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Abstract

We introduce ALARM, the first framework
modeling hierarchical rewards in reinforcement
learning from human feedback (RLHF), which
is designed to enhance the alignment of large
language models (LLMs) with human prefer-
ences. The framework addresses the limitations
of current alignment approaches, which often
struggle with the inconsistency and sparsity
of human supervision signals, by integrating
holistic rewards with aspect-specific rewards.
This integration enables more precise and con-
sistent guidance of language models towards
desired outcomes, particularly in complex and
open text generation tasks. By employing a
methodology that filters and combines multiple
rewards based on their consistency, the frame-
work provides a reliable mechanism for improv-
ing model alignment. We validate our approach
through applications in long-form question an-
swering and machine translation tasks, employ-
ing gpt-3.5-turbo for pairwise comparisons,
and demonstrate improvements over existing
baselines. Our work underscores the effective-
ness of hierarchical rewards modeling in refin-
ing LLM training processes for better human
preference alignment. We release our code at
https://ALaRM-fdu.github.io.

1 Introduction

Current LLM-assisted AI systems have shown re-
markable performance in a wide range of tasks
(Brown et al., 2020; Chen et al., 2021; Touvron
et al., 2023; Wang et al., 2024), and benefit from
different forms of human supervision signals (Wei
et al., 2022; Stiennon et al., 2020). While super-
vised learning relies on human-written demonstra-
tions to unlock the emergent abilities gained from
pretraining on huge text and code corpora, RLHF
utilizes generation comparisons labeled by humans
to further fine-tune the LLMs for better alignment
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Figure 1: Illustration of our key ideas. The pretrained
policies are first supervised fine-tuned on human-written
demonstrations and then trained through RLHF given a
holistic reward learned from human comparisons. The
shadowed "superior area" better aligns with human pref-
erence, which is hard to reach for solely a noisy holistic
reward. We propose to utilize multiple rewards hierar-
chically for more accurate and consistent supervision
signals and thus guide the policies into the superior area.

with human expectations, which has been demon-
strated to be able to reduce undesired model gen-
erations like harmful contents (Bai et al., 2022) or
hallucinations (Ouyang et al., 2022).

However, human oversight capabilities are finite.
As recent LLMs are capable of doing more com-
plex work and even surpass human performance in
some areas, it becomes more difficult to write good
enough demonstrations even for human experts
(Lai et al., 2023). Comparisons between several
model generations can be intuitively easier to get
from a crowd-sourcing platform though, previous
research (Krishna et al., 2023; Wu et al., 2023) has
revealed that human annotations can be inconsis-
tent and unreliable in evaluations between two or
more model outputs for complex tasks like long text
generations, producing unstable rewards in RLHF.
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While stable rewards are the key to successful re-
inforcement learning, the sparsity nature of cur-
rent holistic rewards further stresses this challenge
(Cao et al., 2024). Moreover, various scenarios
hidden behind the tasks can differentiate prefer-
ence standards (Jang et al., 2023), thus degrading
the annotation consistency and value alignment on
downstream applications, e.g., concise vs. com-
prehensive summary in text summarization, and
literary vs. technical style in machine translation.
Then we ask the question, how to get reliable and
scalable supervision signals within limited human
oversight capabilities?

To take an initial step towards addressing this
issue, we introduce a new framework ALARM
hierarchically modeling both holistic and aspect-
specific rewards, which is motivated by 1) fine-
grained RLHF (Wu et al., 2023) that categorizes
different error types for more accurate and easier
annotation, 2) task decomposition in hierarchical
reinforcement learning (Pateria et al., 2021) that
helps to overcome sparse rewards. At the core
of our framework is to seek stronger supervision
signals: As shown in Figure 1, solely using the
holistic reward can make it difficult to reach the
shadowed "superior area" which represents better
alignment with human preference. Thus we em-
ploy multiple rewards combined in a hierarchical
way to stabilize the optimization direction for more
accurate and consistent guidance into the superior
area. Firstly, we list several aspect-specific rewards
corresponding to the task and perform the selection
by their inconsistency with the holistic reward in
pairwise comparisons. Later in the RLHF train-
ing process, the chosen rewards are combined with
the holistic reward as a whole once the sampled
generation receives a high holistic reward, which
is above a certain threshold value. The aspect-
specific rewards can either come from reward mod-
els trained on comparison datasets annotated along
a specific dimension (e.g., honesty) or simply be
toolkit-calculated metrics (e.g., token count), with
an arbitrary density at either the token level or the
sequence level. In addition, we proactively trans-
form the aspect-specific rewards to guarantee that
their cumulative values are positive, thereby moti-
vating the policy to surpass the threshold for higher
returns, which enriches the effectiveness of the hi-
erarchical structure.

