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Abstract

In the era of large language models, apply-
ing techniques such as Retrieval Augmented
Generation can better address Open-Domain
Question-Answering problems. Due to con-
straints including model sizes and computing
resources, the length of context is often lim-
ited, and it becomes challenging to empower
the model to cover overlong contexts while an-
swering questions from open domains. This pa-
per proposes a general and convenient method
to cover longer contexts in Open-Domain
Question-Answering tasks. It leverages a small
encoder and cross-attention mechanism and ef-
fectively encodes contexts. With our method,
the original language models can cover sev-
eral times longer contexts while keeping the
computing requirements close to the baseline.
Our experiments demonstrate that after fine-
tuning, there is improved performance across
two held-in datasets, four held-out datasets,
and also in two In Context Learning settings.
Our code will be released at https://github.
com/Alibaba-NLP/Vec-RA-0ODQA.

1 Introduction

Transformer-based (Vaswani et al., 2017) architec-
tures with pre-training on large corpus have become
popular in recent Natural Language Processing re-
search (Brown et al., 2020; Workshop et al., 2022;
Chowdhery et al., 2023). An increasing number of
Natural Language Processing (NLP) tasks need
to process long contexts such as Open-Domain
Question Answering (ODQA) with Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020; Izac-
ard and Grave, 2020; Gu et al., 2018). However,
the fine-tuning and inference stages in downstream
tasks are still constrained by the input length, e.g.,
2048 tokens for Bloomz (Muennighoff et al., 2022)
and Llama-1 (Touvron et al., 2023).

With RAG, the input can easily surpass the max-
imum length the model can handle and it becomes
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Figure 1: A comparison of our method (lower) and re-
trieval augmented ODQA without vectorization (upper).
In the upper part, limited retrieved contexts are pro-
cessed by the task model to finish the task. The lower
part illustrates our method in which an encoder is incor-
porated to encode overlong retrieved contexts.

challenging for the model to perform both fine-
tuning and inference on overlong contexts. More-
over, in the in-context learning (ICL) (Dong et al.,
2022; Kim et al., 2022) setting, the context will be
much longer together with retrieved contexts. In
such cases, the demand for the model to handle
longer input text significantly increases.

To enable the model to cover longer context dur-
ing both fine-tuning and inference stages, this paper
proposes a method that leverages a 100 million-
level encoder model in downstream ODQA tasks
with a 1 billion-level language model as illustrated
in the lower part of Fig. 1. With our method, the
length of context that the model can cover increases
from 2k (in text form) to a maximum of 10k (in
dense form, which is condensed by the encoder).
Experiments are designed under three settings to
validate the effectiveness of our method. In the
experiments, we first fine-tune the model, option-
ally including the encoder, on two popular ODQA
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Figure 2: Speed illustration. Run time is measured on
a single A100 GPU and the batch size is set to 1
for all curves. "2k" on the horizontal axis represents
the baseline model’s run time to train or infer on data
of length 2k. "5k" and "10k" correspond to two vari-
ants of our method that can cover at most 5k and 10k
tokens when training and inferring. Training time mea-
sures the average over five consecutive training steps.
Inference time measures the average over five consecu-
tive generation steps. Specifically, we measure the exe-
cution duration of functions Trainer.training_step
and model.generate based on huggingface.

datasets with retrieved contexts and evaluate our
method in held-in, held-out, and ICL settings. Ex-
perimental results show that our method outper-
forms the baseline, which is fine-tuned on data of
length 2k, in all three settings.

Regarding the speed of our method, we mea-
sure the run time of each training and inference
step. Compared with work that compresses the
contexts with the original task model (Chevalier
et al., 2023), which requires techniques to reduce
the computation graph during backpropagation, we
employ a 10x smaller model to perform the en-
coding of excessive texts, so a complete gradient
descent procedure can be kept. To sum up, our
contributions are as follows:

1. We propose a method that incorporates a small
encoder model for excessively long context en-
coding by applying cross-attention mechanism
with the original task model.

2. We evaluate our method in two held-in, four
held-out, and two ICL settings after being fine-
tuned on two ODQA datasets and obtain im-
proved performance.

3. The computing resource requirements of our
method are consistent with those of the baseline
and the run time remains competitive.

