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Abstract

Text classification is a crucial task encoun-
tered frequently in practical scenarios, yet it
is still under-explored in the era of large lan-
guage models (LLMs). This study shows that
LLMs are vulnerable to changes in the num-
ber and arrangement of options in text clas-
sification. Our extensive empirical analyses
reveal that the key bottleneck arises from am-
biguous decision boundaries and inherent bi-
ases towards specific tokens and positions. To
mitigate these issues, we make the first at-
tempt and propose a novel two-stage classi-
fication framework for LLMs. Our approach
is grounded in the empirical observation that
pairwise comparisons can effectively alleviate
boundary ambiguity and inherent bias. Specifi-
cally, we begin with a self-reduction technique
to efficiently narrow down numerous options,
which contributes to reduced decision space
and a faster comparison process. Subsequently,
pairwise contrastive comparisons are employed
in a chain-of-thought manner to draw out nu-
ances and distinguish confusable options, thus
refining the ambiguous decision boundary. Ex-
tensive experiments on four datasets (Bank-
ing77, HWU64, LIU54, and Clinic150) ver-
ify the effectiveness of our framework. Fur-
thermore, benefitting from our framework, var-
ious LLMs can achieve consistent improve-
ments. Our code and data are available in
https://github.com/Chuge0335/PC-CoT.

1 Introduction

Text classification, as one of the most fundamental
and common tasks in natural language processing
(NLP), has a wide spectrum of applications (Qu
et al., 2019; Lei et al., 2023b; Chen et al., 2022;
Zaremba and Demir, 2023; Labonne and Moran,
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Figure 1: LLMs in text classification suffer from two
main challenges: (a) ambiguous decision boundary,
which arises from the explosion of options and their
similarity. (b) inherent bias, favoring specific optional
positions or tokens. These challenges lead to decreased
classification accuracy.

2023). A common approach for text classifica-
tion involves supervised fine-tuning on a specific
dataset, which can be costly and may suffer from
generalization issues (Sung et al., 2023; Bohra
et al., 2023; Jiang et al., 2023). Recent Large Lan-
guage Models (LLMs), such as ChatGPT (Ope-
nAI, 2022), LLaMA2 (Touvron et al., 2023) and
Qwen (Bai et al., 2023), have consistently exhibited
remarkable language comprehension capabilities
and performance emergence (Wei et al., 2022a).
Such advancement has introduced a new paradigm
of classification without the need for finetuning.
LLMs can now make selections in a zero-shot man-
ner, or employ techniques like few-shot demon-
strations (Brown et al., 2020) and chain-of-thought
(CoT) (Kojima et al., 2022).

Unfortunately, we observe that LLMs exhibit
vulnerability to changes in the number and arrange-
ment of options in text classification tasks. Our
extensive empirical evaluation, involving 11 LLMs
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ranging from 1B to 70B parameters and classifi-
cation tasks with over 50 options, demonstrates
that boundary ambiguity and inherent bias are
prevalent issues in various large language models.
These issues cannot be effectively mitigated by long-
context capabilities, simple prompting strategies,
or single increasing the model size. LLMs struggle
with distinguishing among a growing number of
options, a phenomenon called boundary ambiguity.
For example, gpt-3.5-turbo achieves a zero-shot ac-
curacy of only 32.51% when choosing the correct
option from 60 categories, compared to 94.29% for
two categories. LLMs also exhibit inherent bias,
favoring specific positions or selectively retaining
or discarding tokens in classification tasks. Placing
the correct option consistently in the first position
results in performance fluctuations of 35.29% for
LLaMA2-70B-Chat and 38.52% for Qwen-72B-
Chat. Furthermore, LLaMA2 shows an abnormal
bias towards selecting “movies” and “convert” in
the LIU54 benchmark.

To address these challenges for LLMs, our in-
tuition is that LLMs often have the highest accu-
racy in pairwise classification, and focusing on
two options at a time can significantly reduce the
number of tokens and positions considered, po-
tentially alleviating bias issues. This divide-and-
conquer approach also mirrors human decision-
making with multiple options, where we first elimi-
nate less likely options and then carefully differen-
tiate between similar ones. The latter process often
involves juxtaposing confusable objects pairwisely
to assess their similarities and differences.

In view of this, we design a general two-stage
LLM classification framework consisting of reduc-
tion and comparison stages. Within such a frame-
work, we introduce two novel self-reduction tech-
niques for the reduction process: one iteratively
isolates the most probable option from candidates,
and the other induces distinct option “windows” via
clustering, operating within these windows to avoid
similarity confusion, termed as ITR and CBWR.
Additionally, we propose PC-CoT, an innovative
contrastive chain-of-thought technique, to draw out
nuances and distinguish features among confusable
options, refining the ambiguous decision bound-
ary. This type of detailed comparison encourages
LLMs to conduct more in-depth analyses of actual
content, rather than making shortcuts based solely
on position or tokens. We conduct extensive exper-
iments to demonstrate that our framework is con-

sistently effective for various LLMs to combat am-
biguity and bias, even when the number of options
increases to 150. Notably, our method achieves a
relative improvement of 54.1% in average accuracy
compared to the full-option zero-shot performance
of gpt-3.5-turbo. It significantly reduces the token
bias of LLaMA-70B-Chat, improving the relative
performance by 36.88%.

To sum up, our contributions are as follows: (1)
Our work provides extensive empirical analyses
(covering 11 LLMs) to explore the vulnerability of
LLMs in option number and arrangement in text
classification. We identify that their ambiguous
decision boundaries and inherent biases on tokens
and positions remain a main challenge. (2) To ad-
dress these issues, we propose utilizing pairwise
comparison to combat such ambiguity and bias
and develop an innovative two-stage classification
framework for LLMs. Within the framework, novel
self-reduction algorithms and a contrastive elimi-
nation strategy are introduced. (3) We carry out
comprehensive experiments on four primary bench-
marks along with diverse LLMs, demonstrating the
effectiveness of our framework.
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Figure 2: The classification accuracy decreases across
various LLMs as the similarity among options increases.
“L” denotes the LLaMA-2-Chat series, while “Q” repre-
sents the Qwen-Chat series.

2 Preliminary Study

Setup We evaluate various LLMs to understand
factors influencing classification accuracy. Our
experiments include the gpt-3.5 series, LLaMA2-
Chat, and Qwen-Chat models. We use the challeng-
ing portions of the Banking77 and LIU54 datasets
(details in Section 4) to reduce experimental costs.
Due to space constraints, the main results are sum-
marized in the main text, with detailed dataset sam-
ples and additional results provided in Appendix A.

Key Observations Our findings, presented in
Figure 2 and Figure 3, reveal the following key
observations and insights:
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(b) The relative performance change rate for fixed correct op-
tions in a position (range from 0 to 60) compared to random
configuration performance. Simple option arrangement leads
to dramatic performance fluctuations in both zero-shot and few-
shot scenarios.
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(c) The confusion matrix sheds light on the token bias of
LLaMA-2 in the LIU54 dataset. Notably, the examination
reveals a pronounced bias of LLaMA-2-70B-Chat towards the
tokens “movies” and “convert”.

Figure 3: The influence of option number and arrangement on LLM performance. Full results are in the Appendix A.

(1) The option similarity consistently poses a
challenge. We test randomly sampled or similarity-
retrieved options in Figure 2 and observe a consis-
tent performance drop across various LLM sizes
and types. This finding indicates that LLMs en-
counter difficulties when faced with the inherent
fuzziness of semantics.

