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Abstract

Aligned Large Language Models (LLMs) show-
case remarkable versatility, capable of handling
diverse real-world tasks. Meanwhile, aligned
LLMs are also expected to exhibit speciality,
excelling in specific applications. However,
fine-tuning with extra data, a common practice
to gain speciality, often leads to catastrophic
forgetting (CF) of previously acquired versatil-
ity, hindering the model’s performance across
diverse tasks. In response to this challenge, we
propose CoFiTune, a coarse to fine framework
in an attempt to strike the balance between spe-
ciality and versatility. At the coarse-grained
level, an empirical tree-search algorithm is uti-
lized to pinpoint and update specific modules
that are crucial for speciality, while keeping
other parameters frozen; at the fine-grained
level, a soft-masking mechanism regulates the
update to the LLMs, mitigating the CF issue
without compromising speciality. In an over-
all evaluation of both speciality and versatility,
CoFiTune consistently outperforms baseline
methods across diverse tasks and model scales.
When compared to the full-parameter SFT,
CoFiTune offers an average versatility improve-
ment of 14%, while only incurring a marginal
loss in speciality. Lastly, based on further
analysis, we provide a speculative insight into
the information forwarding process in LLMs,
which helps explain the effectiveness of the pro-
posed method. The code is available at https:
//github.com/rattlesnakey/CoFiTune.

1 Introduction

Aligned LLMs mainly undergo a two-step proce-
dure: initial pre-training on web-scale text corpora,
followed by fine-tuning on diverse instructions to
align with human intentions. They exhibit remark-
able versatility, showcasing their ability to handle
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Figure 1: An illustration of our objective: achieving
effective speciality without significantly compromising
versatility.

various real-world tasks, such as reasoning, com-
mon sense question-answering, and instruction fol-
lowing (Zhao et al., 2023; Achiam et al., 2023; Lu
et al., 2023b).

Despite the versatility, aligned LLMs still fall
short in certain tasks or domains, such as mathe-
matics (Gou et al., 2023), finance (Li et al., 2023c),
and law (Cui et al., 2023a). To bolster performance
in these particular tasks or domains, i.e., to gain
speciality, a common practice is fine-tuning. How-
ever, during the fine-tuning process, the modifica-
tion of model parameters often leads to catastrophic
forgetting (CF), thereby causing a noticeable loss
of versatility (Lin et al., 2023b). This loss adversely
affects the performance of fine-tuned models across
various real-world tasks (Cheng et al., 2023; Dong
et al., 2023), propelling several works to investi-
gate and contribute solutions to the CF in LLM
versatility (Lin et al., 2023b; Wang et al., 2023c).

As a relatively new problem, the CF in LLMs
remains under-explored. We categorize the exist-
ing studies into regularization-based, weight-based,
and architecture-based methods1. Regularization-
based methods (Lin et al., 2023b; Smith et al.,
2023) add extra terms into loss function to penalize
parameter changes. Weight-based methods (Worts-
man et al., 2022; Ke et al., 2022) introduce weight
coefficients for parameters to regulate their updates.
Architecture-based methods (Wang et al., 2023d;
Razdaibiedina et al., 2023) design and exclusively

1See Appendix A.5 for more details about these methods.
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fine-tune extra modules outside the original model.
However, these methods still have limitations: 1)
Regularization- and weight-based methods involve
fine-tuning all parameters, which poses a signifi-
cant challenge to preventing CF in versatility. Par-
ticullary, CF deteriorates as the training iteration
proceeds (Luo et al., 2023b). 2) Architecture-
based methods only update the inserted parameters,
which blocks the learning of speciality, particularly
on challenging tasks (Lin et al., 2023b).

These limitations raise a key question: How
can the model gain speciality while preserving the
versatility, thereby enhancing its overall abilities?
(shown in Fig. 1). Recent research threads high-
light two pivotal findings: the presence of redun-
dant parameters in the model (Bansal et al., 2023;
Sun et al., 2023) and the distinct role played by
different modules and layers (Geva et al., 2021;
Meng et al., 2022a). These suggest that it is highly
feasible to enhance speciality by updating specific
parameters within a defined layer range while keep-
ing the remainder frozen to maintain versatility.2

Therefore, we propose a Coarse to Fine frame-
work, i.e., CoFiTune. At the coarse-grained level,
we perform an empirical tree-search algorithm to
identify and update specific modules within a de-
fined layer range that are crucial for speciality with-
out significant versatility penalty. Simultaneously,
the remaining parameters are frozen to further pre-
serve versatility. Subsequently, recognizing that
not all units3 in a module are evenly important for
the versatility (Michel et al., 2019), we utilize a
fine-grained soft-masking mechanism to regulate
the backward gradient flow based on their impor-
tance values for versatility. This further mitigates
the CF issue while not jeopardizing the speciality.
To summarize, our contributions are as follows:

1) We present CoFiTune, a framework striking
a delicate balance between versatility and speciality.
We also lead in creating a comprehensive Chinese
CF setting, contributing to CF research in the Chi-
nese domain. Extensive experiments demonstrate
the effectiveness of CoFiTune across diverse tasks
and model scales.

2) Our CoFiTune achieves over 95% versatil-
ity and 90% speciality compared to original and
full SFT models on average, and we find that only
tuning the FFN module in the mid-to-lower layer

2The results in Sec. 4.3 and 4.4, along with the insights 1,
3, and 4, further support our speculation.

3Units denote the attn. heads in MHA or neurons in FFN.

range achieves satisfactory speciality without sig-
nificantly affecting versatility.

3) We conduct extra experiments to give more
insights, demonstrating the module’s importance
for gaining speciality and exploring the function of
three crucial areas within the model.

2 Related Work

CF in LLM The previous studies about the CF
problem typically focused on the CF of prior train-
ing tasks in a continual learning context, where a
sequence of tasks are learned (Madotto et al., 2021;
Wu et al., 2021). Recently, attention has shifted to-
wards investigating the CF problem in the general
abilities of LLMs. Luo et al. (2023b) first explored
the CF problem in LLMs, revealing a pronounced
CF phenomenon in general knowledge and reason-
ing. Subsequently, Wang et al. (2023c) established
a benchmark comprising a sequence of challenging
tasks to facilitate CF research in LLMs. Different
from them, Lin et al. (2023b) proposed several so-
lutions to address the trade-off between versatility
and speciality in LLMs under a single task fine-
tuning setting. In this study, we follow Lin et al.
(2023b) to strike a balance between the speciality
and versatility of LLMs.

Key Components in Transformer Previous
works demonstrate the presence of substantial re-
dundant parameters in Transformer-based mod-
els (An et al., 2020; Xia et al., 2022; Bansal et al.,
2023). Therefore, it’s crucial to pinpoint the key
components and precisely comprehend their un-
derlying mechanisms. Recent endeavors try to an-
alyze the involved layers and modules. Elhage
et al. (2021) developed mathematical tools to un-
veil an information-copying behavior within the
attention module. Geva et al. (2021) analyzed the
feed-forward network (FFN), considering the up
and down projection matrices as the key and value
of the memories. Mirzadeh et al. (2024) demon-
strated that SwiGLU, a common trainable activa-
tion function in the FFN of LLMs, can be replaced
with non-trainable ReLU to reduce computation
without affecting performance. In light of the afore-
mentioned insights, in this work, we explore the
key components, i.e., attention and FFN4 modules
in certain layer range that are integral to gaining
speciality and preserving versatility.

4For simplicity, starting from this section, FFN only refers
to the combination of up & down projection.
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3 The Framework

We start with the task formulation (Sec. 3.1) and the
backbone we used in this work (Sec. 3.2). Then, we
outline our CoFiTune framework, covering: 1) an
empirical tree-search algorithm to identify modules
within a defined layer range that balances special-
ity and versatility effectively (Sec. 3.3); 2) a Fine-
SoftMask mechanism regulating the backward gra-
dient flow based on units’ importance for versatility
to further mitigate the CF issue (Sec. 3.4).

3.1 Task Formulation
Different from earlier researches, which focus on
the CF in previously learned abilities when fine-
tuning on a sequence of tasks (Liu et al., 2021b;
Zhang et al., 2022b), we align with Lin et al.
(2023b), emphasizing the trade-off between spe-
ciality and versatility in fine-tuning original LLM
for a single task. This is because the original ver-
satility of LLM is crucial and undergoes a progres-
sive reduction at each fine-tuning step (Luo et al.,
2023b). Additionally, we investigate a potential
strategy to replace sequential fine-tuning for better
performance. Further discussion of our setting is
in Appendix A.4.

During supervised fine-tuning (SFT), given an
input token sequence x = (x0, x1, . . .), the model
is trained to predict the next token xi in an autore-
gressive manner:

LSFT(θ) = Ex∼DSFT

[
−
∑

i

log p(xi|x<i; θ)

]
(1)

where θ represents the parameters of aligned LLM,
DSFT is the fine-tuning dataset.

After obtaining the fine-tuned model θ̂, we as-
sess its speciality (Spec.) and versatility (Vers.)
scores. A unified (Uni.) score is further defined
to evaluate its overall ability, i.e., both Spec. and
Vers.. Refer to Sec. 4.2 for more details of scores.

3.2 Backbone Architecture
In this work, we utilize the Llama-based (Touvron
et al., 2023) aligned LLM as our backbone, which
consists of an Embedding module, an LM Head,
and a stack of Llama Layers. Each Llama Layer
integrates a multi-head attention (MHA), followed
by a feed-forward network (FFN) with residual con-
nections. For an input x, the Llama Layer generates
output y based on the following equations:

x′ = x+ MHA(Norm(x))

y = x′ + FFN(Norm(x′))
(2)
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Figure 2: An illustration of our CoFiTune framework.
N denotes the number of layers. At the coarse-grained
level, we pinpoint the module (e.g., FFN) within a de-
fined layer range (e.g., 10th - 20th layers) that gains spe-
ciality effectively without harming versatility much. At
the fine-grained level, we selectively update the param-
eters within the region identified at the coarse-grained
level and leverage Im to control their gradient flow.

Each head in the MHA module can be defined as:

headi = Attention(xWQ
i ,xW

K
i ,xWV

i ) (3)

where WQ
i , WK

i , and WV
i are the weight matrices

of query, key, and value for the i-th head. The
FFN module is parameterized by an up projection
(up_proj) and a down projection (down_proj):

FFN(x′) = σ(x′W1)W2 (4)

where σ is the SwiGLU activation func-
tion (Shazeer, 2020), W1 and W2 are up_proj and
down_proj respectively. More details of backbone
information are illustrated in Appendix A.1.

3.3 Coarse-grained Level

Following the analysis in paragraph 2 of Sec. 2,
which reveals the presence of parameter redun-
dancy and key components (MHA and FFN) in
LLMs, we aim to pinpoint the module (e.g., FFN)
within a defined layer range (e.g., 10th - 20th lay-
ers) target for speciality without significantly af-
fecting versatility. Subsequently, we exclusively
train the identified module within the layer range,
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Figure 3: The exploration process of Finance task in the 13B model. N denotes the number of layers and in this
case, N = 40. For simplicity, we denote the model fine-tuned in our exploration as “layer range - module”, e.g., the
model fine-tuned with FFN module within the layer range (10, 20] denoted as “(10, 20] - FFN”.

while freezing the remaining parameters to further
preserve the versatility.

Our exploration process encompasses three
steps: 1) identifying the optimal broad layer range
lr_broad; 2) narrowing down from lr_broad to
obtain the optimal narrow layer range lr_narrow;
3) exploring the best modules within the narrow
layer range lr_narrow. The best solution is up
to the best Uni. score through three steps. Note
that in steps 1 and 2, all modules, including both
MHA and FFN are trainable in the specific explor-
ing layer range; in step 3, only the selective module
is trainable.5

Take the exploration process for Finance task
in the 13B model as an example (illustrated in
Fig. 3)6. In step 1, we first obtain the Uni. scores
of three broad layer ranges: (0, 20], (20, 40], and
(10, 30]. For a more accurate search, we further
obtain the Uni. score of the layer range (5, 25]
between (10, 30] with best Uni. score and (0, 20]
with second-best Uni. score. In step 2, we first split
the optimal broad layer range lr_broad (10, 30]
into three narrow layer ranges: (10, 20], (20, 30],
(15, 25], and follow the exploration procedures
from step 1 to identify the optimal narrow layer
range lr_narrow (10, 20].

In step 3, we separately explore the Uni. scores
for the modules within the layer range (10, 20], i.e.,
“(10, 20] −MHA” and “(10, 20] − FFN” and ob-

5We exclusively train the up_proj W1 and down_proj W2

within the FFN (shown in Eq. 4) and head’s query WQ
i , key

WK
i , value WV

i in the MHA (shown in Eq. 3).
6The details of tasks and models are illustrated in Sec. 4.1.

tain the best module “(10, 20] − FFN”. To delve
deeper, we further examine the Uni. scores of sub-
modules (up_proj and down_proj) within the best
module (FFN). Here, we opt not to explore smaller
layer ranges within lr_narrow (e.g., (10, 15] and
(15, 20]) due to a substantial speciality gap com-
pared to the all-layer range. See Appendix A.2 for
the results of smaller layer ranges.

We select the best Uni. score among three steps
as the final solution of the coarse-grained level. The
entire exploration is illustrated in Algorithm 1.

3.4 Fine-grained Level

Recognizing that not all units (attention heads or
neurons) in a module contribute equally to the LLM
versatility (Michel et al., 2019), 1) we first com-
pute their importance for LLM versatility; 2) Sub-
sequently, we utilize a fine-grained soft-masking
(Fine-SoftMask) mechanism to control the back-
ward gradient flow based on their importance val-
ues, aiming to further mitigate the CF issue.

In this section, we use “module” or m to denote
the module from the final solution identified at the
coarse-grained level. Note that the Fine-SoftMask
is exclusively applied to these modules, e.g., the
FFN modules within the layer range (10, 20].

