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Abstract

Large language models (LLMs) have show-
cased remarkable potential across various tasks
by conditioning on prompts. However, the qual-
ity of different human-written prompts leads
to substantial discrepancies in LLMs’ perfor-
mance, and improving prompts usually neces-
sitates considerable human effort and expertise.
To this end, this paper proposes Prompt with
Actor-Critic Editing (PACE) for LLMs to en-
able automatic prompt editing. Drawing inspi-
ration from the actor-critic algorithm in rein-
forcement learning, PACE leverages LLMs as
the dual roles of actors and critics, conceptual-
izing prompt as a type of policy. PACE refines
prompt, taking into account the feedback from
both actors performing prompt and critics criti-
cizing response. This process helps LLMs bet-
ter align prompt to a specific task, thanks to real
responses and thinking from LLMs. We con-
duct extensive experiments on 24 instruction
induction tasks and 21 big-bench tasks. Experi-
mental results indicate that PACE elevates the
relative performance of medium/low-quality
human-written prompts by up to 98%, which
has comparable performance to high-quality
human-written prompts. Moreover, PACE also
exhibits notable efficacy for prompt generation.

1 Introduction

The rapid development of LLMs has led to notable
advancements in artificial intelligence. LLMs, such
as ChatGPT (OpenAl, 2023), have emerged as es-
sential tools in various application scenarios, in-
cluding automatic question-answering (Gabburo
et al., 2023; Carta et al., 2022), embodied agent
(Lanchantin et al., 2023; Seraj, 2023), and code
generation (Shen et al., 2022; Jiang et al., 2023;
Dong et al., 2023b), among others. They have
demonstrated remarkable capabilities in handling
a range of tasks. However, their efficacy is not
universal and often depends on how we interact
with them - namely, how we provide appropriate
prompts.

Performance

Figure 1: The human-written prompt performance of ten
tasks proposed in Instruction Induction dataset (Hon-
ovich et al., 2022a), where each task contains about
eight human-written prompts, with absolute perfor-
mance differences between 29% and 93% for each task
(refer to Appendix C for detailed results).

The interaction between users and LLMs is heav-
ily mediated by prompts. These prompts can be
understood as entry points, shaping and directing
the LLMs’ enormous reserves of knowledge and
computational abilities toward specific outcomes.
Therefore, just as a key unlocks a door or a com-
mand instructs a computer program, prompts guide
the response mechanisms of LLMs, determining
the range and depth of answers they provide. Fig-
ure 1 vividly illustrates the sensitivity of LLMs
to the quality and specificity of prompts. Even
when posed with the same underlying task, vary-
ing the phrasing or approach of a prompt can yield
vastly different results. For instance, while one
prompt might retrieve a broad overview, another,
only slightly rephrased (adding “in detail”), could
elicit a detailed response. This variability under-
scores not only the importance of crafting thought-
ful and effective prompts but also the nuanced com-
plexities embedded within this task.

The variability in LLM performance with
prompts is primarily caused by two key factors:
1. Human Articulation Limitations: Humans inher-
ently think and communicate in a manner that is
filled with nuances, emotions, and subjectivities.
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When posing questions or presenting requirements,
they might inadvertently omit vital details or in-
troduce ambiguities. Our natural way of commu-
nication is also peppered with cultural references,
idioms, and shorthand that might not always be
clear or universally understood. Therefore, human-
written prompts can sometimes express incomplete,
ambiguous, or even erroneous requirements. This
not only affects the accuracy of the output but might
also skew it in unintended directions. 2. Cognitive
Discordance between Humans and LL.Ms: Even
when we assume that a prompt is perfectly articu-
lated, another challenge arises. There is an intrin-
sic cognitive gap between human comprehension
and the way language models interpret information.
Human comprehension and cognition need to be
“translated” into expressions that align with LLM’s
expectations. Thus, a well-phrased requirement
from a human perspective may still lead to an LLM
output that feels off or unexpected to humans. As a
result, crafting high-quality prompts is usually not
accomplished in one go but requires trial and error.

In general, humans develop prompts in two
stages: 1. Summarizing the initial prompt: The
first stage involves crafting a preliminary version
of a prompt. It is a process that often draws upon
existing data, prior knowledge, or a specific need
within a given context. 2. Improving and editing
prompts: The second stage is characterized by a
continuous process of improvement, modification,
and fine-tuning. This stage is crucial because it
takes the initial draft to a polished level, where
the prompt becomes more precise, clear, and po-
tentially more effective in eliciting the desired re-
sponse from an LLM. This stage often involves iter-
ative feedback loops, close scrutiny. However, ex-
isting approaches of automatic prompt engineering
concentrate primarily on the first stage (Reynolds
& McDonell, 2021; Honovich et al., 2022a; Zhou
et al., 2023), while overlooking the second stage
that significantly enhances the quality of prompts.
Intuitively, the effect and human effort of the sec-
ond stage far surpass those of the first stage, as it
is relatively straightforward for humans to draft a
preliminary version of the prompt. Consequently,
there emerges an imperative need for advancements
in automatic prompt editing for LLMs.

In this paper, we propose an effective approach
named PACE to tackle automatic prompt editing
for LLMs. This approach draws inspiration from
the actor-critic algorithm, a well-known technique

in the realm of reinforcement learning. PACE re-
purposes LLLMs as both the actor and the critic.
Conceptually, a prompt can be viewed as a policy
that directs the behavior of the LLM. The actor,
or the LLM, performs tasks based on this policy
(prompt), while the critic provides a form of super-
vision, identifying how well the actor is perform-
ing based on the provided prompts. On this basis,
PACE improves the quality of the prompt, thereby
optimizing the performance of LLMs on specific
tasks. We conduct extensive experiments to eval-
uate the effectiveness of PACE on 24 instruction
induction tasks and 21 big-bench tasks. The exper-
imental results indicate the effectiveness of PACE
for automatic prompt editing and generation.