We apply our framework to two text generation
tasks: long-form question answering (QA) and ma-
chine translation (MT). Long-form QA represents

difficult annotations for complex tasks, and MT rep-
resents more flexible and various preference stan-
dards behind the tasks. For each of them, we em-
ploy gpt-3.5-turbo as the evaluator for pairwise
comparisons. We empirically demonstrate that our
framework outperforms the compared baselines.
The ablation studies and corresponding analyses
further show that our framework effectively pro-
vides stronger supervision signals toward human
preference in both scenarios.

Collectively, we highlight our contributions as
follows: 1) To our knowledge, we are the first to
propose a framework that hierarchically models
both holistic and aspect-specific rewards in RLHF,
2) we investigate how to perform reward selection
to mitigate rewards conflicting, 3) we demonstrate
the effectiveness of ALARM as pursuing more ac-
curate and consistent supervision signals on two
text generation tasks through comprehensive ab-
lation studies and analyses, shedding light on its
potential for scalable oversight.

2 Framework

Our framework originates from RL-based text gen-
eration (Ryang and Abekawa, 2012; Buck et al.,
2018), meanwhile modeling both holistic and
aspect-specific rewards hierarchically. We first in-
troduce the widely used RLHF. Then, we discuss
why we should do reward selection proactively, and
how we do that. After that, we present our method
of hierarchical rewards modeling in detail.

2.1 Reinforcement Learning from Human
Feedback

In the context of RL-based text generation, we
define a language model parameterized by θ as
a policy πθ. Token generation is considered a
decision-making process, and the policy completes
an episode when the language model generates an
EOS token or meets the length limit.

In this way, RLHF aims to optimize the policy πθ
to maximize the reward from a preference model R
with Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), a broadly used reinforcement
learning algorithm for human preference alignment.
The preference model R is learned on human-
annotated comparison datasets to predict a single
scalar that correctly ranks two or more model gen-
erations in the same comparison batch. The opti-
mization objective is also formulated as follows:

argmax
θ

Eτ∼πθ
[R(τ)] (1)
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Figure 2: Illustration of our framework. The reward modeling is decomposed into two parts: 1) Directly assign the
holistic reward to improve general quality, 2) combine the holistic reward and proactively selected aspect-specific
rewards as a whole reward, which is supposed to be more accurate and consistent.

where τ denotes a trajectory produced by the policy
πθ, and R(τ) is the reward associated with the
trajectory τ , as evaluated by the preference model
R. Here we see how the reward model R deeply
affects RLHF and thus it’s crucial to ensure the
accuracy and consistency of its prediction.

2.2 Reward Selection
Evaluation along a specific dimension of model
generations instead of the general quality is demon-
strated to be less noisy and more accurate for re-
ward modeling (Wu et al., 2023). Therefore, to get
more accurate and consistent supervision signals,
we first intuitively list several aspect-specific re-
wards corresponding to a certain task. However,
human preferences are intricate. Different decom-
posed aspects are interconnected and can even con-
flict with each other. A common way to balance
them is the weighted sum method, which assigns a
carefully chosen weight for each aspect-specific re-
ward, based on observations of either performance
during training or accuracy in pairwise compar-
isons (Go et al., 2024). Nevertheless, this method
still suffers from the over-optimization problem
(Moskovitz et al., 2024), where the model loses
individual information from every single aspect-
specific reward and cannot attribute changes in the
composed reward to any of them.

Our key idea, which differs from merely combin-

ing all aspect-specific rewards, is to stabilize the
supervision signals. We need a "copilot" for the
holistic reward. Thus we aim to resolve this chal-
lenge by discarding the conflicting rewards, and
we select the rewards that are mostly consistent
with the holistic reward. Therefore, we proactively
conduct pairwise comparisons between two sets of
model generations. These generations come from
the same supervised fine-tuned model but are pro-
duced using greedy decoding and pure sampling,
respectively. Then, we calculate the prediction in-
consistency by assessing whether the holistic and
aspect-specific rewards have divergent predictions
on which answer is better.