Computing Importance of Units Before di-
rectly fine-tuning the module, we follow Ke et al.
(2022) to use a proxy based on robustness, i.e.,
KL-divergence loss, to compute units’ importance
for versatility without accessing the external data.
This is achieved by employing a gradient-based
importance detection method (Michel et al., 2019):
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ôm = gm ⊙ om

Im =
1

K

K∑

k=1

∣∣∣∣
∂LImpt

∂gm

∣∣∣∣ (5)

LImpt = KL(f1
LLM(x), f2

LLM(x))

where om refers to the output of module m. K is
the data size of DSFT. gm, an all 1’s virtual pa-
rameter, remains unchanged during the computing
process, as we only need its gradient ∇gm (the
term within || in Eq.5) on each parameter to get
the importance of corresponding unit. ⊙ denotes
element-wise multiplication, i.e., each gm,i in gm
corresponding to a unit in the module. The overall
importance of units Im is computed by averaging
the gradient values of gm, where Im is of the same
size as gm.
f1

LLM and f2
LLM are the LLM with different

dropout masks7. By simply feeding the same
x ∈ DSFT to the model with different dropout
masks twice, we obtain two representations. The
difference between these two representations, com-
puted by the KL-divergence loss, can measure the
unit’s importance for the model. The rationale is
as follows: if an unimportant neuron is dropped
out, the resulting representation will show minimal
alteration. Therefore, we will obtain a "normal
type" representation similar to the one without any
dropout. Conversely, if an important neuron is
dropped out, the resulting representation will sig-
nificantly change, resulting in an "abnormal type"
representation (since dropout simulates noise addi-
tion). The difference between abnormal and normal
output representations will be considerable. By uti-
lizing KL divergence loss, we can effectively cap-
ture this difference and assign high gradient values
to determine the importance of neurons. In contrast,
the difference between normal representations will
be marginal, resulting in small gradient values and,
consequently, small importance values.

Fine-SoftMask Mechanism Then, we regulate
the backward gradient flow based on the computed
Im. We initially derive the original gradient ∇m

by employing LSFT loss defined in Eq. 1. Subse-
quently, we apply the Im to obtain the modified
gradient ∇̂m for updating:

∇̂m = (1− Im)⊙∇m (6)
7As the Llama layer lacks dropout module, we manually

add it after the output of down_proj and the attention weights
of MHA when computing the importance of units.

Here, we expand (by copying) the Im to match
the dimensions of∇m to apply it to all associated
parameters. This mechanism further mitigates the
CF issue by regulating the update intensity of pa-
rameters based on Im for versatility. Note that the
Fine-SoftMask is only applied in the backward pass
during fine-tuning and the virtual parameter gm
mentioned in the computing stage will be discarded
in this process. The overview of our CoFiTune is
shown in Fig. 2.

4 Experiment

In this section, we conduct extensive experiments
to answer the following questions: 1) RQ1: Train-
ing which layers and modules can optimize the
trade-off between speciality and versatility? 2)
RQ2: How does our CoFiTune framework com-
pared to the baseline methods? 3) RQ3: Can the
Fine-SoftMask mechanism further alleviate the CF
issue in versatility? 4) RQ4: Can our CoFiTune
be seamlessly applied to models across different
model scales and families?

We also conduct further experimental analysis
to delve into more insights for this field in Sec. 4.4.

4.1 Datasets and Experiment Settings

Datasets: Building upon our task formulation in
Sec. 3.1, we establish a Chinese CF setting, aiming
to advance research in the Chinese language. This
fills a crucial gap in existing studies, which have
predominantly focused on English (Razdaibiedina
et al., 2023; Lin et al., 2023b; Luo et al., 2023b).

Our setting emphasizes both speciality and versa-
tility. Specifically, for LLM’s speciality, we select
tasks with considerable complexity in two primary
categories: 1) Knowledge Intensive Tasks: These
tasks require the model to generate responses to
questions tailored for specific domain. We create
the Finance and Law instruction format datasets
based on FiQA (Wang et al., 2023b) and Lla-
maLawyer (Huang et al., 2023); 2) Ability In-
tensive Tasks: These tasks aim to test LLM’s
ability to handle challenging and crucial tasks in
real-world scenarios. We create the mathematical
problem solving (Math) and Context-Aware Gen-
eration (CAG8) based on MGSM8k (Chen et al.,
2023a) and DuReader (He et al., 2018).

To evaluate the versatility of LLM, we combine
the insights from previous studies (Lin et al., 2023b;

8CAG task requires the model to generate answers flexibly
based on the given context (See Sec. A.6.2 for more details).
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Luo et al., 2023b) and focus on three key aspects:
1) General Domain Knowledge (Gen-Kn.): We
adopt CMMLU (Li et al., 2023b) to assess the orig-
inal world knowledge stored in LLM; 2) Generic
Reasoning (Gen-Rs.): We utilize commonly used
reasoning datasets, including LogiQA (Liu et al.,
2021a), LogiQA2 (Liu et al., 2023), OCNLI (Hu
et al., 2020), and Zh-Winograd (Muennighoff et al.,
2022); 3) Instruction Following (Instruct.): Fol-
lowing Lin et al. (2023b), we employ a Chinese
GPT4-instruct dataset (Peng et al., 2023). Both
Gen-Kn. and Gen-Rs. are evaluated in a zero-shot
manner. Statistics and detailed descriptions of each
dataset are provided in Appendix A.6.

Experimental Setting: We use the aligned LLM
Chinese-Alpaca-Pro (Cui et al., 2023b) due to its ro-
bust versatility across multiple model scales, rang-
ing from 7B to 33B, as detailed in Table 9. Im-
plementation details, including learning rates and
batch sizes tailored to different model scales and
tasks, can be found in Appendix A.7. Fine-tuning
adheres to the instruction prompt provided by Cui
et al. (2023b), detailed in Appendix A.9.1.

4.2 Baselines and Metrics
Baselines: We compared our CoFiTune with
full parameter SFT (Full SFT) and five CF base-
lines, with detailed descriptions provided in Ap-
pendix A.5. These baselines are carefully catego-
rized into three groups:

• Regularization-based These methods intro-
duce additional terms into the loss function to
constrain changes in model weights. Selected
baselines include L1 (Panigrahi et al., 2023)
and L2 regularization (Lin et al., 2023b);

• Weight-based These methods design weight
coefficients for parameters to control their
updates. Selected baselines include Wise-
FT (Wortsman et al., 2021) and V-SoftMask
(Ke et al., 2022);

• Architecture-based These methods fine-tune
only the external module, leaving the rest of
the parameters fixed. Selected baseline in-
cludes LoRA (Hu et al., 2021).

Metrics: The exploration algorithm in Sec. 3.3
requires numerous experiments, demanding a fast,
cost-effective, and accurate automatic evaluation
strategy. For Finance, Law, and CAG, we employ
automatic generation metrics encompassing both

semantic alignment and n-gram matching, includ-
ing BERTScore (Zhang et al., 2020), Rouge (Lin,
2004), and BLEU (Papineni et al., 2002). Addi-
tional experiments confirm a strong correlation be-
tween the automatic scores and those generated by
GPT-4, as well as human annotations. Moreover, a
new evaluation strategy is introduced to improve
the reliability of the evaluation results. The details
of the correlation evaluation and the new evalua-
tion strategy are provided in Appendix A.18. For
Math, we employ a rule-based extraction (Chen
et al., 2023a) method to obtain accuracy. Utilizing
the lm-evaluation-harness framework (Gao et al.,
2021), we assess the accuracy of datasets in gen-
eral domain knowledge (Gen-Kn.) and generic
reasoning (Gen-Rs.). The instruction following
(Instruct.) is evaluated using log-likelihood (LL)
following the approach of Lin et al. (2023b). To
evaluate overall performance in both speciality
(Spec.) and versatility (Vers.), we define Spec. =
1
3(BERTScore+BLEU+Rouge) in Finance, Law
and CAG, while Spec. = accuracy in Math. We
define Vers. = 1

3(Gen-Kn. + Gen-Rs. + Instruct.)
and Uni. = Spec. + Vers., (Uni. ∈ [0, 2]). More
details of evaluation metrics are available in Ap-
pendix A.10.

4.3 Results
Optimal Layer Range and Module (RQ1) The
exploration algorithm mentioned in Sec. 3.3 is car-
ried out on four tasks under 7B and 13B models.
Due to space limits, we present overall results for
the Finance task under the 13B model in Fig. 3
as an example, with detailed results available in
Appendix A.12 for future analysis in this field.

As depicted in Fig. 3, during step 1, the optimal
Uni. score is attained with the “(10, 30] - MHA
& FFN” configuration. Notably, the Spec. scores
in the bottom and middle layer ranges (e.g., (0,
20], (5, 25], and (10,30]) are relatively high and
comparable, whereas the top layer range (e.g., (20,
40]) exhibits the lowest performance. Conversely,
the Vers. score is lowest in the bottom layer range
and improves as the layer range ascends. Similar
findings can also be observed in the 7B model.
Further analysis of this observation is provided in
Sec. 4.4.

In step 2, the best Uni. score is achieved with
“(10, 20] - MHA & FFN”, where a reduction in the
number of trainable layers from 20 to 10 results
in an increase in Vers. score and a decrease in
Spec. score. However, the decline in Spec. score
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7B 13B
Finance Law Math CAG Finance Law Math CAG

- Full SFT 0.8488 0.8460 0.5184 0.9315 0.8770 0.8901 0.5912 0.9999
Arch. LoRA 0.8534 0.8744 0.5072 0.9656 0.8983 0.9226 0.5628 1.0215

Weight. Wise-FT 0.8802 0.8898 0.5369 0.9745 0.9161 0.9313 0.6070 1.0310
V-SoftMask 0.8537 0.8515 0.5186 0.9362 0.8807 0.8955 0.5954 1.0057

Regular. L1 0.8580 0.8714 0.5122 0.9541 0.8988 0.9108 0.5733 1.0084
L2 0.8475 0.8616 0.5135 0.9413 0.8772 0.8960 0.5808 1.0010

Ours CoFiTune 0.8901 0.8993 0.5597 0.9882 0.9296 0.9406 0.6250 1.0511

Table 1: The Uni. scores of our CoFiTune and baseline methods in four tasks under the 7B and 13B models. Arch.,
Weight. and Regular. represent Architecture-, Weight-, and Regularization-based methods respectively.

Finance Math
Spec. Vers. Spec. Vers.

ZeroShot 0.3766 0.5201 0.0760 0.5201
Full SFT 0.4761 0.4009 0.1400 0.4512
LoRA 0.4179 0.4804 0.0840 0.4788
Wise-FT 0.4308 0.4853 0.1000 0.5070
V-SoftMask 0.4752 0.4055 0.1400 0.4554
L1 0.4287 0.4701 0.0920 0.4813
L2 0.4368 0.4404 0.1080 0.4728
CoFiTune 0.4351 0.4945 0.1120 0.5130

Table 2: The Spec. and Vers. scores of Finance and
Math tasks under the 13B model. ZeroShot denotes the
aligned LLM without fine-tuning.

is less pronounced than the increase in Vers. score,
summing up to a higher Uni. score in overall per-
formance. Moving to step 3, the Uni. score for
“(10, 20] - FFN” surpasses all other configurations.
Specially, the Spec. score of “(10, 20] - FFN” is
comparable to “(10, 20] - MHA & FFN” while
its Vers. score is superior. Furthermore, the Spec.
score of FFN significantly outperforms other mod-
ules including MHA, down_proj, and up_proj. The
module importance for speciality will be further
examined in Section 4.4.

Back to the whole picture, upon examining the
results across various tasks and model scales, we
surprisingly observe a consistent pattern:

Insight 1. The “(N× 25%,N× 50%] - FFN”
configuration yields the best Uni. score on all tasks
for both 7B and 13B models.

Namely, the optimal Uni. score of the coarse-
grained level search for all tasks under the 7B
model (i.e., N = 32) is achieved with “(8, 16]
- FFN”, while for the 13B model (i.e., N = 40),
it is “(10, 20] - FFN”. Moreover, for certain spe-
cial scenarios, we offer an optional solution in Ap-
pendix A.13.

Performance of CoFiTune (RQ2) We summa-
rize the Uni. scores of our CoFiTune and the com-

CoFiTune
CoFiTune

w/o Fine-SoftMask
Spec. Vers. Spec. Vers.

Finance 0.4351 0.4945 0.4352 0.4912
Law 0.4503 0.4903 0.4512 0.4855
Math 0.1120 0.5130 0.1080 0.5102
CAG 0.5406 0.5105 0.5397 0.5054

Table 3: The impact of Fine-SoftMask in CoFiTune on
Spec. and Vers. scores under the 13B model. “w/o”
means excluding this technique from CoFiTune.

petitive methods across different tasks and model
scales in Table 1. For further elaboration, the Spec.
and Vers. scores for the Finance and Math tasks
under the 13B model are presented in Table 2.

In Table 1, CoFiTune consistently outperforms
all baseline methods. Specifically, in the Finance
task of 7B model, it exhibits improvements in Uni.
scores of 3.7%, 4.3%, and 4.5% compared to L1,
LoRA, and V-SoftMask respectively. Table 2 high-
lights that CoFiTune especially succeeds in the bal-
ance of speciality and versatility (e.g., in Finance
task, it reaches up to 98.1% of ZeroShot in Vers.
score and up to 91.4% of Full SFT in Spec. score).
In particular, Full SFT, V-SoftMask, and L2 exhibit
a low Vers. score despite their relatively strong
grasp of speciality. On the other hand, LoRA, L1,
and Wise-FT fall short in terms of their perfor-
mance in Spec. score. Similar trends are observed
in the remaining results, detailed in Appendix A.15.

Impact of Fine-SoftMask (RQ3) We conduct
additional experiments to demonstrate the effective-
ness of the Fine-SoftMask mechanism discussed in
Sec. 3.4, and give the conclusion below:

Insight 2. Fine-SoftMask mechanism effectively
mitigates the CF in LLM’s versatility without harm-
ing the speciality performance.