2 PACE

We consider a task 7, accompanied by demonstra-
tion data D = {(X,Y)}. For the task 7, given an
input X, a corresponding desired output is Y. The
objective of automatic prompt editing is to identify
a prompt p such that, when a LLM M is queried
with the concatenation of this prompt and a spec-
ified input [p; X], it generates the corresponding
output Y. Therefore, we aim to find the prompt p
that maximizes the expectation of score s(p, X,Y")
over possible pairs (X,Y).

p* = argmax s(p) = argmax Ex y)s(p, X, Y),
P P

where arg max means to return the parameter that
is the maximum value of the function, E indicates
the expectation, and s is a score function.

Owing to the vast and potentially infinite search
space, there are significant challenges in obtaining
optimal prompts. Following the previous work
(Reynolds & McDonell, 2021; Honovich et al.,
2022a; Zhou et al., 2023), we leverage the capabil-
ities of LLM to approximate the inference of the
most likely prompt p with a high score. To further
augment the proficiency of LLM in generating or
refining prompts, we introduce the PACE approach,
which consists of the actor-critic paradigm and iter-
ative algorithm.

2.1 Actor-Critic Paradigm

As shown in Figure 2, given a prompt generated by
LLM or human, we use LLMs in dual roles: as both
the actor and the critic. Prompt p in this context is
conceptualized as a policy guiding the LLM. The
better the prompt, the more effective the LLM’s
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Figure 2: The paradigm of PACE.

response to a particular task. A policy, in reinforce-
ment learning terms, is a strategy that the model
uses to determine its actions based on its current
state. By treating prompts as a policy, we can lever-
age the concepts of reinforcement learning to guide
the iterative refinement of the prompts. Specifi-
cally, in PACE, we use role instruction (Dong et al.,
2023a) to construct both actors and critics:

Actor refers to the LLM that executes a task
based on a given prompt. The response generated
by the LLM is a direct consequence of the prompt,
and it serves as an action taken by the actor in the
environment of natural language processing tasks.
Formally, for a prompt p and an input X, the action
a generated by the actor can be represented as:

a:factor([p;X]vM)a (1)

where f, is regarded as the mapping of LLM from
input to output. Specifically, the input parameter
in [ ] will be represented in the form of the cor-
responding template!, which is then fed into the
given LLM M to obtain the output.

Critic refers to the LLM that evaluates the ef-
fectiveness of the response generated by the actor.
Specifically, the critic will assess if the response ef-
fectively addresses the task defined by the prompt.
The feedback from the critic is then used to adjust
and optimize the prompts, allowing for a contin-
uous cycle of prompt improvement. For the re-

sponse a, the critic then evaluates [p; X; a]> and
the desired output Y to derive a critique c as:
Cc= fcritic([p;X;a;Y]aM)~ (2)

2.2 [Iterative Algorithm

The goal of PACE is to refine the prompt to opti-
mize the LLM’s performance for a specific task.

'The template can be found in Appendix B.
2PACE is not employed during the testing phase, i.e., Eq.
(2) does not use test data.

The process involves iteratively improving the
prompt using feedback from the actor and the critic.

Considering the bias caused by inputs and sam-
pling can render critiques imprecise, thus affect-
ing the outcomes of prompt editing. In a single
iteration, the PACE approach employs n actors
to execute the given prompt across varied inputs.
Concurrently, n critics evaluate the performance of
these actors, providing constructive criticism. This
process culminates in the aggregation of n feed-
back opinions, offering more holistic guidance for
prompt editing. Note that n is a hyperparameter
and is set to 4 in this paper.

We start with an initial prompt py, where pg
can be an empty prompt, which is equivalent to
generating from scratch based on LLM. For each
iterative step ¢, the candidate prompt p; can be
refined according to the aggregation of n feedback
C<p @S:

Pi+1 = fupdate([Pt; c<n)s M). 3)

To evaluate the efficacy of candidate prompt p;
in each iteration, we employ a score function s to
assess p; based on demonstration or valid data. The
score function can be broadly categorized into two
types:

1. Log Probability involves leveraging an LLM
to compute the log probability of the output Y.
Intuitively, a prompt that can produce an answer
with a higher log probability is more likely to be
selected in practical applications.

2. Practical Evaluation Metric entails generat-
ing samples directly and then assessing them using
the practical evaluation metric of the task, such as
Accuracy, BLEU (Papineni et al., 2002), BertScore
(Zhang et al., 2020), and so forth.

In this paper, we focus on the second type of
score function, for two primary reasons: firstly,
some LL.Ms, owing to competitive business consid-
erations, might not disclose generation probabili-
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ties; secondly, employing the practical evaluation
metric tends to bridge the disparity during testing,
generally resulting in enhanced performance.

We continue the iteration until convergence is
achieved or until the predefined maximum number
of iterations is reached. The prompt p* derived
from this iterative process serves as the finalized
prompt tailored for the specific task. The detailed
pseudocode of PACE is outlined in Algorithm 1.

Algorithm 1 Pseudocode of PACE approach.

Require: Initial prompt pg, Demonstrate data D of Task 7T,
Score function s, and LLM M.
Ensure: Prompt p*.
1: Initial t = 0 and p* = po.

2: repeat

3: for i from 1 to n do

3: Sample (X;,Y;) from D.

3: i-th actor A; generates an action a; via Eq. (1).

3: i-th critic C; evaluates a; to yield a critique ¢; via

Eq. (2).
4 end for
5:  p¢ is updated base on c<,, via Eq. (3).
6:  p* =maz(s(p*),s(p't")).
7 t=1t+1.
8: until Convergence or a maximum number of iterations.
9: return p*

3 Experiment Setup

Benchmarks. We perform a comprehensive eval-
uation on Instruction Induction (Honovich et al.,
2022a) and Big-Bench (Suzgun et al., 2023) to
demonstrate the efficacy of PACE.

Instruction Induction (Honovich et al., 2022a)
consists of 24 diverse instruction induction tasks,
each comprising a multitude of human-written
prompts. These tasks cover numerous areas of lan-
guage understanding, ranging from fundamental
sentence structures to the identification of similari-
ties and causal relationships.