2.3 Hierarchical Rewards Modeling
Hierarchical reinforcement learning has advanced
significantly in a wide range of decision-making
tasks (Yang et al., 2018; Saleh et al., 2020; Wang
et al., 2018), decomposing complex and challeng-
ing optimization objectives into simpler sub-tasks.
Nevertheless, in contrast, existing RLHF works
typically employ a plain rewarding strategy that
linearly assigns a single holistic reward (Sun et al.,
2023) or a fixed combination of aspect-specific
rewards (Go et al., 2024), which not only poses
sparse rewards in the long-horizon optimization
but also overlooks the close relationships between
the holistic reward and the aspect-specific rewards.
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With these motivations, we propose a novel
approach that leverages both holistic and aspect-
specific rewards. In this way, we consider the opti-
mization objective that aligns the language models
with human preference, targeting the superior area
depicted in Figure 1, as a challenging decision-
making task. Thus we propose a decomposition
of this task into two less complex sub-tasks which
ought to be addressed sequentially: 1) Directly fol-
low the holistic reward until the model generation
receives a high holistic reward, which indicates
the generation is generally good and meets human
preference at a relatively high level, 2) optimize
the combination of the holistic and aspect-specific
rewards, which as a whole provides more accurate
and consistent supervision signals towards the su-
perior area. Unlike the plain weighted-sum method,
which applies combined rewards throughout the en-
tire training, our approach is more nuanced. We
primarily follow the supervision of the holistic re-
ward and gently turn the steering wheel only when
it’s insufficient to solely rely on the holistic reward
to reach the superior area.

As illustrated in Figure 2, we first follow the
regular RLHF process to sample some generations
from the policy. Then we employ a preference
model that predicts a single scalar as the holistic
reward for each of them. Here we utilize UltraRM-
13B (Cui et al., 2023) as a zero-shot reward model
to predict holistic rewards for all experiments re-
ported in this paper. For each sampled generation,
if it receives a holistic reward lower than a certain
threshold value, we directly assign it as the final
reward. Otherwise, we calculate the proactively
selected aspect-specific rewards and combine all
the rewards together. To design a more effective
hierarchical architecture for the above reward mod-
eling, we ensure that the generations receiving a
holistic reward above the threshold obtain higher
cumulative rewards than those below this threshold.
We achieve this through reward shaping, where
we transform aspect-specific rewards into positive
values using the sigmoid function.

3 Long-Form Question Answering

Long-form QA is a complicated task that aims to
produce elaborate responses covering background
information, explanations, or discussions corre-
sponding to the questions. This process is difficult
and even humans are not able to write high-quality
demonstrations or make accurate and consistent
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Figure 3: Inconsistency with the holistic reward for
listed aspect-specific rewards and win rates of the greedy
decoding against the pure sampling in long-form QA.

comparisons reliably. Following we show how we
address this issue using ALARM.

3.1 Task Settings

We utilize most of the settings and release from
Wu et al. (2023): QA-Feedback dataset, supervised
fine-tuned T5-large as the initial policy, and three
fine-grained reward models.

Dataset. QA-Feedback dataset is extracted from
ASQA (Stelmakh et al., 2022) and then trans-
formed into a task format of reading comprehen-
sion, which gives an ambiguous factoid question
and a set of related knowledge sources from the
Wikipedia corpus, and requires the language model
to generate a long-form response. QA-Feedback
has a training set of 3,853 examples, a development
set of 500, and a test set of 948 in total. And we
keep the division of this dataset in the experiment.

Initial Policy. The initial policy model is T5-
large (Raffel et al., 2020) initialized with super-
vised fine-tuning on 1K training examples.

Reward Models. We reuse the three fine-grained
reward models designed in Wu et al. (2023), which
are called the relevance reward model Rϕ1 , the
factuality reward model Rϕ2 , the completeness re-
ward model Rϕ3 , representing three categories of
different error types. They all use Longformer-base
(Beltagy et al., 2020) as the backbone model and
do predictions at different levels of density. Rϕ1

is trained to predict whether the generation con-
tains irrelevance, repetition, or incoherence errors
at the sub-sentence level, with a binary classifica-
tion accuracy of 69.6 and an F1-score of 68.5 on
the development set. Rϕ2 learns to detect incorrect
or unverified facts for each sentence according to
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Methods Holistic Reward Factuality Reward Weighted Sum ALARM Avg.

% Win Rates by the Holistic Reward

Holistic Reward - 55.86± 4.22 50.36± 0.95 49.06± 0.48 51.76± 1.66
Factuality Reward 44.13± 4.22 - 45.04± 3.73 42.73± 3.91 43.97± 3.92
Weighted Sum 49.64± 0.95 54.95± 3.73 - 48.55± 1.14 51.05± 0.67

ALARM 50.94 ± 0.48 57.27 ± 3.91 51.45 ± 1.14 - 53.22 ± 1.76

% Win Rates by the Factuality Rate

Holistic Reward - 48.31± 3.49 50.89± 1.50 44.42± 2.58 47.87± 1.48
Factuality Reward 51.68± 3.49 - 52.76± 4.01 48.70± 3.17 51.05± 3.49
Weighted Sum 49.11± 1.50 47.24± 4.01 - 44.65± 4.40 47.00± 3.00

