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Abstract

For humans and robots to collaborate more in
the real world, robots need to understand hu-
man intentions from the different manner of
their behaviors. In this study, we focus on the
meaning of adverbs which describe human mo-
tions. We propose a topic model, Hierarchi-
cal Dirichlet Process-Spectral Mixture Latent
Dirichlet Allocation, which concurrently learns
the relationship between human motions and
adverbs by capturing the frequency kernels that
represent motion characteristics and the shared
topics of adverbs to depict such motions. We
trained the model on datasets we made from
movies about “walking” and “dancing”, and
found that our model outperforms representa-
tive neural network models in terms of perplex-
ity score. We also demonstrate our model’s
ability to estimate suitable adverbs for a given
motion automatically extracted from a movie.

1 Introduction
With technological innovations in artificial intel-
ligence, the widespread use of household robots
that collaborate with humans to assist them in
their daily lives is becoming a reality. In order
for these robots to collaborate with humans, it
is important to share and understand their expe-
riences through language, because language is
the most convenient communication tool capable
of conveying human experience and knowledge.
With this background, research on language use by
robots in the real world has been actively stud-
ied (Taniguchi et al., 2019; Tellex et al., 2020;
Kalinowska et al., 2023; Karamcheti et al., 2023).
Significantly, within this domain, Large-scale lan-
guage models (LLMs) such as OpenAI’s ChatGPT1

and Google’s PaLM (Chowdhery et al., 2022) are
also used to control robots. ChatGPT is used to exe-
cute various types of robotics tasks (Vemprala et al.,
2023), and PaLM-SayCan (Ahn et al., 2022) and

1https://chat.openai.com.

PALM-E (Driess et al., 2023) have been developed
based on PaLM (Chowdhery et al., 2022). Singh
et al. (2023) and Huang et al. (2022) have pro-
posed methodologies for generating task plans for
robots that employ LLM. Their approach conveys
robot’s motion plans through a chain-of-thought
framework (Wei et al., 2022). Though they are
good at describing the general plan of action of a
robot in language to accomplish a specific task, the
language description does not capture the precise
correspondence between nuanced expressions and
the actual robot behaviors in the real world. Further-
more, the focus of their studies is not on the verbal
representation of the behaviors of the observed ob-
ject by a robot, but on the robot’s action plan. For
the advancement of robotics, it becomes impera-
tive to comprehensively and statistically grasp the
repertoire of “motions” that humans genuinely ex-
hibit, as well as discern the variations in individual
characteristics and contextual nuances associated
with them. These insights should be aptly assim-
ilated within the robotic systems. Building upon
the aforementioned, we shall address this challenge
by casting our focus on adverbs to mathematically
establish a correspondence between motions and
adverbs that represent them.

2 Related work

Research is being conducted to elucidate the re-
lationship between motions and the natural lan-
guage that describes them. Bidirectional conver-
sion models from natural language descriptions to
motions, or vice versa, using sequence-to-sequence
(Seq2seq) (Sutskever et al., 2014) learning have
been proposed by Yamada et al. (2018); Plappert
et al. (2018); Ito et al. (2022). Though these
models can achieve bidirectional conversion be-
tween language and motion sequences, it lacks in
learning the correspondence between the manner
of motions and the language that represent them.
Furthermore, in the conventional research the fo-

7742



cus has predominantly revolved around finite mo-
tions, such as “take” and “put”, which were pre-
conceived by humans, thereby neglecting the pur-
suit of methodologies that facilitate the adaptable
modulation of multiple motions contingent upon
contextual cues. In this paper, we focus on cap-
turing the relationship between verbs and adverbs
to flexibly express actions using the function of
adverbs. Limited research has been conducted thus
far to delve into the semantic comprehension of
adverbs. Notable instances within this domain
include the Three-Stream Hybrid Model (Pang
et al., 2018), which employs Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) and inceptionV3 (Szegedy et al., 2016) to ac-
quire knowledge related to adverbs. Additionally,
Action Modifiers (Doughty et al., 2020), which
employ an I3D network (Carreira and Zisserman,
2017) and scaled dot-product attention (Vaswani
et al., 2017) to discern the impact of adverbs on
motion sequences. These models employ image
features derived from videos, such as RGB and
optical flow (Simonyan and Zisserman, 2014), as
representations of motions. However, these repre-
sentations fail to capture the intrinsic essence of
the motions themselves because they are unable to
discern the component of motions denoted by the
adverb. Therefore, unlike conventional research ap-
proaches, in this study, we focus on the frequency
components that make up human motion and at-
tempt to express the motion by those components.
By doing so, we aim to enable the robot to under-
stand the meaning of adverbs related to motions
such as “cut roughly”, “dance dynamically”, and
so on.

