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Abstract

The design choices in Transformer feed-
forward neural networks have resulted in sig-
nificant computational and parameter overhead.
In this work, we emphasize the importance
of hidden dimensions in designing lightweight
FFNs, a factor often overlooked in previous ar-
chitectures. Guided by this principle, we intro-
duce PartialFormer, a parameter-efficient Trans-
former architecture utilizing multiple smaller
FFNs to reduce parameters and computation
while maintaining essential hidden dimensions.
These smaller FFNs are integrated into a multi-
head attention mechanism for effective collabo-
ration. We also propose a tailored head scaling
strategy to enhance PartialFormer’s capabili-
ties. Furthermore, we present a residual-like
attention calculation to improve depth scaling
within PartialFormer. Extensive experiments
on 9 translation tasks and 1 abstractive sum-
marization task validate the effectiveness of
our PartialFormer approach on machine trans-
lation and summarization tasks. Our code
would be available at: https://github.com/
zhengkid/PartialFormer.

1 Introduction

The Transformer model (Vaswani et al., 2017) has
emerged as a cornerstone in the natural language
processing (NLP) domain, overshadowing convo-
lutional neural networks (Gehring et al., 2017) and
recurrent neural networks (Sutskever et al., 2014)
by virtue of its minimal inductive bias, superior
scalability, and proficiency in modeling sequences.
Nonetheless, its substantial computational and para-
metric requisites pose significant challenges to its
deployment and training, warranting an ongoing
trend in the research community toward eliminating
redundant parameters and computations (Dehghani
et al., 2019; Mehta et al., 2019; Lan et al., 2020;
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Figure 1: Illustration of our idea.

Wu et al., 2020; Mehta et al., 2021; Reid et al.,
2021; Li et al., 2022a) in Transformer.

While these attempts represent significant strides
in enhancing the efficiency of the Transformer ar-
chitecture, they largely neglect an equally critical
component: the Feed-Forward Network (FFN) that
constitutes a substantial part of the Transformer’s
computational and parametric footprint, due to the
inherent large feature space and hidden dimension.
Previous studies (Mehta et al., 2021; Wu et al.,
2020; Ge et al., 2022) have simplified FFNs by
naively reducing their hidden dimensions, often at
the expense of expressive power. This leads to a
question: Is the current formulation of lightweight
FFNs truly optimal?

To answer this concern, we turn to the insights
provided by Geva et al. (2021), who depicted FFNs
as a collection of key-value memories, where the
number of memories is equal to the number of hid-
den dimensions in FFNs. This finding underscores
the significance of hidden dimension in FFNs.
Drawing inspiration from this finding and the suc-
cessful application of large hidden sizes in FFNs as
evidenced by Meta’s 4B model (Tran et al., 2021)1,
we hypothesize that an efficient lightweight FFN
is not merely about parameter reduction. Rather, it
should aim to maintain or even increase the hidden
dimension while judiciously reducing the number
of parameters involved.

The literature on animal cognition provides some

1They have shown enlarging the hidden size of FFNs to
16384 delivers significant BLEU improvements.
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clues for designing lightweight and expressive
FFNs. Research on animals’ behavior has shown
that group animals such as insects, fish, and some
birds can emerge with some incredible abilities
to deal with some complex tasks, though each in-
dividual owns poor abilities (Couzin, 2009; Con-
radt and Roper, 2005). This concept resonates
with the AI community’s “Swarm Intelligence”
paradigm (Bonabeau et al., 1999), which empha-
sizes the power of collective decision-making. This
biological prior motivates us to integrate Swarm
Intelligence principles into the FFN design process.

To this end, we propose PartialFormer, an inno-
vative approach to Transformer architecture. At
the heart of PartialFormer lies the novel concept of
Partial-Level Gated Feed-Forward Networks (PG-
FFN). Conceived as an ensemble of streamlined
FFNs operating in concert, each PG-FFN produces
lower-dimensional hidden features. Despite their
reduced individual dimensions, the aggregated out-
put of these PG-FFNs either matches or surpasses
the hidden dimensions of traditional, larger FFNs,
as empirically substantiated in Figure 1. More-
over, we further equipped PartialFormer with a
head scaling strategy tailed for efficiently scaling,
and a residual-like attention calculation for stable
optimization. These techniques empower Partial-
Former to efficiently utilize parameters within the
same parameter budget.