Additional
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Figure 3: Method illustration of model architecture
(purple blocks) and data flows (along black/purple ar-
rows). The purple dashed arrows mean that the output
of MLP module will be the "query" to the next layer of
Cross-attn module. x N means that the modules with
dotted backgrounds are repeated with multiple layers in
the task model.

2 Method
2.1 Background

Consider an example query g with gold answer a
and independent C' pieces of corresponding con-
text information k = {k1, k2, ..., kc }, with each
being a sequence of tokens, where k is retrieved by
some retriever from a given corpus’

k = Retriever(q, corpus)

Ideally, the C' retrieved contexts contain the knowl-
edge needed to answer q correctly, but there may
also be noise. Given a decoder model Dec pa-
rameterized by 6, the output sequence y is usually
modeled by

Pb?(y’q, kma:mP) = Dec(y‘qakmamap)

where kpmazr = {k1,k2,....km} € k,m < C.
m refers to the number of contexts that reach the
model’s throughput. P stands for the prompts
that connect related content’>. Given the model,

'Refer to Sec. 3.1 for detailed definition of corpus and
retriever in our experlments.

’The forms of P vary with different settings, and there
will be detailed definitions in Sec. 3.1.
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Emaz is usually a subset of k because the maxi-
mum length of contexts is often constrained by the
model’s throughput or computing resources, and

During training, we aim to maximize the term
Py(alq, kmaz, P), and formalize the ODQA prob-
lem as a language modeling task. Specifically,
for a query g, its gold answer a and contexts
Emaz, they are connected linguistically with
proper prompts P, together denoted as an input
sequence x(q, a, kmaax, P) = {x1,x2,...}. Then
we aim to minimize the language modeling loss
over the set D of all training examples:

> X

m(q,a,kmam,P)GD @ (1)
log(Pp(xi|z<i))

2.2 Encoding and Cross-Attention

Lo(D) = —

We propose a method that can utilize additional
contexts Kggd = {km+1,Km+2,...} several
times longer than k,,q,. First, we introduce an
encoder parameterized by ¢. Then we apply cross-
attention with the original task model and introduce
a projector, a cross-attention module and a Multi-
Layer Perceptron (MLP) in each layer, together de-
noted the parameters as m. Denote w = {¢, 7, 0}
as all the parameters in our model. On the whole,
our method models the output y by an encoder-
decoder model Enc-Dec

Qw(y‘Qa kma:m P7 kadd)
= EnC'DeC(y‘Qa kmaz, P, kadd)

During training, inputs (g, @, kmaz, P) are em-
bedded by the original task model’s embedding
layer Emb

hq = Emb(a}(q7a7kma$7P))

and each of the additional contexts k; in k444 1S
encoded by the encoder Enc

h((;)ld = Enc(k;)

Note that the length of encoding from the encoder
is flexible practically and we compress each k;
into one vector. Following the output of the en-
coder, a projector Proj is used to align the high-
dimensional hidden spaces between the encoder
and task model in each layer

hiy = Proj(hadd)

where hgqq 1s concatenated of all hffu)l 4 calculated
from last step. Each layer of the task model is
assigned to an independent projector as different
layers may learn different representations.

In each layer, to incorporate the information
stored in k,qq We add a cross-attention module,
where representations of additional contexts hg,,
serve as "key" and "value", followed by an MLP. In
the first layer, the embeddings of original input hq
act as "query", and in the rest of the layers output
h; from the previous layer act as "query" (h; will
be defined later).

h. = Cross—attn(hq/h;, hiy)
hum = MLP(he)

Cross-attn(hg, b, ) is calculated as follows
Q=W®%h,

K,V = W¥5hp, WY hio

QK"
Vi

0 = softmax( 4

he = W%

where W@ WX WV WO refer to weight matri-
ces and dy, refers to the dimension of each attention
head. Then the output of cross-attention and MLP
is normally processed by a self-attention and an-
other MLP module. The output acts as "query" in-
put to the cross-attention module in the next layer.

h, = MLP(Self-attn(hqy,))

At last, the output of the last layer is expanded to
the vocabulary-size dimension to predict the next
token (not shown in Fig. 3 for simplicity), and we
aim to maximize the probability

Qw(a‘Qa kmazm P, kadd)

Consistent with the setup mentioned before, to
maximize term Q,(a|q, kmaz, P, Kadd), We turn
it into minimizing the language modeling loss

RS YD

w(q,a,kmam,P)7kadd€D 7

log(Qw (l'z |$<i, kadd))
(2)
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2.3 ICL Setting