3 Joint Topic Model of Motions and
Adverbs

For this purpose, we propose a new topic model,
Hierarchical Dirichlet Process-Spectral Mixture La-
tent Dirichlet Allocation (HDP-SMLDA) to cap-
ture the relationship between the frequency com-
ponents of human motions and the adverbs that de-
scribe them. The proposed model makes it possible
to establish a statistical correspondence between
adverbs and nuances associated with motions. This
enables the control of robot actions through verbal
instructions, such as “handle with more caution” or
“cut roughly”, and it is also possible to make the
robot understand human intentions due to slightly
different manner of movement. On the contrary,
from the perspective of natural language process-

Figure 1: Nonlinear dimensionality reduction of mo-
tions achieved through GPLVM. The trajectories corre-
sponding to three distinct walking motions (a)-(c) are
portrayed in the latent space of three dimensions (thus,
we set Q = 3 in Equation 3), denoted as X.

ing, it has been impossible to express the actual
meaning behind words like “freely” or “flexibly”.
However, the integration with robotics makes it
possible for the first time to represent their mean-
ing, allowing not only the description of actions
through language but also the generation of actions
from language cues.

3.1 Human Motion Representation
Since human motion is represented as a smooth
trajectory, we use a Gaussian process (GP) (Ras-
mussen and Williams, 2006), which is defined as a
distribution over functions, to describe the motions.
In a GP, the kernel function k(x, x′) that determines
the similarity between two data points (x, x′) is
applied to the data set to compute the covariance
matrix and estimate the predictive distribution. The
choice of kernel function is an important factor that
affects the behavior and performance of the GP
model. GP models are primarily used for regression
and classification, fundamental techniques that are
also widely used by the natural language processing
community (Cohn et al., 2014). We utilize Gaus-
sian Process Latent Variable Model (GPLVM, see
Appendix A) (Lawrence, 2003), when nonlinearly
compressing high-dimensional human motion data
into low-dimensional trajectories (Section 4.1 gives
the details). In Figure 1, we show three walking tra-
jectories processed through GPLVM visualized in
the three-dimensional latent space. Cyclicity of the
representations reflects the periodicity of human
movements.

3.2 Frequency components in a motion
Wilson et al. (Wilson and Adams, 2013) introduced
a technique known as the Spectral Mixture kernel
(SM kernel), which enables automatic learning of
a mixed kernel from data by considering a com-
bined Gaussian distribution in the Fourier domain.
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(a) (b)

(c)
Figure 2: The motions depicted in Figure 1 were ana-
lyzed using the Spectral Mixture kernel. The vertical
and horizontal axes respectively represent the probabil-
ity density and mean of the estimated four Gaussian
distributions (thus, we set M = 4 in Equation 3).

This approach surpasses the limitation of utilizing
pre-existing kernels or their combinations in Gaus-
sian processes. As a fundamental component of
the Gaussian process, we consider a radial basis
function k(τ) that solely depends on τ = x − x′.
According to Bochner’s theorem (Bochner et al.,
1959; Stein, 1999), any k(τ) can be expressed in
the following equation:

k(x, x′) = k(τ) =

∫

R
e2πis

Tτψ(s)ds. (1)

As k(τ) is considered equivalent to probability den-
sity ψ(s) in the frequency domain, we consider a
mixture of Gaussian distributions for ψ(s). Each
component of the Gaussian distributions is equiva-
lent to considering the following basis function in
the original domain:

k(τ |σ, µ) = exp(−2π2τ2v2) cos (2πτµ). (2)

Thus, we can consider a mixture of M basis func-
tions for a latent kernel. Here, µqm and vqm represent
the mean and variance, respectively, of the q-th di-
mension of the input X in the m-th basis:

k(τ)=
M∑

m=1

wm cos (2πτTµm)

Q∏

q=1

exp(−2π2τ2q v
q
m).