ALARM 55.58 ± 2.58 51.30 ± 3.17 55.35 ± 4.40 - 54.08 ± 2.15

% Win Rates Evaluated by gpt-3.5-turbo

Holistic Reward - 44.11± 3.12 44.16± 6.28 40.94± 1.87 43.07± 1.81
Factuality Reward 55.88± 3.12 - 53.55± 6.09 50.77± 4.01 53.40± 4.21
Weighted Sum 55.84± 6.28 46.45± 6.09 - 46.03± 5.94 49.44± 5.93

ALARM 59.06 ± 1.87 49.23 ± 4.01 53.96 ± 5.94 - 54.08 ± 2.18

Table 1: Evaluation of win rates and corresponding standard error determined by the holistic reward, the factuality
rate, and the evaluator gpt-3.5-turbo respectively in long-form QA.

ALARM vs. Mean HR Win Rate by HR Mean FR Win Rate by FR Win Rate by gpt-3.5-turbo

Holistic Reward Tie Tie Win (3e − 5) Win (1e − 3) Win (1e − 8)

Factuality Reward Win (3e − 15) Win (1e − 11) Tie Tie Tie
Weighted Sum Win (0.01) Tie Win (2e − 4) Win (4e − 3) Win (0.02)

Table 2: Statistical testing to examine the significance of the evaluation results in long-form QA. Here HR represents
the holistic reward. FR represents the factuality rate. The orange values in parentheses represent the p-values. See
more details in Appendix B.

Methods Mean HR(↑) Mean FR(↑) Length

Holistic Reward 0.608 0.736 87.8
Factuality Reward 0.538 0.752 116.8
Weighted Sum 0.598 0.738 98.5

ALARM 0.617 0.752 97.6

Table 3: Mean rewards on the test set in long-form QA.

given knowledge sources, having an accuracy of
77.8 and an F1-score of 67.5. Rϕ3 is developed
to measure the holistic information completeness
for the full sequence, with an accuracy of 70.9 in
pairwise comparisons.

3.2 Reward Selection

Listing Corresponding Rewards. Following the
task settings, we have three aspect-specific reward
models. We also consider the response token count
as one corresponding reward in this task.

Calculating Inconsistency To proactively filter
out appropriate rewards that mostly aid the holistic
reward, together as more accurate and consistent

training signals, we conduct pairwise comparisons
to check the inconsistency with the holistic reward
of those four candidate rewards.

We first employ the initial policy to get two
sets of model generations on the training set, us-
ing greedy decoding and pure sampling respec-
tively, and two generations from different sets to
the same question form a comparison pair. For each
aspect-specific reward, we calculate the inconsis-
tency as the percentage of the pairs that the holistic
reward prefers one, while the aspect-specific re-
ward prefers another. We disregard all the ties that
have the same holistic reward. For the relevance
reward and the factuality reward, they cannot make
an apple-to-apple comparison due to their sentence
or sub-sentence level reward density. Thus we com-
pute the overall correct rate in all the slices of each
generation for direct comparison, named factuality
rate and relevance rate.

As shown in Figure 3, the factuality rate shows
significantly lower inconsistency than the other
three rewards, indicating it is more suitable to be
the "copilot" of the holistic reward. Also, we com-
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pared the win rates of the greedy decoding gener-
ations to the pure sampling ones. The win rate is
calculated as described in subsection 3.3. Note that
the factuality rate has more similar win rates to the
holistic reward, which further supports its consis-
tency. Therefore, we select the factuality reward
for hierarchical rewards modeling.

3.3 Experimental Setup

Rewards Modeling. We z-normalize the holistic
reward in a set of generations Dp which is produced
through pure sampling on the training set. The
factuality reward is shaped to positive values to
ensure the hierarchical structure by the sigmoid
function. The threshold value is set at 0.6, which
is around the top 30% in Dp. We simply add the
rewards up to combine them and only adjust the
weight of the holistic reward.

Reinforcement Learning Training. We use the
pure sampling strategy in the reinforcement learn-
ing process and use greedy decoding for the devel-
opment set and the test set evaluation. Beginning
with the supervised fine-tuned initial policy, we
train our model for 2 epochs on the training set. As
we set the exploration frequency to 4, the training
runs for about 30K episodes. We utilize LoRA (Hu
et al., 2022) for the training.

Evaluation. Besides the mean value of the holis-
tic reward and the factuality rate, we evaluate the
win rates between different models in pairwise com-
parisons. Following Jang et al. (2023), the win rate
is formulated as:

Win Rate =
Win

Win + Lose
(2)

where all ties are disregarded in the calculation.
We also evaluate the win rates in general quality
by employing gpt-3.5-turbo as the evaluator for
pairwise comparison. To mitigate the positional
bias (Wang et al., 2023a) in LLM-as-a-judge, we
perform prompting twice with the two generations
swapped. We only consider the comparison valid
when both promptings prefer the same generation,
indicating the evaluator is faithful enough to over-
come the positional bias. We use the prompt (Fig-
ure 6) from AlpacaEval (Dubois et al., 2023).