Our method can also be applied to ICL settings.
Based on the aforementioned setup, we denoted
ICL samples as l;pqqe = {l1,12, ..., L }, with each
l; composed of another pair of query and answer.
We optimize objective 3 below on data where each
1;(q’, a’) refers to only query-answer ICL samples
(without context) and ¢’ a’ refer to another query-
answer pair:

(D) =~ > >

S(qva:lmam 7P)7kadd€D (

log(Q;(8i|3<i> kadd))
3

s = {s1, S2, ...} refers to the inputs composed of
(q,a,lmaz, P) and Q' shares a similar definition
to () in objective 2. Additional contexts ksqq are
utilized in the same way as in Sec. 2.2 by perform-
ing encoding, cross-attention, etc.

2.4 Training

Theoretically, training processes stated in Sec. 2.2
all remain differentiable and thus all the parame-
ters can be optimized via normal gradient descent
w.r.t. objective 2. Note that the parameters ¢
of the encoder can be initialized from a well-pre-
trained model on a large scale corpus and the pre-
trained parameters possess good performance in
many downstream tasks based on text encoding.
However, the parameters in the projector module
are randomly initialized. Thus at the start of the
training, according to the chain rule, the gradients
to the whole encoder will be random as well, which
poses a risk of breaking the encoding utility of the
encoder. This intuition proves to be true in our
experiments.

Therefore, we design two strategies of training:

1. Directly freeze parameters ¢ and make param-
eters (m, #) trainable during the whole training
process.

2. In the first few training steps (e.g., one epoch),
¢ is kept frozen to prevent random gradients
from breaking its well-pre-trained parameters.
After that, ¢ is optimized w.r.t. objective 2
together with the other modules (7, 6).

3 Experiment

3.1 Experiment settings

Settings Data format
Held-in {context k1 }
Held-out ...{context k, }.
Who got the first nobel prize in physics
{context k:'1 }
Who developed the first printing press
ICL format in 1430s
w/ contexts Johannes Gutenberg
. e O )
{context k; }
Who got the first nobel prize in physics
Who developed the first printing press
ICL format in 1430s
w/o contexts Johannes Gutenberg
(Sec. 2.3) (O A )
Who got the first nobel prize in physics
Additional | COnteX! K1 ):
Contexts {context kyp421};

Table 1: Examples of data format. refer
to prompts P mentioned in Sec. 2 and the context is
omitted here.

Data To evaluate our method, we first fine-tune
our model on two ODQA datasets separately, Triv-
1aQA (Joshi et al., 2017) and Natural Questions
(NQ) (Kwiatkowski et al., 2019). Besides evaluat-
ing our method on the held-in data, we also evalu-
ate four held-out data, namely CommonsenseQA
(Talmor et al., 2019), SQuAD2.0 (Rajpurkar et al.,
2016), Webquestions (Berant et al., 2013) and
ComplexWebQuestions (Talmor and Berant, 2018).
Specifically, samples in CommonsenseQA dataset
are formulated as multi-choice problems, and we
evaluate the performance in both multi-choice and
sequence-to-sequence formats. Refer to App. A.1
for the detailed format.

Format of input @ in Sec. 2.2 is formulated as
"Held-in Held-out" format in Table 1, and we eval-
uate the model’s performance on samples of ICL
format with context. Format of input s in Sec. 2.3
is formulated as "ICL format w/o contexts" in Ta-
ble 1.

Additional contexts k41, km+2 are encoded
by the encoder separately and independently with-
out prompts. The forms of prompts P defined
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previously are shown in gray tokens in Table 1.

Retriever For contexts of the datasets TriviaQA
and NQ, we utilize those collected by Karpukhin
et al. (2020), which are collected with BM25
(Robertson et al., 2009) and Dense Passage Re-
trieval techniques. For contexts of the four held-
out datasets, we follow Izacard et al. (2022) and
Shi et al. (2023) and use Contriver (Izacard et al.,
2021) as our retriever. Contexts k are retrieved
from Wikipedia dump dated December 20, 2018,
the version released by Karpukhin et al. (2020).