(3)

The weights parameter w, mean µ, and variance v
can be learned through hyperparameter optimiza-
tion of Gaussian processes. As shown in Figure 2,
we employ this method to extract M frequency
components (represented by the mean µ) that are
expected to be relevant to adverbs from the Q-
dimensional latent trajectories X shown in Figure 1.
These components are then used as observed values
that capture the characteristics of the motions. It

Figure 3: The graphical model of HDP-SMLDA. K∞

represents the variable number of topics.

is worth noting that while the trajectory in X can
be directly Fourier transformed, doing so would
not allow us to distinguish between the function
passing through particular points (the phase of the
function) and the characteristics of the function
itself.

3.3 Hierarchical Dirichlet Process-Spectral
Mixture LDA

The extracted frequency components from the mo-
tions are assumed to be associated with the ad-
verbs assigned to those motions. By leveraging a
Gaussian-Multinomial LDA (GM-LDA) (Blei and
Jordan, 2003), we can cluster the frequency com-
ponents and adverbs simultaneously into topics,
thereby identifying frequency components that are
likely to co-occur with a given adverb. It is impor-
tant to note that GM-LDA required the number of
topics K to be known in advance. However, the
number of topics is typically unknown, and assum-
ing prior knowledge of this parameter is a signifi-
cant limitation. To address this issue, we propose
the Hierarchical Dirichlet Process Spectral Mix-
ture LDA (HDP-SMLDA), which automatically
estimates the number of topics from the data by
incorporating a hierarchical Dirichlet process (Teh
et al., 2006) into GM-LDA. The graphical model,
as depicted in Figure 3, considers Q as the num-
ber of dimensions of the frequency components.
In our study, we set Q = 3 because we prepro-
cessed the data by GPLVM into three-dimensional
latent space. The number of kernel mixtures M in
the Spectral Mixture (SM) kernel discussed in the
previous section is denoted as Md in this model.
Adverbs are sampled from a multinomial distri-
bution, while the frequency component is treated
as continuous data emitted from a Gaussian dis-
tribution associated with each latent topic. Let us
assume the existence of a potential topic distribu-
tion θd for each motion d. The dimensionality of
the topics, denoted as K, is variable, allowing for
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flexibility. The generative process of the adverb
wdn (n = 1, . . . , Nd) and the frequency compo-
nent xdm (d = 1, . . . , D; m = 1, . . . ,Md), which
refers to the µ in Equation 3, associated with the
motions is outlined as follows:

1. Draw G0 ∼ DP(γ,H).
2. For d = 1 . . . D,

– Draw θd ∼ DP(α,G0).
3. For n = 1 . . . Nd,

– Draw zdn ∼ θd
– Draw wdn ∼ ϕzdn .

4. For m = 1 . . .Md,
– Draw ydm ∼ θd
– Draw xdm ∼ N (µydm , σ

2
ydm

).

In the generative process, ϕk represents a multino-
mial distribution over adverbs that corresponds to
the k-th topic, while N (µk, σ

2
k) denotes the Gaus-

sian distribution for the observed frequencies as-
sociated with that topic. The topic distribution θ
is computed based on the information from both
the adverbs and frequency components. This topic
distribution is then utilized to assign topics to each
adverb and frequency component iteratively for
each motion d.

Sampling Topics of Adverbs and Frequencies

We employ collapsed Gibbs sampling (Griffiths
and Steyvers, 2004) as the learning algorithm for
estimating the topic distribution of adverbs and
frequencies in the HDP-SMLDA.

Sampling topics of adverbs Let T represents
the set of table assignments and ℓ denotes the table
number. According to the Chinese restaurant pro-
cess (Teh et al., 2006), the topic zdn assigned to the
adverbwdn is determined by sampling the occupied
table Tdn using the following formula. Here, ℓused
and ℓnew correspond to existing and new tables, Lk

and L represent the number of tables assigned to
topic k and the total number of tables, respectively,
and V is the number of vocabularies (“\” denotes
exclusion of that index):

p(tdn = ℓ|W,T\dn,Z,Y, α, γ, η)

∝
{
p(tdn = ℓused)|W,T\dn,Z,Y, α, γ, η)
p(tdn = ℓnew)|W,T\dn,Z,Y, α, γ, η)

∝





(Ndl\dn +
∑Q

q=1M
q
dl)
Nkwdn\dn + η

Nk\dn + ηV
∑K

k=1
αLk
L+γ

Nkwdn\dn + η

Nk\dn + ηV
+

αγ

L+ γ

1

V
.