Our main contributions are as follows:
• We introduced PG-FFNs, a method that effi-

ciently reduces parameters and computations,
and integrated them into the PartialFormer ar-
chitecture for high performance. Additionally,
we introduced an attention calculation method
for stable optimization.

• We investigated the scalability of Partial-
Former and proposed a head scaling strategy
tailored for PartialFormer to efficient scaling.

• Rigorous empirical tests across 9 machine
translation tasks and 1 abstractive summariza-
tion task confirm the effectiveness and effi-
ciency of PartialFormer on machine transla-
tion and summarization tasks.

2 Preliminary: Transformer

In this section, we present some prior knowledge
about the Transformer. The Transformer block
consists of a multi-head self-attention and a feed-
forward network. Let X ∈ RT×d be a T × d input
matrix of T tokens. Each multi-head self-attention

component owns H heads. For simplicity, we omit
layer normalization and residual connections.

Multi-Head Self-Attention MHSA aims to
model the global dependency among tokens.
MHSA computes as follows:

Ai = Softmax(
Qi(Ki)

T

√
dk

), (1)

headi = AiVi, (2)

X =
H∑

i=1

headiW
O
i , (3)

where Qi,Ki, Vi denote the query, key and value of
i-th head, which are derived from input with three
learnable matrices WQ

i ,WK
i ,W V

i ∈ Rd×dk as fol-
lows: Qi = XWQ

i ,Ki = XWK
i , Vi = XW V

i ,
respectively. WO

i ∈ Rdk×d is a learnable matrix.
dk and d denote the head dimension and embed-
ding dimension, respectively. Ai and headi denote
the attention matrix and representation of i-th head,
respectively.

Feed-Forward Network Feed-forward network
is responsible for improving the expressiveness
of the whole representation space by adopting an
"expansion-activation-reduction" mapping strategy.
It computes as follows:

X = ReLU(XW1 + b1)W2 + b2, (4)

where W1 ∈ Rd×dffn ,W2 ∈ Rdffn×d, b1 ∈
Rdffn , b2 ∈ Rd are learnable matrices and dffn de-
notes the hidden dimension in FFN that is usually
set to 4d.

3 PartialFormer

3.1 Overall Architecture
Figure 2 illustrates the overall architecture of Par-
tialFormer, encompassing both an encoder and a de-
coder. Although the foundational structure adheres
to the design of the vanilla Transformer (Vaswani
et al., 2017), there are some notable modifications.

Encoder. Different from vanilla Transformer,
each encoder layer in PartialFormer consists of a
unified sub-layer that integrates the PG-FFNs into
the multi-head self-attention mechanism.

Decoder. Each decoder layer is composed of two
types of sub-layers, both of which integrate the
multi-head attention mechanism with PG-FFNs.
The sub-layers differ based on the type of multi-
head attention mechanisms employed, specifically
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Figure 2: (a) Architecture of Transformer. (b) Architecture of PartialFormer. (c) Details of Self-AFFN Block. All
architecture are based on pre-normalization strategy. We omit the layer normalization operation, residual connection,
softmax operation and scale coefficient for simplicity.

whether it’s a decoder self-attention or an encoder-
decoder cross-attention mechanism. Notably, this
design is inspired by previous studies (Lu et al.,
2019; Gulati et al., 2020), but it differs in that we
employ small FFNs, known as PG-FFNs, within
each attention head of both the self-attention and
cross-attention modules. To reduce computation,
we halved the hidden dimension of PG-FFNs. Fur-
ther decoder comparisons are in Appendix C.

3.2 Partial-Level Gated FFN

Intuition Previous studies (Wu et al., 2020;
Mehta et al., 2021; Ge et al., 2022) commonly
reduced the parameters in feed-forward networks
by decreasing the hidden dimension (e.g., 2048
to 256). Different from them, our key idea in-
volves utilizing a collection of small FFNs to model
smaller input features expecting them to collabora-
tively emerge better performance while consuming
fewer parameters, akin to “Swarm Intelligence”.