(2) The increased number of options consis-
tently presents a challenge for LLMs. Across
various LLMs, including LLaMA, Qwen, and gpt-
3.5-turbo, we consistently observe a decline in per-
formance as the number of options increases, as
shown in Figure 3a. In addition, this challenge per-
sists when a longer context window is introduced,
e.g., the gpt-3.5-turbo-1106 with 16k context length
and LongAlpaca with 32k context length. This phe-
nomenon suggests that the noise stemming from
the proliferation of options remains a significant
obstacle in the landscape of LLMs.

(3) Bias towards option positions and tokens.
In Figure 3b, we discern a significant bias caused
by the position of the correct choice, especially in
open-source models such as LLaMA and Qwen, re-
sulting in performance fluctuations exceeding 50%.
In contrast, gpt-3.5-turbo demonstrates minimal
effects, with fluctuations below 10%. This lack
of robustness demonstrates inherent position bias
in LLMs. In Figure 3c, we analyze the confusion
matrix of LLaMA for the LIU54 benchmark. A
preference for “movies” and “convert” tokens can
be clearly observed regardless of the golden label,

which indicates the existence of token bias.
(4) The above issues cannot be effectively

mitigated by long-context capabilities, simple
prompting strategies, or single increasing the
model size. Even with a longer context, issues
persist regarding the number and placement of op-
tions. For example, the gpt-3.5-turbo-1106 (16k
context length) exhibits similar declining trends as
its 4k-context counterpart with increasing option
numbers. The LongAlpaca-32k has 50% perfor-
mance fluctuation when the golden option is fixed
at the 50th position. Furthermore, experiments with
varying numbers of options show consistent trends
in both few-shot and zero-shot scenarios. There are
distinct bias distributions between 3-shot and zero-
shot scenarios, indicating that in-context examples
can alter the bias distributions of option positions
but cannot effectively eliminate them. Regarding
the model size, we observe that LLMs of different
sizes all suffer from option similarity, as shown in
Figure 2. Even 70B LLaMA and Qwen models suf-
fer from an increase in option number and simple
arrangement, as depicted in Figure 3.

From Full Option to Pairwise Comparison In-
spired by Figure 3a, selecting the correct label from
two choices is much easier for LLMs than directly
selecting from all options. For instance, gpt-3.5-
turbo achieves a 94.29% zero-shot accuracy when
choosing between two categories. To this end, we
propose a pairwise comparison framework to max-
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① Reduction

(i) Clustering

(ii) Deducing

Given the sentence "On april first i need a ticket from tacoma to san jose
departing before 7 am", which of the options is more likely to be the inquiry's
intent? 

① Self Reduction (CBWR)

② Comparison

Options

....

....

The sentence is related to the

Please select the most possible topic from
following OPTIONS: 

Problem

..

....

It's more like describing an airline ticket, although they both mention flights, 
So the answer is "airfare".

After scrutinizing the presented SHARED ASPECTS and CONTRASTING POINTS, 
which term - 'flight' and 'airfare' - would be a more accurate representation for the label of
 "On april first i need a ticket from tacoma to san jose departing before 7 am",
Why?

The two sentences both ask for flights.

The phrases can often be mistaken
for 'flight' and 'airfare', due to
certain shared characteristics.
SHARED ASPECTS: 

(1) Examples Sample

(4)  Decision Making

"What is the fare for flights
from denver to Atlanta".

'flight' 'airfare'

"What flights are there from
pittsburgh to san francisco on friday"

The first question is about the flights from
Pittsburgh to San Francisco, 
while the second is about the fare for
flights from Denver to Atlanta. 

Next, diligently contrast the deviations
between these two topics, putting aside
the mentioned shared characteristics.
Concisely explain, what is the key
element that sets them apart?
CONTRASTING POINTS: 

(3) Difference Analysis

② Contrastive CoT Comparison (PC-CoT)

(2) Similarity Analysis

?or

Figure 4: An overview of our framework for text classification with numerous options. It comprises two main
stages: (1) Self Reduction (CBWR) which eliminates extraneous options, and (2) Contrastive CoT Comparison
(PC-CoT) that conducts pairwise comparison. In CBWR, distinct option “windows” are induced via clustering to
avoid confusion due to similarity. For pairwise comparison, our PC-CoT employs a contrastive chain-of-thought
technique to highlight similarities and differences among the paired options for final decision making.

imize the capabilities of LLMs. Our approach
focuses on comparing pairs of options, which re-
duces the range of positions involved in the clas-
sification process. This reduction has been shown
to effectively mitigate position bias (Pezeshkpour
and Hruschka, 2023). Furthermore, using pairwise
comparisons allows for more nuanced comparative
strategies, avoiding token shortcuts and ensuring
that the most distinguish content guides decision-
making.

3 Methodology

3.1 Formulation
Formally, given a fixed LLM parameterized by θ,
we use x to denote the text classification input,
Y = {y1, y2, · · · , yN} as N potential label options.
Then, we utilize the prompt to instruct LLM to
select the appropriate label y ∈ Y for input x:

y ∼ pθ(y|Prompt(x,Y)) (1)

For simplicity, we will subsequently refer to
pθ(y|Prompt(x,Y)) as pPromptθ (y|x,Y)

The expressions for in-context learning (pICLθ )
and chain-of-thought methodology (pCoTθ ) for tack-
ling text classification problems are formulated as:

pICLθ (y | Sicl, x,Y),

pCoTθ (z, y | Scot, x,Y)
(2)

where the set S denotes the demonstration sets,
with an empty size (S = ∅) in the zero-shot sce-
nario and a non-empty size in the few-shot scenario.
For the few-shot instances, Sicl includes pairs from
{x′, y′ | y′ ∈ Y, x′ ̸= x}. For CoT methods, Scot

additionally include texts z′, viewed as the step-by-
step reasoning “thoughts”. These thoughts serve
as instructional support for LLMs to induce the
conditional distribution of y′ based on the given x′.

3.2 Proposed Framework

The fundamental concept of our approach is to
compare options in a pairwise manner. In cases
where the options set is substantial, directly con-
trasting original options in pairs becomes ineffi-
cient and costly. Therefore, we propose a two-stage
framework: (i) Reduction, strategically eliminat-
ing extraneous options Y to a reduced set R ⊂ Y .
(ii) Comparison, navigating through the interfer-
ence options within R via pairwise comparison in
a chain-of-thought fashion. In our two-stage frame-
work, various reduction and comparison algorithms
can be seamlessly integrated. This paper further
introduces two new algorithms designed for this
framework: self-reduction (in Section 3.3), which
utilizes LLMs to filter out irrelevant options au-
tomatically, and the contrastive chain-of-thought
technique (in Section 3.4), which mimics how hu-
mans compare confusable objects. The overall ar-
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chitecture of our algorithm is illustrated in Figure 4.

3.3 Self Reduction

Given a sentence x and option sets Y , LLMs it-
eratively refine the options to R through a multi-
iteration strategy, i.e., pθ (R | x,Y). Specifically,
we design two types of multi-iteration strategies to
improve the elimination accuracy: (1) Iterative Top
Reduction (ITR): where LLMs iteratively choose
the most likely options from the given candidate
set and subsequently isolate them in the follow-
ing iteration. This cyclic process continues until a
pre-set threshold is reached, facilitating the steady
refinement of labels. (2) Cluster-Based Window
Reduction (CBWR): Inspired from Figure 2, a high
degree of option similarity may degrade selection
precision. To mitigate this, CBWR refines the full
set of options for an input sentence through itera-
tive clustering and selection within a window. The
remaining options are clustered into K clusters,
with samples evenly sampled from each cluster and
placed into a window. Top-N candidates are then
selected from the window by LLM, progressively
discarding less probable options. The detailed pro-
cedure can be found in Algorithm 2 in Appendix B.