Concretely, we report the results under 13B in Ta-
ble 3. When applying Fine-SoftMask, we observe
nearly identical Spec. scores in the Finance and
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Finance Law Math CAG
Full SFT 0.9294 0.9392 0.6910 1.0527
LoRA 0.9368 0.9635 0.6427 1.0648
Wise-FT 0.9595 0.9811 0.6876 1.0776
V-SoftMask 0.9343 0.9453 0.6911 1.0579
L1 0.9301 0.9536 0.6640 1.0527
L2 0.9170 0.9388 0.6698 1.0556
CoFiTune 0.9722 0.9910 0.6991 1.0904

Table 4: The Uni. score of our CoFiTune and baseline
methods under the 33B model.

3B 7B
Finance Math Finance Math

Full SFT 0.7437 0.3548 0.7926 0.4365
LoRA 0.7514 0.3462 0.8073 0.4237
Wise-FT 0.7782 0.3715 0.8351 0.4519
V-SoftMask 0.7463 0.3564 0.7973 0.4383
L1 0.7568 0.3542 0.8144 0.4331
L2 0.7505 0.3547 0.8017 0.4304
CoFiTune 0.7876 0.3891 0.8463 0.4758

Table 5: The Uni. scores of Finance and Math tasks
under the 3B and 7B BLOOMZ models.

Law tasks compared to not applying it, and even a
slight improvement in CAG and Math tasks. More-
over, Fine-SoftMask contributes to a Vers. score
improvement of 0.7%, 1%, and 1.1% in Finance,
Law and CAG tasks respectively. Similar conclu-
sions in the 7B model are presented in Table 10.

Performance of CoFiTune across Models of Dif-
ferent Scales and Families (RQ4) To verify the
generalization of CoFiTune on different model
scales and families, we directly apply Insight 1,
obtained in RQ1, without tree-search exploration
to the Chinese-Alpaca-Pro 33B model and another
popular aligned model9, BLOOMZ (Muennighoff
et al., 2023). The overall results of the 33B model
are shown in Table 4, with detailed results in Ap-
pendix A.15.3. For the BLOOMZ model, we
conduct experiments on 3B and 7B scales under
Finance and Math tasks, the overall results are
presented in Table 5, with detailed results in Ap-
pendix A.14. As indicated in Table 4, CoFiTune
maintains its superior unified performance under
the 33B model, exhibiting improvements in Uni.
score by 1.2%, 1.3%, and 1.6% in Finance, CAG,
and Math tasks compared to the best-performing
baseline Wise-FT. Similarly, Table 5 demonstrates
the strong competence of our CoFiTune under the
BLOOM family model, showcasing improvements

9In this paper, unless explicitly specified, the model re-
ferred to is Chinese-Alpaca-Pro.

in Uni. score by 5.9% and 6.4% in the Finance task
when compared to Full SFT baseline. These results
further validate the widespread effectiveness of In-
sight 1 and CoFiTune across models of different
scales and families.10

4.4 Further Analysis
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Figure 4: Spec. scores for Finance and Math tasks under
the 13B model across modules trained in all layers.

Module Importance for Speciality To delve
deeper into module significance for gaining special-
ity, we separately experimented with MHA, FFN,
down_proj, and up_proj modules across all N lay-
ers in both the 7B and 13B models. Results for the
Finance and Math tasks under the 13B model are
shown in Fig. 4. As shown in Fig. 4, FFN achieves
a Spec. score most comparable to MHA & FFN,
followed by down_proj and up_proj, while MHA
performs the least favorably. Similar trends are
observed under the 7B model in Fig. 7. Based on
these observations, we draw the following insight:

Insight 3. FFN, especially the down_proj in it, is
more crucial than MHA when gaining speciality.

This11 aligns, to some extent, with views from
Geva et al. (2021) and Dai et al. (2022), suggesting
FFN operates as key-value memories. The predic-
tion distributions over the output vocabulary are
determined by the down_proj, while MHA cap-
tures more superficial linguistic and pattern infor-
mation (Manning et al., 2020; Rogers et al., 2021).

Exploring CF in LLM’s Versatility We further
explore the observation from Sec. 4.3 which unveils
a notable gap in Vers. scores between the bottom
(0, N × 50%] and middle (N × 25%, N × 75%]

10Due to the computing resource limitation, we defer the
experimental analysis on even larger LLMs for future work.

11Notably, the number of trainable parameters in down_proj
and MHA are of the same scale.
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Figure 6: The Gen-Kn., Gen-Rs., and Instruct. scores in
Math task under the 13B model.

layer ranges in both 7B and 13B models. Note
that there are two non-overlapping layer ranges,
(0, N × 25%] and (N × 50%, N × 75%], situated
between (0, N × 50%] and (N × 25%, N × 75%].
However, the Vers. score of (N × 50%, N × 75%]
is favorable (shown in Fig. 3 and Appendix A.12);
therefore, we suspect that it is the (0, N × 25%]
that harms LLM’s versatility.

Thus, we conduct experiments in this range with
detailed Vers. score of Math task under 13B model
in Fig. 6. In Fig. 6, we observe that: 1) The detailed
Vers. scores of “(0, N × 25%] - MHA & FFN”
significantly lag behind “(N × 25%, N × 50%]
- MHA & FFN”; 2) In the layer range (0, N ×
25%], compared with “FFN & MHA”, FFN further
impairs versatility while MHA mitigates it. Similar
findings across various tasks and model scales are
shown in Appendix A.17. Hence, we derive the
following insight:

Insight 4. The LLM’s versatility may predomi-
nantly reside in the layer range (0, N × 25%], par-
ticularly within the FFN module.

Furthermore, combining the hints from Geva
et al. (2021), Meng et al. (2022b), Allen-Zhu and
Li (2023b), Allen-Zhu and Li (2023a), and Chuang
et al. (2023) with our findings in this work, we spec-
ulate the forward process in Fig. 5: 1) MHA mod-

ules in Versatility Area aggregate information, en-
riching input for corresponding FFN. FFN modules
utilize this enriched input information to extract rel-
evant knowledge, passing it through residual con-
nections to Optimal Speciality Gaining Area; 2)
Optimal Speciality Gaining Area handles both ver-
satility and speciality information, forwarding it to
Augmenting Area. 3) Processed information from
the previous two areas is forwarded to Augment-
ing Area through residual connections, focusing on
information enhancement for final prediction.

In this context, modifying modules in Versatility
Area impairs the original memory and abilities of
LLM, impeding the flow of versatility information
passing through. In contrast, updating modules in
Optimal Speciality Gaining Area allows versatility
information to be recalled and passed through resid-
ual connections. Extra experiments are scheduled
to validate these speculations in the future.

5 Conclusion

In this work, we strive to optimize the balance
between LLM’s speciality and versatility. Our pro-
posed CoFiTune framework employs an empirical
tree-search exploration algorithm to identify the
module within a defined layer range that is crucial
for gaining speciality without significantly affect-
ing versatility. Additionally, the Fine-SoftMask
mechanism is applied to further alleviate CF issue
without impairing the speciality. We introduce a
Chinese CF setting to advance the research in Chi-
nese domain. The experimental results demonstrate
that our CoFiTune outperforms all baselines across
various tasks and model scales. Our in-depth anal-
ysis provides valuable insights for future work.

6 Limitations

In this study, we opt not to use the rehearsal-based
method, which involves replaying a small portion
of the general dataset during fine-tuning (Rolnick
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et al., 2019; de Masson D’Autume et al., 2019).
This decision stems from the uncertainty surround-
ing the replay data ratio and strategy in this do-
main. Increasing the number of replay samples
during fine-tuning would also incur higher train-
ing resource costs. Moreover, we believe that the
rehearsal-based method can be integrated with our
proposed CoFiTune framework, and we plan to
explore this in future work.

Additionally, the model employed in this study
is mainly based on the Llama architecture. This
choice is driven by the fact that Llama family mod-
els demonstrate remarkable dominance and perfor-
mance in the current NLP research area (constitut-
ing over 90% on the LLM leaderboard12). Besides,
based on the fact that most current LLMs share
the same architecture as Llama, i.e., transformer
decoder-only architecture, we are confident that
our identified universal optimal range can also be
applied to a majority of models within the same
architecture (the experiment results of BLOOMZ
in RQ4 have validated this point). Therefore, our
CoFiTune framework can be directly adopted in
these models using Insight 1, without incurring
any tree-search exploration overhead. Furthermore,
we plan to explore other model architectures (e.g.,
encoder-decoder) in future research.
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A Appendix

A.1 Detailed Information of Llama Backbone

The MHA operation is a crucial component of the transformer, defined as:

MHA(Q,K,V) = [head1; . . . ; headh]WO (7)

where ; is the concatenation operation, Q, K, and V are the query, key, and value matrices, respectively,
and WO is a learnable output matrix unique to the MHA module. Each head is computed as:

headi = Attention(xWQ
i ,xW

K
i ,xWV

i )

Attention(Qi,Ki,Vi) = Softmax
(
QiK

T
i√

dk

)
Vi

(8)

where WQ
i , WK

i , and WV
i are the corresponding weight matrices of query, key and value for the i-th

head.
The FFN module is parameterized by an up projection matrix (up_proj), followed by a down projection

matrix (down_proj):

FFN(x′) =
(
SwiGLU(x′)⊗ (x′W1)

)
W2

SwiGLU(x′) = SiLU(x′W)

RMSNorm(x′) =
w ⊙ x′

√
Var(x′) + ϵ

(9)

where x′ is the input tensor of FFN, W is the learnable weight matrix without bias (a.k.a gated projection
matrix), W1 and W2 are up_proj and down_project respectively. SiLU(x′) = x′ ⊗ Sigmoid(x′). ⊗ is
the element-wise multiplication operation. w represents the learnable weight parameter, Var(x′) denotes
the variance of x′ across the last dimension, and ϵ is a small constant introduced for numerical stability.

As the Llama layer lacks dropout module, we manually add it after the output of down_proj and the
attention weights of MHA when computing the importance of units in Sec. 3.4.

Given Mirzadeh et al. (2024)’s demonstration that SwiGLU, a commonly used trainable activation
function in the FFN of LLMs, can be substituted with non-trainable ReLU to decrease computation without
compromising performance, we have chosen not to investigate SwiGLU in our exploration outlined in
Sec. 3.3. Specifically, our exploration focuses solely on the up_proj and down_proj components within
the FFN.

A.2 Smaller Exploring Layer Range Results

7B 13B
Finance Math Finance Math

(0, N] MHA & FFN 0.4432 0.0960 0.4614 0.136
(N x 25%, N x 37.5%] - MHA & FFN 0.3921 0.0360 0.4183 0.068
(N x 37.5%, N x 50%] - MHA & FFN 0.3923 0.0400 0.4189 0.064

Table 6: The speciality performance of Finance and Math under 7B and 13B within a smaller layer range.

There is a substantial speciality gap between the smaller layer range and the all-layer range. For
example, in Math under the 7B model, the smaller layer range (N × 25%, N × 37.5% accounts for only
37.5% of (0, N ] in Accuracy.

7481



A.3 Exploration Algorithm in Coarse-grained Level

The exploration at coarse level is illustrated in Algorithm 1. The variables results1, results2, results3
are dictionary data structures intended to store results from steps 1, 2, and 3, respectively. The variables
left, right, pivot represent the start index of their corresponding layer range. α denotes the number of
layers targeted for coverage. For instance, in a 13B model (N = 40), α = 20 in step 1 and α = 10
in step 2. The GetBestLayers function aims to identify the layer range that performs best in terms
of the unified score. The GetSubModules function returns the sub-modules of a specific module; for
example, the sub-modules of FFN are up_proj and down_proj. The functions GetMax and GetSecond
are responsible for obtaining the start index of the layer range that achieves the best and second-best
performance. f∗_layer_range denotes the parameters of FFN and MHA in the ∗_layer_range that are
trainable in the model, while others are frozen. Similarly, fm

∗_layer_range represents the parameters of a
specific module in the ∗_layer_range that are trainable in the model, while others are frozen. The Max
function returns the optimal strategy that achieves the highest unified score among all three steps.

Algorithm 1 Exploration Algorithm in Coarse Level

1: Input: Llama Model f(·), N layers, evaluation data D
2: Initialize: results1, results2, results3 ← {}, left← 0, right← N × 50%, α← N × 50%
3: Function:

def GetBestLayerRange(left, right, α, result):
4: pivot← (left+ right)//2
5: left_layer_range← (left, left+ α]
6: right_layer_range← (right, right+ α]
7: pivot_layer_range← (pivot, pivot+ α]
8: result[left]← Eval(fleft_layer_range(·), D)
9: result[right]← Eval(fright_layer_range(·), D)

10: result[pivot]← Eval(fpivot_layer_range(·), D)
11: left← GetMax(result)
12: right← GetSecond(result)
13: pivot2 ← (left+ right)//2
14: pivot2_layer_range← (pivot2, pivot2 + α]
15: result[pivot2]← Eval(fpivot2_layer_range(·), D)
16: return GetMax(result)

# Step 1:
17: lr_broad_start_idx← GetBestLayerRange(left, right, α, results1)

# Step 2:
18: left← lr_broad_start_idx; right← lr_broad_start_idx+ α; α← α//2
19: lr_narrow_start_idx← GetBestLayerRange(left, right, α, results2)

# Step 3:
20: lr_narrow ← (lr_narrow_start_idx, lr_narrow_start_idx+ α]
21: for m← [MHA,FFN] do
22: results3[m]← Eval(fm

lr_narrow(·), D)
23: end for
24: best_module←Max(results3)
25: for msub ← GetSubModules(best_module) do
26: results3[msub]← Eval(fmsub

lr_narrow(·), D)
27: end for
28: return Max(results1, results2, results3)
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A.4 Discussion of our setting

Recall the conventional settings in continual learning, where a pre-trained model fθ0 undergoes sequential
fine-tuning on tasks [T1, T2, ..., TK], and forgetting evaluation is based on the model’s performance on Ti
after being trained on Tj (i < j).