(4)

The following formula is employed to sample
the topics assigned to the new table. Here, kused
refers to existing topics, while knew represents new
topics:

p(zdl = k|W\dn,T,Z\dl, α, γ, β)

∝
{
p(zdl = kused|W\dn,T,Z\dl, α, γ, β)
p(zdl = knew|W\dn,T,Z\dl, α, γ, β)

∝





Lk ·
Nkwdn

+ η

Nk\dn + ηV

γ · 1

V

. (5)

The hyperparameter η is iteratively updated using
the Fixed-Point Iteration method (Minka, 2003)
based on the following equation, where Ψ(x) =
d/dx log Γ(x):

η′ = η ·
∑K

k=1

∑V
v=1Ψ(Nkv + η)−KVΨ(η)

V
∑K

k=1Ψ(Nk + ηV )−KVΨ(ηV )
.

(6)

Sampling topics of frequencies The topic ydm
assigned to the frequency component xdm is sam-
pled using the following equations:

p(tdm = ℓ|W,T\dm,Z,Y, α, γ, η)

∝
{
p(tdm = ℓused|W,T\dm,Z,Y, α, γ, η)
p(tdm = ℓnew|W,T\dm,Z,Y, α, γ, η)

∝





(Ndl +
∑Q

q=1M
q
dl\dm)N (x|µk, σ2k)

∑K
k=1

αLk

L+ γ
N (x|µk, σ2k) +

αγ

L+ γ
N (x|µknew , σ

2
knew

),

(7)

p(zdl = k|X\dm,T,Y\dl, α, γ, β)

∝
{
p(zdl = kused|X\dm,T,Y\dl, α, γ, β)
p(zdl = knew|X\dm,T,Y\dl, α, γ, β)

∝
{
Lk · N (x|µk, σ2k)
γ · N (x|µknew , σ

2
knew

) .
(8)

The variance parameter σ2 of the Gaussian distri-
bution is learned as a fixed value. To ensure that
the Gaussian distribution is evenly distributed over
the data range, we calculate σ using the following
equation. This is done because the data typically
fall within the range of approximately −3σ to 3σ
when the mean is set to 0. Here, K+ represents the
number of topics at the current iteration:

σq =
max(Xq)−min(Xq)

6K+
. (9)

The mean parameter µ of the Gaussian distribution
is sampled from the posterior distribution given
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(a) 2D pose estimation (b) Depth estimation (c) 3D pose estimation (d) Direction normalization
(Cao et al., 2021) (Laina et al., 2016) (Martinez et al., 2017) (See text)

Figure 4: Through the four sequential procedural stages, three-dimensional human joint points data are extracted
from a two-dimensional video (see text for details).

by the following equation. Here, λ is defined as
λ = 1/σ2, where σ2 represents the variance of the
Gaussian distribution:

p(µ|Y) = N (µ|m, (βλ)−1) . (10)

Let us assume that β0 and m0 are the parameters
of the prior distribution, and they are defined as
follows:

β =M + β0, m =
1

β

(
M∑

m=1

xm + β0m0

)
.

(11)

To estimate the mean µknew for the Gaussian dis-
tribution associated with the new topic directly is
not possible since there is no data belonging to the
cluster. To address this, the mean is sampled from
a Gaussian distribution using suitable parameters,
allowing it to be learned to some extent, and then
estimated as same as the mean of existing topic.

Estimation of scaling parameter α
To better estimate the number of topics that best
fit the data, we adopt a gamma distribution as the
prior distribution for the scaling parameter α:

p(α|π, s, Z, c1, c2)
= Gamma (α|c1+K+−s, c2−log π).

(12)

π and s are sampled as follows:

p(π|α, s, Z, c1, c2)
= Beta (π|α+ 1, N +M),

p(s|α, π, Z, c1, c2)

= Bernoulli

(
s

∣∣∣∣
N +M

N +M + α

)
. (13)

4 Experiments

We begin by providing a description of the datasets
utilized in our experiments. We then proceed to
conduct an experiment involving HDP-SMLDA,
where we examine the adverbs and frequency com-
ponents, and generate adverbs based on the fre-
quency components within the trained model.