3.4 Contrastive CoT Comparison

In this phase, the remaining candidates within the
set R often exhibit significant ambiguity. Each
option has a close relationship with input x from
the perspective of LLMs. To accurately identify
the candidate, we propose a novel strategy based
on a “similar-difference-decide” reasoning chain
during the pairwise comparison process, which we
termed PC-CoT. This approach is inspired by the
concept of contrastive learning.

As specified in Algorithm 1, our approach begins
by initiating a candidate pool with the reduced label
set, systematically selecting two labels in each iter-
ation, denoted as y1, y2. Subsequently, the demon-
stration set expands to include the demonstrations
of both labels, i.e., S = Sy1 ∪ Sy2 . The LLMs are
then prompted to analyze the similarity (zs) and
differences (zd) of demonstration sentences associ-
ated with these labels. This step aims for a better
understanding of the relationship between the two
candidates and the refinement of the final decision
on which label to eliminate. This iterative removal
of candidates continues until we arrive at a sole
label, which is regarded as the final answer. The
algorithm exhibits a time complexity of O(|R|).

Model Dataset P SC ITR CBWR

gpt-3.5-turbo

Banking77 40.48 65.35 80.05 77.02
HWU64 49.93 76.25 90.96 90.96
LIU54 32.17 37.99 52.51 55.69
Clinc150 66.11 88.28 93.11 94.37
Average 47.17 66.97 79.16 79.51

LLaMA2-70B-Chat

Banking77 33.44 37.34 71.43 61.36
HWU64 39.09 27.27 81.82 78.90
LIU54 35.04 27.95 63.78 49.61
Clinc150 52.44 37.33 85.78 73.99
Average 40.00 32.47 75.70 65.97

Qwen-72B-Chat

Banking77 42.21 71.75 80.52 79.55
HWU64 56.36 72.73 85.45 91.82
LIU54 31.50 53.94 63.78 58.27
Clinc150 61.78 86.67 93.33 94.67
Average 47.96 71.27 80.77 81.08

Table 1: HIT@5 performance evaluation for the reduc-
tion stage. We compare the effectiveness of our two
self-reduction strategies, ITR and CBWR, against LLM
employing either a standard reduction prompt (P) or
paired with a self-consistency technique (SC). The best
results are highlighted in bold, and the second best re-
sults are underlined.

Given that the size of R is typically small, our
approach ensures a cost-efficient performance.

Algorithm 1 PC-CoT
Require: Input x, reduced label options R =
{y1, y2, · · · , yr}, language model pθ , training set
D, similar analysis prompt Sim, difference analysis
prompt Diff and decision prompt Dec.

1: while |R| > 1 do
2: Select two label options {y1, y2} fromR
3: R = R\{y1, y2}
4: Sample demonstrations pairs {x, y} ∈ D for
{y1, y2} as Sy1 , Sy2

5: S ← Sy1 ∪ Sy2

6: Sample zs ∼ pSimθ (z | x, S, {y1, y2})
7: Sample zd ∼ pDiffθ (z | zs, x, S, {y1, y2})
8: Predict yp ∼ pDecθ (y | zs, zd, x, S, {y1, y2})
9: R = R∪ {yp}

10: end while
11: return R

4 Experiments

To evaluate the performance of our framework,
we choose four widely recognized classification
datasets, including: Banking77 (Casanueva et al.,
2020) with 77 labels in the banking services do-
main; HWU64 (Casanueva et al., 2020) of 64 in-
tents from 21 different domains; LIU54 (Liu et al.,
2021) of 54 classes gathered from Amazon Me-
chanical Turk; Clinc150 (Larson et al., 2019) cov-
ering 150 classes and 10 domains. Notice that we
sample challenging segments from these datasets
to reduce the experiment cost. The comprehensive
sampling process and supervised performance are
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Model Dataset Full Options Our Framework

ZS ZS-CoT FS FS-CoT ZS ZS-CoT FS FS-CoT PC-CoT

gpt-3.5-turbo

Banking77 30.81±2.80 37.39±1.97 41.91±2.97 47.40±0.65 44.43±2.22 45.19±3.09 50.06±4.33 47.53±2.87 61.82±2.57
HWU64 41.48±2.88 60.59±1.99 56.05±1.34 57.54±4.89 52.43±0.11 54.46±0.25 59.05±0.22 58.79±0.27 65.09±0.87
LIU54 29.30±0.42 31.83±1.17 36.37±0.17 35.39±2.76 33.95±2.62 32.34±1.91 36.39±3.38 31.67±2.35 37.35±3.75
Clinc150 59.03±1.37 68.61±0.55 78.77±3.16 76.71±0.47 77.68±3.25 72.12±0.17 78.75±3.54 81.29±2.12 83.78±3.84
Average 40.24±1.24 49.60±1.42 53.27±1.91 54.26±2.19 52.12±2.05 51.03±1.35 56.06±2.87 54.82±2.33 62.01±2.33

LLaMA2-70B-Chat

Banking77 32.04±4.55 32.14±3.19 27.27±3.10 35.71±4.50 41.56±1.26 27.93±0.31 50.54±2.28 31.60±1.60 49.91±1.01
HWU64 43.94±5.48 7.57±0.53 31.21±6.82 42.73±2.73 50.91±1.99 30.31±0.52 61.21±2.78 40.61±3.20 50.61±1.39
LIU54 29.13±1.80 10.37±7.04 8.66±3.61 30.05±2.98 33.86±1.68 25.98±0.68 36.22±6.58 29.26±0.23 38.97±2.19
Clinc150 43.70±2.72 5.19±1.03 38.67±9.69 52.74±9.90 68.44±1.77 42.07±0.25 82.22±3.11 55.26±2.00 73.33±2.10
Average 37.20±3.64 13.82±2.95 26.45±5.80 40.31±5.03 48.69±1.67 31.57±0.44 57.55±3.69 39.18±1.76 53.21±1.67

Qwen-72B-Chat

Banking77 43.83±1.84 42.05±0.23 48.70±3.21 47.89±2.06 49.68±0.46 44.97±0.23 53.09±4.82 60.07±5.06 61.69±0.92
HWU64 54.55±2.57 56.82±4.50 55.00±0.64 57.73±0.64 43.64±0.53 47.73±0.64 60.46±3.22 56.82±0.64 63.64±1.29
LIU54 32.68±5.56 31.10±1.67 40.36±4.18 36.62±0.56 31.70±0.28 29.53±0.15 39.37±2.79 38.78±0.28 41.73±1.12
Clinc150 57.11±0.95 58.00±2.21 73.56±2.20 73.56±4.08 67.34±0.32 63.12±0.63 63.11±3.78 83.78±0.31 84.89±0.49
Average 47.04±2.73 46.99±2.15 54.40±2.56 53.95±1.84 48.09±0.40 46.34±0.41 54.01±3.65 59.86±1.57 62.99±0.95

Table 2: Accuracy performance evaluation of three LLMs on four challenge benchmarks. We experiment with
various LLM prompting techniques: Zero-Shot (ZS), Few-Shot (FS), Zero-Shot-CoT (ZS-CoT), and Few-Shot-CoT
(FS-CoT). We apply these techniques either with full options or within our reduction-then-pairwise-comparison
framework. Our comparison algorithm, PC-CoT, is used within our framework. For gpt-3.5-turbo, we employ
3-shot for fewshot demonstrations, while for LLaMA2 and Qwen, we use 5-shot. The best results are highlighted in
bold, and the second best results are underlined.

detailed in Appendix A.2. Our experiments primar-
ily utilized gpt-3.5-turbo alongside open-source
models like LLaMA2-Chat and Qwen-Chat series.
Here we use the instruction versions of models
for better instruction following ability. We set the
temperature to 0 for all models across different
experiments.

