6 38.6 38.6 37.1 41.4 39.3 38.9

Claude-3-Opus (Anthropic, 2023b) N/A 46.4 44.3 45.3 50.0 47.1 48.6 47.0
Claude-3-Haiku (Anthropic, 2023b) N/A 40.3 32.9 36.6 43.8 32.9 38.4 37.5
Claude-3-Sonnet (Anthropic, 2023b) N/A 37.8 41.4 39.6 38.6 31.4 35.0 37.3
Claude-2.1 (Anthropic, 2023a) N/A 41.4 37.1 39.3 35.7 35.7 35.7 37.5

GLM-4 (Zeng et al., 2023; Du et al., 2022) N/A 42.9 47.1 45.0 44.3 42.9 43.6 44.3

Gemini-1.5-Pro (Blog, 2024) N/A 44.3 35.7 40.0 48.6 34.3 41.4 40.7

CodeGeeX3 (Zheng et al., 2023b) N/A 40.0 25.7 32.9 35.7 25.7 30.7 31.8

Open LLMs

Deepseek-Coder-Instruct (Guo et al., 2024)
33B 41.4 40.0 40.7 35.7 41.4 38.6 39.6
6.7B 34.3 40.0 37.2 34.4 40.0 37.2 37.2
1.3B 22.9 21.4 22.2 20.0 27.1 23.6 22.9

Llama-3-Instruct (AI@Meta, 2024) 70B 42.9 37.1 40.0 37.1 41.4 39.3 39.6
8B 22.9 20.0 21.4 12.9 20.0 16.4 18.9

Phind-Codellama (Phind, 2023) 34B 34.1 31.4 32.8 38.6 40.0 39.3 36.0

Qwen-1.5 (Bai et al., 2023a) 110B 35.7 30.0 32.9 37.1 35.7 36.4 34.6

Codellama-Instruct (Roziere et al., 2023)

70B 30.0 30.0 30.0 35.7 35.7 35.7 32.9
34B 14.3 25.7 20.0 25.7 25.7 25.7 22.9
13B 21.4 20.0 20.7 22.9 20.0 21.5 21.1
7B 25.7 14.3 20.0 18.6 17.1 17.9 18.9

Deepseek-Chat (DeepSeek-AI, 2024) 67B 28.6 35.7 32.2 28.6 32.9 30.8 31.5
7B 12.9 11.4 12.2 10.0 14.3 12.2 12.2

WizardCoder (Luo et al., 2023) 34B 31.4 31.4 31.4 30.0 31.4 30.7 31.1
15B 30.0 24.3 27.2 31.4 24.3 27.9 27.5

Qwen-Chat (Bai et al., 2023b) 72B 35.7 24.3 30.0 34.3 25.7 30.0 30.0
7B 10.0 12.9 11.5 20.0 15.7 17.9 14.7

StarCoder (Li et al., 2023a) 15.5B 17.1 15.7 16.4 21.4 15.7 18.6 17.5

Mistral-Instruct (Jiang et al., 2023a) 7B 11.4 12.9 12.2 15.7 11.4 13.6 12.9

CodeGen2 (Nijkamp et al., 2023a)

16B 5.7 7.1 6.4 8.6 7.1 7.9 7.1
7B 1.4 5.7 3.6 1.4 5.7 3.6 3.6

3.7B 0.0 5.7 2.9 2.9 2.9 2.9 2.9
1B 0.0 2.9 1.5 0.0 2.9 1.5 1.5

CodeGen (Nijkamp et al., 2023b)
16B 1.4 5.7 3.6 7.1 8.6 8.6 5.7
6B 2.9 2.9 2.9 4.3 7.1 5.7 4.3
2B 0.0 2.9 1.5 2.9 5.7 4.3 2.9

Phi (Li et al., 2023b) 2.7B 4.3 4.3 4.3 5.7 4.3 5.0 4.7
1.3B 1.4 2.9 2.2 5.7 4.3 5.0 3.6

Table 6: Evaluating LLMs on the dev set of NATURALCODEBENCH. All results are pass@1 on greedy decoding.
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Problem

I have a dataframe that includes the price and date of 
a symbol, how can I identify the time periods where 
the price has consistently fluctuated within an x 
percent range? 
For instance, the output of the following statements:
1) From December 10 to December 30
2) From March 10 to March 23