4.1 Experimental settings

Datasets
We conducted an experiment utilizing a dataset
containing walking motions called 100 Walks2and
another dataset comprising dancing motions called
AIST++3.

100 Walks 100 Walks, the video available on
YouTube, is in a two-dimensional format. However,
for our experiment, we required three-dimensional
pose information as input data. To overcome this
limitation, we divided the video into 100 segments
at the motion breaks and applied four different
methods for three-dimensional pose estimation.

1. Estimate 2D skeletal coordinates from video
data using Openpose (Cao et al., 2021) (Figure
4(a))

2. Estimate the depth of the video per frame
using FCRN-depth prediction (Laina et al.,
2016) (Figure 4(b))

3. Estimate 3D skeletal coordinates from video
data using results of 1 and 2 ,and 3d-pose
baseline (Martinez et al., 2017) (Figure 4(c))

4. Normalize human body orientation using a
rotation matrix (Figure 4(d))

AIST++ The AIST Dance DB (Tsuchida et al.,
2019) is a curated dataset consisting of original
dance videos. These videos have been carefully
selected and include dance performances accom-
panied by copyright-cleared music. The dataset is
created and maintained by the National Institute
of Advanced Industrial Science and Technology
(AIST). Li et al. (2021) conducted annotations on
the AIST Dance DB dataset, specifically focusing
on three-dimensional human keypoints and devel-
oped a dance generation model. These annotations
provide valuable information for each dance video

2https://www.youtube.com/watch?v=
HEoUhlesN9E

3https://google.github.io/
aistplusplus_dataset/
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
intensely joyfully regularly gracefully powerfully dancily familiarly rhythmically
powerfully rhythmically temporarily elegantly intensely stepping steadily stylishly
clearly lightly dynamically smoothly intensely joyfully sinuously comfortably
enthusiastically bouncily vividly lightly quickly dynamically briskly smoothly
elegantly energetically boldly circularly boldly uninterestedly dynamically stylishly

Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16
leisurely dynamically springily stylishly dynamically finely carefully lightly
smoothly intensely widely stiffly mechanically circularly comically swaying
slowly sinuously tentatively generously comically finely carefully wave-like
mechanically largely steadily joyfully firmly circularly cautiously delicately
gently sharply calmly mechanically robotically rhythmically searchingly robotically

Table 1: AIST++ dataset (Md=4): Top 5 adverbs in each topic estimated by HDP-SMLDA. Each topic corresponds
to each topic in Figure 5. Compared to LDA, HDP-SMLDA takes into account not only co-occurrence of adverbs
but also similarity of motions when classifying adverbs.The same adverbs observed within the same topic (e.g., in
Topic 5 you can see two "intensely") are spelled differently in Japanese but have the same meaning.

in the dataset. Additionally, they released the an-
notated dataset called AIST++, which consists of
1,199 simple Basic Dance motions annotated with
three-dimensional pose information for 16 joint
points in the COCO format. The dataset consists
of 10 different choreographies, each representing a
specific genre of dance. For each choreography,
there are 20 different dancers who perform the
dance in the corresponding video. The dancers
follow the specified choreography while dancing
to genre-specific music. The music tempo varies
across the dataset and is set at six different levels.

Preprocessing of Videos

We employed a crowdsourcing system called
Lancers4 to get annotations from multiple anno-
tators for the Japanese adverbs associated with the
human motions in the videos. Appendix B de-
scribes more details of our crowdsourced exper-
iments. In comparison to data set used in prior
research (Pang et al., 2018; Malmaud et al., 2015),
we have amassed a more extensive corpus of ad-
verbs in both datasets. In addition, we utilize the
direction vectors connecting each joint as input
data . To account for individual differences such as
arm length, we compute unit vectors (see Appendix
C for details).

4https://www.lancers.jp/

Unigram LDA HDP-SMLDA
(Md=4/10)

Walk 156 99 52 / 57
Dance 558 331 218 / 249

Table 2: Perplexity at training in each topic model.

Extraction of Frequency Components from
Human Motions

Frequency components were extracted from the
preprocessed video data utilizing the following two
steps. Experiments were conducted by varying the
number of kernel mixtures, denoted as Md, within
the range of 4 to 12.