4.1 Evaluation For the Reduction Stage
Setups. For evaluating the performance of the re-
duction stage and our self-reduction algorithm, we
configure the size of the reduced set as |R| = 5 and
report the HIT@5 metric on the benchmark. This
metric measures the proportion of instances where
the correct label is among the top 5 labels chosen
by the label reducer. We compare the effectiveness
of our two techniques, ITR and CBWR, against the
following baselines: (1) standard prompt, manually
prompts the LLM to select the top 5 labels in a
single call. (2) self-consistency (Wang et al., 2023),
which invokes the aforementioned prompt multiple
times, followed by a voting process to determine
the final results. Appendix B provides additional
details about their prompts.

Results. Table 1 provides a detailed comparison
of HIT@5 performance. It is obvious that both
self-reduction strategies ITR and CBWR consis-
tently outperform the standard prompt and the self-
consistency method by a relatively large margin.
The self-consistency approach also exhibits an ad-
vantage over the standard prompt for gpt-3.5-turbo

and Qwen-72B. However, it may degrade the per-
formance of the LLaMA2-70B model, which could
result from the differences in training data. An-
other observation is significantly low reduction
performance occurs on the LIU54 dataset. This
could be attributed to a large proportion of short
sentences in LIU54, making them challenging to
interpret and reason effectively, more details are
listed in Appendix E. Despite the above challenges,
our strategies can consistently improve the reduc-
tion performance, minimizing error propagation to
the next stage.

4.2 Evaluation For Overall Framework

Setups We primarily use accuracy as the perfor-
mance metric for our framework, considering both
the reduction and pairwise comparison stages, The
selected baselines include common prompting tech-
niques: zero-shot (ZS), zero-shot-CoT (ZS-CoT),
few-shot (FS), and few-shot-CoT (FS-CoT). We
evaluate each method in two scenarios: with and
without the reduction stage, to study the impact of
the overall framework and compare the pairwise
comparison algorithm. In the former scenario, we
prompt the LLM directly with the full set of op-
tions, while in the latter, we conduct comparison
experiments based on the CBWR result for gpt-3.5-
turbo and Qwen, and the ITR result for LLaMA2.
It is important to note that for the latter scenario, we
compare four prompting methods and our proposed
PC-CoT using the same reduction technique, to en-
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sure a fair evaluation for the comparison stage. For
the few-shot method, if the text exceeds the context
length of 4096, we randomly omit demonstrations
to reduce the context length. To avoid random er-
rors, we conduct the experiments on each dataset
five times and present the results in terms of mean
and standard variance. Appendix C provides fur-
ther details regarding the prompts.

Results As shown in Table 2, we have the follow-
ing observations:

(1) Our framework significantly improves the sta-
bility and predictability of option selection in ZS,
ZS-CoT, FS, and FS-CoT settings. Specifically, it
boosts the zero-shot performance of gpt-3.5-turbo
relatively by 11.88%, the few-shot performance of
LLaMA2 from 26.45% to 54.01% (see Section 4.4
for detail analysis), and the FS-CoT performance
of Qwen is relatively improved by 10.95%. These
results demonstrate the effectiveness of our frame-
work in mitigating ambiguity and bias.

(2) Our PC-CoT paired with our framework
stands out with the best results for gpt-3.5-turbo
and Qwen. Notably, it achieves a relative increase
of 54.1% in average accuracy over a directly se-
lected answer for gpt-3.5-turbo, from 40.24% to
62.01%. However, for LLaMA2-70B, our perfor-
mance is slightly lower than the FS method on the
Banking77 and Clinc150 benchmarks. We hypothe-
size this may have some relationship with LLaMA2
model training data, which makes it insensitive to
the chain-of-thought guidance related to classifica-
tion problems because we can observe that FS-CoT
demonstrates a degradation in performance, drop-
ping from 57.55% under FS to 39.18%.

(3) Compared to original CoT techniques, our
PC-CoT demonstrates better generality across dif-
ferent types and sizes of LLMs. While the FS-
CoT method exhibits satisfactory performance with
the Qwen model, it deteriorates the performance
of LLaMA and even hinders the zero-shot perfor-
mance of gpt-3.5-turbo on Clinc150 and LIU54.
This result suggests that the prompting method
in classification scenarios requires tailored adjust-
ments to effectively prioritize comparison for am-
biguous boundaries.

The detailed cases of all nine prompting methods
in Table 2 can be found in Appendix F.

4.3 Ablation Study of PC-CoT algorithm

As outlined in Table 3, we demonstrate the im-
pact of removing key components from our PC-

Dataset PC-CoT w/o S w/o D w/o SD

Banking77 61.82 51.53 50.18 47.34
HWU64 65.09 52.44 61.11 59.01
LIU54 37.35 30.31 31.34 33.37
Clinc150 83.78 75.68 80.22 74.65
Average 62.01 52.49 55.71 52.59

Table 3: The ablation study for our PC-CoT algorithm
(with gpt-3.5-turbo). We evaluate the performance under
various conditions: remove the similar analysis prompt
(w/o S), remove the difference analysis prompt (w/o D),
and remove both similar and difference analysis prompt
(w/o SD).

CoT. Without the similarity or difference analysis
prompt, we observe an evident performance decline
(approximately 15%). Furthermore, using only the
difference analysis prompt leads to inferior results,
supporting our belief that we need to discard the
confusable points to better extract the distinctive
features effectively. When both similarity and dif-
ference analyses are removed, our method reverts
to plain FS-CoT, thus exhibiting a performance
level similar to FS-CoT.

4.4 Debias Study

We find that our framework significantly improves
the ZS-CoT and FS performance of LLaMA2 in
Table 2. This enhancement is particularly evident
in the reduced bias effect of certain tokens, such
as “movies” and “convert” in the LIU54 dataset,
and “iot/hue_lightchange” and “recommendation/-
movies” in the HWU64 dataset. By visualizing the
confusion matrices for both datasets (Figure 5), we
can observe a noticeable shift in preferences after
applying our framework, demonstrating its effec-
tiveness. This improvement can be attributed to
our reduction technique and pairwise comparison
approach, which reduce the number of tokens and
positions considered, thereby mitigating noise inter-
ference and enhancing the capabilities of few-shot
demonstration and CoT reasoning.

4.5 Efficiency Analysis

Our method shows promising results but may re-
quire more LLM calls due to multiple iterations
for reduction and pairwise comparisons to enhance
accuracy and reduce bias. To assess the applica-
bility of our approach, we compare our inference
speed and call frequency with other methods in
Table 4. Note that all baseline methods require
multiple calls to LLMs, except for partial meth-
ods using the full option. However, the full option
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Method Full Options FS P + FS SC + FS SC + FS-CoT ITR + FS CBWR + FS CBWR+PC-CoT

#Call Avg. 1 5 12 24 9 8 12
Time / 1000 items 2min2s 11min32s 28min1s 53min1s 18min55s 14min21s 25min56s
Performance Gain 0 -0.39 +0.21 +0.19 +3.89 +5.01 +8.74

Table 4: LLM Calls Comparison
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Figure 5: The confusion matrix visualization illustrates
the debiasing effect of our framework on LLaMA70B.
In the original few-shot setting, the model showed a
preference for “movies” and “convert”, while in the
ZS-CoT setting, it preferred “iot/hue_lightchange” and
“recommendation/movies”. After applying our frame-
work, the preference bias clearly shifted.