Baseline Recent decoder-only models like
Bloomz (Muennighoff et al., 2022) and GPTs
(Radford et al., 2019; Achiam et al., 2023) have
shown good performance in generation-like tasks,
and we use Bloomz-1b73 for the task model 6.
When fine-tuning the baseline model, inputs are
constructed according to the "Held-in Held-out"
setting as stated in Table 1. The length of the input
is extended to utilize as many contexts as possible,
consistent with the maximum input length (2k)
of the model while doing pre-training (Workshop
et al., 2022).

Additionally, note that the context information
Kkmaz provided in the inputs is ranked from best to
worst based on Dense Retrieval (Karpukhin et al.,
2020), which means the baseline we adopt is rather
stronger than randomly providing as many con-
texts as possible without considering the quality.
The baseline can be seen as a model fine-tuned on
the most relevant contexts incorporating reranking
techniques (Karpukhin et al., 2020; Khalifa et al.,
2023).

Initialization and Training Settings Weights
of popular pre-trained encoder models like BERT
(Devlin et al., 2018) should be good initialization
for the encoder ¢ and thus we adopt BERT-base-
uncased” for initialization of ¢. Parameters of at-
tention and MLP modules are also adapted from
Bloomz-1b7. To keep the encoding process effi-
cient, we use a simple Linear module as the pro-
jector that is randomly initialized and fine-tuned
to align the hidden dimension of 768 (BERT-base-
uncased) to 2048 (Bloomz-1b7).

In our experiment, we use BERT to indepen-
dently encode additional contexts on 10 or 20 con-
texts, which can cover approximately 5k to 10k ad-
ditional context tokens. Then the hidden states of

3https ://huggingface.co/bigscience/bloomz-1b7
4https ://huggingface.co/bert-base-uncased

Learning Rate 2e-5
AdamW

Optimizer

Lr scheduler cosine

Warmup ratio 0.03

FP 16 True

FP 16 eval True

Globa batch size 8

Save steps 4000

Eval steps 4000

Max epochs 4

GPU name NVIDIA A100-SXM 80G

Table 3: Hyperparameters

the [CLS] token are concatenated and fed-forward
to subsequent modules as illustrated in Fig. 3. For
both the baseline and our method, we evaluate the
model checkpoint with the lowest language mod-
eling loss on the development set and report the
Exact Match (EM) metric.

As discussed in Sec. 2.4, there are mainly two
choices of training strategies of which parts of our
proposed model are optimized. We experiment
with both strategies and report the results of the
"frozen encoder" setting in Sec. 3.2 and the "train-
ing encoder” setting in Sec. 4.1 respectively.

Hyperparameters We list important hyperpa-
rameters in our experiments in Table 3.

3.2 Main Results

We present our main result of the first training
strategy discussed in Sec. 2.4 in Table 4. Upon
fine-tuning on two datasets and evaluating on three
(held-in, held-out and ICL) settings, our method
achieves performance superior to that of the base-
line in five out of six settings, except for one setting
on one dataset.

In held-in settings (training on TriviaQA/NQ
and evaluating on TriviaQA/NQ), our model con-
sistently demonstrates superior performance rel-
ative to the baseline. Moreover, it demonstrates
stable improved performance as more contexts are
encoded by our method, showing the potential of
our model to encode even longer contexts.

In held-out settings, our method outperforms the
baseline in all the datasets after being fine-tuned on
TriviaQA and outperforms three of four datasets af-
ter being fine-tuned on NQ, suggesting the general
applicability of our method. From the "Com.QA
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. TriviaQA NQ Com.QA rest SQuAD Web.Q Comp.Q Triviaga (ICL) NQ (ICL)
Train \ Evaluate
dev test dev test choice seq2seq  test test test dev test dev test
baseline|45.740 46.203 14.868 16.288 17.199 2.785 10.191 9.524 4490 31.764 31.857 8.999 9.058
TriviaQA |+ 5k 47.686 47.742 17.506 19.307 19.328 3.194 12.684 10.053 5.513 32.341 32.034 10.677 11.136
+ 10k [47.901 48.245 18.465 19.529 17.363 2.539 12.667 11.111 6.024 34.027 34.235 11.671 11.801
baseline|42.809 43.976 37.159 37.978 19.410 4.095 21.199 14.815 13.498 35.521 35.967 19.242 21.136
NQ + 5k 43.669 44.657 37.01 38.698 19.656 4.095 22.724 15344 13.214 35.883 35.985 19.265 21.413
+ 10k |44.189 45.107 37.581 39.114 21.294 4.423 22918 15.873 13.413 36.381 36.569 19.447 21.662

Table 4: Main results of performance with frozen encoder on held-in, held-out and ICL settings. Boldface marks the
best results in each setting. Com.QA refers to CommonsenseQA. Web.Q refers to WebQuestions. Comp.Q refers
ComplexWebQuestions. TriviaQA (ICL) and NQ (ICL) show the results evaluated on ICL setting where the data is

formed as illustrated in Table 1 ICL.

choice" setting we can see that though our model
is not trained to answer multi-choice questions, it
performs better in selecting choices than baseline.