Big-Bench (Suzgun et al., 2023) is composed
of 21 more challenging tasks covering many as-
pects of language understanding, including emo-
tional understanding, context-free questions and
answers, reading comprehension, summaries, algo-
rithms, and various reasoning tasks. Each task has
a human-written prompt.

We follow the setup of APE (Zhou et al., 2023),
dividing over 40 tasks in two benchmarks into train,
val, and test sets. Specifically, For each task in the
instruction induction benchmark, the raw data is
split into induce and execute parts. We use the
execute part directly as the test set and split the
induce part into training and dev sets. The training

set is determined by the formula len(training) =
min(len(induce)/2, 100), where len(-) denotes the
dataset length. The remaining data in the induce
section becomes the dev set. For each task in the
big-bench benchmark, it is initially split into train-
ing and test sets in an 8:2 ratio. Then, the training
set is further divided into a new training set and a
dev set. The new training set is defined using the
formula len(training) = min(len(train)/2, 100), with
the remaining data in the original training set des-
ignated as the dev set. Our approach is optimized
only on the train and val sets, and the final gener-
ated prompt is evaluated on the test set. Detailed
descriptions of each task in two benchmarks can
be found in Appendix A.

Implementation Details. In all experiments, we
invoke ChatGPT as our base model through its API,
namely gpt-3.5-turbo. We employ ‘0301’ version
of gpt-3.5-turbo, which is a snapshot from March
Ist 2023, and will not receive updates. To increase
the stability of LLM’s output, we set the decoding
temperature to 0 and top_p to 1. Moreover, we set
max_tokens to 512 for generation. For hyperpa-
rameters of PACE, we set the number of agents n
to 4 and that of candidates in each iteration to 2.
For fairness, the number of candidates in other ap-
proaches is set to 4*2 = 8. Unless otherwise stated,
the maximum number of iterations is set to 1, i.e.,
we use only 1 iteration step for prompt editing in
total. The experiments are run five times and the
average results are reported.

4 Experimental Results

In this section, we detail the results of our compre-
hensive experiments which offer compelling evi-
dence of the effectiveness of PACE in improving
the performance of LLMs. Note that in most exper-
iments, we only present the average results from all
experiments for each benchmark. Detailed results
for each task are available in the Appendix.

4.1 The Effect of PACE in Prompt Editing

In Instruction Induction, we evaluated the per-
formance of PACE under various initial prompts,
which included:

* Worst Human-Written Prompt (W-HWP):
The least effective prompt among all human-
written prompts included in the task?;

3We evaluate all human-written prompts of the task on the

base model and then rank their performance. Detailed result
can be find in Appendix C
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Table 1: The Performance of PACE under Various Initial Prompts on Instruction Induction

Task W-HWP +PACE M-HWP +PACE B-HWP +PACE Butter Fingers +PACE APE

active_to_passive 1 0.99 1 1 1 1 0.02 1 1
antonyms 0.77 0.85 0.82 0.86 0.85 0.87 0.76 0.81 0.82
cause_and_effect 0 0.53 0.36 0.73 0.84 0.85 0.04 0.61 0.5
common_concept 0.05 0.06 0.08 0.15 0.15 0.16 0.01 0.04 0.04
diff 0.87 1 0.94 1 1 1 0.92 1 0.88
first_word_letter 0.6 1 0.8 1 1 1 0 1 1
informal_to_formal 0.46 0.59 0.52 0.6 0.64 0.67 0.57 0.54 0.5
larger_animal 0.2 0.53 0.46 0.93 0.93 0.95 0 0.26 0.49
letters_list 0.56 1 0.73 1 1 1 0.02 0.91 1
negation 0.5 0.76 0.63 0.82 0.79 0.83 0 0.78 0.81
num_to_verbal 0.44 1 0.59 1 1 1 0.27 1 0.98
ortho_starts_with 0.35 0.44 0.36 0.52 0.72 0.71 0.47 0.37 0.42
rhymes 0 0.56 0.56 0.6 0.61 0.61 0.3 0.57 0.12
second_word_letter 0.95 1 0.96 1 0.99 1 0.31 1 0.25
sentence_similarity 0 0.42 0.2 0.28 0.38 0.35 0 0.01 0.11
sentiment 0.5 0.91 0.66 0.91 0.91 0.92 0 0.89 0.85
singular_to_plural 0.99 1 0.99 1 1 1 0.98 0.99 1
sum 0.07 1 0.99 1 1 1 0.64 1 0.37
synonyms 0.11 0.12 0.13 0.16 0.15 0.17 0.12 0.14 0.39
taxonomy_animal 0.42 0.92 0.74 0.85 0.98 0.96 0.28 0.86 0.69
translation_en-de 0.81 0.84 0.82 0.84 0.84 0.84 0.8 0.83 0.81
translation_en-es 0.87 0.83 0.87 0.88 0.9 0.89 0.82 0.77 0.88
translation_en-fr 0.88 0.88 0.88 0.86 0.89 0.88 0.78 0.91 0.86
word_in_context 0 0.16 0.28 0.57 0.54 0.58 0 0.49 0.23
Average 0.47 0.72 0.64 0.78 0.79 0.8 0.36 0.71 0.62

* Medium Human-Written Prompt (M-
HWP): Its efficacy is at the median compared
to all human-written prompts in the task;

* Best Human-Written Prompt (B-HWP):
Out of all human-written prompts provided
in the task, it yielded the best results;

* Butter Fingers: The variant of M-HWP with
a 15% misspelling rate introduced randomly.