Method Banking77 HWU64 LIU54 Clinc150

Retrieval-Augmented ICL 56.25 52.66 35.2 78.73
Ours 61.83 65.09 37.35 83.78

Table 5: Comparison with in-context learning baselines

struggles with boundary ambiguity and inherent
biases, leading to low accuracy and practical de-
ployment difficulties. Our approach significantly
outperforms other baselines by adding only a lim-
ited number of calls and achieves the highest per-
formance gain (as shown in the last line of Table
4). In contrast, self-consistency-based methods re-
quire more calls than our approach but offer limited
performance improvements. With the assistance
of technologies such as flash-attn and vLLM, we
have successfully reduced the computational over-
head of our method when calling the 70B model.
As a result, we can accurately predict 1,000 pieces
of data in just half an hour, which is significantly

Method reminder agnews bbcnews restaurant

FS-CoT 78.79 81.31 92.19 86.98
Ours 79.69 82.83 92.25 87.37

Table 6: Performance on simple text calssification tasks

faster than the multiple-call methods used in Self-
Consistency. Moreover, the future of technology
is headed towards large-scale models. It is fore-
seeable that with technological advancements, the
costs associated with API calls and model compu-
tations will decrease further. Our method, with its
enhancements addressing bias and boundary issues,
will become increasingly relevant and significant in
solving real-world classification problems. There-
fore, we believe that the scaling trend of language
models will elevate the importance of our method
in the future.

4.6 In Context Learning

We experiment with a similar in-context learning
baseline (Milios et al., 2023) that also uses clus-
tering algorithms in a few-shot setting. As shown
in Table 5, our approach consistently outperforms
the baseline. The main reason is that clustering
similar demonstrations can blur the model’s deci-
sion boundary when options are highly confusable,
reducing performance. In contrast, our method
introduces diversity through ITR/CBWR and pro-
vides a more detailed comparison via PC-CoT.

4.7 Simple Text Classification Tasks

Our framework is appliable to simple text classi-
fication tasks and has comparable performance to
the few shot chain-of-thought method, as shown in
Table 6. In our primary experiments, we focused
on classification tasks with over 50 categories to
demonstrate our framework’s ability to handle un-
clear decision boundaries arising from numerous
options and similar, easily confused elements.

4.8 Lightweight Models

As shown in Table 7, our method still applies to
smaller models. While the 14B model outperforms
other baselines, the Qwen 1.8B model slightly un-
derperforms compared to the Few-Shot CoT meth-
ods. Because smaller models (<10B) may struggle
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Model Dataset Full Options Our Framework

ZS ZS-CoT FS FS-CoT ZS ZS-CoT FS FS-CoT PC-CoT

Qwen-1.8B-Chat

Banking77 18.18 17.53 4.87 24.68 26.62 23.7 19.16 31.82 19.16
HWU64 21.82 22.73 4.55 15.45 24.55 26.36 20.04 29.09 23.64
LIU54 17.32 17.32 0.79 18.11 23.62 20.47 17.72 20.08 17.32
Clinc150 30.22 33.78 5.78 20.89 39.11 33.78 35.56 54.22 25.78

Qwen-14B-Chat

Banking77 33.44 33.12 38.64 46.43 35.06 26.62 51.95 46.10 56.82
HWU64 40.01 41.82 47.27 50.02 37.27 38.18 55.45 53.64 62.73
LIU54 29.53 27.95 31.50 27.95 31.10 25.98 37.40 32.28 38.19
Clinc150 53.78 52.44 58.22 67.11 55.56 42.22 77.78 73.78 82.67

Table 7: Performance Comparison of LightWeight LLMs

with tasks such as instruction following and gen-
erating high-quality few-shot examples, as high-
lighted in prior research (Fu et al., 2023).

5 Related Work

Text Classification Traditional text classification
approaches typically involve feature extraction by
RNN (Xie et al., 2020), GCN (Lin et al., 2021),
or Transformers (Chai et al., 2020). These fea-
tures are subsequently input into a classifier head
and assigned the corresponding label. To deal
with the common data scarcity issue, the meta-
learning paradigm emerges to identify novel cat-
egories with minimal labeled examples by lever-
aging prior knowledge acquired from known cat-
egories(Chen et al., 2022; Gao et al., 2021; Jiang
et al., 2023; Liu et al., 2023; Sung et al., 2023).
Nonetheless, these approaches require supervised
fine-tuning and exhibit limited applicability. The
powerful capabilities of modern LLMs enable zero-
shot or few-shot classification without necessitat-
ing model update (Fei et al., 2023; Loukas et al.,
2023). Despite these advancements, the explo-
ration of LLM-based classification methodologies
in addressing practical challenges, such as coping
with ambiguous boundaries and inherent bias, re-
mains underexplored.

Chain of Thought Wei et al. (2022b) introduces
few-shot chain-of-thought, enriching LLM reason-
ing capabilities by incorporating intermediate rea-
soning steps in each demonstration. Kojima et al.
(2022) highlights the efficacy of a straightforward
prompt, “Let’s think step by step”, in enhancing
zero-shot reasoning. While recent investigations
have explored diversifying demonstrations (Zhang
et al., 2022) or modeling the reasoning process us-
ing tree and graph structures (Yao et al., 2023; Lei
et al., 2023a), the realm of classification problems
continues to lack specialized CoT methods to com-

bat ambiguity and bias. THOR (Fei et al., 2023) ex-
clusively addresses sentiment analysis, sequentially
inducing aspects and opinions for sentiment identi-
fication. CARP (Sun et al., 2023) focuses on sim-
ple classification problems with only 2-4 options
and utilizes supervised fine-tuning of the model,
which is impractical in more complex classifica-
tion scenarios. In contrast, we focus on handling a
large number of label options and subtle semantic
differences. We also address the migration of pref-
erences for tokens and positions, enabling seamless
integration into a wide range of text classification
tasks.

6 Conclusions

In this paper, we investigate the vulnerability of
LLMs in terms of option quantity and arrangement
for text classification tasks. Our empirical anal-
ysis reveals that the main challenges lie in their
ambiguous decision boundaries and inherent biases
towards tokens and positions. To mitigate these
challenges, we propose a novel two-stage classifi-
cation framework for LLMs, involving reduction
and comparison stages. This framework strategi-
cally employs pairwise comparisons to address am-
biguity and bias. Additionally, we introduce inno-
vative self-reduction algorithms, including ITR and
CBWR strategies, and our PC-CoT, a contrastive
chain-of-thought technique, to enhance the frame-
work’s utility. Extensive experiments demonstrate
our framework can bring improvement to the sta-
bility and debiasing for various prompting tech-
niques. Our ITR and CBWR methods prove highly
effective for reduction, while our PC-CoT exhibits
superior performance in classification accuracy.

Limitations

Though our method significantly outperforms other
baselines by adding only a limited number of calls
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and achieves the highest performance gain, it does
increase the number of LLM calls. For some
smaller-scale LLMs, their limited reasoning abil-
ity can impede precise reduction and comparisons,
potentially diminishing the effectiveness of our
method.

Ethics Statement

In this study, the classification datasets and LLM
responses used in our experiments only serve the
specific purposes of evaluating our proposed ap-
proach. To address ethical considerations, we have
incorporated a rule-based filter during our chal-
lenge set sampling process to exclude offensive
and sensitive information. Our study investigates
position bias and token bias during the classifica-
tion process. Our algorithms help LLMs focus
more on the actual content of options rather than
making shortcut predictions based on preferences
for specific tokens and positions, which is crucial
for debiasing LLMs.
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A More Detail of Preliminary Study And
Dataset

A.1 Full result for Figure 3
In Figure 6a, we observe that across various LLM
sizes and types, including LLaMA, Qwen, and
gpt-3.5-turbo, we consistently observe a decline
in performance as the number of options increases.
Different LLMs may exhibit varying degrees of
performance downgradations in response to the in-
creased number of options, with the gpt-3.5-turbo
series demonstrating heightened stability. The chal-
lenge persists even with longer contextual LLMs,
though they may show a more gradual performance
decline. This observation suggests that the noise
stemming from the proliferation of options remains
a significant obstacle in the landscape of LLMs.