In the last two columns TriviaQA (ICL) and
NQ (ICL), we evaluate whether the optimized
model can generalize to a similar ICL setting.
Specifically, with optimized parameter w™* after
fine-tuning objective 2 we evaluate how well we
can model Q.+ (alq, lymaz, P, kadd) Where each
l;(q',a’ k') is an ICL sample composed of an-
other query, context and answer. Surprisingly, we
obtain a similar improved performance to the held-
in setting. Steadily improved performance indi-
cates that the training method we adopt is robust,
maintaining both the encoder and decoder’s effi-
cacy in retrieving useful information while the eval-
uation data format diverges from the training data.

In summary, from the results presented in Ta-
ble 4, it is observable that in comparison with the
baseline, employing our method to encode a greater
volume of retrieval information offers a predomi-
nantly positive enhancement to the model’s perfor-
mance across various settings, including held-in,
held-out, and ICL.

4 Analysis

In this section, we present the results of three ana-
lytical experiments. The first one shows the result
of the other training strategy discussed in Sec. 2.4.
The second shows the evaluation results of optimiz-
ing objective 3. The third shows the effectiveness
of our method in a more challenging setting.

4.1 Encoder Training

In our experiments, we first try optimizing the en-
coder ¢ with the other parameters (7, §) from the

very beginning of the training process. Results turn
out to verify our anticipation: newly introduced
random parameters (the projector) easily mess up
with the parameters in the encoder, consequently
undermining its capability to encode information
and resulting in worse performance than baseline.

Here we evaluate the training strategy we pro-
posed in Sec. 2.4 that aims to fix this problem. The
encoder is optimized after several training steps,
and in our experiment, we set it to one epoch. Be-
sides, the parameters in the cross-attention mod-
ule are initialized by those in the pre-trained self-
attention module to minimize the amount of ran-
domly initialized parameters.

Evaluations are done in the same settings as in
Table 4. By applying this two-step training method,
we succeed in obtaining better performance than
the baseline in most of the settings. It can be in-
ferred that compared with the setting of a frozen
encoder (i.e., ¢ is not optimized), further introduc-
ing trainable encoder parameters did not further
enhance the model’s performance as anticipated.
Although we can achieve better results in most
settings than baseline, performance in held-in and
held-out settings seems to be less stable compared
to the "frozen encoder" setting. Particularly, we
find that optimizing the encoder results in degraded
performance in the ICL setting, especially after be-
ing fine-tuned on TriviaQA datasets. We attribute
this to the fact that million-scale parameter models,
after fine-tuning on certain data, cannot guarantee
to generalize the encoding capability to a broader
range of scenarios, e.g. the ICL setting, as defined
in Table 1. We present the results of the second
training strategy discussed in Sec. 2.4 in Table 5.
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. TriviaQA NQ Com.QA rest SQuAD Web.Q Comp.Q Triviaga (ICL) NQ (ICL)
Train \ Evaluate
dev test dev test choice seq2seq  test test test dev test dev test
baseline|45.740 46.203 14.868 16.288 17.199 2.785 10.191 9.524 4.490 31.764 31.857 8.999 9.058
TriviaQA |+ 5k 48.082 47.803 15.896 16.898 14.333 3.112 10.755 11.640 4.945 16.646 16.645 6.178 6.676
+ 10k [47.980 47.750 16.079 17.008 15.807 2.867 10.823 11.111 5.058 16.103 16.300 6.383 7.008
baseline|42.809 43.976 37.159 37.978 19410 4.095 21.199 14.815 13.498 35.521 35.967 19.242 21.136
NQ + 5k 43.397 44.524 37.387 39.03 15.889 4.095 22.092 14.286 12.958 33.993 34.341 17.951 19.640
+ 10k |43.284 44.047 37.205 39.28 16.790 3.931 22.143 16.402 12.788 33.122 33.404 18.933 20.914

Table 5: Analysis of training encoder along with the task model when fine-tuning. Experiments are conducted under

the same setting to Sec. 3.2

TriviaQA NQ
w/o contexts dev test dev test

ICL samples

20.052 20.083 19.242 19.529
19.939 20.233 19.539 19.668
20.358 20.578 19.333 19.501

baseline
+ 10 vec
+ 20 vec

Table 6: Result of fine-tuning on data with ICL samples
(without context information) and evaluating on held-in
setting.