As shown in Table 1, we observe that PACE
is effective with human-written prompts of vary-
ing quality. PACE was successful in substantially
enhancing the performance of LLMs that were
initially provided with medium-quality and low-
quality human-written prompts, including M-HWP,
W-HWP, and Butter Fingers. In many cases, the
LLMs using the PACE-refined prompts achieved
performance levels comparable to, and in some
cases even surpassing, those using high-quality
human-written prompts, i.e., B-HWP. Remark-
ably, even for B-HWP, PACE manages to offer
a marginal improvement. A notable highlight is the
performance of PACE under the Butter Fingers set-
ting, which encapsulates reading comprehension
challenges. Prompts under this category can be
notoriously difficult, often with inherent errors or
misconstructions. However, the ability of PACE

to detect, correct, and improve these prompts is
nothing short of commendable. A staggering en-
hancement of up to 98% in the LLM’s performance
is a testament to PACE’s robust error rectification
capabilities. Equally impressive is the breadth of
PACE’s effectiveness. These improvements aren’t
isolated to specific tasks or certain domains. On
the contrary, a consistent positive trend is observed
across a diverse suite of 24 tasks, suggesting the
generalizability of PACE.

It has been observed that the performance of
APE (Zhou et al., 2023) is comparable to that of
a medium human-written prompt. However, our
proposed PACE outperforms APE, even under chal-
lenging conditions like the worst human-written
prompts and the "Butter Finger" settings, under-
scoring the superiority of our approach. We also
compare the efficiency of PACE and APE and find
that the running time of PACE is slightly lower than
APE (about 0.78 x), which is acceptable. Moreover,
it’s essential to highlight that for many tasks, espe-
cially those requiring an initial draft or a general
directive, humans can often produce a satisfactory
first attempt without much effort. For instance, hu-
mans can provide a broad overview or a general
description of the intended subject. The real chal-
lenge, and where computational models like PACE
come into play, is refining and optimizing these
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drafts to produce a high-quality final product.
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Figure 3: The Performance of PACE under Various
Initial Prompts.

In Big-Bench, each task is provided with only a
single instruction, which limits our ability to screen
prompts of varying qualities, unlike the tasks taken
in Instruction Induction. For this reason, the only
instruction we have by default is M-HWP, and in
addition to the Butter Fingers setting, we have
introduced two new settings:

* Empty: The initial prompt is an empty string;

* APE prompt: The initial prompt is generated
by LLM with APE (Zhou et al., 2023).

Figure 3 elucidates the impact of PACE on
both Instruction Induction and Big-Bench across
four distinct settings. It is evident that PACE ex-
hibits consistent improvements across all four set-
tings, highlighting its robust capability to navi-
gate through these specific conditions effectively.
The enhancement with the application of PACE on
the APE prompt means that even for other LLM-
generated prompts, PACE can be further improved
and enhanced to achieve better results, because
PACE takes into account realistic feedback and
LLM cognitive processes. It is worth noting the
effect shown by PACE when initialized with an

Empty prompt. This implies that PACE’s utility is
not confined to the mere editing of pre-existing
prompts. It is equally adept at crafting initial
prompts from scratch, underlining its versatile and
comprehensive applicative potential. The flexibility
demonstrates PACE’s versatility and its potential
in a wide array of scenarios. Furthermore, the com-
parative analysis between PACE and APE reveals
the superiority of PACE in enhancing performance
across both two benchmarks.

In conclusion, the results from Figure 3 accen-
tuate the effectiveness and adaptability of PACE
across different benchmarks and settings. Whether
refining existing prompts or creating new ones,
PACE consistently delivers enhanced results.

0.7
0.65
0.55

PACE Actor Only Crtic Only w/o Actor and Critic
u |nstruction Induction

0.25
0.2
0.15
0.1
0.05
0

PACE Actor Only Crtic Only w/o Actor and Critic

= Big-Bench

Figure 4: The Ablation Study of PACE on Both Two
Public Benchmark Datasets.

4.2 Ablation Study

In this section, we delve deeper into the analysis of
PACE through an ablation study, which is designed
to gauge the individual contributions and effective-
ness of each module incorporated in PACE.
Figure 4 provides a clear visual representation
of our findings. We observed that both roles — the
actor and the critic — are instrumental in the overall
efficiency of PACE. The actor’s primary function is
to execute the prompt, offering real-time feedback
to the LLM. This feedback is not merely mechani-
cal but is crucial in dynamically shaping the prompt
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based on changing conditions or requirements. On
the other hand, the critic operates at a meta-level,
assessing the quality and relevance of the feedback.
Through thoughtful evaluation, the critic aids the
LLM in refining and editing the prompt to ensure
optimal results.

Comparative analysis between the two roles re-
veals that the critic possesses a slightly higher sig-
nificance in enhancing the system’s performance,
followed closely by the actor. The critic’s evalua-
tive capabilities ensure that the system doesn’t veer
off-course, while the actor provides the necessary
operational feedback to keep the system in check.
It is also worth noting the stark difference in perfor-
mance when these roles are absent. Methods that
do not incorporate the actor and critic mechanisms
lag noticeably in effectiveness. This disparity is ev-
ident on both benchmarks we tested, underscoring
the importance of these components in PACE.

In essence, our ablation study underscores the
synergistic relationship between the actor and critic
in PACE. While each has its unique function, to-
gether they substantially elevate the system’s effi-
ciency and accuracy.

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

text-davinci-002 text-davinci-003 ~ ChatGPT GPT-4 Llama2-70B

Initial prompt m PACE

(a) Instruction Induction.

0.1
0.05
0

text-davinci-002  text-davinci-003 ChatGPT GPT-4

Initial prompt = PACE
(b) Big-Bench.

Figure 5: Performance of PACE with Different LLMs.

4.3 Comparison with different LLMs

In this section, our aim is to underscore the ver-
satility and generality of the PACE methodology.
To do so, we have decided to utilize an array of
different LLMs for the PACE task, including ‘text-
davinci-002’, ‘text-davinci-003’, ‘ChatGPT’, and
‘GPT-4’. This diverse selection not only showcases
the breadth of models available but also ensures a
comprehensive assessment across different model
capabilities and specializations.