1. Reduce high-dimensional pose data to low-
dimensional latent variables using GPLVM.
Figure 1 shows the case of reducing pose data
into three-dimensional latent variables.

2. Extract frequency components for each dimen-
sion from the three-dimensional latent vari-
ables using SM kernel. Figure 2 shows the
case of using four bases of Gaussian distribu-
tion (see Appendix D for details).

The SM kernel is optimized with weights as pa-
rameters, representing the significance of each fre-
quency component. At each learning iteration of
HDP-SMLDA, the frequency components used as
motion features in each video are sampled using
the weights.

4.2 Results

For the AIST++ dataset with Md = 4 and learning
epochs set to 1,000, Table 1 displays the top five
words for each adverb, listed the Normalized Point-
wise Mutual Information (NPMI) values (Bouma,
2009) for each adverb in each topic in descend-
ing order from the learned topic-word distribu-
tion. We confirmed that the model’s perplexity has
converged after training. In typical topic models,
words with high co-occurrence tend to be placed
in the same topic (Appendix E). However, HDP-
SMLDA incorporates not only words but also be-
havioral information into clustering. Consequently,
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Figure 5: The relationship between topics and motion
features can be visualized by plotting 100 samples ex-
tracted from the Gaussian distribution associated with
each topic learned through HDP-SMLDA.

if actions are similar, there is a possibility that
words indicating opposite meanings, as observed
in Topic 6 (joyfully and uninterestedly), may be
placed in the same topic. Figure 5 visually repre-
sents the 100 samples in a three-dimensional space,
obtained from the Gaussian distribution associated
with the mean µk of each learned topic. Each sam-
ple represents a frequency component that sym-
bolizes a specific topic, and the proximity of the
samples indicates similarity in their frequency com-
ponents. It is important to note that since the scales
are not estimated, the dispersion of the points in
the figure remains constant. To evaluate the perfor-
mance of this model, perplexity is used as a metric.
Table 2 presents the perplexity of each topic model
during training. Additionally, the perplexity for
the Unigram model is calculated using the word
distribution prior to training.

4.3 Discussions

Generation of Adverbs from Frequency To ver-
ify the accurate association between frequencies
and adverbs, we performed an experiment where
we generated adverbs based on the frequency com-
ponents extracted from an evaluation video (Figure
6), utilizing the learned word distribution. Table
3 presents both the ground truth adverbs and the
top seven adverbs with the highest probabilities,
calculated through HDP-SMLDA. Through the es-
timation of Md from 4 to 12, we observed that, for
the majority of evaluation videos, the estimation
withMd = 10 yielded more suitable adverbs as the
top choices.

In Figure 5, the arrangement of the 16 Gaus-
sian distributions evenly spans the width of the
data. Notably, Topic 5 and Topic 14 exhibit prox-

Figure 6: A video for evaluation. In this video, the
dancer is dancing a jazz ballet.

imity to each other, indicating a similarity in the
content of the motions, as supported by Table 3
showcasing the top adverbs associated with each
topic. Topics 1, 8, and 10 appear more distanced
from the other topics. Notably, these three topics
demonstrate pronounced adverb features in terms
of frequency. While there may be an apparent over-
lap between the content of Topics 1 and 10, a closer
examination of the top 20 words reveals that Topic
1 encompasses emotionally driven dances such as
“bravely” and “heavily”, while Topic 10 represents
adverbs associated with more vigorous movements
like “sharply” and “refreshed”. This distinction
suggests that the model successfully clusters ad-
verbs based on both semantic and motion-related
features derived from frequency components. It
is also a reasonable result that words with oppo-
site meanings in language are assigned to the same
topic such as “joyfully” and “uninterestedly” in
Topic 6 due to the similarity of motions. The per-
plexity values from Table 2 indicate significantly
lower values compared to those obtained from LDA
training data, signifying the valuable contribution
of frequency components in adverb topic classifica-
tion. Although increasing the number of mixtures
in the kernel was expected to reduce perplexity,
the experiment yielded unfavorable results. On
the other hand,regarding the generation of adverbs
from frequency components, it was observed that
when Md = 10, the model was able to estimate
more suitable adverbs compared to when Md = 4.
This observation raises the possibility that the an-