4.2 ICL Setting w/o Contexts

We also experiment with optimizing objective 3
defined in Sec. 2.3 where only query-answer pairs
are provided in the ICL format input. The detailed
data format is shown in Table 1 "ICL format w/o
contexts" and the query-answer pair is sampled
as many as possible from the held-in dataset. The
utility of the encoder remains the same as it encodes
10 (+ 10 vec) or 20 (+ 20 vec) pieces of context and
is kept frozen during the training.

The model is fine-tuned on TriviaQA and NQ
and evaluated in held-in settings. We report the
result in Table 6. First, we see that our method
can still enhance the model in this setting but the
improvements seem to be not consistent or promi-
nent. Second, notice that the improvement on each
dataset is not as remarkable as that in the ICL set-
ting in Table 4, where each ICL sample is provided
along with one piece of context.

To summarize the findings here, our method for
encoding context exhibits a more pronounced per-
formance enhancement in ICL settings that incorpo-
rate context information. We posit that the underly-
ing reason for this is that the cross-attention mech-
anism, which facilitates information interchange
between inputs (embedded by the task model) and
dense context information (encoded by the en-

kmas = {} dTriViaQA NQ

ev test dev test
baseline 20.391 20.472 18.968 19.889
+ 1 vec 21.636 21.533 20.041 20.637
+ 5 vec 21.942 22.010 20.258 20.942
+ 10 vec 21.964 22.072 22.268 22.632

Table 7: Effectiveness of our method on encoding when
we remove the influence on text form context informa-
tion in x.

coder), is particularly effective when context in-
teracts with context, instead of context with ICL
samples with only query-answer pairs.

4.3 A More Challenging Setting

In our method presented in Sec. 2.2, we adopt
a projector module that is applied to align the
high-dimensional hidden spaces and adopt cross-
attention mechanism to incorporate the dense con-
text information in each layer. In this section, we
evaluate the effectiveness of our method in a more
challenging setting.

Specifically, compared to the data format stated
in the "Held-in Held-out" setting in Table 1, we
remove the contexts in input x and keep only ques-
tions and answers in the training data, i.e.,  in
objective 2 becomes (q, a, {}, P). Only several
contexts are supplied as "Additional Contexts" en-
coded by the encoder. Note that though supply-
ing text-form contexts can greatly enhance models
in ODQA tasks, here we remove them to test the
effectiveness of the encoder and cross-attention
mechanism in a more challenging setting.

Results are shown in Table. 7. "+ 1/5/10 vec"
means we utilize 1/5/10 pieces of contexts and en-
code them into 1/5/10 vectors by taking the [CLS]

7689



tokens’ hidden states. It can be inferred that, firstly,
with only one encoded vector, our method can en-
hance the model. Secondly, we observe consistent
improvement across two datasets and three variants
of our method that incorporating more contexts
leads to better performance.

5 Related Work

5.1 Retrieval Augmentation

Recently, retrieval augmentation has been utilized
to improve a large amount of Natural Language
Processing downstream tasks such as question-
answering (Chen et al., 2017; Lewis et al., 2020;
Kwiatkowski et al., 2019; Fan et al., 2019), dia-
logue (Moghe et al., 2018), language modeling
(Khandelwal et al., 2020), NER (Wang et al., 2022,
2021) and machine translation (Gu et al., 2018;
Xu et al., 2022). In the aforementioned work, the
utilization of retrieval information has been funda-
mentally capable of enhancing model performance
across all dimensions.

5.2 Related Model Architectures

Referring to the base model, there has been increas-
ing interest in using models of encoder-decoder or
decoder-only architectures in solving downstream
tasks with retrieval augmentation recently.

Allaouzi et al. (2019) and Zhou et al. (2023) em-
ploy models of encoder-decoder architectures to
solve visual question answering task in the med-
ical domain. In their work, the encoder model is
responsible for extracting prominent features from
a medical image and the decoder part generates
the answer. Li et al. (2023) utilizes an encoder-
decoder model with constrained decoding to solve
extractive question answering task.