In contrast, our investigation focuses solely on forgetting in the versatility of the original model during
the fine-tuning of a single task. This setting is motivated by two key considerations:

• Aligned LLMs have demonstrated remarkable versatility, achieved through extensive pre-training on
a massive dataset comprising tens of billions to even hundreds of billions of samples. This enables
them to effectively handle a wide range of real-world tasks (Chowdhery et al., 2023; Achiam et al.,
2023). However, adopting a sequential fine-tuning method poses a significant risk of progressively
undermining the model’s versatility at each fine-tuning step (Luo et al., 2023b; Wang et al., 2023c).
Additionally, the severe decline in versatility not only inhibits the fine-tuned performance of the
model on diverse tasks (Cheng et al., 2023; Dong et al., 2023) but also hinders the effectiveness of
transferring knowledge from it when gaining speciality (Jie et al., 2022; Luo et al., 2023a).

• Recent studies suggest an alternative to the traditional sequential fine-tuning approach. Instead of
fine-tuning tasks sequentially, each task is independently fine-tuned on a pre-trained model, and their
weights are subsequently combined through interpolation (Ilharco et al., 2022; Li et al., 2022; Liu and
Soatto, 2023; Yu et al., 2023). This weight interpolation approach significantly enhances performance
and mitigates catastrophic forgetting compared to conventional methods that sequentially fine-tune
one model on [T 1, T 2, T 3...].

A.5 Baseline Descriptions

In this Section, we describe the baseline method in our setting in detail. We carefully categorize them into
three classes:

A.5.1 Regularization-based Methods
L1 Regularization Panigrahi et al. (2023) introduced explicit L1 regularization (with a strength of
0.001) on the parameter shift θ → θ̂, denoted as |θ̂ − θ|. This regularization strategy helps alleviate
catastrophic forgetting by limiting the extent of tuning.

L2 Regularization Building upon the concept introduced by Xuhong et al. (2018), Lin et al. (2023b)
utilized a more consistent parameter regularization approach. Specifically, the divergence between the
parameters of the fine-tuned model θ̂ and the pre-trained model θ serves as the object of the L2 penalty in
the optimization process, denoted as |θ̂ − θ|22. This approach helps prevent deviation from the pre-trained
model during tuning.

A.5.2 Weight-based Methods
Wise-FT The Wise-FT (Wortsman et al., 2021) methodology involves two distinct stages: initially fine-
tuning the pre-trained model θ on a specific downstream task to obtain the fine-tuned model θ̂, followed by
the fusion of the original pre-trained model θ and the fine-tuned model θ̂ using linear weight interpolation
f(1−α)θ+αθ̂, where α is a hyper-parameter ranging from 0 to 1. Parameter Constraint-Based Methods
formulate their approach around parameter-specific strategies, leveraging either parameter efficiency
techniques or the estimation of parameter importance.

Vanilla Soft-masking Ke et al. (2022) proposed Vanilla Soft-masking to address CF in continual domain
pre-training of language models. Specifically, a gradient-based detection method is used to compute the
importance value of units within the attention and FFN modules across all transformer layers for general
domain knowledge. The resulting importance vector is then employed to control the backward gradient
flow. Importantly, the soft-masking regulation is exclusively applied to the backward process, ensuring
that knowledge transfer across domains during tuning remains unaffected.
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A.5.3 Architecture-based Methods

LoRA Grounded in the assumption that the alteration in weights during model adaptation exhibits a low
"intrinsic rank," Hu et al. (2021) introduced a low-rank matrix into the dense layers within the network.
This allows the indirect training of these layers by optimizing the decomposition matrices within the
low-rank. Throughout training, all the decomposition matrices within the low-rank matrix are trainable,
while the pre-trained weights remain frozen to preserve the original general ability of the pre-trained
model.

A.6 Statistics and Descriptions of Datasets

Dataset Name Train Test Avg. Length

Knowledge Intensive Task Finance 14337 600 270.94
Law 19400 600 277.82

Ability Intensive Task Math 7366 250 216.95
CAG 19400 600 331.24

General Domain Knowledge CMMLU - 11582 71.89

Generic Reasoning

LogiQA - 645 238.91
LogiQA2 - 1589 224.25
OCNLI - 1995 82.17
Zh-Winograd - 499 65.59

Instruction Following Chinese GPT4-Instruct - 1000 210.18

Table 7: The statistical information of the datasets involved in our setting. “Train” denotes the number of samples in
the training set, “Test” denotes the number of samples in the test set, and “Avg. Length” denotes the average length
of the dataset.

Currently, LLM still falls short in certain areas (Li et al., 2023a; Lu et al., 2023a), we mainly select two
types of tasks to evaluate its speciality. The overall statistics of the selected task datasets are shown in
Table 7, and the detailed descriptions are as follows:

A.6.1 Knowledge Intensive Tasks

• Finance: To create a Chinese financial QA instruction format dataset, we adopt the building
procedure from Chen et al. (2023b). Initially, we translate the instruction content of the English
FiQA13 dataset into Chinese. Subsequently, we employ the translated Chinese instructions to generate
responses that align with China’s national conditions using a robust Chinese FinLM14 (Chen et al.,
2023b).

• Law: Huang et al. (2023) initially gather Chinese legal questions from OpenLaw (Chen, 2018) and
JEC-QA (Zhong et al., 2020). They then employ ChatGPT to obtain responses, constructing the
LlamaLawyer15 dataset. This dataset comprises both single-turn and multi-turn instructions. For a
fair comparison, we exclusively choose single-turn instructions in our setting.

A.6.2 Ability Intensive Tasks

• Math: Chen et al. (2023a) establishes a multi-lingual GSM8k dataset (MGSM8k)16 by translating
the original English GSM8k (Cobbe et al., 2021) dataset into ten different languages using ChatGPT.
In our setting, we specifically select the Chinese version within MGSM8k for both training and
evaluation.

13https://huggingface.co/datasets/FinGPT/fingpt-fiqa_qa
14https://huggingface.co/Go4miii/DISC-FinLLM
15https://github.com/AndrewZhe/lawyer-llama
16https://mathoctopus.github.io/
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• Context-Aware Generation (CAG17): To enhance the model’s capability of leveraging the context
information to generate answers (Tong et al., 2023, 2024), we follow the methodology RA-DIT
mentioned in Lin et al. (2023a) to construct an instruction format dataset based on Dureader (He
et al., 2018), a Chinese Reading Comprehension (RC) dataset that includes three types of questions:
“Entity”, “Description” and “YesNo”. In our setting, we specifically choose “Description” type ques-
tions (Dureader-Desc), because their answers are human-written, presenting a significant difference
from the context content. Following the methodology of Chen et al. (2023b), we design a prompt
(illustrated in Appendix A.9.2) that allows the model to flexibly generate appropriate responses
under contexts with different properties. We select the context that is irrelevant to the corresponding
question to form a negative sample. This aims to enable the LLM to ignore misleading context
content and lean into its parametric knowledge to respond. In contrast, we form positive samples
by selecting context relevant to the corresponding question, intending to evaluate whether the LLM
can better utilize relevant background knowledge to make a prediction. During the evaluation of the
Context-Aware Generation (CAG) task, we use a subset of negative samples from the training data,
paraphrase their instructions during inference, and utilize automatic generation metrics to assess the
model’s ability to leverage its parametric knowledge for response. We use positive samples outside
the training data to evaluate the model’s proficiency in utilizing context for response.

A.6.3 General Domain knowledge
We employ CMMLU (Li et al., 2023b) for a zero-shot evaluation of the model’s general domain knowledge.
CMMLU18 covers a wide range of subjects, comprising 67 topics that span from elementary to advanced
professional levels. It includes subjects that require computational expertise, such as physics and chemistry,
as well as disciplines within humanities and social sciences. Notably, many tasks within CMMLU involve
contextual nuances and wording that may not easily translate across languages. Moreover, numerous
tasks have answers specific to China, making them contextually relevant but potentially not universally
applicable or considered correct in other regions or languages.

A.6.4 Generic Reasoning
We assess the generic reasoning ability of LLM through the following datasets in a zero-shot manner:

• LogiQA19: The dataset follows a paragraph-question pair format, each accompanied by four candi-
date answers. It is sourced from publicly available logical examination papers for reading compre-
hension, designed by domain experts to assess participants’ logical reasoning ability. Therefore, the
questions exhibit reliable quality and cover a diverse range of topics.

• LogiQA220: This is the second version of the LogiQA dataset, collected from the Chinese Civil
Service Entrance Examination. The dataset includes newly released exam questions and practice
questions, sourced from approximately 20 provinces in China where the exam is held annually. Exam
materials are made publicly available on the Internet after each exam, and practice questions are
obtained from various sources.

• OCNLI21: The Original Chinese Natural Language Inference dataset (OCNLI) is the first extensive
Natural Language Inference (NLI) dataset for Chinese. Unlike other datasets, OCNLI does not
depend on automatic translation or non-expert annotation. Instead, it gathers annotations from native
speakers with expertise in linguistics.

• Zh-Winograd: XWinograd (Emelin and Sennrich, 2021)22 is a multilingual Winograd dataset
17The CAG task essentially serves as the generation step in Retrieval-Augmented Generation (RAG), flexibly relying on the

retrieved context to generate responses.
18https://huggingface.co/datasets/haonan-li/cmmlu
19https://github.com/lgw863/LogiQA-dataset
20https://github.com/csitfun/LogiQA2.0
21https://github.com/CLUEbenchmark/OCNLI/
22https://huggingface.co/datasets/Muennighoff/xwinograd
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designed for assessing commonsense reasoning and coreference resolution. In our setting, we
exclusively choose the Chinese version for evaluation.

A.6.5 Instruction Following Dataset
Chinese GPT4-Instruct encompasses a variety of user-oriented instructions, spanning areas such as email
writing, social media, and entertainment. This dataset was introduced by Peng et al. (2023), who rigorously
followed the methodology outlined by Taori et al. (2023) to implement the self-instruct strategy (Wang
et al., 2022) with GPT-4.

A.7 Implementation Details

7B 13B 33B
Epochs Batch LR Epochs Batch LR Epochs Batch LR

Finance 3 256 4e-5 5 256 4e-5 5 256 2e-5
Law 3 256 4e-5 5 256 4e-5 5 256 2e-5
Math 3 128 2e-5 5 128 2e-5 5 128 1e-5
RAG 3 256 4e-5 5 256 4e-5 5 256 2e-5

Table 8: The Hyper-parameters involved in our training setting. LR denotes “learning rate”, Batch denotes “global
batch size”.

We use DeepSpeed Zero3 (Rajbhandari et al., 2021) and Adam optimizer (Kingma and Ba, 2014) to
train all the models. Our experiments are conducted on a computing platform equipped with 32 V100
GPUs. Each experiment is run with three different random seeds, and the results are averaged to obtain the
final outcome. The maximum sequence length is set to 512 across all four tasks, and we employ a greedy
decoding strategy for generating results. A cosine scheduler with a 3% warm-up period is applied. In our
study, LoRA is applied to five weight matrices: Wq, Wk, Wv in the MHA module, and Wdown, Wup

in the FFN module. Following Lin et al. (2023b), we experiment with lora_rank values in [4, 8, 16],
setting lora_alpha = 2× lora_rank to achieve optimal performance. For Wise-FT, consistent with Lin
et al. (2023b), we explore α values in [0.4, 0.6, 0.8] to determine the best performance. Different learning
rates and global batch sizes are set for training tasks across various model sizes, with detailed information
provided in Table 8.

A.8 Details of Different Model Scales

All the model adheres to the Apache-2.0 license, the details of different model scales are illustrated in
Table 9.

Dimension Heads Layers
7B 4096 32 32
13B 5120 40 40
33B 6656 52 60

Table 9: The detailed architectural information for Chinese-Alpaca-Pro across various model scales.

A.9 Prompts

A.9.1 Instruction Prompt

Below is an instruction that describes a task. Write a response that appropriately completes
the request.
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### Instruction:
{instruction}
{input}

### Response: {output}

We use “{instruction}”, “{input}”, and “{output}” to replace the specific instruction, input, and output.

A.9.2 CAG Prompt

请根据参考材料回答下面的问题。下面的材料可供参考。
“Please answer the following questions based on the reference materials. The following
materials are available for reference.”
（注意：1、材料可能与问题无关，请忽略无关材料，并基于已有知识回答问
题。2、尽量不要直接复制材料内容作为答案，而应该将材料内容作为事件的补充
与潜在分析，启发思考）；

“(Note: 1. The material may have nothing to do with the question. Please ignore the
irrelevant material and answer the question based on existing knowledge. 2. Try not to
directly copy the material content as an answer, but use the material content as a supplement
and potential analysis of the event to inspire thinking. );”
参考材料:

“references:”
{reference}
问题:

“question:”
{question}

Here, the contents labeled with “” contain the corresponding English translations of Chinese. We use
“{reference}” and “{question}” to replace the specific reference and question.

A.10 Evaluation Metrics
A.10.1 Instruction Following Score
Following LMflow (Diao et al., 2023), we assess instruction following performance using log-likelihood:

NLL =− 1

N

N∑

i=1

log p(sentencei|contexti)

=− 1

N

N∑

i=1

log p(tokeni,1, tokeni,2, ..., tokeni,ni |contexti),

where ni is the length of the token in sentencei. As the LL results are typically in the order of several
hundreds (e.g., 531.27), and the results of Accuracy or automatic generation metrics are values ranging
from 0 to 1, they inherently possess disparate scales. To comprehensively assess both the speciality and
versatility of LLM, we initially scale the LL by dividing it by one thousand. Since a lower LL is indicative
of superior performance, we then subtract the result from 1 to obtain the final instruction following
(Instruct.) score, i.e., Instruct. = 1− LL/1000.