Referring to Figure 5, the visual representation
distinctly showcases that irrespective of the model
chosen, the PACE method consistently enhances
the quality of the initial prompt. This not only
strengthens the argument for the efficacy of PACE
but also demonstrates the robustness of the LLMs
in refining textual inputs. This observation is piv-
otal, as it suggests that the approach is model-
agnostic to some extent, and the gains are not just
circumstantial or confined to specific LLMs.

In summary, the consistent improvement ob-
served across diverse models unequivocally demon-
strates that the PACE methodology serves as a uni-
versally applicable technique. This technique is
instrumental in enhancing the performance of vari-
ous LLMs by refining the prompts with which they
are provided.

4.4 Effect of Iteration numbers

In this section, our primary objective is to assess
the impact of varying the number of iterations on
our process or system. It’s crucial to understand
how iteration numbers can influence the outcomes,
as this can shed light on the stability, efficiency,
and effectiveness of the procedure in question. By
systematically altering the iteration count, we can
derive insights into the optimal number needed to
achieve the desired results without overcomplicat-
ing or overburdening the system.

In the exploration of the impact of iteration num-
bers, it’s pivotal to understand how iterations influ-
ence the outcome. As depicted in Figure 6, there’s
a clear trend showcasing the correlation between
the number of iterations and the editing effect. The
pattern suggests a dynamic evolution, wherein the
editing effect witnesses a surge with increasing
iterations, up to a point beyond which the effect
plateaus and eventually stabilizes.

This stabilization of the editing effect after a
certain number of iterations indicates a saturation
point or a threshold beyond which additional itera-
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Figure 6: Effect of Iteration numbers

tions don’t contribute significantly to enhancing the
effect. What’s noteworthy from the observed data
is that typically, three iterations seem to strike an
optimal balance. In summary, it is recommended to
limit the number of iterations to less than 3, which
can effectively balance cost and effect.

5 Related Work

Recent advancements in transformer-based LL.Ms
have not only improved the model’s performance
across various NLP tasks (Vaswani et al., 2017,
Devlin et al., 2018; Brown et al., 2020) but have
also revealed emergent capabilities, including few-
shot in-context learning, zero-shot problem solving,
chain of thought reasoning, instruction following,
and instruction induction (Cobbe et al., 2021; Wei
et al., 2022; Kojima et al., 2022; Sanh et al., 2022;
Wei et al., 2021; Ouyang et al., 2022; Honovich
et al., 2022b). While we share the sentiment with
these works about the potential of LLMs, our focus
lies in enhancing their performance through prompt
editing strategies.

Automatic prompt engineering with training.
Some work improves prompts by tuning soft
prompts in a differentiable manner. For instance,
the work (Lester et al., 2021; Qin & Eisner, 2021)
employs soft prompts to tailor the behavior of
LLMs. Similarly, efforts like those of (Hao et al.,
2022; Deng et al., 2022; Zhou et al., 2022) delve
into training auxiliary models or directly train-
ing the prompt generator (Hao et al., 2022; Wang
et al., 2022). While these efforts show the poten-
tial of differentiable tuning, they face limitations
when LLMs are only accessed via APIs, which
limits access to the model’s internals. Addition-
ally, the prompts generated from such methods

often yield incoherent languages (Hambardzumyan
et al., 2021). Therefore, another type of work im-
proves prompts via discrete manipulations using
Reinforcement Learning (Shin et al., 2020; Zhang
etal., 2023; Deng et al., 2022), which requires train-
ing a reward model. However, it is challenging to
train an excellent and generalizable reward model.

Automatic prompt engineering without training.
Several works have recently explored the poten-
tial of using LLMs themselves to guide prompt
optimization without training (Reynolds & Mc-
Donell, 2021; Honovich et al., 2022a). The work
(Zhou et al., 2022) employs the Monte Carlo sam-
pling technique for this purpose. Similarly, the
work (Prasad et al., 2022) introduced an evolu-
tionary search approach for prompts, leveraging
LLM-paraphrased and swapped segments of the
original prompt. The work (Chen et al., 2023) fo-
cuses on refining SQL-generation prompts using
LLM feedback. The work (Pryzant et al., 2023)
considers ‘gradients’ to guide LL.Ms for classifica-
tion tasks. However, these methods usually grapple
with ambiguous semantic orientation or a confined
task-specific scope.

For automatic prompt editing, EvoPrompt (Guo
et al., 2023) uses a genetic algorithm to mutate the
original prompt. PROmpting (Yang et al., 2023)
leverages LLMs as optimizers, where the optimiza-
tion task is described in natural language. Both of
them are two concurrent works. The main differ-
ence between PACE and them is that EvoPrompt
does not provide feedback or reflect on execution
results to LLMs, similar to PACE w/o the actor and
critic, whereas PROmpting only lacks reflection,
akin to PACE w/o the critic. Detailed comparison
results can be found in Appendix D.
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In this paper, PACE refines prompts for LLMs
using the actor-critic paradigm, which provides
effective guidance in editing and can be applied to
various tasks.

6 Conclusion and Discussion

In this paper, we have proposed PACE, an inno-
vative approach to automatic prompt editing for
LLMs, drawing inspiration from the Actor-Critic
paradigm in reinforcement learning. Our exper-
iments confirm the potential of PACE in signifi-
cantly enhancing the effectiveness of prompts, lead-
ing to improved LLM performance across a variety
of tasks. By treating the prompt as a form of pol-
icy and conceptualizing LLMs as both actors and
critics, we have presented a fresh perspective on
how prompts can be optimized to better guide the
output of LLMs. The remarkable improvements
with PACE in prompt editing and generation under-
score the value of this perspective and its potential
to transform the field of prompt engineering.

7 Limitation

There are several limitations to our proposed PACE
as follows.

First, PACE relies on the ability of LLMs to un-
derstand prompts and instructions, which is a com-
mon limitation of all current automated prompt
engineering approaches. However, with the ad-
vancement of LLM technologies, more LLMs will
demonstrate such capabilities, thereby broadening
the application scope of PACE.