Compared Methods. We compare our frame-
work to three methods. ALARM represents our
proposed hierarchical rewards modeling approach.
Holistic Reward represents the baseline using the

holistic reward as the only supervision signal. Fac-
tuality Reward represents solely using the factu-
ality reward without reward shaping to train the
policy. Weighted Sum is the plain weighted sum
method that directly adds the holistic reward and
the factuality reward together for training.

3.4 Main Results

In this paper, we conduct all experiments using
three different seeds, and the results are averaged
across these three independent runs. Table 3 shows
the evaluation results on the test set of the mean val-
ues of each reward. We can see that ALARM leads
to significantly higher holistic reward than other
methods, meanwhile reaching the highest factuality
rate. As expected, except for ALARM, Holistic
Reward gets the highest holistic reward value and
Factuality Reward gets the highest factuality rate.
Weighted Sum balances these two rewards instead.
Table 1 represents the win rates between the four
methods. And we can see ALARM holds the best
under all three different metrics, which further in-
dicates that ALARM provides a stronger supervi-
sion signal than other methods. Furthermore, we
conduct statistical testing on the evaluation results.
As shown in Table 2, ALARM ties with one and
outperforms another, which provides statistical evi-
dence of the leading performance.

4 Machine Translation

Machine translation can be considered a text gener-
ation task that involves converting a piece of text
from the source to the target language while pre-
serving the original meaning, context, and cultural
nuances. This task requires not only a deep under-
standing of the grammatical structure and vocab-
ulary of both the source and target languages but
also an appreciation of their idiomatic expressions
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Figure 4: Selection results of inconsistency and win
rates in MT. ∗: The lower grammar error rate wins.
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Methods Holistic Reward Grammar Reward Weighted Sum ALARM Avg.

% Win Rates by the Holistic Reward

Holistic Reward - 51.52± 0.77 50.18± 0.89 48.30± 0.66 50.00± 0.76
Grammar Reward 48.47± 0.77 - 48.69± 0.15 47.07± 0.16 48.08± 0.32
Weighted Sum 49.82± 0.89 51.31± 0.15 - 48.26± 0.15 49.80± 0.25

ALARM 51.70 ± 0.66 52.93 ± 0.16 51.74 ± 0.15 - 52.12 ± 0.26

% Win Rates by the Grammar Error Rate1

Holistic Reward - 51.90± 2.83 53.47± 3.58 42.20± 4.29 49.19± 0.40
Grammar Reward 48.10± 2.83 - 50.63± 5.11 42.47± 5.29 47.07± 3.82
Weighted Sum 46.54± 3.58 49.37± 5.11 - 40.63± 4.58 45.51± 3.88

ALARM 57.80 ± 4.29 57.53 ± 5.29 59.37 ± 4.58 - 58.24 ± 4.46

% Win Rates2 Evaluated by gpt-3.5-turbo

Holistic Reward - 51.03± 0.42 51.27± 1.79 48.97± 1.70 50.43± 1.00
Grammar Reward 48.97± 0.42 - 48.98± 2.77 47.85± 2.09 48.60± 0.90
Weighted Sum 48.73± 1.79 51.02± 2.77 - 47.98± 3.05 49.24± 2.30

ALARM 51.03 ± 1.70 52.15 ± 2.09 52.02 ± 3.05 - 51.73 ± 2.11

Table 4: Evaluation of win rates in MT. 1: The lower grammar error rate wins in the calculation. 2: We choose a
smaller set of 3K examples randomly selected from the test set to reduce the annotation cost.

ALARM vs. Mean HR Win Rate by HR Mean GER Win Rate by GER Win Rate by gpt-3.5-turbo

Holistic Reward Win (4e − 28) Win (4e − 19) Tie Win (2e − 83) Win (0.01)

Grammar Reward Win (3e − 94) Win (3e − 57) Lose (4e − 38) Win (6e − 37) Win (4e − 16)

Weighted Sum Win (2e − 29) Win (3e − 20) Lose (4e − 3) Win (1e − 131) Win (1e − 7)

Table 5: Statistical testing in MT. GER represents the grammar error rate.

Methods Mean HR(↑) % Mean GER(↓) Length

Holistic Reward 0.919 1.203 36.7
Grammar Reward 0.908 1.190 36.5
Weighted Sum 0.918 1.197 36.5

ALARM 0.928 1.203 37.0

Table 6: The means of rewards on the test set in MT.

and cultural references. However, this feature can
differentiate people’s preferences and form noise
(Marchisio et al., 2019; Savoldi et al., 2021), due
to the wide range of application scenarios and user
groups, thus posing barriers to accurate and consis-
tent alignment annotation. Below, we show how
we use ALARM on this task.