A.10.2 Speciality Score
For Finance, Law, and CAG tasks, we follow Tan et al. (2020, 2021); Zhang et al. (2022a); Kong et al.
(2022b,a); Zhang et al. (2023) to utilize the automatic metrics to evaluate the quality of generated text ,
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i.e., BERTScore23, BLEU24, and Rouge25 to evaluate their speciality performance. The Rouge metric
comprises Rouge-1, Rouge-2, and Rouge-L. We initially average the results of Rouge-1, Rouge-2, and
Rouge-L to obtain the overall Rouge result. Subsequently, we further average the results of BERTScore,
BLEU, and Rouge to derive the final speciality score. It’s worth noting that we employ the F1 score in
both Rouge and BERTScore.

Rouge =
Rouge-1 + Rouge-2 + Rouge-L

3

Spec. =
BERTScore + Rouge + BLEU

3
(10)

For Math, as it only has one metric, i.e., Accuracy, we directly use its Accuracy result as the Spec. score.

A.10.3 Versatility Score
We assess the versatility of LLM in three aspects: general domain knowledge (Gen-Kn.), generic reasoning
(Gen-Rs.), and instruction following (Instruct.). For evaluating the generic reasoning of LLM, we average
the results from four datasets to obtain an overall generic reasoning (Gen-Rs.) score. Subsequently, we
average the scores of Gen-Kn., Gen-Rs., and Instruct. (computed in Appendix A.10.1) to derive the overall
versatility (Vers.) score for LLM.

Gen-Rs. =
LogiQA + LogiQA2 + OCNLI + Zh-Winograd

4

Vers. =
Gen-Kn. + Gen-Rs. + Instruct.

3
(11)

A.10.4 Unified Score
To facilitate the evaluation of LLM in both speciality and versatility, we sum the results of the speciality
(Spec.) score (obtained in Appendix A.10.2) and the versatility (Vers.) score (obtained in Appendix A.10.3)
to get the final unified (Uni.) score:

Uni. = Spec. + Vers. (12)

23https://github.com/Tiiiger/bert_score
24https://www.nltk.org/api/nltk.translate.bleu_score.html
25https://github.com/pltrdy/rouge
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A.11 Ablation Results of Fine-SoftMask

CoFiTune
CoFiTune

w/o Fine-SoftMask
Spec. Vers. Spec. Vers.

Finance 0.4218 0.4683 0.4220 0.4653
Law 0.4328 0.4665 0.4331 0.4626
Math 0.0800 0.4797 0.0800 0.4765
CAG 0.5166 0.4716 0.5159 0.4684

Table 10: The impact of Fine-SoftMask in CoFiTune on Spec. and Vers. scores under 7B model. “w/o” means
excluding the technique from CoFiTune.
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A.12 Exploration Results in Coarse Level
A.12.1 7B Results

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
(0, 16] - MHA & FFN 0.7283 0.3774 0.1843 0.5314 0.2512 0.3498 0.4300
(8, 24] - MHA & FFN 0.7298 0.3814 0.1884 0.5339 0.2575 0.3528 0.4332
(16, 32] - MHA & FFN 0.7162 0.3558 0.1649 0.5048 0.2324 0.3303 0.4123
(4, 20] - MHA & FFN 0.7306 0.3799 0.1887 0.5314 0.2562 0.3521 0.4331

(8, 16] - MHA & FFN 0.7266 0.3721 0.1807 0.5262 0.2466 0.3434 0.4264
(16, 24] - MHA & FFN 0.7151 0.3524 0.1629 0.5048 0.2273 0.3251 0.4101
(12, 20] - MHA & FFN 0.7217 0.3633 0.1714 0.5179 0.2398 0.3322 0.4188
(10, 18] - MHA & FFN 0.7228 0.3671 0.1742 0.5214 0.2425 0.3378 0.4213

(8, 16] - FFN 0.7219 0.3643 0.1797 0.5196 0.2377 0.3357 0.4220
(8, 16] - MHA 0.7151 0.3488 0.1603 0.5028 0.2221 0.3214 0.4081
(8, 16] - down_proj 0.7172 0.3569 0.1686 0.5095 0.2296 0.3287 0.4143
(8, 16] - up_proj 0.7159 0.3507 0.1643 0.5061 0.2253 0.3209 0.4103

Table 11: The detailed speciality performance of Finance task under the 7B model in different exploring layer
ranges and modules.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
(0, 16] - MHA & FFN 0.5375 0.3172 0.4269 0.2496 0.2801 0.4547 0.7234 0.4272
(8, 24] - MHA & FFN 0.5447 0.3524 0.4409 0.2775 0.3255 0.4503 0.7104 0.4460
(16, 32] - MHA & FFN 0.5579 0.3609 0.4535 0.2759 0.3386 0.4461 0.7535 0.4574
(4, 20] - MHA & FFN 0.5426 0.3414 0.4338 0.2682 0.3033 0.4484 0.7152 0.4392

(8, 16] - MHA & FFN 0.5770 0.3518 0.4437 0.2774 0.3158 0.4464 0.7356 0.4575
(16, 24] - MHA & FFN 0.5858 0.3609 0.4515 0.2729 0.3361 0.4536 0.7434 0.4661
(12, 20] - MHA & FFN 0.5792 0.3545 0.4461 0.2813 0.3193 0.4406 0.7432 0.4599
(10, 18] - MHA & FFN 0.5779 0.3531 0.4442 0.2801 0.3186 0.4390 0.7389 0.4583

(8, 16] - FFN 0.5999 0.3533 0.4428 0.2791 0.3055 0.4415 0.7451 0.4653
(8, 16] - MHA 0.6128 0.3502 0.4468 0.2862 0.3103 0.4422 0.7485 0.4699
(8, 16] - down_proj 0.6085 0.3537 0.4453 0.2915 0.2995 0.445 0.7457 0.4692
(8, 16] - up_proj 0.6147 0.3566 0.4475 0.3023 0.2991 0.4455 0.7433 0.4729

Table 12: The detailed versatility performance of Finance task under the 7B model in different exploring layer
ranges and modules.
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BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
(0, 16] - MHA & FFN 0.7313 0.3846 0.2092 0.5198 0.2579 0.3762 0.4417
(8, 24] - MHA & FFN 0.7341 0.3903 0.2152 0.5321 0.2645 0.3843 0.4465
(16, 32] - MHA & FFN 0.7200 0.3621 0.1739 0.4951 0.2363 0.3550 0.4187
(4, 20] - MHA & FFN 0.7329 0.3874 0.2126 0.5179 0.2615 0.3828 0.4443

(8, 16] - MHA & FFN 0.7293 0.3848 0.2007 0.5184 0.2590 0.3772 0.4383
(16, 24] - MHA & FFN 0.7189 0.3598 0.1711 0.4941 0.2340 0.3513 0.4166
(12, 20] - MHA & FFN 0.7233 0.3714 0.1887 0.5035 0.2494 0.3614 0.4278
(10, 18] - MHA & FFN 0.7257 0.3781 0.1935 0.5097 0.2548 0.3697 0.4324

(8, 16] - FFN 0.7264 0.3770 0.1957 0.5114 0.2495 0.3701 0.4330
(8, 16] - MHA 0.7189 0.3631 0.1802 0.4970 0.2371 0.3553 0.4207
(8, 16] - down_proj 0.7215 0.3704 0.1845 0.5037 0.2438 0.3637 0.4255
(8, 16] - up_proj 0.7193 0.3644 0.1797 0.4985 0.2384 0.3564 0.4211

Table 13: The detailed speciality performance of Law task under the 7B model in different exploring layer ranges
and modules.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
(0, 16] - MHA & FFN 0.4847 0.3189 0.4225 0.2931 0.3052 0.4064 0.6453 0.4087
(8, 24] - MHA & FFN 0.4943 0.3488 0.4460 0.3147 0.3205 0.4174 0.7314 0.4297
(16, 32] - MHA & FFN 0.5448 0.3588 0.4533 0.2992 0.3247 0.4416 0.7475 0.4523
(4, 20] - MHA & FFN 0.4902 0.3240 0.4368 0.3013 0.3138 0.4109 0.7217 0.4170

(8, 16] - MHA & FFN 0.5454 0.3512 0.4487 0.3133 0.3236 0.4224 0.7354 0.4484
(16, 24] - MHA & FFN 0.5791 0.3591 0.4578 0.3019 0.3327 0.4471 0.7495 0.4653
(12, 20] - MHA & FFN 0.5494 0.3545 0.4524 0.3148 0.3284 0.4252 0.7413 0.4521
(10, 18] - MHA & FFN 0.5463 0.3525 0.4496 0.3116 0.3239 0.4206 0.7425 0.4495

(8, 16] - FFN 0.5861 0.3525 0.4499 0.3225 0.3096 0.4279 0.7396 0.4628
(8, 16] - MHA 0.6037 0.3487 0.4513 0.3230 0.3108 0.4281 0.7434 0.4679
(8, 16] - down_proj 0.5957 0.3503 0.4502 0.3126 0.3211 0.4263 0.7408 0.4654
(8, 16] - up_proj 0.6046 0.3544 0.4515 0.3295 0.3034 0.4255 0.7475 0.4702

Table 14: The detailed versatility performance of Law task under the 7B model in different exploring layer ranges
and modules.
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Accuracy
(0, 16] - MHA & FFN 0.084
(8, 24] - MHA & FFN 0.088
(16, 32] - MHA & FFN 0.064
(4, 20] - MHA & FFN 0.088

(8, 16] - MHA & FFN 0.084
(16, 24] - MHA & FFN 0.056
(12, 20] - MHA & FFN 0.072
(10, 18] - MHA & FFN 0.076

(8, 16] - FFN 0.080
(8, 16] - MHA 0.056
(8, 16] - down_proj 0.072
(8, 16] - up_proj 0.064

Table 15: The detailed speciality performance of Math task under the 7B model in different exploring layer ranges
and modules.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
(0, 16] - MHA & FFN 0.5554 0.3282 0.4312 0.3029 0.2917 0.4005 0.7296 0.4383
(8, 24] - MHA & FFN 0.5617 0.3539 0.4535 0.3008 0.3304 0.4423 0.7408 0.4564
(16, 32] - MHA & FFN 0.6043 0.3611 0.4616 0.3054 0.3449 0.4507 0.7455 0.4756
(4, 20] - MHA & FFN 0.5579 0.3352 0.4331 0.3085 0.2964 0.3959 0.7314 0.4421

(8, 16] - MHA & FFN 0.5958 0.3556 0.4551 0.3194 0.3235 0.4341 0.7435 0.4688
(16, 24] - MHA & FFN 0.6141 0.3629 0.4646 0.3108 0.3486 0.4537 0.7452 0.4805
(12, 20] - MHA & FFN 0.6026 0.3565 0.4554 0.3069 0.3297 0.4416 0.7435 0.4715
(10, 18] - MHA & FFN 0.5988 0.3558 0.4558 0.3209 0.3197 0.4412 0.7416 0.4701

(8, 16] - FFN 0.6151 0.3563 0.4581 0.3168 0.3280 0.4394 0.7483 0.4765
(8, 16] - MHA 0.6245 0.3571 0.4609 0.3240 0.3221 0.4532 0.7447 0.4808
(8, 16] - down_proj 0.6205 0.3548 0.4568 0.3132 0.3228 0.4466 0.7441 0.4774
(8, 16] - up_proj 0.6255 0.3564 0.4607 0.3199 0.3297 0.4501 0.7438 0.4809

Table 16: The detailed versatility performance of Math task under the 7B model in different exploring layer ranges
and modules.
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BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
(0, 16] - MHA & FFN 0.7381 0.4794 0.3473 0.5481 0.3987 0.4913 0.5216
(8, 24] - MHA & FFN 0.7395 0.4849 0.3548 0.5517 0.4051 0.4978 0.5264
(16, 32] - MHA & FFN 0.7277 0.4604 0.3252 0.5248 0.3803 0.4762 0.5044
(4, 20] - MHA & FFN 0.7376 0.4856 0.3555 0.5519 0.4064 0.4986 0.5262

(8, 16] - MHA & FFN 0.7369 0.4776 0.3457 0.5455 0.3973 0.4901 0.5200
(16, 24] - MHA & FFN 0.7261 0.4594 0.3286 0.5234 0.3795 0.4753 0.5047
(12, 20] - MHA & FFN 0.7304 0.4685 0.3353 0.5376 0.3883 0.4792 0.5114
(10, 18] - MHA & FFN 0.7332 0.4731 0.3398 0.5412 0.3926 0.4854 0.5153

(8, 16] - FFN 0.7337 0.4714 0.3425 0.5402 0.3901 0.4837 0.5159
(8, 16] - MHA 0.7263 0.4575 0.3264 0.5274 0.3757 0.4693 0.5034
(8, 16] - down_proj 0.7291 0.4643 0.3311 0.5342 0.3828 0.4761 0.5082
(8, 16] - up_proj 0.7279 0.4604 0.3298 0.5313 0.3789 0.4711 0.5061

Table 17: The detailed speciality performance of CAG task under the 7B model in different exploring layer ranges
and modules.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
(0, 16] - MHA & FFN 0.5508 0.3124 0.4263 0.2992 0.3071 0.4276 0.6713 0.4298
(8, 24] - MHA & FFN 0.5555 0.3497 0.4449 0.3037 0.3158 0.4308 0.7294 0.4500
(16, 32] - MHA & FFN 0.5707 0.3576 0.4538 0.3068 0.3254 0.4354 0.7475 0.4607
(4, 20] - MHA & FFN 0.5532 0.3404 0.4366 0.3019 0.3059 0.4233 0.7154 0.4434

(8, 16] - MHA & FFN 0.5846 0.3508 0.4462 0.3058 0.3121 0.4294 0.7374 0.4605
(16, 24] - MHA & FFN 0.5954 0.3589 0.4523 0.3085 0.3201 0.4411 0.7396 0.4689
(12, 20] - MHA & FFN 0.5881 0.3515 0.4467 0.3091 0.3157 0.4265 0.7353 0.4621
(10, 18] - MHA & FFN 0.5865 0.3521 0.4454 0.3023 0.3108 0.4331 0.7355 0.4613