Reference Solution
def find_fluctuation_periods(df, symbol, x):
    symbol_data = df[…==symbol].sort_values(by='date')
    …
    for ind, row in symbol_data.iterrows():
        if start_date is None:
            …
        else:
            change = abs((row['price'] - prev_price) / prev_price 
* 100)
            if change > x:
                if ind - start_ind > 1:
                    periods.append((start_date.strftime('%Y-%m-
%d'), prev_date.strftime('%Y-%m-%d')))
                …
    if start_date != end_date:
        periods.append((start_date.strftime('%Y-%m-%d'), 
end_date.strftime('%Y-%m-%d')))
    return periods

Human Rewritten Test Case 

def test_fluctuation_periods_2(self):
    df = pd.DataFrame({
        'symbol': ['AAPL', 'AAPL', 'AAPL', 'AAPL'],
        'price': [100, 110, 120, 130],
        'date': pd.to_datetime([
            '2021-01-01', 
            '2021-01-02', 
            '2021-01-03', 
            '2021-01-04'])
    })
    assert find_fluctuation_periods(df, 'AAPL', 10) == 
[('2021-01-01', '2021-01-04')]

Test Case Generated by GPT-4

def test_fluctuation_periods_2(self):
    df = pd.DataFrame({
        'symbol': ['AAPL', 'AAPL', 'AAPL', 'AAPL'],
        'price': [100, 110, 120, 130],
        'date': pd.to_datetime([
            '2021-01-01', 
            '2021-01-02', 
            '2021-01-03', 
            '2021-01-04'])
    })
    assert find_fluctuation_periods(df, 'AAPL', 10) == 
[('2021-01-01', '2021-01-03’)]  Wrong Output

Figure 5: A Python example of semi-automate pipeline.

Problem

Design a method in Java
Use the following encryption method, encrypt the 
content in the given encodingFile text file, and then 
save it to the encodedFile file.
Encryption rules:
1. Numbers: If it is not the number 9, add 1 to the 
original basis, If it is the number 9, it becomes 0.
2. Letter characters: If it is a non-z character, move 
one to the right, If it is z, z->a, Z->A. 
3. Non-numeric and non-letter characters can remain 
unchanged, such as Chinese characters and 
punctuation marks, etc., just need to remain 
unchanged.

Reference Solution
void encodeFile(File encodingFile, File encodedFile) {
    try (FileReader reader = …(encodingFile);
        FileWriter writer = …(encodedFile)) {
        while ((c = reader.read()) != -1) {
            char character = (char) c;
            if (Character.isDigit(character)) {
                character = character == '9' ? '0' : (char) 
(character + 1);
            }else if (Character.isLetter(character)) {
                . . .
                else if ((character >= 'a' && …) {
                    character=(char)(character+1);
     . . .

Human Rewritten Test Case 

@Test
void testEncodeDigits() throws IOException {
    File input = new File("testEncode.txt");
    File output = new File("testEncodeOutput.txt");
    FileEncoder.encodeFile(input, output);
    assertEquals(“234567890",
        readFileContent(output));
}

Test Case Generated by GPT-4

@Test
void testEncodeDigits() throws IOException {
    File input = new File("testEncode.txt");
    File output = new File("testEncodeOutput.txt");
    // numbers.txt contains "123456789"
    // encodedNumbers.txt should contain 
"234567890"
}              Not completely generated

Figure 6: A Java example of semi-automate pipeline.

7924



Problem:
Given a sequence that only contains two possible 
characters "O" and "x". There is a magical operation 
that can combine two consecutive "x" characters in 
the sequence into one "O" character. Suppose there is 
a sequence of length n, containing only "x" characters, 
and the magic operation can be used any number of 
t imes. What is the maximum number of possible result 
sequences? 
For example:
For a sequence of length 2, the init ial  state is "xx", you 
can choose not to use the magic operation or use it  
only once. There are two possible final results: "xX" or 
"O". 
For a sequence of length 3, the init ial  state is "xxX", 
you can choose not to use the magic operation or use 
it  once. There are three possible final results: "xxx", 
"OX!" (combining the first two "x" characters) or 
"XO" (combining the last two "x" characters).