Second, due to limitations in computational re-
sources, we are unable to run large-scale open-
source LLMs. However, we evaluated PACE on
four different OpenAl LLMs. The experimental
results demonstrate that PACE achieved consistent
and significant performance improvements across
40 tasks on two benchmarks for all four LLMs.
This to some extent validates the broad applicabil-
ity and effectiveness of PACE.

Third, PACE is efficient in handling medium
to low-difficulty problems, but when faced with
highly complex problems, we firmly believe in the
power of human-machine collaboration to unleash
its greater potential, ensuring optimal results.
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A Implementation Details

Table 2: The 24-instruction induction task proposed in the work Honovich et al. (2022b) is described in detail. For
convenience, the original table in the work Honovich et al. (2022b) is reproduced here.

Category Task Instruction Demonstration
Spelling First Letter Extract the first letter of the input word. cat — ¢
Second Letter Extract the second letter of the input word. cat —a
List Letters Break the input word into letters, separated by cat —cat
spaces.
Starting With Extract the words starting with a given letter ~The man whose car I hit last week sued
from the input sentence. me. [m] — man, me
Morpho- Pluralization Convert the input word to its plural form. cat — cats
syntax
Passivization Write the input sentence in passive form. The artist introduced the scientist. —
The scientist was introduced by the
artist.
Syntax Negation Negate the input sentence. Time is finite — Time is not finite.
Lexical Antonyms Write a word that means the opposite of the input ~ won — lost
Semantics word.
Synonyms Write a word with a similar meaning to the input  alleged — supposed
word.
Membership Write all the animals that appear in the given cat, helicopter, cook, whale, frog, lion
list. — frog, cat, lion, whale
Phonetics Rhymes Write a word that rhymes with the input word. sing — ring
Knowledge  Larger Animal Write the larger of the two given animals. koala, snail — koala
Semantics Cause Selection Find which of the two given cause and effect Sentence 1: The soda went flat. Sen-
sentences is the cause. tence 2: The bottle was left open. —
The bottle was left open.
Common Find a common characteristic for the given ob-  guitars, pendulums, neutrinos — in-
Concept jects. volve oscillations.
Style Formality Rephrase the sentence in formal language. Please call once you get there —
Please call upon your arrival.
Numerical Sum Sum the two given numbers. 2210 — 32
Difference Subtract the second number from the first. 3222 =10
Number to Word Write the number in English words. 26 — twenty-six
Multi- Translation Translate the word into German / Spanish / game — juego
lingual French.
GLUE Sentiment Determine whether a movie review is positive or ~ The film is small in scope, yet perfectly
Analysis negative. formed. — positive
Sentence Rate the semantic similarity of two input sen- Sentence 1: A man is smoking. Sen-
Similarity tences on a scale of O - definitely not to 5 - per-  tence 2: A man is skating. — 0O - defi-

fectly.

nitely not

Word in Context

Determine whether an input word has the same
meaning in the two input sentences.

Sentence 1: Approach a task. Sentence
2: To approach the city. Word: ap-
proach — not the same
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Table 3: A detailed description of Big-Bench Instruction Induction, a clean and tractable subset of tasks with clear
human-written instructions.

Name

Description

Keywords

gender  inclusive
sentences german

Given a German language sentence that does
not use gender-inclusive forms, transform it
to gender-inclusive forms

free response, grammar, inclusion, non-
English, paraphrase

movie recommenda-
tion

Recommend movies similar to the given list
of movies

emotional intelligence, multiple choice

object counting

Questions that involve enumerating objects
of different types and asking the model to
count them

free response, logical reasoning

operators

Given a mathematical operator definition in
natural language, apply it

free response, mathematics, numerical
response

question selection

Given a short answer along with its context,
select the most appropriate question which
to the given short answer

multiple choice, paraphrase, reading
comprehension, summarization

. Select the humorous edit that 'ruins’ the in- emotional understanding, multiple
ruin names . X - .
put movie or musical artist name choice
snarks Determine which of two sentences is sarcas- emotional understanding, humor, multi-
tic ple choice
tense Modify the tense of a given sentence free response, paraphrase, syntax

word sorting

Sort a list of words

algorithms, free response

word unscrambling

Unscramble the given letters to form an En-
glish word

free response, implicit reasoning, tok-
enization

B Templates of Actor, Critic, and Update

The purpose of these templates is to allow LLMs to produce corresponding responses when acting as
actor, critic, and update. Note that these templates are not optimal, and we can improve these templates to
get better results.

B.1 Actor

Instruction: [TASK_INSTRUCTION],
Input: [INPUT],
Output:

B.2 Critic

I gave you an instruction:[TASK_INSTRUCTION]. Based on this instruction they produced the following
input-prediction pairs and the corresponding ground truth:

Input: [INPUT],

Prediction: [PREDICTION],

Ground Truth: [GROUNDTRUTH],

According to Input, Prediction, and Ground Truth, give the critical advice on how to improve the
instruction:

B.3 Update

I gave you an instruction:[TASK_INSTRUCTION]. Based on the instruction they produced the following
critical advices: [Critical_Advices]. Taking these critical advices into consideration, the improved
instruction was:

7316



C Details of Human-written Prompt and Performance in Instruction Induction
Each task contains multiple human-written prompts and their performances on the base model.

C.1 Case Selection

* (0.88: Which of the following sentences is the cause?
* 0.8: Which of the two events is the cause?

* 0.6: Each input consists of two sentences, where one is the cause and the other is the outcome. Write
The cause sentence.

* (0.52: The input is a cause and effect. Write the cause.

* (0.36: The input is a cause and effect, write the cause.

* 0.2: The input consists of two sentences. One is the cause of the other. Write the cause sentence.
* 0.04: Find the cause in the following cause and effect pair.

* (0.0: Output the sentence describing the cause (the other sentence is what happened as a result).

* (0.0: Output the cause (other sentence describes what happened as a result).

C.2 Starting With

* (.72: Write a word from the following sentence that starts with the bracketed letter.

* 0.65: Output all the tokens in the input that start with the letter in [ ].

* (0.57: Output all tokens in the sentence that start with the letter in [ ].