(8, 16] - FFN 0.6055 0.3519 0.4477 0.3006 0.3221 0.4295 0.7385 0.4684
(8, 16] - MHA 0.6136 0.3492 0.4506 0.3011 0.3282 0.4275 0.7452 0.4711
(8, 16] - down_proj 0.6143 0.3516 0.4484 0.3068 0.3184 0.4240 0.7447 0.4714
(8, 16] - up_proj 0.6201 0.3533 0.4515 0.3116 0.3244 0.4271 0.7431 0.4750

Table 18: The detailed versatility performance of CAG task under the 7B model in different exploring layer ranges
and modules.
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A.12.2 13B Results

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
(0, 20] - MHA & FFN 0.7418 0.4045 0.2204 0.5525 0.2823 0.3786 0.4555
(10, 30] - MHA & FFN 0.7417 0.4060 0.2223 0.5537 0.284 0.3802 0.4567
(20, 40] - MHA & FFN 0.7225 0.3683 0.1802 0.5213 0.2424 0.3413 0.4237
(5, 25] - MHA & FFN 0.7416 0.4071 0.2238 0.5533 0.2846 0.3829 0.4574

(10, 20] - MHA & FFN 0.7341 0.3893 0.2056 0.5383 0.2651 0.3645 0.4430
(20, 30] - MHA & FFN 0.7203 0.3683 0.1756 0.5192 0.2444 0.3415 0.4214
(15, 25] - MHA & FFN 0.7258 0.3771 0.1869 0.5278 0.2520 0.3517 0.4299
(13, 23] - MHA & FFN 0.7284 0.3820 0.1928 0.5328 0.2571 0.3562 0.4343

(10, 20] - FFN 0.7291 0.3801 0.1965 0.5301 0.2565 0.3537 0.4352
(10, 20] - MHA 0.7225 0.3619 0.1691 0.5136 0.2372 0.3350 0.4178
(10, 20] - down_proj 0.7242 0.3671 0.1802 0.5193 0.2418 0.3402 0.4238
(10, 20] - up_proj 0.7206 0.3635 0.1710 0.5156 0.2367 0.3381 0.4183

Table 19: The detailed speciality performance of Finance task under the 13B model in different exploring layer
ranges and modules.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
(0, 20] - MHA & FFN 0.4511 0.3582 0.4584 0.3023 0.3386 0.5133 0.6793 0.4226
(10, 30] - MHA & FFN 0.4643 0.3993 0.4901 0.3235 0.3946 0.5328 0.7095 0.4512
(20, 40] - MHA & FFN 0.5215 0.4065 0.5008 0.3581 0.4179 0.5141 0.7137 0.4762
(5, 25] - MHA & FFN 0.4562 0.3839 0.4687 0.3132 0.3801 0.5042 0.6772 0.4363

(10, 20] - MHA & FFN 0.5238 0.4007 0.4935 0.3230 0.4093 0.5454 0.6964 0.4727
(20, 30] - MHA & FFN 0.5615 0.4071 0.5001 0.3156 0.4021 0.5875 0.6951 0.4896
(15, 25] - MHA & FFN 0.5435 0.4048 0.4945 0.3388 0.4185 0.5113 0.7097 0.4810
(13, 23] - MHA & FFN 0.5361 0.4023 0.4932 0.3349 0.4015 0.5388 0.6973 0.4772

(10, 20] - FFN 0.5750 0.4009 0.4975 0.3301 0.4004 0.5227 0.7369 0.4912
(10, 20] - MHA 0.6067 0.4012 0.4967 0.3268 0.4026 0.5232 0.7355 0.5015
(10, 20] - down_proj 0.5925 0.4023 0.4988 0.3287 0.4078 0.5193 0.7517 0.4979
(10, 20] - up_proj 0.6078 0.4045 0.4960 0.3355 0.4001 0.5339 0.7168 0.5028

Table 20: The detailed versatility performance of Finance task under the 13B model in different exploring layer
ranges and modules.
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BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
(0, 20] - MHA & FFN 0.7472 0.4341 0.2261 0.5585 0.3142 0.4297 0.4691
(10, 30] - MHA & FFN 0.7486 0.4363 0.2284 0.5594 0.3171 0.4325 0.4711
(20, 40] - MHA & FFN 0.7253 0.3946 0.1848 0.5231 0.2717 0.3890 0.4349
(5, 25] - MHA & FFN 0.7459 0.4354 0.2303 0.5577 0.3171 0.4315 0.4705

(10, 20] - MHA & FFN 0.7404 0.4201 0.2102 0.5458 0.2995 0.4151 0.4569
(20, 30] - MHA & FFN 0.7318 0.3899 0.1748 0.5210 0.2645 0.3843 0.4322
(15, 25] - MHA & FFN 0.7304 0.4011 0.1868 0.5313 0.2756 0.3965 0.4395
(13, 23] - MHA & FFN 0.7362 0.4127 0.1998 0.539 0.2898 0.4094 0.4496

(10, 20] - FFN 0.7360 0.4115 0.2062 0.5351 0.2906 0.4089 0.4512
(10, 20] - MHA 0.7255 0.3896 0.1764 0.5168 0.2663 0.3858 0.4304
(10, 20] - down_proj 0.7313 0.3961 0.1878 0.5239 0.2741 0.3901 0.4383
(10, 20] - up_proj 0.7242 0.3896 0.1773 0.5174 0.2679 0.3836 0.4303

Table 21: The detailed speciality performance of Law task under the 13B model in different exploring layer ranges
and modules.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
(0, 20] - MHA & FFN 0.4405 0.3614 0.4511 0.3116 0.3606 0.4666 0.6653 0.4176
(10, 30] - MHA & FFN 0.4608 0.3943 0.4874 0.3329 0.4150 0.5273 0.6758 0.4462
(20, 40] - MHA & FFN 0.5074 0.4065 0.5014 0.3551 0.4147 0.5441 0.6914 0.4718
(5, 25] - MHA & FFN 0.4463 0.3757 0.4646 0.3132 0.3939 0.4742 0.6775 0.4289

(10, 20] - MHA & FFN 0.5006 0.4006 0.4934 0.3547 0.4103 0.5092 0.6993 0.4649
(20, 30] - MHA & FFN 0.5474 0.4052 0.5015 0.3690 0.4122 0.5213 0.7034 0.4847
(15, 25] - MHA & FFN 0.5263 0.4019 0.4951 0.3504 0.4084 0.5263 0.6956 0.4744
(13, 23] - MHA & FFN 0.5066 0.4004 0.4925 0.3509 0.4021 0.5218 0.6953 0.4688

(10, 20] - FFN 0.5601 0.4013 0.4952 0.3302 0.4185 0.5203 0.7114 0.4855
(10, 20] - MHA 0.5983 0.4039 0.4966 0.3210 0.4126 0.5205 0.7323 0.4995
(10, 20] - down_proj 0.5805 0.4025 0.4974 0.3257 0.4166 0.5219 0.7255 0.4935
(10, 20] - up_proj 0.6025 0.4017 0.4993 0.3318 0.4197 0.5244 0.7218 0.5012

Table 22: The detailed versatility performance of Law task under the 13B model in different exploring layer ranges
and modules.
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Accuracy
(0, 20] - MHA & FFN 0.112
(10, 30] - MHA & FFN 0.120
(20, 40] - MHA & FFN 0.068
(5, 25] - MHA & FFN 0.116

(10, 20] - MHA & FFN 0.112
(20, 30] - MHA & FFN 0.056
(15, 25] - MHA & FFN 0.076
(13, 23] - MHA & FFN 0.100

(10, 20] - FFN 0.108
(10, 20] - MHA 0.064
(10, 20] - down_proj 0.076
(10, 20] - up_proj 0.068

Table 23: The detailed speciality performance of Math task under the 13B model in different exploring layer ranges
and modules.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
(0, 20] - MHA & FFN 0.5793 0.3619 0.4528 0.3101 0.3493 0.4286 0.7234 0.4647
(10, 30] - MHA & FFN 0.5879 0.3936 0.5011 0.3602 0.4021 0.5208 0.7215 0.4942
(20, 40] - MHA & FFN 0.6090 0.4017 0.5115 0.3683 0.4158 0.5305 0.7317 0.5074
(5, 25] - MHA & FFN 0.5838 0.3875 0.4718 0.3294 0.3933 0.4311 0.7331 0.4810

(10, 20] - MHA & FFN 0.6107 0.3971 0.5049 0.3535 0.4098 0.5188 0.7375 0.5043
(20, 30] - MHA & FFN 0.6202 0.4032 0.5141 0.3705 0.4179 0.5273 0.7404 0.5125
(15, 25] - MHA & FFN 0.6175 0.4003 0.5066 0.3558 0.4095 0.5057 0.7558 0.5081
(13, 23] - MHA & FFN 0.6135 0.4084 0.5053 0.3455 0.4122 0.5318 0.7312 0.5091

(10, 20] - FFN 0.6208 0.4009 0.5091 0.3572 0.4178 0.5174 0.7441 0.5102
(10, 20] - MHA 0.6274 0.4013 0.5087 0.3597 0.4141 0.5065 0.7505 0.5125
(10, 20] - down_proj 0.6259 0.4002 0.5076 0.3528 0.4197 0.5043 0.7533 0.5112
(10, 20] - up_proj 0.6307 0.4015 0.5095 0.3659 0.4166 0.5041 0.7518 0.5139

Table 24: The detailed versatility performance of Math task under the 13B model in different exploring layer ranges
and modules.
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BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
(0, 20] - MHA & FFN 0.7487 0.5133 0.3845 0.5791 0.4313 0.5294 0.5488
(10, 30] - MHA & FFN 0.7493 0.5185 0.3869 0.5839 0.4369 0.5345 0.5515
(20, 40] - MHA & FFN 0.7381 0.4926 0.3604 0.5561 0.4108 0.5109 0.5303
(5, 25] - MHA & FFN 0.7479 0.5173 0.3881 0.5821 0.4364 0.5333 0.5510

(10, 20] - MHA & FFN 0.7471 0.5106 0.3761 0.5769 0.4286 0.5264 0.5446
(20, 30] - MHA & FFN 0.7379 0.4885 0.3542 0.5542 0.4013 0.5102 0.5268
(15, 25] - MHA & FFN 0.7284 0.4992 0.3645 0.5655 0.4173 0.5149 0.5307
(13, 23] - MHA & FFN 0.7446 0.5037 0.3702 0.5699 0.4203 0.5208 0.5394

(10, 20] - FFN 0.7449 0.5035 0.3705 0.5711 0.4207 0.5188 0.5397
(10, 20] - MHA 0.7372 0.4898 0.3534 0.5587 0.4071 0.5036 0.5267
(10, 20] - down_proj 0.7398 0.4964 0.3601 0.5655 0.4142 0.5094 0.5321
(10, 20] - up_proj 0.7372 0.4921 0.3575 0.5627 0.4102 0.5035 0.5289

Table 25: The detailed speciality performance of CAG task under the 13B model in different exploring layer ranges
and modules.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
(0, 20] - MHA & FFN 0.5543 0.3621 0.4556 0.3062 0.3439 0.4709 0.7014 0.4573
(10, 30] - MHA & FFN 0.5641 0.3963 0.4956 0.3424 0.3988 0.5253 0.7159 0.4852
(20, 40] - MHA & FFN 0.5852 0.4041 0.5062 0.3632 0.4168 0.5223 0.7224 0.4984
(5, 25] - MHA & FFN 0.5574 0.3857 0.4702 0.3213 0.3867 0.4676 0.7053 0.4711

(10, 20] - MHA & FFN 0.5905 0.3984 0.4987 0.3387 0.4101 0.5306 0.7155 0.4959
(20, 30] - MHA & FFN 0.6037 0.4051 0.5071 0.3431 0.4203 0.5486 0.7168 0.5052
(15, 25] - MHA & FFN 0.5962 0.4028 0.5006 0.3473 0.4140 0.5085 0.7325 0.4998
(13, 23] - MHA & FFN 0.5920 0.4009 0.4992 0.3403 0.4068 0.5353 0.7142 0.4973

(10, 20] - FFN 0.6142 0.4009 0.5005 0.3511 0.4008 0.5237 0.7265 0.5054
(10, 20] - MHA 0.6224 0.3976 0.5032 0.3437 0.4093 0.5158 0.7440 0.5077
(10, 20] - down_proj 0.6243 0.4012 0.5015 0.3387 0.4098 0.5074 0.7483 0.5088
(10, 20] - up_proj 0.6286 0.4030 0.5041 0.3524 0.4094 0.5191 0.7352 0.5119

Table 26: The detailed versatility performance of CAG task under the 13B model in different exploring layer ranges
and modules.
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A.13 Optional Solution

7B 13B
Finance Law Math CAG Finance Law Math CAG

MHA & FFN 0.8241 0.8382 0.4893 0.9185 0.8901 0.9039 0.5632 0.9931
FFN 0.8204 0.8342 0.4871 0.9156 0.8842 0.8994 0.5630 0.9904
MHA 0.8066 0.8207 0.4650 0.9033 0.8667 0.8807 0.5190 0.9771
down_proj 0.8138 0.8258 0.4778 0.9082 0.8743 0.8882 0.5299 0.9833
up_proj 0.8125 0.8241 0.4726 0.9085 0.8686 0.8808 0.5235 0.9824

Table 27: The Uni. w/o instruct scores in various trainable modules within the (N × 25%, N × 50%] layer range of
the 7B and 13B models.

In our context, instruction following is a crucial aspect of LLM’s versatility. However, in scenarios
where users can provide clear and concise instructions, the model’s precision in this aspect may be less
critical. We conduct additional analysis on the results of LLM’s versatility without instruction following
(Vers. w/o instruct), considering different trainable modules in the layer range (N × 25%, N × 50%]
under 7B and 13B models. The derived Uni. score without instruction following (Uni. w/o instruct)
shows that “(N × 25%, N × 50%] - MHA & FFN” generally outperforms “(N × 25%, N × 50%] - FFN”.
This suggests that “(N × 25%, N × 50%] - MHA & FFN” could be a viable alternative when users value
instruction following aspect less.