Ground truth HDP-SMLDA HDP-SMLDA
(Md=4) (Md=10)

passionately powerfully rhythmically
cheerfully intensely smoothly
rhythmically intensely stylishly
smoothly boldly flowing
flowing confidently cheerfully
strongly briskly sadly
boldly dynamically comfortably

Table 3: Ground truth adverbs of the dance video (Fig-
ure 6) and Top 7 adverbs estimated by HDP-SMLDA.
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notators may have encountered difficulty in iden-
tifying the precise vocabulary during the annota-
tion process or that the model could generate cor-
rect synonyms that did not align perfectly with the
ground truth.

Comparative Results We conducted additional
experiments to compare our method with Red-
Wine (Misra et al., 2017) and AttributeOp (Na-
garajan and Grauman, 2018). Due to significant
discrepancies in the data structures of the input,
we did not use prior studies in the comparative
experimentation. Given that our study involves an-
notations of multiple adverbs per video, multi-label
learning becomes necessary. These models are de-
signed to learn attributes of objects in images. We
adapt by substituting actions for objects and ad-
verbs for attributes. We extracted features from the
videos by using the pre-trained S3D model (Miech
et al., 2020) from HowTo100M (Miech et al., 2019),
which served as inputs to the model. In typical
class classification learning, the model calculates
the error by back-propagating the difference be-
tween the output probability and the input label.
However, in our case, training is performed by
back-propagating the average of errors for all ad-
verb labels annotated to the video. Table 4 displays
the perplexity scores for each model during evalua-
tion.Our method outperforms all baselines. From
these results, it is evident that for tasks involving
the classification of adverbs related to human mo-
tion, capturing motion in terms of frequencies is
more effective than using image features such as
RGB or optical flow. We also conducted experi-
ments using Long Short-Term Memory (LSTM)
and Multi-Layer Perceptron (MLP)(Rumelhart and
McClelland, 1987), with four different data inputs:

1. Input data processed by GPLVM to LSTM
2. Input original data to LSTM
3. Input frequency (Md = 4) to MLP
4. Input frequency (Md = 10) to MLP

We conducted experiments by configuring both
models with a hidden layer size of 128, utilizing
SGD as the optimization function, and employing
cross-entropy as the loss function. Furthermore,
the number of epochs was set to 1000 to align with
the experiments in our model. Table 4 displays the
perplexity scores for each model during evaluation.
Comparing the data processed by GPLVM with
the original data, it is evident that the processed
data yielded lower perplexity, indicating the effec-
tiveness of data dimensionality reduction in class

Models Walk Dance

Misra et al. (2017) 215 366
Nagarajan et al. (2018) 199 352
LSTM (3D/original) 210 / 402 1068 / 1794
MLP (Md=4/10) 253 / 284 994 / 1027
HDP-SMLDA (Md=4/10) 89 / 117 320 / 382

Table 4: Evaluation of each model in predictive perplex-
ity of adverbs (lower is better).

classification. All neural network models received
high scores, which does not necessarily indicate
effective learning of adverbs. Nonetheless, our
proposed method demonstrated the highest scores
on both datasets, highlighting its superior perfor-
mance. Thus,our model showcases the ability to
accurately estimate adverbs even with limited data.

5 Conclusion

We have proposed a joint topic model named HDP-
SMLDA, which aims to comprehend the semantic
nuances of sensory adverbs pertaining to human
motions by learning co-occurrence relationships
between motion features and adverbs. Within our
framework, adverbs are modeled as a composite
distribution within the frequency space of their ker-
nels in a Gaussian process that represents the latent
trajectory of motions. Consequently, it becomes
feasible to estimate the constituents of sensory ad-
verbial motions. When compared to the simple
neural network model, our model exhibits superior
performance on classification of adverbs. Our ap-
proach considers motions as a mixture of diverse
frequency components, leading to the successful
generation of appropriate adverbs from motion fea-
tures in our empirical investigations.