Test Cases

class Testmax_possible_sequences:
    def test_max_possible_sequences_1(self):
        assert max_possible_sequences(4) == 5
    def test_max_possible_sequences_2(self):
        assert max_possible_sequences(7) == 21

. . . 

Rerference Solution

def max_possible_sequences(n):
    if n <= 0:
        return 0
    elif n == 0:
        return 0
    elif n == 0:
        return 2
    else:
        return max_possible_sequences(n-1) \
            + max_possible_sequences(n-1)

Figure 7: An example problem of Algorithm and Data Structure.

Problem:
Hello, please write a Python function for me. The 
function should read a markdown file, add 
numbering like x.y.z... to the titles of each level, 
and then return the modified string. Please note 
not to write into the original file.

Test Cases

class Testadd_section_numbering:
    def test_case1(self):
    with open('test1.md', 'w') as f:
        f.write('# Title\n## Subtitle\n### Sub-Subtitle\n## 
Another Subtitle\n# Another Title')
    assert add_section_numbering(
        'test1.md') == '# 1 Title\n## 1.1 Subtitle\n### 1.1.1 
Sub-Subtitle\n## 1.2 Another Subtitle\n# 2 Another Title'

. . . 

Rerference Solution

def add_section_numbering(markdown_file):
    with open(markdown_file, 'r') as file:
        lines = file.readlines()

    numbering = []
    result = ''
    for line in lines:
        if line.startswith('#'):
            level = line.count('#')
            numbering = numbering[:level]
            if len(numbering) < level:
                numbering.append(0)
            numbering[-1] += 1
            line = '#'*level + ' ' + '.'.join(map(str, numbering)) 
+ ' ' + line[level:].strip() + '\n'
        result += line
    return result[:-1]

Figure 8: An example problem of Software Engineering.
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Problem:
There are multiple CSV files in the data folder, each file has 
two columns, containing the daily temperature records of a 
certain city in 2022. The first row is the title, which are Date 
and Temperature. The temperature value is an integer. I 
need to find out the highest temperature value and the 
corresponding date of each city in that year, and save the 
results to a new CSV file. The result CSV consists of three 
columns, including city, highest temperature, and date. 
Note that if the highest temperature is the same for multiple 
days, keep all dates that reach the highest temperature. 
How can I use the pandas library's dataframe to complete 
this task?

Test Cases

class Testmax_possible_sequences:
    def test_single_file_single_max(self, tmpdir):
        data = 
"Date,Temperature\n2022-01-01,10\n2022-01-02,20\n2022-01-
03,30"
        p = tmpdir.mkdir("data").join("city1.csv")
        p.write(data)
        output_file = tmpdir.join("output.csv")
       find_max_temperature(str(tmpdir.join("data")), 
str(output_file))
        assert output_file.read() == 
"City,Max_Temperature,Date\ncity1,30,2022-01-03\n"

. . .

Rerference Solution

def find_max_temperature(folder_path, output_file):
    csv_files = [f for f in os.listdir(folder_path) 
        if f.endswith('.csv')]
    result_df = pd.DataFrame(columns=[
        'City', 
        'Max_Temperature', 
        'Date'])
    for csv_file in csv_files:
        file_path = os.path.join(folder_path, csv_file)
        df = pd.read_csv(file_path)
        city_name = csv_file[:-4]
        max_temp = df['Temperature'].max()
        max_temp_dates = df.loc[
            df['Temperature'] == max_temp, 
            'Date'].tolist()
        for date in max_temp_dates:
            result_df = result_df._append({
                'City': city_name,
                'Max_Temperature': max_temp,
                'Date': date}, ignore_index=True)
    result_df.to_csv(output_file, index=False)

Figure 9: An example problem of Data Science.