A.14 Detailed Results of CoFiTune and Baselines under BLOOMZ Backbone

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.6814 0.2869 0.1042 0.4177 0.1639 0.2792 0.3575
Full SFT 0.7106 0.3581 0.1893 0.4985 0.2292 0.3468 0.4193
LoRA 0.6932 0.3167 0.1406 0.4536 0.1944 0.3023 0.3835
Wise-FT 0.7015 0.3296 0.1614 0.4651 0.2047 0.3192 0.3975
V-SoftMask 0.7113 0.3594 0.1885 0.5002 0.2295 0.3485 0.4197
L1 0.7007 0.3289 0.1572 0.4685 0.2036 0.3161 0.3956
L2 0.7043 0.3385 0.1651 0.4769 0.2114 0.3273 0.4026
CoFiTune 0.7035 0.3376 0.1635 0.4742 0.2128 0.3258 0.4015

Table 28: The detailed speciality performance of Finance task under the 7B model in different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6109 0.3457 0.4232 0.2831 0.2947 0.4168 0.6984 0.4599
Full SFT 0.4471 0.2943 0.3787 0.2518 0.2563 0.3742 0.6325 0.3733
LoRA 0.5968 0.2965 0.3781 0.2573 0.2604 0.3216 0.6728 0.4238
Wise-FT 0.5884 0.3216 0.4028 0.2669 0.2771 0.3865 0.6806 0.4376
V-SoftMask 0.4508 0.2981 0.3839 0.2562 0.2675 0.3804 0.6313 0.3776
L1 0.5562 0.3015 0.3987 0.2604 0.2698 0.3967 0.6681 0.4188
L2 0.5136 0.2973 0.3863 0.2615 0.2677 0.4023 0.6538 0.3991
CoFiTune 0.5927 0.3341 0.4075 0.2712 0.2789 0.3905 0.6894 0.4448

Table 29: The detailed versatility performance of Finance task under the 7B model in different methods.
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A.15 Detailed Results of CoFiTune and Baselines under Chinese-Alpaca-Pro Backbone
A.15.1 7B Results

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.6912 0.3038 0.1189 0.4384 0.1766 0.2963 0.3713
Full SFT 0.7376 0.3973 0.2163 0.5440 0.2752 0.3728 0.4504
LoRA 0.7159 0.3487 0.1527 0.5047 0.2233 0.3182 0.4058
Wise-FT 0.7208 0.3597 0.1764 0.5134 0.2331 0.3327 0.4189
V-SoftMask 0.7372 0.3980 0.2175 0.5456 0.2764 0.3720 0.4509
L1 0.7181 0.3551 0.1737 0.5091 0.2282 0.3277 0.4156
L2 0.7254 0.3649 0.1783 0.5192 0.2388 0.3368 0.4229
CoFiTune 0.7222 0.3645 0.1788 0.5197 0.2374 0.3365 0.4217

Table 30: The detailed speciality performance of Finance task under the 7B model across different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6237 0.3671 0.4639 0.3101 0.3379 0.4622 0.7455 0.4849
Full SFT 0.4608 0.3158 0.4188 0.2666 0.2969 0.4441 0.6673 0.3984
LoRA 0.6074 0.3145 0.4211 0.2738 0.2832 0.4039 0.7234 0.4476
Wise-FT 0.5979 0.3436 0.4424 0.2828 0.3014 0.4542 0.7314 0.4613
V-SoftMask 0.4643 0.3204 0.4237 0.2708 0.3015 0.4467 0.6759 0.4028
L1 0.5767 0.3213 0.4293 0.2733 0.2916 0.4376 0.7148 0.4424
L2 0.5256 0.3179 0.4304 0.2762 0.2927 0.4262 0.7261 0.4246
CoFiTune 0.6018 0.3566 0.4465 0.2811 0.3099 0.4479 0.7474 0.4683

Table 31: The detailed versatility performance of Finance task under the 7B model across different methods.

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.6934 0.3083 0.1247 0.4375 0.1818 0.3057 0.3755
Full SFT 0.7407 0.4039 0.2282 0.5329 0.2754 0.4036 0.4576
LoRA 0.7195 0.3594 0.1725 0.4926 0.2335 0.3521 0.4171
Wise-FT 0.7266 0.3751 0.1944 0.5093 0.2477 0.3684 0.4320
V-SoftMask 0.7402 0.4046 0.2289 0.5365 0.2769 0.4005 0.4579
L1 0.7243 0.3695 0.1872 0.5046 0.2443 0.3595 0.4270
L2 0.7315 0.3756 0.1953 0.5103 0.2467 0.3699 0.4341
CoFiTune 0.7271 0.3772 0.1942 0.5119 0.2491 0.3706 0.4328

Table 32: The detailed speciality performance of Law task under the 7B model across different methods.
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Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6237 0.3671 0.4639 0.3101 0.3379 0.4622 0.7455 0.4849
Full SFT 0.4280 0.3162 0.4212 0.3039 0.3046 0.3941 0.6824 0.3884
LoRA 0.6151 0.3233 0.4335 0.3178 0.3109 0.3578 0.7475 0.4573
Wise-FT 0.5925 0.3335 0.4475 0.3006 0.3222 0.4257 0.7415 0.4578
V-SoftMask 0.4321 0.3209 0.4277 0.3101 0.3142 0.3982 0.6885 0.3936
L1 0.5657 0.3298 0.4378 0.3177 0.3193 0.4133 0.7011 0.4444
L2 0.5243 0.3246 0.4335 0.3058 0.3269 0.4065 0.6946 0.4275
CoFiTune 0.5893 0.3554 0.4551 0.3295 0.3104 0.4321 0.7482 0.4665

Table 33: The detailed versatility performance of Law task under the 7B model across different methods.

Accuracy
ZeroShot 0.048
Full SFT 0.100
LoRA 0.056
Wise-FT 0.064
V-SoftMask 0.096
L1 0.068
L2 0.076
CoFiTune 0.080

Table 34: The detailed speciality performance of Math task under the 7B model across different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6237 0.3671 0.4639 0.3101 0.3379 0.4622 0.7455 0.4849
Full SFT 0.4874 0.3227 0.4450 0.3194 0.3071 0.4421 0.7114 0.4184
LoRA 0.6077 0.3133 0.4326 0.2899 0.2782 0.4311 0.7315 0.4512
Wise-FT 0.6156 0.3515 0.4515 0.3116 0.3486 0.3965 0.7495 0.4729
V-SoftMask 0.4921 0.3267 0.4496 0.3218 0.3105 0.4453 0.7213 0.4226
L1 0.5888 0.3273 0.4464 0.3153 0.3067 0.4351 0.7285 0.4542
L2 0.5464 0.3215 0.4447 0.3083 0.3113 0.4291 0.7301 0.4375
CoFiTune 0.6186 0.3589 0.4616 0.3221 0.3291 0.4436 0.7516 0.4797

Table 35: The detailed versatility performance of Math task under the 7B model across different methods.

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.7012 0.4056 0.2712 0.4559 0.3241 0.4369 0.4593
Full SFT 0.7486 0.5005 0.3703 0.5632 0.4231 0.5153 0.5398
LoRA 0.7314 0.4632 0.3308 0.5334 0.3796 0.4765 0.5085
Wise-FT 0.7323 0.4664 0.3355 0.5367 0.3833 0.4791 0.5114
V-SoftMask 0.7483 0.5004 0.3714 0.5618 0.4232 0.5162 0.5400
L1 0.7324 0.4660 0.3276 0.5389 0.3824 0.4767 0.5087
L2 0.7355 0.4713 0.3407 0.5411 0.3913 0.4815 0.5158
CoFiTune 0.7356 0.4720 0.3422 0.5414 0.3905 0.4840 0.5166

Table 36: The detailed speciality performance of CAG task under the 7B model across different methods.
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Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6237 0.3671 0.4639 0.3101 0.3379 0.4622 0.7455 0.4849
Full SFT 0.4517 0.3111 0.4123 0.2822 0.3021 0.4035 0.6613 0.3917
LoRA 0.6178 0.3215 0.4319 0.2945 0.3058 0.3819 0.7455 0.4571
Wise-FT 0.6009 0.3423 0.4460 0.2930 0.3336 0.4321 0.7255 0.4631
V-SoftMask 0.4549 0.3165 0.4172 0.2853 0.3102 0.4040 0.6693 0.3962
L1 0.5746 0.3283 0.4334 0.3012 0.3153 0.4137 0.7033 0.4454
L2 0.5205 0.3252 0.4307 0.3034 0.3128 0.4173 0.6894 0.4255
CoFiTune 0.6082 0.3531 0.4535 0.3078 0.3257 0.4381 0.7425 0.4716

Table 37: The detailed versatility performance of CAG task under the 7B model across different methods.
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A.15.2 13B Results

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.6934 0.3124 0.1239 0.4457 0.1881 0.3035 0.3766
Full SFT 0.7475 0.4192 0.2415 0.5614 0.2997 0.3964 0.4761
LoRA 0.7217 0.3628 0.1692 0.5209 0.2365 0.3311 0.4179
Wise-FT 0.7258 0.3729 0.1936 0.5226 0.2478 0.3485 0.4308
V-SoftMask 0.7477 0.4172 0.2408 0.5595 0.2978 0.3943 0.4752
L1 0.7265 0.3741 0.1857 0.5242 0.2486 0.3494 0.4287
L2 0.7302 0.3817 0.1985 0.5312 0.2574 0.3566 0.4368
CoFiTune 0.7295 0.3799 0.1958 0.5294 0.2561 0.3542 0.4351

Table 38: The detailed speciality performance of Finance task under the 13B model in different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6320 0.4057 0.5224 0.3752 0.4141 0.5448 0.7555 0.5201
Full SFT 0.4042 0.3555 0.4431 0.3333 0.3228 0.4652 0.6513 0.4009
LoRA 0.5986 0.3721 0.4704 0.3147 0.3486 0.4867 0.7314 0.4804
Wise-FT 0.5777 0.3908 0.4873 0.3240 0.3801 0.5318 0.7136 0.4853
V-SoftMask 0.4082 0.3593 0.4484 0.3311 0.3279 0.4742 0.6603 0.4055
L1 0.5577 0.3779 0.4742 0.3214 0.3564 0.4902 0.7288 0.4701
L2 0.4786 0.3723 0.4702 0.3135 0.3464 0.5015 0.7192 0.4404
CoFiTune 0.5779 0.4037 0.5019 0.3375 0.4034 0.5244 0.7423 0.4945

Table 39: The detailed versatility performance of Finance task under the 13B model in different methods.

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.6950 0.3197 0.1208 0.4473 0.1959 0.3156 0.3785
Full SFT 0.7559 0.4454 0.2471 0.5627 0.3257 0.4479 0.4894
LoRA 0.7287 0.3820 0.1936 0.5167 0.2556 0.3736 0.4347
Wise-FT 0.7294 0.3975 0.2006 0.5245 0.2741 0.3938 0.4425
V-SoftMask 0.7551 0.4474 0.2448 0.5652 0.3295 0.4477 0.4890
L1 0.7272 0.3902 0.1956 0.5204 0.2652 0.3849 0.4376
L2 0.7313 0.4029 0.2059 0.5295 0.2804 0.3986 0.4467
CoFiTune 0.7354 0.4110 0.2046 0.5357 0.2898 0.4075 0.4503

Table 40: The detailed speciality performance of Law task under the 13B model in different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6320 0.4057 0.5224 0.3752 0.4141 0.5448 0.7555 0.5201
Full SFT 0.4004 0.3655 0.4361 0.3116 0.3486 0.4311 0.6533 0.4007
LoRA 0.6089 0.3754 0.4794 0.3242 0.3878 0.5243 0.6814 0.4879
Wise-FT 0.5688 0.4042 0.4934 0.3364 0.3820 0.5278 0.7275 0.4888
V-SoftMask 0.4065 0.3706 0.4424 0.3163 0.3323 0.4737 0.6473 0.4065
L1 0.5553 0.3838 0.4803 0.3342 0.3874 0.5134 0.6864 0.4732
L2 0.4926 0.3795 0.4759 0.3303 0.3787 0.5118 0.6826 0.4493
CoFiTune 0.5646 0.4068 0.5003 0.3318 0.4158 0.5303 0.7234 0.4903

Table 41: The detailed versatility performance of Law task under the 13B model in different methods.
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Accuracy
ZeroShot 0.076
Full SFT 0.140
LoRA 0.084
Wise-FT 0.100
V-SoftMask 0.140
L1 0.092
L2 0.108
CoFiTune 0.112

Table 42: The detailed speciality performance of Math task under the 13B model in different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6320 0.4057 0.5224 0.3752 0.4141 0.5448 0.7555 0.5201
Full SFT 0.5409 0.3608 0.4521 0.3318 0.3606 0.4105 0.7054 0.4512
LoRA 0.6096 0.3696 0.4574 0.3225 0.3524 0.4271 0.7273 0.4788
Wise-FT 0.6257 0.3959 0.4993 0.3612 0.4216 0.4812 0.7335 0.5070
V-SoftMask 0.5447 0.3652 0.4565 0.3385 0.3632 0.4131 0.7112 0.4554
L1 0.6013 0.3766 0.4659 0.3408 0.3664 0.4282 0.7286 0.4813
L2 0.5845 0.3721 0.4617 0.3358 0.3623 0.4252 0.7233 0.4728
CoFiTune 0.6231 0.4035 0.5123 0.3616 0.4158 0.5193 0.7527 0.5130

Table 43: The detailed versatility performance of Math task under the 13B model in different methods.