In the concept of “Swarm Intelligence”, a vanilla
FFN can be viewed as a single large individual,
which processes the whole feature input, making it,
while effective, very resource-intensive in terms of
computing power and memory. Assume a vanilla
FFN with mappings of 1024->4096->1024, which
consumes around 8.4 million parameters. By con-
trast, if we utilize multiple smaller FFNs (viewed
as multiple weak individuals), each of which pro-
cesses a subset of the input feature and collabora-
tively utilizes these outputs to generate the final out-
put, the parameter and computation consumption
will be significantly fewer. For example, 8 smaller
FFNs with mappings of 128->512->128, we can
retain the same hidden dimension, such as 8 * 512,
while using only 1.05 million parameters. This
approach significantly reduces parameters while
maintaining the crucial hidden dimension, as em-

phasized in Geva et al. (2021); Tran et al. (2021).

Design of PG-FFNs We have observed that the
Transformer architecture inherently consists of mul-
tiple smaller subspaces, namely “heads” within the
multi-head attention (MHA) mechanism. These
heads act as sub-components of the original in-
puts and retain substantial information from the
original data. Besides, the fusion mechanism in
MHA enables the consolidation of the capabilities
of multiple FFNs. As a result, PG-FFNs should
naturally be constructed based on the MHA mech-
anism. More specifically, we insert multiple FFNs
into the place between Eq. (2) and Eq. (3), as
shown in the blue part of Figure 2(c).

While group transformation operations could be
used to instantiate our idea, they are not optimal
on GPUs due to their low I/O efficiency (Ma et al.,
2018), causing significant inference latency. To
address this, we propose sharing parameters across
each FFN within different heads, thereby eliminat-
ing the need for group transformation operations.
However, directly sharing weights may result in ho-
mogeneous representations across different heads,
which may potentially hinder the performance (Li
et al., 2018). To mitigate this, we further introduce
a head-specific gated mechanism. The core idea is
to use a set of diverse masks to filter the information
of different heads so that the head representation
will be more diverse.

Formally, given a set of head features
{headi|1 ≤ i ≤ H} and diverse masks {Gi|1 ≤
i ≤ H}, the calculation of PG-FFNs is as:

headi = Gi ⊙ FFN(headi), (5)

where FFN(·) is the same as Eq. (4) and Gi is gen-
erated via multiplication between the input feature
of the block X and a learnable matrix WG

i fol-
lowed by an activation function σ(·), e.g., ReLU,

7282



Sigmoid and Tanh, as follows: Gi = σ(XWG
i ).

We compared the choice of σ(·) in Table 7.

3.3 Residual-like Attention Calculation

Dong et al. (2021); Wang et al. (2022) have shown
that the original location of FFNs plays an es-
sential role in optimizing transformers, e.g., al-
leviating Token Uniformity. Therefore, it’s vital
to consider the impact of altering the FFN place-
ment. Densely residual connections are effective
but typically implemented either at the feature level
(e.g., DLCL (Wang et al., 2019)) or integrated into
the network structure (e.g., Realformer (He et al.,
2021)), which are not flexible.

To this end, we design a new variant of the resid-
ual connection integrated into the attention calcu-
lation, while also decoupling from the network ar-
chitecture. Specifically, the calculation of attention
maps consists of two parts: 1) AG, the global part,
and 2) AL, the local part, as shown in Figure 2(c).
The calculation of AL remains the same as in the
vanilla Transformer, while AG is computed once
by using the original embedding as input through
Eq. (1) (without softmax operation). Inspired by
He et al. (2021), to efficiently fuse these compo-
nents, we add them together and apply a Softmax
function, as follows:

Ai = Softmax(AG
i +AL

i ), (6)

where AG
i and AL

i denote the global and local at-
tention map of i-th head.

In addition to the benefit of efficient depth scal-
ing (See Appendix G), this approach provides re-
markable flexibility in combining different atten-
tion mechanisms, specifically tailored to address
specific conditions. For instance, it allows for the
utilization of local attention to calculate AG when
dealing with small datasets (see Appendix F).