* (.55: Write all the words of the input that start with the letter in the square brackets.

* (0.43: Write all the words from the sentence that start with the letter in the square brackets.

* (0.4: For each input, list all the words in the sentence that begin with the character in brackets at the
end of the sentence.

* (0.36: Write all the words in the following sentence that start with the bracketed letter, in their original
order.

* 0.35: For each input sentence, list all the words in the sentence that begin with the character written
inside the brackets.

C.3 Sum

* 1.0: You are given two numbers as input. Apply the + operator to them and output the answer.
¢ 1.0: For each input, write the sum of the two numbers that appears there.

* (0.7: Write the result of adding the two numbers.

e (.51: Write the sum of the pair of numbers for each input.

* 0.29: sum the numbers in the input.

* 0.24: Add the following numbers.

* 0.19: Apply the + operator on the two numbers.

¢ (0.07: Write the sum of the two numbers.
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C.4 Rhymes

* 0.62: What is a word that rhymes with the input token.

* 0.62: Write a word that rhymes with the input.

* (0.6: Write a word that rhymes with the input.

* 0.6: Write a word that rhymes with the input word.

* (0.6: Write a word that rhymes with each of the following input words.

* (.59: For each word in the input write another word that rhymes with it.
* (.58: Write a word that thymes with the input word.

* 0.0: Write a rhyme for the following word.

C.5 Negation

* 0.79: Write a negated version of the given sentence.

* (.79: Negate the given sentence.

* (.79: Negate the following sentence:.

* (.78: Write the negation.

* (0.72: Change the fact stated in the sentence to an opposite fact.
* (0.69: Output the negation of the input.

* 0.68: You will be given a sentence that states a fact (that might be true or not). Try to state the
opposite fact.

* 0.5: For each input, write a sentence that expresses the exact opposite meaning of the input.

C.6 Sentiment

* 0.91: Write "positive" if the input is a positive review, and "negative" if the input is a negative review.
* (0.87: Determine whether the sentiment is positive or negative.

* (0.87: Classify the sentiment of the input sentence (options are positive or negative).

* (.85: Output whether the sentiment is positive or negative.

* 0.85: Given an input text, output whether the sentiment is positive or negative.

* 0.82: For each input, determine if the sentiment in the input is prone to negative or positive opinion.
* (.76: Output whether the sentiment of the input sentence is positive or negative.

* (.5: For each input, determine whether it expresses a positive or a negative opinion.
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C.7 Membership

* (0.98: Write all animals from the list of words.

* 0.96: Write only the animals from the list of words.
* 0.95: Extract animals.

* 0.93: List the animals from the given words.

* 0.91: List which of the following are animals.

* (0.9: Find the animals in the following list of words.
* (.89: Extract all animals from the input list.

* (0.86: Extract all animals from the list.

* (0.42: Find the animals in the list.

C.8 Large Animal

* 0.93: Write which of the pair of animals in each input is larger.
* (0.93: Write the bigger animal of the two.

* 0.93: Write the bigger animal.

* 0.93: For each input, write which of the two animals is bigger.
* 0.59: find the larger between the following pair of animals.

* 0.52: output which of the animals in the input is bigger.

* (0.46: Which is bigger?

* (0.4: Which of the following animals is bigger?

* 0.2: which of the animals separated by , is bigger.

C.9 Word in Context

» 0.57: Each input consists of two sentences (Sentence 1 and Sentence 2), and a word that appears in
at least one sentence as is or in a modified way (Word). Classify whether the meaning of this word is
the same in both sentences (options are "same" or "not the same").

* (0.53: Write "same" if the word has the same meaning in both sentences, otherwise write "not the
same".

* (0.52: Each input consists of two sentences (Sentence 1 and Sentence 2) and a word that appears
in both of them (Word). Classify whether the meaning of this word is the same in both sentences
(options are "same" or "not the same").

* (0.5: Given two sentences and a common word, output "same" if the common word has the same
meaning in both sentences, and "not the same" otherwise.

* 0.49: Given two sentences and a common word, output "same" if the common word has the same
meaning in both sentences, otherwise output "not the same".

* 0.48: "same" if the word has the same meaning in both sentences, otherwise "not the same".

* (0.0: Whether the meaning of the word is the same or not in both sentences.
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* (0.0: For each input, determine whether the two sentences (marked ’Sentence 1’ and *Sentence 2’)
use the selected word (marked *Word:”) with the same meaning or not.

* (0.0: For each input, determine if the keyword (marked in *Word:") is used in the same meaning in
both the sentences (marked ’Sentence 1’ and *Sentence 2°).

* (0.0: Determine whether the meaning of the word is the same in both sentences.

C.10 Sentence Similarity

* (0.38: Rate from 0 (definitely not) to 5 (perfectly) the degree in which both sentences describe the
same event.

* (0.37: Rate from 0 (definitly not) to 5 (perfectly) the degree in which the two sentences describe the
same thing.

* (0.26: Each input consists of two sentences (Sentence 1 and Sentence 2). Rate on a scale of 0 to 5
whether Sentence 1 is a paraphrase of Sentence 2.

e (0.22: Score from 0 to 5 whether the two sentences describe the same event.

* 0.2: Score from O to 5 whether the two sentences describe the same event (5 being highest and 0
lowest).

* 0.0: Each input consists of two sentences (Sentence 1 and Sentence 2). Rate on a scale of 0 to 5
whether those sentences are paraphrases of each other, and also give a brief textual description of
the rating (0 being definitely not, 2 being possibly, 3 being probably, 4 being almost perfectly and 5
being perfectly). Use " - " to separate them.
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D Comparison of PACE and Other Methods

We try to reproduce these two concurrent works (i.e. PROmpting (Yang et al., 2023) and EvoPrompt (Guo
et al., 2023)) following the original prompt and pseudo code in these papers. We conduct the comparison
experiment on the public benchmark - Instruction Induction, following the experimental setup in our
paper. Specifically, we keep the setups consistent for all methods, including base LLM = ChatGPT (i.e.,
‘gpt-3.5-turbo-0301"), number of input prompts = 1 (the default setups for PROmpting and EvoPrompt are
20 and 10 respectively, but many tasks do not have so many human-written prompts, so we only input the
Worst Human-Written Prompt), the number of output candidate prompts = 8, and the number of iteration
rounds = 1.