Problem:
How to replace a string containing content like ```html  ```, 
```css  ```, ```python  ```, ```javascript  ```, ```golang  ``` with strings 
like <pre><code class=\"language-html\">...</code></pre>, 
<pre><code class=\"language-css\">...</code></pre>, 
<pre><code class=\"language-python\">...</code></pre>, 
<pre><code class=\"language-javascript\">...</code></pre>, 
<pre><code class=\"language-golang\">...</code></pre>. 
Please use python code.

Test Cases

class Testreplace_code_block:
    def test_replace_code_block_1(self):
        assert replace_code_block('```html ```') == '<pre><code 
class="language-html"></code></pre>'

. . .

Rerference Solution

def replace_code_block(text):
    languages = {
        "html": "language-html",
        "css": "language-css",
        "python": "language-python",
        "javascript": "language-javascript",
        "golang": "language-golang"
    }
    for lang, html_class in languages.items():
        pattern = rf"```{lang}\b\s*(.*?)\s*```"
        replacement = rf'<pre><code 
class="{html_class}">\1</code></pre>'
        text = re.sub(pattern, replacement, text, 
flags=re.DOTALL)
    return text

Figure 10: An example problem of Front-End.
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Problem:

Python code, calculate distance given two Pytorch 
tensors with dimension batchsize x n x 3, n is points, 3 
is x,y,z. Compute point wise distance along the last 
dimension, for example only compute distance 
between a[0,1] and b[0,1] not a[0,1] and b[0,2].

Rerference Solution

def calculate_distance(tensor_a, tensor_b):
    diff = tensor_a - tensor_b
    dist = torch.sqrt(torch.sum(diff ** 2, dim=-1))
    return dist

Test Cases

class Testcalculate_distance:
    def test_case_1(self):
        tensor_a = torch.tensor([[[1,2,3],[4,5,6]]])
        tensor_b = torch.tensor([[[1,2,3],[4,5,6]]])
        expected_output = torch.tensor([[0.0, 0.0]])          
        assert torch.allclose(calculate_distance(tensor_a, 
tensor_b), expected_output)

    def test_case_2(self):
        tensor_a = torch.tensor([[[1,1,1],[2,2,2]]])
        tensor_b = torch.tensor([[[0,0,0],[0,0,0]]])
        expected_output = torch.tensor([[1.7321, 
3.4641]])
        assert torch.allclose(calculate_distance(tensor_a, 
tensor_b), expected_output, atol=1e-4)

. . .

Figure 11: An example problem of Artificial Intelligence.

Problem:

I want to write a python program that rename 
the files of a folder . 
please remove all letters and keep the numbers

Test Cases

class Testrename_files_in_folder:
    def test_rename_files_in_folder_1(self, tmpdir):
        p = tmpdir.mkdir("sub").join("file123abc.txt")
        p.write("content")
        rename_files_in_folder(str(tmpdir) + '/sub/')
        assert os.path.isfile(str(tmpdir) + '/sub/123.txt')

    def test_rename_files_in_folder_2(self, tmpdir):
            p = tmpdir.mkdir("sub").join("file456def.txt")
            p.write("content")
            rename_files_in_folder(str(tmpdir) + '/sub/')
            assert os.path.isfile(str(tmpdir) + '/sub/
456.txt')

    def test_rename_files_in_folder_3(self, tmpdir):
            p = tmpdir.mkdir("sub").join("file789ghi.txt")
            p.write("content")
            rename_files_in_folder(str(tmpdir) + '/sub/')
            assert os.path.isfile(str(tmpdir) + '/sub/
789.txt')

. . .

Rerference Solution

def rename_files_in_folder(folder_path):
    for filename in os.listdir(folder_path):
        file_type = filename.split('.')[-1]
        new_filename = re.sub("[A-Za-z]", "", 
filename[:-len(file_type)]) + file_type
        os.rename(os.path.join(folder_path, filename), 
os.path.join(folder_path, new_filename))

Figure 12: An example problem of System Administration.
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I will give you a #Prompt# and a piece of #Code#. I need you to write 10 diverse 
test cases to verify whether the function in the #Code# meets the requirements of 
the #Prompt#. Among them, 6 test cases should cover as many lines and 
branches in the #Code# as possible, and the other 4 test cases should try to 
reach the boundaries of the requirements in the #Prompt#. The test cases should 
conform to the Pytest/JUnit call format. You should only generate test cases 
without any explanation. 
#Prompt#: 
{{given_prompt}}

#Code#:
```
{{given_code}}
```

#Test cases#: 
class Test{{class_name}} :/{

Figure 13: The insturciton used in Semi-automated Pipeline. Generating 6 test cases for high-coverage and 4 corner
test cases.
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