4.1 Task Settings

Dataset. We utilize Europarl (Tiedemann, 2012),
a Spanish-English dataset that contains transcripts
of European Parliamentary proceedings. We select
100K samples from it and arrange them into a train-
ing set of 63K, a development set of 2K, and a test
set of 30K in total.

Initial Policy. We initialize the policy with mT5-
base (Xue et al., 2021), and then supervised fine-
tuned it on the training set for 5 epochs. The initial
policy has a BLEU score of 31.57 on the test set.

4.2 Reward Selection

Listing Corresponding Rewards. We first in-
tuitively list three corresponding rewards, named
grammar reward, language confidence, and read-
ability. All of them are calculated through python-
wrapped toolkits. The grammar reward utilizes
LanguageTool, which can detect grammar errors
at the word level. We define the grammar reward
as assigning negative values to the grammatically
incorrect tokens. The language confidence is based
on Lingua, which computes the language likeli-
hood in a set of languages by n-gram models as
a single scalar. The readability is to measure the
general difficulty of reading the text, which can be
calculated by Textstat at the full sequence level.

Calculating Consistency. The same as in sub-
section 3.2, we conduct pairwise comparisons on
two sets of generations produced by greedy decod-
ing and pure sampling respectively. We define the
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grammar error rate of a generation as the token
count divided by the number of grammar errors.

As shown in Figure 4, the grammar reward
stands out with lower inconsistency and better win
rates than other rewards. Thus we choose the gram-
mar reward for the following experiments.

4.3 Experimental Setup

We follow most setups in subsection 3.3. Evalua-
tion and compared methods are the same.

Rewards Modeling. We apply z-normalization
to the holistic reward and set the threshold value at
0.5, which corresponds to the top 30%. Consider-
ing the token level density of the grammar reward,
we apply reward shaping for every token, including
those with a 0 reward, using the sigmoid function
to maintain the hierarchy.

Reinforcement Learning Training. With the
pure sampling strategy in training, we train our
models for around 13K episodes.

4.4 Main Results

Table 6 represents the mean values of separate
rewards on the test set, where ALARM has the
highest holistic reward and a comparable grammar
error rate to the other methods. As shown in Ta-
ble 4, ALARM continues to outperform the others
in the win rates, evaluated by the holistic reward,
the grammar error rate, and gpt-3.5-turbo re-
spectively. As for the statistical testing in Table 5,
ALARM excels in all except for the mean grammar
error rate. The conflict between win rates and mean
rewards by the grammar error rate may be due to
the variation in reward distribution.

5 Ablation Study

Without Selection. As shown in Table 7, to find
out how reward selection affects the performance
of ALARM, we conduct extensive experiments
that separately apply each reward listed in the ini-
tial pool on both tasks. The proactively selected
rewards present leading performance evaluated
by both the holistic reward and gpt-3.5-turbo,
showing the effectiveness of reward selection. We
also observe conflicting scores for some rewards
from the two evaluators. We attribute this to the
biases and flaws in the holistic reward, such as con-
stantly overlooking or overvaluing certain aspects
(Zheng et al., 2023). For example, we consider
the relevance reward complements the biases and

Rewards Avg. Win Rates Against Others by

Holistic Reward gpt-3.5-turbo

Task: Long-Form Question Answering
Factuality 51.93 ± 1.66 54.74± 0.70
Relevance 46.89± 0.72 55.44 ± 1.12
Completeness 49.51± 0.82 44.97± 1.52
Length 51.67± 0.22 44.84± 1.32

Task: Machine Translation∗

Grammar 51.58 ± 0.64 50.61 ± 1.62
Confidence 49.20± 0.46 48.66± 1.26
Readability 49.53± 0.42 50.59± 1.06
Length 49.69± 0.26 50.14± 1.75

Table 7: Averaged win rates against others on both
tasks. Each reward is used in ALARM separately. ∗:
Evaluation by gpt-3.5-turbo is on a smaller set of 3K
randomly selected examples as in Table 4.

the length reward exploits the flaws. Nonetheless,
this is a concern that differs from the inconsistency
issues we focus on and falls outside this paper’s
scope. See full tables in Appendix A.

Without Combination. To examine whether
ALARM helps with more accurate and consistent
supervision signals by utilizing both holistic and
aspect-specific rewards, we compare the methods
using separate rewards individually in the experi-
ments. As shown in Table 1 and 4, ALARM consis-
tently leads to better results along both dimensions.