6 Limitations

The primary limitation to the generalization of
these results lies in the scarcity of datasets contain-
ing adverbially annotated human motions. There
is no other way to annotate adverbs by ourselves
to capture the meaning of adverbs which describe
human motions, and it is difficult to make com-
parisons with other models because there are few
studies working on the same research topic. An-
other limitation is that even if the adverbs output
by the model are correct, such as synonyms, the
model may judge that it has output the wrong one
unless it is an exact match. We think this can be
resolved by representing the adverbs in embedding
vectors to evaluate output.
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7 Ethical considerations

All datasets used in the experiments are either pub-
licly available or have been licensed for use by the
authors. In addition, all copyrights to the data gen-
erated using crowdsourcing were transferred to the
authors.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
gracefully energetically powerfully bouncily smoothly bouncily powerfully smoothly
elegantly vividly intensely dynamically dynamically joyfully dynamically flexibly
smoothly comically intensely boringly vividly dancily boldly wholeheartedly
lightly showingly quickly coolly boldly joyfully rhythmically wonderful
leisurely firmly dancily rhythmically sinuously stepping dynamically enthusiastically

Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16
joyfully rhythmically powerfully flowingly rhythmically regularly smoothly slowly
rhythmically leisurely intensely lightly grayly dynamically stately leisurely
lightly dynamically clearly rhythmically viscously rhythmically joyfully leisurely
bouncily sinuously pleasantly smoothly dynamically lightheartedly robotically quietly
energetically familiarly elegantly lightly sweetly sharp robotically carefully

Table 5: AIST++ dataset: Top 5 adverbs in each topic estimated by LDA.Adverbs with high co-occurrence in videos
are allocated to the same topic.The same adverbs observed within the same topic are spelled differently in Japanese
but have the same meaning.

generated by a non-linear transformation of a lower-
dimensional latent space, where the latent variables
follow a Gaussian distribution. By inferring the
latent variables and the mapping from the latent
space to the observed data, GPLVM can effectively
capture the intrinsic structure of the data in a lower-
dimensional space. It is widely used in various
machine learning tasks such as data visualization,
feature extraction, and clustering.

B Additional Information for the
annotation of adverbs

We requested each annotator to provide as many
Japanese adverbs as possible for human motions of
each video. To ensure the quality of the annotations,
we considered only those adverbs that appeared at
least three times across all the videos and discarded
the rest as noise. For the 100 Walks dataset, we as-
signed 20 annotators to annotate every 100 videos.
In the case of the AIST++ dataset, we assigned 5 an-
notators to annotate every 50 videos. This approach
allowed us to collect a diverse range of adverbs as-
sociated with the motions while maintaining the
quality of the annotations. The details of the ad-
verb dataset are presented in Table 6, where the
100 Walks dataset is referred to as “walk” and the
AIST++ dataset is referred to as “dance”. The met-
ric “average adverbs” represents the mean number
of adverbs annotated per video.

C Details of preprocessing
For the 100 Walks dataset and AIST++ dataset, we
compute 16 and 14 direction vectors, respectively.

Videos Adverbs average adverbs
Walk 100 264 12.93
Dance 1199 1767 16.18

Table 6: Statistics of our datasets.

The resulting vectors are then combined, with their
three-dimensional coordinates arranged in the col-
umn direction for each frame. Consequently, the
data dimensions are 48 and 42 for the respective
datasets. We did this preprocessing for the recon-
struction of the original pose information in the
future.

D Detailed description of Figure 2
In our approach, we employ the radial basis func-
tion (RBF) as the kernel function of GPLVM. To
optimize the values of X and the hyperparameters
of the kernel, we utilize the L-BFGS method (Liu
and Nocedal, 1989). For Md = 4, the Gaussian
distribution is depicted in Figure 2 with optimized
mean µ and variance σ parameters for the first di-
mension of each motion, using the SM kernel. The
estimated variance is exceptionally small, resulting
in the Gaussian distribution being represented as
a delta function in the figure. From Equation (3),
we observe that a larger mean µ value corresponds
to a shorter period. Therefore, it can be inferred
that the spectral components representing the basis
are more likely to be found on the left side of the
spectrum for slow-moving motion data. Thus, (a)
contains more fast motion components, (c) con-
tains more slow motion components, and (b) lies
in between as an intermediate case.

E Adverbs in each topic by LDA
The results of clustering the AIST++ dataset using
LDA are displayed in Table 5.In the table, the top
five words in each topic are listed in descending
order of their NPMI. The number of topics was set
to 16 to align with the number of topics estimated
by HDP-SMLDA.
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