The experimental results show that under the same setups, the performance improvement of PACE is
significantly better than PROmpting (Yang et al., 2023) and EvoPrompt (Guo et al., 2023), benefiting
from real feedback (actors) and reflection (critics) of LLMs. In contrast, the inferior performance of
PROmpting and EvoPrompt could be linked to their reliance on a substantial volume of human-written
prompts. However, due to the limitations of the dataset, we only entered a single human-written prompt in
this experiment.

Table 4: Comparison between PACE versus PROmpting (Yang et al., 2023) and EvoPrompt (Guo et al., 2023).

Instruction Worst Human-Written Prompt PROmpting EvoPrompt PACE
active_to_passive 1 1 1 0.99
antonyms 0.77 0.82 0.82 0.85
cause_and_effect 0 0 0 0.53
common_concept 0.05 0.08 0.06 0.06
diff 0.87 1 1 1
first_word_letter 0.6 0 0.2 1
informal_to_formal 0.46 0.53 0.53 0.59
larger_animal 0.2 0.59 0.07 0.53
letters_list 0.56 0.48 0.46 1
negation 0.5 0.78 0.23 0.76
num_to_verbal 0.44 1 0.12 1
orthography_starts_with 0.35 0.37 0.43 0.44
rhymes 0 0.02 0 0.56
second_word_letter 0.95 0.45 0.45 1
sentence_similarity 0 0.05 0.05 0.42
sentiment 0.52 0.13 0.22 0.91
singular_to_plural 0.99 0.98 0.97 1
sum 0.07 0.99 1 1
synonyms 0.11 0.15 0.14 0.12
taxonomy_animal 0.42 0.73 0.73 0.92
translation_en-de 0.81 0.82 0.82 0.84
translation_en-es 0.87 0.86 0.83 0.83
translation_en-fr 0.88 0.86 0.87 0.88
word_in_context 0 0 0.01 0.16
Average 0.47 0.53 0.46 0.72
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E Efficiency Comparison

We compare our proposed PACE to the previous prompt generation method APE, adhering to the
experimental setup in our paper. As shown in the following table, we can find that the running time of
PACE is acceptable and slightly lower than APE.

Table 5: Efficiency Comparison of APE and PACE

Instruction APE Time (s) PACE Time (s)
antonyms 193.3841718 170.4483252
cause_and_effect 165.4218265 146.9358413
common_concept 272.4779725 221.5746787
diff 441.1818587 171.3038456
first_word_letter 239.3755522 160.1741374
informal_to_formal 220.3962668 131.0239611
larger_animal 301.950026 257.6089029
letters_list 196.5197048 1447002583
taxonomy_animal 325.9682828 170.7813251
negation 191.3055882 177.4928019
num_to_verbal 193.1570891 187.8281341
active_to_passive 192.6067982 200.9731977
singular_to_plural 162.0425067 166.054487
rhymes 262.3620207 323.8450603
second_word_letter 223.0662 170.4889729
sentence_similarity 370.5423006 298.4649165
sentiment 197.7973852 178.7309837
orthography_starts_with  224.0993353 206.3742661
sum 279.8155023 172.6397824
synonyms 320.181802 161.5457189
translation_en-de 163.7373747 164.0702665
translation_en-es 178.9501115 190.471509
translation_en-fr 216.419857 186.9464092
word_in_context 374.4830073 247.1816087
Average 246.1351059 191.9858079
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F Details of Performance

Table 6: Details of task Performance in Instruction Induction benchmark.

0 1 2 3 4 5

active_to_passive 1 1 1 1 1 1

antonyms 0.81 0.85 0.87 0.85 0.88 0.87

cause_and_effect 0.04 053 089 093 0.89 0.85

common_concept 0.06 0.06 0.15 0.15 0.15 0.17

diff 1 1 0.95 1 1 0.99

first_word_letter 0.01 1 1 1 1 1

informal_to_formal 053 059 059 064 053 0.6

larger_animal 0.07 0.21 0.64 0.65 0.63 0.61

letters_list 0.48 1 1 1 1 1

negation 026 0.76 0.75 0.76 0.75 0.76

num_to_verbal 0.2 1 1 1 1 1

orthography_starts_with 0.37 0.44 042 037 029 0.34

rhymes 0 056 075 082 034 04

second_word_letter 0.45 1 1 1 1 0.99

sentence_similarity 0.05 042 042 041 045 046

sentiment 0.13 091 094 0.89 0.87 0.87

singular_to_plural 0.98 1 0.99 0.99 0.99 0.98

sum 0.99 1 1 1 1 1

synonyms 0.13 0.12 0.1 032 036 046

taxonomy_animal 0.74 092 096 094 0.83 0.74

translation_en-de 082 084 085 09 089 0.86

translation_en-es 087 083 086 0.89 095 094

translation_en-fr 0.87 0.88 0.81 0.84 0.78 0.75

word_in_context 0 0.16 023 023 0.16 0.16

Table 7: Details of task Performance in Big-Bench benchmark.
0 2 3 4 5

gender_inclusive_sentences_german 0.175 0.2 0.2 0.2 0.225 0.225
hyperbaton 0 0.14 0.4 0.51 057 051
movie_recommendation 0 0.2 029 027 0.21 0.27
object_counting 0 0.5 047 044 041 046
operators 0 0.024 0 0 0 0
question_selection 0 1 1 0.02 098
ruin_names 0 0.356 0.6 03 0556 0.289
snarks 0 0.514 0.514 0.541 0.595 0.568
tense 0.728 0.828 0.811 0.811 0.811 0.811
word_sorting 0 042 046 046 043
word_unscrambling 0.19 045 045 053 058 046
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