Without Hierarchical Structure. We contrast
our framework with the conventional weighted sum
method to highlight the significance of the hierar-
chical structure. The results from the weighted
sum approach reflect a compromise between holis-
tic and aspect-specific rewards, limiting its abil-
ity to excel in both. Conversely, our framework,
ALARM leverages hierarchical rewards modeling
to provide more potent supervision signals, enhanc-
ing its performance in both dimensions.

6 Related Work

Hierarchical Reinforcement Learning. Design-
ing a hierarchical rewarding structure that decom-
poses a long-horizon reinforcement learning task
into simpler sub-tasks has shown promising perfor-
mance in traditional reinforcement learning prob-
lems (Florensa et al., 2017; Levy et al., 2019;
Kulkarni et al., 2016; Gupta et al., 2020). Moti-
vated by this, ALARM first utilizes hierarchical
reinforcement learning to align language models.
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Human Preference Alignment. AI alignment
with human preference has been one of the key re-
search topics in the NLP community as LLMs show
notable performance yet are prone to generating
unexpected content (Song et al., 2024; Wang et al.,
2023b; Zhou et al., 2023; Yuan et al., 2023). RLHF
is a popular algorithm for AI alignment and many
related methods are proposed (Dai et al., 2024; Yu
et al., 2023; Zhang et al., 2024).

Scalable Oversight. Superhuman models should
be capable of handling complex and creative tasks
beyond human expertise (Burns et al., 2023), which
raises the increasingly important issue of scalable
oversight: how to provide reliable supervision sig-
nals within limited human capabilities (Amodei
et al., 2016; Bowman et al., 2022)? Current meth-
ods include improving evaluation quality through
human-AI collaboration (Irving et al., 2018; Chris-
tiano et al., 2018) and simplifying tasks into sub-
tasks for more reliable assessments (Wu et al.,
2021; Zhong et al., 2023; Lightman et al., 2023; Liu
and Alahi, 2024). Our framework adopts the latter
one, identifying simpler aspects for evaluation.

7 Conclusion

We propose ALARM, the first framework hierar-
chically modeling both holistic and aspect-specific
rewards in RLHF. We explore proactive reward se-
lection strategies to enhance compatibility with the
holistic reward. The effectiveness of our framework
in seeking more accurate and consistent supervi-
sion signals and its potential to inspire scalable
oversight in AI alignment, is demonstrated through
comprehensive experiments, detailed ablation stud-
ies, and analyses across two text generation tasks.

Limitations

Our framework requires rewards that are specif-
ically designed for each task, which poses chal-
lenges in scaling up the application scenarios. We
need to improve the automatic selection of rewards.
In our evaluation, we utilize OpenAI’s API, which
incurs additional costs and may experience rate
limitations and unstable response times.
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A Experimental Details

We adopt the TRL implementation for the PPO al-
gorithm and conduct all training using LoRA and
BF16. The prompt for inferencing UltraRM is
shown in Figure 5. We list the resources and mate-
rials used in this paper in Table 8.

Human: {instruction}

Assistant: {completion}

prompt for UltraRM-13b

Figure 5: The inference prompt for UltraRM.

A.1 Training Details on Long-form QA

We limit the max input length to 1024 and the
max output length to 200 following the original
setting. We set the weight of the holistic reward to
5 through trials and keep other weights to 1. The
factuality reward model predicts 0.5 and −0.5 for
the correct and wrong sentences respectively. The
batch size is set to 8 and the mini-batch size to
4, with gradient accumulation steps set to 2. We
set the learning rate to 2e − 4. Other PPO hyper-
parameters should follow the default values of TRL
implementation. The training takes around 2 hours
on 8×48G NVIDIA A6000 GPU.

A.2 Training Details on MT

We set the max length to 128 for both input and
output. We set the weight of the holistic reward to
3 through trials and keep other weights to 1. The
grammar reward is designed to predict −1 for those
incorrect tokens and 0 for the correct ones before
the reward shaping. The batch size is set to 32
and the mini batch size is set to 16, with gradient
accumulation steps set to 2. We set the learning
rate to 5e − 4. Other PPO hyper-parameters also
follow the default values. The training takes around
1 hour on 8×48G NVIDIA A6000 GPU.

A.3 Additional Ablation Study Results on
Reward Selection

We put the full results of win rates in the ablation
study for reward selection in Table 9 and Table 10.
For those extensive experiments, We use the same
settings as the main ones. The relevance model pre-
dicts 0.3 and −0.3 for the correct and wrong sub-
sentences respectively. We apply z-normalization

to the readability and completeness rewards. We di-
vide the token count of a generation by the average
token count on the training set and define the value
as its length reward. The language confidence re-
mains the same for rewarding since it has a suitable
value range between 0 and 1.