In Figure 6b, we discern a significant bias caused
by the position of the correct choice, especially ev-
ident in open-source models such as LLaMA and
Qwen, resulting in performance fluctuations ex-
ceeding 50%. In contrast, gpt-3.5-turbo demon-
strates minimal effects, with fluctuations below
10%, highlighting its superiority over open-source
counterparts. This lack of robustness can be at-
tributed to the inherent position bias inherent in
LLMs, as elucidated by Pezeshkpour and Hr-
uschka (2023). The bias in option positions be-
comes particularly apparent when the span of op-
tion choices is extensive, as the prolonged con-
text amplifies the imbalance in position, presenting
challenges for maintaining stable performance in
classification problems.

In Figure 7, we show the full confusion matrix
from Figure 3c. A preference for “movies” and
“convert” tokens can be clearly observed regard-
less of the golden label. Similar token biases are
also observed for “iot/hue_lightchange” and “rec-
ommendation/movies” for LLaMA on the HWU64
benchmark, or neglect the “music”, “query”, and
“quirky“ for the Qwen model.

The long-context ability of LLM is insufficient
in managing an increasing number of options or
their respective positions. Despite the common in-
tuition that extended context should aid generative
models in handling larger label sets, we find that
performance diminishes with a growing number
of labels, coupled with a persistent bias towards
specific option positions. This is exemplified by
comparisons such as gpt-3.5-turbo-1106 (16k con-
text length) versus gpt-3.5-turbo-0613 (4k context
length) and LongAlpaca (32k context length) ver-

sus LLaMA-13B (4k context length). Although a
longer context does impart stability and smooth-
ness in the face of increased options, challenges
persist concerning both the number and positioning
of options. the LongAlpaca-32k also suffers from
50% performance fluctuation when changing the
golden option to 50th position.

The In-context examples may reduce option bias
for large models while altering the distribution. Ex-
amining in-context examples, we observe a reduc-
tion in bias for larger models like LLaMA-2-70B
and Qwen-72B when moving from zero-shot to
3-shot demonstrations, while this effect is less pro-
nounced for smaller models. Additionally, we note
distinct bias distributions between 3-shot and zero-
shot scenarios, suggesting that in-context examples
may alter options position bias distributions. In
contrast, for experiments involving varying num-
bers of options, the trends observed in few-shot and
zero-shot scenarios remain essentially consistent.

A.2 Challenge Set Sampling

To align with real-world application scenarios, we
employed a sampling strategy for a more chal-
lenging subset from these datasets (only their
original test splits) by the precision margin (Li
et al., 2023), M(f(x)) := max(0,maxyfy(x) −
maxk ̸=yfk(x), which is an indicator of the confi-
dence of the base classifier f (the supervised fine-
tuned BERT model). i.e., the difference between
the largest and second-largest label probability for
every data item in the test dataset. A smaller predic-
tion margin correlates with decreased confidence
in the prediction, representing a more challenging
setting. As for the training dataset, we randomly
sample five items from their training splits as our
few-shot demonstrations.

A.3 Supervised Finetuning Performance on
the challenge set

To better illustrate how challenging our curated
dataset is, we select a series of encoder-only models
and decoder-only LLMs for supervised fine-tuning
(SFT) in a few-shot setting. For the encoder-only
series, we fine-tune them for 30 epochs. For the
decoder-only series, due to the huge SFT cost, we
only select TinyLLaMA-1.1B and Qwen-1.8B. We
employ an alpaca format for fine-tuning (with the
following prompt). The details of the results are
listed in Table 8.
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This simple option arrangement can lead to dramatic performance fluctuations in both zero-shot and few-shot scenarios.

Figure 6: The Full result for Figure 3a and Figure 3b

Shot Dataset BERT-base RoBerta-base BERT-Large RoBerta-large Llama-1.1B Qwen-1.8B

K=1

Banking77 1.95 1.30 2.60 4.22 28.90 53.25
Clinc150 1.33 0.89 1.78 6.67 45.78 60.44
LIU54 2.76 4.33 7.09 4.33 24.02 39.37
HWU64 5.45 1.82 0.91 3.64 16.36 53.64
Avg. 2.87 2.08 3.09 4.71 28.76 51.67

K=5

Banking77 0.32 6.49 1.30 0.32 40.58 70.45
Clinc150 7.56 36.44 15.11 47.56 68.00 79.56
LIU54 8.66 16.14 9.84 14.17 29.92 50.39
HWU64 6.36 18.18 21.82 32.73 47.27 65.45
Avg. 5.73 19.32 12.02 23.70 46.44 66.46

Table 8: Accuracy performance evaluation of encoder-only and decoder-only models.

FineTuning Prompt
Below is an instruction that describes a

task. Write a response that appropriately

completes the request.

### Instruction:

Given the sentence: "{text}", please select

the most possible topic from the following

OPTIONS: {options}.

### Response:

Table 8 indicates that the challenge datasets cho-
sen pose significant difficulties for both BERT and
RoBERTa, even when utilizing their larger versions

and fine-tuning them for 30 epochs. With only five
demonstrations, BERT achieves a mere 12.02%
accuracy, while RoBERTa fares slightly better at
23.70%. In contrast, decoder-only language mod-
els, particularly Qwen-1.8B, demonstrate better
performance than BERT and RoBERTa. How-
ever, this superior performance is contingent upon
resource-intensive fine-tuning processes and may
suffer from limited generalizability, thereby con-
straining their practical applicability.
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B Detail of the Reduction Stage

Standard Reduction Prompt
Consider the sentence: "{text}"

Please select {top_k}most possible topic

from following OPTIONS: {options}.

CHOICE:

The self-consistency, our ITR, and CBWR tech-
niques employ the same reduction prompt as ex-
emplified above. The specific procedural steps for
CBWR are delineated in Algorithm 2.

Algorithm 2 Self-Reduction (CBWR)
Require: Input sentence x, full options set Y =
{y1, y2, · · · , yN}, LLM pθ , selection prompt Sel,
selection number N , step limit T

1: Initialize the selection set S = Y
2: for t = 1 to T do
3: Cluster the option set S into K clusters
4: W → {}
5: for each cluster i from 1 to K do
6: Randomly select options from cluster i
7: add them into the window W
8: end for
9: Select candidate set C from W :

C ← Top-N
(
{y | pSelθ (y | x,W )}

)

10: Determine the discard option set D = W \ C
11: Update the remaining candidates S ← S \ D
12: end for
13: return the remaining selection set S

C Detail of the Comparison Stage

C.1 Baseline Using Full Options

In this section, we list the prompt used in baselines
without label reduction, i.e., the LLM is prompted
to directly choose the correct label from the com-
plete set of options.

Zero-Shot Prompt
Given the sentence: "{text}"

Please select the most possible topic from

the following OPTIONS: {options}

CHOICE:

Zero-Shot-CoT Prompt
Given the sentence: "{text}"

Please select the most possible topic from

the following OPTIONS: {options}

Let's think step by step and give your

explanation to verify your answer:

Few-Shot Prompt
Below is a text classification problem,

Note that you can only select the label in

{options}

SENTENCE: {text1}

LABEL: {label1}

...

SENTENCE: {text}

LABEL:

Few-Shot-CoT Prompt
Below is a text classification problem,

Note that you can only select the label in

{options}. Let's think step by step and give

your explanation to verify the answer.

SENTENCE: {text1}

EXPLANATION: {explain1}

LABEL: {label1}

...