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.7044 0.4124 0.2743 0.4619 0.3324 0.4429 0.4637
Full SFT 0.7594 0.5294 0.3953 0.5921 0.4522 0.5438 0.5613
LoRA 0.7411 0.4984 0.3662 0.5655 0.4151 0.5147 0.5352
Wise-FT 0.7401 0.4961 0.3621 0.5634 0.4146 0.5103 0.5327
V-SoftMask 0.7592 0.5295 0.3955 0.5933 0.4510 0.5442 0.5614
L1 0.7393 0.4921 0.3593 0.5603 0.4102 0.5058 0.5302
L2 0.7438 0.5018 0.3682 0.5685 0.4199 0.5168 0.5379
CoFiTune 0.7452 0.5041 0.3729 0.5705 0.4224 0.5195 0.5406

Table 44: The detailed speciality performance of CAG task under the 13B model in different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6320 0.4057 0.5224 0.3752 0.4141 0.5448 0.7555 0.5201
Full SFT 0.5046 0.3638 0.4476 0.3325 0.3417 0.4378 0.6783 0.4386
LoRA 0.6241 0.3708 0.4639 0.3186 0.3505 0.4569 0.7294 0.4863
Wise-FT 0.6082 0.3934 0.4933 0.3426 0.4009 0.5065 0.7236 0.4983
V-SoftMask 0.5102 0.3685 0.4541 0.3363 0.3471 0.4451 0.6874 0.4443
L1 0.5873 0.3772 0.4702 0.3311 0.3614 0.4592 0.7286 0.4782
L2 0.5512 0.3723 0.4659 0.3246 0.3544 0.4634 0.7213 0.4631
CoFiTune 0.6183 0.4056 0.5066 0.3481 0.4107 0.5303 0.7375 0.5105

Table 45: The detailed versatility performance of CAG task under the 13B model in different methods.
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A.15.3 33B Results

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.6961 0.3192 0.1282 0.4533 0.1938 0.3108 0.3811
Full SFT 0.7516 0.4260 0.2534 0.5666 0.3075 0.4041 0.4769
LoRA 0.7235 0.3656 0.1718 0.5203 0.2419 0.3347 0.4207
Wise-FT 0.7277 0.3759 0.1919 0.5282 0.2511 0.3484 0.4318
V-SoftMask 0.7513 0.4267 0.2538 0.5661 0.3088 0.4051 0.4772
L1 0.7265 0.3729 0.1868 0.5265 0.2464 0.3459 0.4287
L2 0.7298 0.3816 0.1975 0.5344 0.2553 0.3552 0.4363
CoFiTune 0.7331 0.3861 0.2066 0.5403 0.2605 0.3573 0.4419

Table 46: The detailed speciality performance of Finance task under the 33B model in different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6386 0.4684 0.5592 0.3953 0.4732 0.5744 0.7936 0.5553
Full SFT 0.4426 0.4176 0.4975 0.3333 0.4103 0.5086 0.7375 0.4525
LoRA 0.6041 0.4251 0.5192 0.3767 0.4097 0.5228 0.7673 0.5161
Wise-FT 0.5989 0.4513 0.5328 0.3776 0.4514 0.5469 0.7555 0.5277
V-SoftMask 0.4484 0.4215 0.5014 0.3294 0.4184 0.5172 0.7404 0.4571
L1 0.5706 0.4273 0.5063 0.3373 0.4236 0.5161 0.7483 0.5014
L2 0.5181 0.4225 0.5014 0.3294 0.4185 0.5175 0.7404 0.4807
CoFiTune 0.5918 0.4634 0.5358 0.3922 0.4601 0.4992 0.7916 0.5303

Table 47: The detailed versatility performance of Finance task under the 33B model in different methods.

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.6962 0.3263 0.1355 0.4576 0.1991 0.3221 0.3860
Full SFT 0.7604 0.4578 0.2601 0.5716 0.3391 0.4629 0.4927
LoRA 0.7308 0.3920 0.2082 0.5246 0.2642 0.3872 0.4436
Wise-FT 0.7346 0.4017 0.2295 0.5338 0.2749 0.3965 0.4552
V-SoftMask 0.7602 0.4587 0.2605 0.5731 0.3396 0.4634 0.4931
L1 0.7313 0.3962 0.2239 0.5295 0.2688 0.3903 0.4504
L2 0.7384 0.4095 0.2378 0.5402 0.2831 0.4054 0.4619
CoFiTune 0.7392 0.4122 0.2369 0.5443 0.2843 0.4075 0.4627

Table 48: The detailed speciality performance of Law task under the 33B model in different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6386 0.4684 0.5592 0.3953 0.4732 0.5744 0.7936 0.5553
Full SFT 0.4381 0.4089 0.4926 0.3350 0.4147 0.5143 0.7074 0.4465
LoRA 0.6074 0.4385 0.5138 0.3567 0.4173 0.5259 0.7555 0.5199
Wise-FT 0.5950 0.4519 0.5309 0.3631 0.4576 0.5554 0.7475 0.5259
V-SoftMask 0.4438 0.4142 0.4982 0.3373 0.4164 0.5189 0.7192 0.4522
L1 0.5719 0.4346 0.5024 0.3432 0.4165 0.5236 0.7255 0.5032
L2 0.5042 0.4283 0.4981 0.3385 0.4096 0.5238 0.7203 0.4769
CoFiTune 0.5874 0.4625 0.5352 0.3938 0.4663 0.5185 0.7615 0.5283

Table 49: The detailed versatility performance of Law task under the 33B model in different methods.

7504



Accuracy
ZeroShot 0.120
Full SFT 0.192
LoRA 0.128
Wise-FT 0.144
V-SoftMask 0.188
L1 0.140
L2 0.156
CoFiTune 0.152

Table 50: The detailed speciality performance of Math task under the 33B model in different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6386 0.4684 0.5592 0.3953 0.4732 0.5744 0.7936 0.5553
Full SFT 0.5502 0.4313 0.5155 0.3745 0.4676 0.4707 0.7495 0.4990
LoRA 0.6205 0.4246 0.4992 0.3836 0.4618 0.3739 0.7772 0.5147
Wise-FT 0.6303 0.4572 0.5435 0.4004 0.4632 0.5288 0.7813 0.5436
V-SoftMask 0.5559 0.4341 0.5196 0.3801 0.4634 0.4782 0.7557 0.5031
L1 0.6140 0.4383 0.5198 0.3892 0.4688 0.4718 0.7496 0.5240
L2 0.5891 0.4348 0.5177 0.3836 0.4697 0.4615 0.7554 0.5138
CoFiTune 0.6264 0.4659 0.5490 0.3907 0.4638 0.5499 0.7916 0.5471

Table 51: The detailed versatility performance of Math task under the 33B model in different methods.

BERTScore Rouge BLEU Rouge-1 Rouge-2 Rouge-L Spec.
ZeroShot 0.7095 0.4481 0.2832 0.4693 0.4239 0.4511 0.4802
Full SFT 0.7651 0.5395 0.3995 0.6042 0.4616 0.5528 0.5680
LoRA 0.7489 0.5078 0.3756 0.5773 0.4228 0.5233 0.5441
Wise-FT 0.7464 0.5044 0.3711 0.5735 0.4207 0.5192 0.5406
V-SoftMask 0.7648 0.5398 0.3988 0.6036 0.4628 0.5531 0.5678
L1 0.7435 0.5006 0.3672 0.5703 0.4151 0.5168 0.5371
L2 0.7523 0.5167 0.3853 0.5805 0.4339 0.5358 0.5514
CoFiTune 0.7502 0.5131 0.3784 0.5824 0.4293 0.5275 0.5472

Table 52: The detailed speciality performance of CAG task under the 33B model in different methods.

Instruct. Gen-Kn. Gen-Rs. Logiqa1 Logiqa2 OCNLI Zh_Winograd Vers.
ZeroShot 0.6386 0.4684 0.5592 0.3953 0.4732 0.5744 0.7936 0.5553
Full SFT 0.5235 0.4244 0.5064 0.3539 0.4389 0.4897 0.7434 0.4847
LoRA 0.6282 0.4248 0.5093 0.3801 0.4357 0.4483 0.7725 0.5207
Wise-FT 0.6169 0.4551 0.5391 0.3899 0.4582 0.5388 0.7695 0.5370
V-SoftMask 0.5288 0.4293 0.5122 0.3571 0.4426 0.4995 0.7498 0.4901
L1 0.6012 0.4328 0.5130 0.3632 0.4460 0.4939 0.7489 0.5156
L2 0.5746 0.4286 0.5095 0.3565 0.4441 0.4895 0.7479 0.5042
CoFiTune 0.6224 0.4647 0.5424 0.3915 0.4620 0.5245 0.7916 0.5432

Table 53: The detailed versatility performance of CAG task under the 33B model in different methods.
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A.16 Module Importance for Speciality
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Figure 7: The Spec. score of different modules trained in all layers for Finance and Math tasks under the 7B model.

A.17 Exploring CF in LLM’s Versatility
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Figure 8: The Gen-Kn., Gen-Rs., and Instruct. scores in Math task under the 7B model.
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Figure 9: The Gen-Kn., Gen-Rs., and Instruct. scores in Finance task under the 13B model.
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Figure 10: The Gen-Kn., Gen-Rs., and Instruct. scores in Finance task under the 7B model.
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A.18 Details of Our Evaluation Setting

A.18.1 A New Strategy for Improving the Reliability of Evaluation Results

Test set Sample-Then-Paraphrase (Ours)
BERTScore Rouge BLEU BERTScore Rouge BLEU

Full SFT 0.6325 0.2218 0.0992 0.7376 0.3973 0.2163
LoRA 0.6314 0.2239 0.1026 0.7159 0.3487 0.1527
Wise-FT 0.6293 0.2195 0.1003 0.7208 0.3597 0.1764
V-SoftMask 0.6318 0.2207 0.0984 0.7372 0.3980 0.2175
L1 0.6298 0.2202 0.0977 0.7181 0.3551 0.1737
L2 0.6306 0.2225 0.1015 0.7254 0.3649 0.1783
CoFiTune 0.6315 0.2206 0.0988 0.7222 0.3645 0.1788

Table 54: Comparison between directly using the test set and our sample-then-paraphrase strategy. We present the
result using the 7B model in the finance task.

The exploration algorithm mentioned in Sec. 3.3 requires extensive experiments conducted to explore
the distinct role of each layer range and modules within it. This necessitates a fast, cost-effective, and
accurate automatic evaluation strategy. For Finance, Law, and CAG, we employ automatic generation
metrics encompassing both semantic alignment and n-gram matching, including BERTScore (Zhang
et al., 2020), Rouge (Lin, 2004), and BLEU (Papineni et al., 2002). The automatic results for Finance
under the 7B model in the unseen test set are presented in Table 54. As depicted in Table 54, our
observations indicate that the evaluation results across different methods for the unseen test set are similar
and generally demonstrate suboptimal performance. This finding is not unique, as previous studies (Ovadia
et al., 2023; Wang et al., 2023a) in question-answering have encountered similar issues26, and diverse
retrieval-augmented generation (RAG) approaches (Ovadia et al., 2023; Gao et al., 2023) are proposed
to enhance LLMs’ performance in addressing this issue. Another possible reason is the inadequacy of
current automatic evaluation metrics in gauging LLMs’ output for unseen and dynamic questions (Chang
et al., 2023; Wang et al., 2023a).

Consequently, to enhance the reliability of the automatic evaluation results, we advocate for a novel
evaluation approach when evaluating Finance, Law, and CAG27 tasks: initially sampling instructions from
the training set and subsequently paraphrasing them to form the test questions, i.e., sample-then-paraphrase
strategy. Intuitively, this strategy facilitates valid automatic evaluation of LLMs’ generation by testing
in-domain knowledge while addressing concerns related to data contamination through test instruction
rephrasing (Schaeffer, 2023; Oren et al., 2023).

A.18.2 Validation of the Automatic Results
To further validate the effectiveness of the automatic metrics used in assessing the quality of LLMs’
generation, we randomly sample a set of outputs from the financial CoFiTune 7B model and evaluate their
Spec. score with both GPT-4 and human annotators.

For human evaluation, we randomly select 100 samples and ask a qualified annotator28 to assess each
output’s quality based on aspects such as accuracy, relevance, and coherence. Each score can range from 1
(very poor) to 5 (very good). For GPT-4 evaluation, we adhere to the same criteria and create a prompt
instructing GPT-4 to assign a rating to each model output. An example of our evaluation prompt for
GPT-4 is presented in Table 55.

Upon acquiring individual scores from both the annotator and GPT-4, we normalize each score to a
range between 0 and 1. Subsequently, we employ the Inter Annotator Agreement (IAA) metric to assess

26Fine-tuned models become static data snapshots during training and may swiftly become inadequate for effectively supporting
dynamic scenarios, making them less capable of handling unseen domain-specific questions.

27The test set of CAG task comprises both positive and negative samples, and their evaluation methods slightly differ; for
more details, refer to the CAG task description in Appendix A.6.2.

28The annotator has scored above 600 on the College English Test 6 level (CET-6) and is compensated with 5 RMB per
sample.
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Prompt

You serve as an impartial evaluator. Please adhere to the criteria outlined below and assess
the provided output on a scale ranging from 1 (very poor) to 5 (very good).
Evaluate based on the following dimensions:
Accuracy: Assess the truthfulness and factual correctness of the candidate’s response.
Relevance: Examine how well the response aligns with the topic of the question.
Coherence: Evaluate how seamlessly the response integrates into the context, considering
consistency with previous statements and overall flow of the answer.
Please apply these criteria to the following question and output:
Question: {Question}
Output: {Output}

Accuracy:
Relevance:
Coherence:
Overall:

Table 55: The prompt we adopt for GPT-4 evaluation. We use “{Question}” and “{Output}” to replace the specific
question and output.

the concordance between our automatic Spec. scores and the scores obtained from both the annotator
and GPT-4. As illustrated in Table 56, our Spec. score reveals a substantial level of agreement with
evaluations conducted by both human annotators and GPT-4. This alignment underscores the efficacy and
robustness of the Spec. score as a reliable metric for assessing the quality of outputs generated by LLMs
in our evaluation setting (mentioned in Appendix A.18.1).

GPT-4 Human Annotators
k 0.689 0.653
p0 0.800 0.756

Table 56: Inter-Annotator Agreement (IAA) measured by Cohen’s Kappa, and the agreement rate between GPT-4
score, human annotators and our Spec. score.
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