B Evaluation Details

B.1 GPT as an Evaluator
We use the gpt-3.5-turbo-1106 version of Ope-
nAI API for pairwise evaluation. Figure 6 shows
our prompt to call gpt-3.5-turbo in pairwise
comparisons for both tasks, which is originally
from AlpacaEval (Dubois et al., 2023).

B.2 Statistical Testing
We aggregate the data from all runs and then com-
pute the p-values for the mean rewards using the
paired t-test function from SciPy. Similarly, we
determine the p-values for win rates by employing
the binomial test function from SciPy. We interpret
a p-value greater than 0.05 as a statistical tie.
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Resources and Materials Access Link

UltraRM-13b https://huggingface.co/openbmb/UltraRM-13b
Long-form QA https://github.com/allenai/FineGrainedRLHF

Europarl https://huggingface.co/datasets/Helsinki-NLP/europarl
LanguageTool https://github.com/languagetool-org/languagetool

Lingua https://github.com/pemistahl/lingua-py
textstat https://github.com/textstat/textstat
TRL https://github.com/huggingface/trl

Table 8: The resources and materials we utilize in this paper.

Rewards Factuality Relevance Completeness Length Avg.

% Win Rates by the Holistic Reward

Factuality - 53.57± 2.06 51.74± 1.64 50.49± 1.58 51.93 ± 1.66

Relevance 46.43± 2.06 - 47.88± 0.49 46.36± 0.30 46.89± 0.72
Completeness 48.26± 1.64 52.12± 0.49 - 48.16± 1.33 49.51± 0.82
Length 49.51± 1.58 53.64± 0.30 51.83± 1.33 - 51.67± 0.22

% Win Rates Evaluated by gpt-3.5-turbo

Factuality - 48.95± 1.01 56.57± 1.89 58.70± 0.75 54.74± 0.70

Relevance 51.05± 1.01 - 58.33± 0.64 56.96± 1.79 55.44 ± 1.12
Completeness 43.43± 1.89 41.67± 0.64 - 49.81± 2.44 44.97± 1.52
Length 41.30± 0.75 43.04± 1.79 50.19± 2.44 - 44.84± 1.32

Table 9: Additional ablation study results of win rates in long-form QA.

Rewards Grammar Confidence Readability Length Avg.

% Win Rates by the Holistic Reward

Grammar - 51.79± 0.85 51.60± 0.78 51.36± 0.30 51.58 ± 0.64

Confidence 48.21± 0.85 - 49.79± 0.15 49.60± 0.44 49.20± 0.46
Readability 48.40± 0.78 50.21± 0.15 - 49.98± 0.57 49.53± 0.42
Length 48.64± 0.30 50.40± 0.44 50.02± 0.57 - 49.69± 0.26

% Win Rates∗ Evaluated by gpt-3.5-turbo

Grammar - 51.31± 2.11 50.19± 0.44 50.34± 2.50 50.61 ± 1.62

Confidence 48.69± 2.11 - 48.41± 1.71 48.87± 1.19 48.66± 1.26
Readability 49.81± 0.44 51.59± 1.71 - 50.38± 1.95 50.59± 1.06
Length 49.66± 2.50 51.13± 1.19 49.62± 1.95 - 50.14± 1.75

Table 10: Additional ablation study results of win rates in MT. ∗: Evaluation is on a smaller set of 3K randomly
selected examples as in Table 4.
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<|im_start|>system
You are a helpful instruction-following assistant that prints the best model by selecting the best 
outputs for a given instruction.
<|im_end|>
<|im_start|>user
Select the output (a) or (b) that best matches the given instruction. Choose your preferred 
output, which can be subjective. Your answer should ONLY contain: Output (a) or Output (b). 
Here's an example:

# Example:
## Instruction:
Give a description of the following job: "ophthalmologist"

## Output (a):
An ophthalmologist is a medical doctor who pokes and prods at your eyes while asking you to 
read letters from a chart.

## Output (b):
An ophthalmologist is a medical doctor who specializes in the diagnosis and treatment of eye 
diseases and conditions.

## Which is best, Output (a) or Output (b)?
Output (b)

Here the answer is Output (b) because it provides a comprehensive and accurate description of 
the job of an ophthalmologist. In contrast, output (a) is more of a joke.

# Task:
Now is the real task, do not explain your answer, just say Output (a) or Output (b).

## Instruction:
{instruction}

## Output (a):
{output_1}

## Output (b):
{output_2}

## Which is best, Output (a) or Output (b)?
<|im_end|>

prompt for gpt-3.5-turbo-1106

Figure 6: The evaluation prompt for gpt-3.5-turbo-1106.
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