SENTENCE: {text}

LABEL: {label}

EXPLANATION:

Notice that we obtain the explanation demon-
strations for Few-Shot-CoT by prompting LLM to
automatically generate the explanation according
to the golden label without human annotation. The
prompt is as follows:

Few-Shot-CoT Explanation Generation
Below is a text classification problem.

Let's think step by step and give your

explanation to verify the SENTENCE label:

SENTENCE: Fears for T N pension after talks

Unions representing workers at Turner Newall

say they are 'disappointed' after talks with

stricken parent firm Federal Mogul.

LABEL: Business

EXPLANATION: The statement discusses talks

between unions and a parent firm, which

relates to business-related negotiations and

concerns regarding pensions.

SENTENCE: {text}

EXPLANATION:

C.2 Baselines with Pairwise Reduction

Here, we present the pairwise prompt used in base-
lines with label reduction. The LLMs are instructed
to compare options in pairs within the refined set
obtained from the first stage.
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Zero-Shot Pairwise Prompt
Which term is more likely to represent

the topic of "{text}" - "{label1}" or

"{label2}"?

Zero-Shot-CoT Pairwise Prompt
Which term is more likely to represent

the topic of "{text}" - "{label1}" or

"{label2}"?

Let's think step by step and give your

explanation to verify your answer:

Few-Shot Pairwise Prompt
Below is a text classification problem,

please complete the sentence by "{label1}"

or "{label2}":

SENTENCE: {text1}

LABEL: {label1}

...

SENTENCE: {text}

LABEL:

Few-Shot-CoT Pairwise Prompt
Below is a text classification problem.

Let's think step by step and give your

explanation to verify which term is more

likely to represent the label of the

sentence - "{label1}" or "{label2}":

SENTENCE: {text1}

EXPLANATION: {explain1}

LABEL: {label1}

...

SENTENCE: {text}

EXPLANATION:

C.3 Our PC-CoT Prompt

Our proposed contrastive elimination methodology,
PC-CoT, consists of three key stages: similarity
analysis, difference analysis, and final decision-
making. Specific system instructions and prompts
for the three stages are provided below.

Instruction
Below is a text classification problem:

SENTENCE: {text1}

LABEL: {label1}

SENTENCE:{text2}

LABEL: {label2}

Similarity Analysis
The phrases can often be mistaken for

"{label1}" and "{label2}", due to certain

shared characteristics.

SHARED ASPECTS:

Difference Analysis
Next, diligently contrast the deviations

between these two topics, putting aside the

mentioned shared characteristics. Concisely

explain, what is the key element that sets

them apart?

CONTRASTING POINTS:

DecidePrompt
After scrutinizing the presented SHARED

ASPECTS and CONTRASTING POINTS, which term

- "{label1}" or "{label2}" - would be a

more accurate representation for the label

of {text}? Provide the final label in the

format "LABEL: a".

D Detail of Decision Boundary Ambiguity

The silhouette score is a metric used to quantify
the compactness and separation of clusters within
a dataset. In the context of our study on text data
classification, the silhouette score provides insight
into the overlap between different class samples. It
is calculated for each data point using the formula:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (3)

Here, a(i) is the average distance of a data point
i to other points within the same cluster, and b(i) is
the smallest average distance to points in a different
cluster. The overall silhouette score for the dataset
is the average of these individual scores, denoted
as S:

S =
1

N

N∑

i=1

s(i) (4)

where N is the total number of data points. So
A higher silhouette score indicates clearer clusters
and distinct separation suggesting a more evident
decision boundary and facilitating classification.
Conversely, a lower score suggests increased over-
lap between class boundaries, indicating a more
ambiguous decision boundary.

Figure 9 conducts an ablation study on the num-
ber of categories. From left to right, we add a
new category (in dark blue), leading to increased
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(b) A lower silhouette score suggesting overlapping
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Figure 9: Visualization of silhouette scores and decision boundaries

overlap with existing categories (particularly or-
ange, green, and light blue), resulting in ambiguous
boundaries. This overlap is reflected in the decreas-
ing silhouette score, highlighted by the red line.
Notably, Figure 8 demonstrates a clear positive cor-
relation between silhouette score and accuracy, mo-
tivating our introduction of a self-reduction stage
to decrease the number of categories.

E The LIU54 Dataset

The challenge posed by the LIU54 dataset, as ev-
idenced by the difficulty encountered by even ad-
vanced language models like gpt-3.5-turbo and
Qwen-72B, underscores a significant obstacle
in natural language understanding. Despite the
formidable capabilities of these models, they strug-
gle to achieve satisfactory performance, often
achieving accuracy rates of only around 30% using
conventional baselines. A closer examination of
LIU54 reveals that its difficulty primarily stems
from the brevity of its sentences, which hinders
effective interpretation and reasoning. This obser-
vation underscores the importance of enhancing
the capacity of large language models to capture
subtle semantic nuances, particularly in the context

of classification tasks. Overall, this highlights a
critical area for improvement in the development
of language understanding technologies.

Semantic incompleteness
sentence: search
golden: factoid
prediction: query

sentence: Investing
golden: quirky
prediction: stock

Label mismatch
sentence: What’s a parsec?
golden: factoid
prediction: definition

sentence: how we calculate
golden: sendemail
prediction: maths

sentence: Add that song to my
playlist.
golden: likeness
prediction: Music
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Figure 10: Visualization of bad cases of three LLMs on LIU54.

Multi-label
sentence: Set a notification for
sports game
golden: set
prediction: game

sentence: Is the brightness of my
screen running low?
golden: quirky
prediction: hue_lighton

sentence: What time does the downtown
parade start?
golden: query
prediction: events

We analyzed failed predictions by various Lan-
guage Model (LLM) architectures using a confu-
sion matrix (see Fig. 10) and presented selected
failed cases above. Our findings reveal striking
similarities in the confusing classes identified by
the three LLMs. We categorize the failed cases into
three overarching types: (i) Semantic Incomplete-
ness, (ii) Label Mismatch, and (iii) Text Contents
of Multiple Classes.

Semantic incompleteness refers to grammati-
cally incomplete sentences typically comprised of
a few words, such as ’search’, ’Investing’, ’Bingo’,
etc. Label mismatch occurs when the assigned la-
bel from the original dataset is inappropriate; for
example, ’What’s a parsec?’ is more fittingly cat-
egorized as "definition" rather than "factoid". In
cases of multi-label content, sentences express mul-
tiple aspects that satisfy multiple categories concur-
rently. For instance, ’What time does the downtown
parade start?’ fulfills both the ’query’ and ’events’
class criteria simultaneously.

Based on our analyses, we posit that confus-
ing labels within the test set of the LIU54 Dataset
may introduce bias into results. However, it also

presents an opportunity for evaluating the compati-
bility of different LLMs, thus serving as a challeng-
ing benchmark task.

F Case Study

We present the complete set of options and detailed
cases for the pairwise comparison framework, rang-
ing from Table 9 to Table 17, along with additional
reduction cases outlined in Table 18.
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ZERO-SHOT

Q: Given the sentence: "So I just put my top-up into the card and it hasn’t changed." Please select the
most possible topic from the following options.
OPTIONS: pending_top_up, top_up_failed, topping_up_by_card, card_not_working, bal-
ance_not_updated, ...
CHOICE:

A: The most possible topic for the given sentence is topping_up_by_card. ✗

Table 9: Zero-shot reasoning example for the classification problem on the BANKING77 dataset using the gpt-3.5-
turbo model.