Decoder-only models, e.g., ChatGPT and GPT-4
(Achiam et al., 2023), are more famous for their sur-
prisingly great performance on tasks like question
answering (Ali et al., 2022) and there is abundant
work that tries to improve the performance based on
GPTs (Pereira et al., 2023). Kim and Min (2024) in-
troduce a chatbot model that utilizes generative Al
and the Retrieval Augmented Generation method
to address the issue that achieving regulatory com-
pliance necessitates the intricate navigation of ex-
ceptionally complex and voluminous guidelines in
the pharmaceutical industry.

In our work, we also incorporate an encoder for
context encoding. However, compared to the tra-
ditional encoder-decoder models, the encoder part

in our method is several times smaller than the de-
coder part. Although our method does not alter the
quadratic complexity of the attention mechanism,
it instead processes the long contexts in a much
lower dimension, thus being able to quintuple the
capacity to cover context information without the
need to utilize additional computing resources.

5.3 Utilizing Long Contexts

To handle contexts with excessive length, recently
proposed techniques such as context compression
are increasingly investigated in NLP research.

Chevalier et al. (2023) proposes "AutoCompres-
sors" that uses OPT (Zhang et al., 2022) and Llama-
2 (Touvron et al., 2023) to compress texts into
summary vectors and show that utilizing long con-
texts can improve perplexity. In their method, the
compression is done by the billion-level language
model, and in one of their experiments, they train
on sequence with 30720 tokens with 20 compres-
sion steps. However, the complete computation
graph cannot be fully kept in such settings, and the
optimizing process has to rely on stopping gradi-
ents, which poses potential risks to the mathemat-
ical principle behind gradient descent. Similarly
in Zhang et al. (2024)’s work, the long context is
first partitioned into multiple intervals, and then a
sliding window is employed to sequentially process
one interval at a time and the compressed token em-
beddings are kept for the next token prediction. It
is implemented by introducing additional trainable
parameters to the origin language model to finish
the task of "Activation Condensing”, and original
parameters are frozen throughout the training pro-
cess.

6 Conclusion

In this paper, we propose a method that incorpo-
rates a small encoder model for excessively long
context encoding by applying cross-attention mech-
anism with the original task model. The method
is simple and general for transformer-based lan-
guage models. In our experiments, after fine-tuning
on ODQA dataset, we find improved performance
across two held-in, four held-out and two ICL set-
tings, compared to a baseline that incorporates the
reranking technique on training data, showing the
effectiveness of our method in utilizing long con-
texts. We note that the intuitive explanations for
the performance improvement are as follows: 1)
the encoder model provides the ability to encode
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longer contexts; 2) the cross-attention mechanism
is useful in selectively attending the correct parts
of the inputs. Regarding the efficiency, the need for
GPU quantity remains unchanged and the run time
remains competitive to the baseline.

7 Limitations

First, we have only tested our method in 1B7 mod-
els with a 110M encoder, and yet we have not tested
the effectiveness of our method on larger language
models, e.g., 7B and 70B, due to limited computing
resources.

Second, we observe that our method exhibits
relatively modest performance under setting 4.2,
with only a slight improvement compared to the
baseline. We attribute the potential reasons for this
to the cross-attention mechanism being unsuitable
for modeling the relationship between context and
ICL samples (without contexts).
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A Appendix

A.1 CommonsenseQA Format

We show how we reformat data from Common-
senseQA in Table 8. Reformated choice turn
A/B/C/D/E into 1/2/3/4/5 to avoid causing ambi-
guity with “A:” in prompts P. The choices are
removed in seg2seq format and the problem be-
comes more challenging.
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Setting

Format

Origin Format

A revolving door is convenient for two direction travel, but it also
serves as a security measure at a what?

A: bank

B: library

C: department store

D: mall

E: new york

Answer: A

Reformatted choice

Q: A revolving door is convenient for two direction travel, but it also
serves as a security measure at a what? Choose from 1-5 given below.
1: bank

2: library

3: department store

4: mall

5: new york

A:

Answer: 1 or bank

Reformatted seq2seq

Q: A revolving door is convenient for two direction travel, but it also
serves as a security measure at a what?
A:

Answer: bank

Table 8
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