FEW-SHOT

Q: Below is a text classification problem, Note that you can only select labels in pending_top_up,
top_up_failed, topping_up_by_card, card_not_working, balance_not_updated, ...
SENTENCE: How long will it take for my cash withdrawal to no longer show as pending?
LABEL: pending_cash_withdrawal
...
SENTENCE: So I just put my top-up into the card and it hasn’t changed.
LABEL:

A: card_not_working ✗

Table 10: Few-shot reasoning example for the classification problem on the BANKING77 dataset using the gpt-3.5-
turbo model.

ZERO-SHOT COT

Q: Given the sentence: "So I just put my top-up into the card and it hasn’t changed." Please select the
most possible topic from the following options.
OPTIONS: pending_top_up, top_up_failed, topping_up_by_card, card_not_working, bal-
ance_not_updated, ...
Let’s think step by step and verify your answer:

A:Based on the given sentence "So I just put my top-up into the card and it hasn’t changed," the most
relevant topic seems to be top_up_failed. This is because the user mentions putting a top-up into the card,
and there is an indication that something has not changed as expected. ✗

Table 11: Zero CoT reasoning example for the classification problem on the BANKING77 dataset using the
gpt-3.5-turbo model.
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FEW-SHOT COT

Q: Below is a text classification problem, Note that you can only select labels in pending_top_up,
top_up_failed, topping_up_by_card, card_not_working, balance_not_updated, ... Let’s think step by step
and give your explanation to verify the answer.
SENTENCE: I topped up but it isn’t in my account
EXPLANATION: The statement is about a user’s concern regarding a top-up that has not been reflected
in their account, which is related to a pending transaction or issue with their account balance.
LABEL: pending_top_up
...
SENTENCE: So I just put my top-up into the card and it hasn’t changed.
EXPLANATION:

A: The sentence is about a user who has topped up their card with money, but the balance has not been
updated. This issue is related to the balance not being updated after a bank transfer, which falls under the
label balance_not_updated_after_bank_transfer.
LABEL: balance_not_updated ✗

Table 12: Few-shot CoT reasoning example for the classification problem on the BANKING77 dataset using the
gpt-3.5-turbo model.

ZERO-SHOT PAIRWISE

Q: Which term is more likely to represent the topic of "So I just put my top-up into the card and it hasn’t
changed." - "top_up_failed" or "pending_top_up"?

A: The term " top_up_failed" is more likely to represent the topic of "So I just put my top-up into the
card and it hasn’t changed." ✗

Table 13: Zero-shot pairwise reasoning example for the classification problem on the BANKING77 dataset using
the gpt-3.5-turbo model.

FEW-SHOT PAIRWISE

Q: Below is a text classification problem, please complete the sentence by "top_up_failed" or "pend-
ing_top_up":
SENTENCE: I topped up but it isn’t in my account
LABEL: pending_top_up
...
SENTENCE: So I just put my top-up into the card and it hasn’t changed.
LABEL: "

A: top_up_failed ✗

Table 14: Few-shot pairwise reasoning example for the classification problem on the BANKING77 dataset using the
gpt-3.5-turbo model.
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ZERO-SHOT COT PAIRWISE

Q: Which term is more likely to represent the topic of "So I just put my top-up into the card and it hasn’t
changed." - "top_up_failed" or "pending_top_up"? Let’s think step by step.

A:Based on the given statement, the term "top_up_failed" is more likely to represent the topic. This is
because the statement suggests that the top-up process did not work as expected, indicating a potential
failure in the top-up transaction. ✗

Table 15: Zero-shot CoT pairwise reasoning example for the classification problem on the BANKING77 dataset
using the gpt-3.5-turbo model.

ZERO-SHOT COT PAIRWISE

Q: Below is a text classification problem. Let’s think step by step and give your explanation to verify
which term is more likely to represent the label of the sentence - "top_up_failed" or "pending_top_up":
SENTENCE: Why has my top up failed?
EXPLANATION: The statement directly mentions a failed top-up, indicating that there was an issue with
adding additional funds or credits to something. This is a specific problem related to a top-up process,
hence the label "top_up_failed."
LABEL: top_up_failed
...
SENTENCE: So I just put my top-up into the card and it hasn’t changed.
EXPLANATION:

A: The statement mentions putting a top-up into a card, but it also mentions that it hasn’t changed. This
suggests that there may be an issue with the top-up process, indicating a "top_up_failed" label.
LABEL: top_up_failed ✗

Table 16: Zero-shot CoT pairwise reasoning example for the classification problem on the BANKING77 dataset
using the gpt-3.5-turbo model.
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PC-COT (Ours)

Q: Below is a text classification problem:
SENTENCE: My top-up didn’t go through
LABEL: top_up_failed
SENTENCE:why isn’t my top-up going through?
LABEL: pending_top_up
...
The phrases can often be mistaken for "top_up_failed" and "pending_top_up", due to certain shared
characteristics.
SHARED ASPECTS:

A: - Mention of "top-up" or "top up"
- Mention of the action not going through or failing
- Expressions of confusion or concern about the status of the top-up

Q:Next, diligently contrast the deviations between these two topics, putting aside the mentioned shared
characteristics. Concisely explain, what is the key element that sets them apart?
CONTRASTING POINTS:

A: The key element that sets apart the "top_up_failed" and "pending_top_up" topics is the specific focus
of the phrases.
- "top_up_failed" phrases primarily focus on the fact that the top-up has failed or is not working. They
express frustration or confusion about why the top-up did not go through and may ask for reasons or
explanations for the failure.
- On the other hand, "pending_top_up" phrases primarily focus on the status or confirmation of the top-up.
They express uncertainty or concern about whether the top-up has gone through or not. These phrases often
ask for information about why the top-up is still pending or how to determine if it has been successful.
In summary, the key element that sets them apart is the specific emphasis on the failure of the top-up in
"top_up_failed" phrases and the uncertainty about the status of the top-up in "pending_top_up" phrases.

Q:After scrutinizing the presented SHARED ASPECTS and CONTRASTING POINTS, which term -
"top_up_failed" or "pending_top_up" - would be a more accurate representation for the label of So I just
put my top-up into the card and it hasn’t changed.? Provide the final label in the format "LABEL: a".

A: Based on the shared aspects and contrasting points provided, the sentence "So I just put my top-up
into the card and it hasn’t changed" seems to align more closely with the "pending_top_up" label. This
is because the sentence expresses uncertainty or concern about the status of the top-up, indicating that
it hasn’t changed and implying that the user is unsure whether the top-up has been successful or not.
Therefore, "pending_top_up" would be a more accurate representation of the label in this case. LABEL:
pending_top_up ✓

Table 17: PC-CoT reasoning example for the classification problem on the BANKING77 dataset using the gpt-3.5-
turbo model.
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Sentence So I just put my top-up into the card and it hasn’t changed.
Label pending_top_up

Reduce CBWR ITR
verify_top_up
top_up_failed
balance_not_updated_after_bank_transfer
pending_top_up
top_up_by_card_charge

top_up_reverted
top_up_by_card_charge
top_up_failed
balance_not_updated_after_bank_transfer
topping_up_by_card

Sentence I made a transfer and am still waiting.
Label balance_not_updated_after_bank_transfer

Reduce CBWR ITR
failed_transfer
transfer_into_account
balance_not_updated_after_bank_transfer
pending_transfer
transfer_not_received_by_recipient

pending_transfer
transfer_not_received_by_recipient
transfer_timing
transfer_fee_charged
failed_transfer

Sentence Where can I get my card at?
Label order_physical_card

Reduce CBWR ITR
card_delivery_estimate
card_arrival
getting_spare_card
order_physical_card
get_physical_card

get_physical_card
card_arrival
activate_my_card
card_delivery_estimate
getting_virtual_card

Table 18: Examples of CBWR and ITR reduction techniques. The reduction process aims to retain a subset of
options with high similarity from a large pool of options as much as possible.
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