3.4 Efficient Scaling Strategy

Though PG-FFN offers the advantage of reduc-
ing lots of parameters when applied directly to the
transformer, it also leads to marginal performance
degradation (see Table 10 (a)). Thus, a crucial as-
pect of this study is to determine how to effectively
utilize the spared parameters. In this work, we
adopt a hybrid scaling strategy, which has been val-
idated in computer vision, e.g., EfficientNet (Tan
and Le, 2019). Note that our approach differs from
EfficientNet, as we incorporate a combination of
head scaling and depth scaling into our method.

Head Scaling As aforementioned, PartialFormer
is guided by “swarm intelligence” and operates
with small subspaces. Expanding the number and
size of these subspaces intuitively augments Par-
tialFormer’s capabilities. In response to this in-
sight, we introduced a head-scaling strategy tai-
lored specifically for PartialFormer, involving the
direct addition of more heads and the expansion of
their width, effectively bolstering its performance.

To achieve this objective, we decouple the re-
lationship between the number of heads and the
embedding size, specifically dk ×H ̸= d. This ap-
proach shares similarities with methods discussed
in Bhojanapalli et al. (2020). However, it differs
in its two-step process, which draws inspiration
from the inherent redundancy observed in atten-
tion maps as discussed in Michel et al. (2019);
Clark et al. (2019); Voita et al. (2019); Nguyen
et al. (2022); Zheng et al. (2024). Given values for
dk, d, and H , we first create intermediate values
for Q and K, and then we expand the attention
maps to the desired number of heads using a robust
MLP network. In the case of V , we generate them
directly. This approach allows for the inclusion of
more heads in PartialFormer while maintaining the
same parameter budget.

We demonstrate that this scaling strategy is natu-
rally well-suited for PartialFormer (see Section 6.4).
Furthermore, it can also be regarded as a variation
of width scaling, offering two significant advan-
tages: 1) enabling flexible imbalanced computation
distribution in encoder-decoder architecture, and 2)
preventing an excessive distribution of parameters
in the embedding and output layers.

4 Experimental Setups

We assess PartialFormer’s performance across both
machine translation and abstractive summarization
tasks2. More details are given in Appendix A.

Dataset. For the machine translation task, we
selected 9 datasets involving WMT’14 English-
German (En-De), WMT’14 English-French (En-
Fr), WMT’16 English-Romanian (En-Ro), and
six translation tasks from WMT’17 benchmark.
We preprocessed the raw data following the stan-
dard strategy. For the abstractive summarization
task, we utilized the widely-used CNN-DailyMail
dataset. We followed the same preprocessing ap-
proach as described in Ott et al. (2019). We applied

2We tested PartialFormer’s performance in language mod-
eling, with results in the Appendix.
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Type Model N -M d dk H Param BLEU COMET-22 sBLEU

Multi-Branch
Architecture

Weighted Transformer (Ahmed et al., 2017) 6-6 1024 - - 211M 28.90 - -
Multi-Unit Transformer (Yan et al., 2020) 6-6 - - - 130M 29.30 - -
MAT (Fan et al., 2020) 6-6 - - - 206M 29.90 - -
Multi-Path Transformer (Lin et al., 2022) 6-6 - - - 193M 29.68 - -

Lightweight
Architecture

Evolved Transformer (So et al., 2019) - - - - 64M 28.20 - -
Delight (Mehta et al., 2021) - 640 - - 54M 28.00 - -

Weight Sharing

Universal Transformer (Dehghani et al., 2019) - 1024 - - 65M 28.90 - -
SubFormer (Reid et al., 2021) - - - - 63M 28.50 - -
SubFormer-big (Reid et al., 2021) - - - - 197M 29.30 - -
ODE Transformer (RK4) † (Li et al., 2022a) 6-6 512 - - 62M 28.88 83.47 27.8
ODE Transformer (RK2, Learn.) † (Li et al., 2022a) 24-6 512 - - 118M 29.73 83.94 28.6

Other
Comparisons

RealFormer (He et al., 2021) 18-18 512 64 8 151M 29.35 - -
DMAN † (Fan et al., 2021) 6-6 512 64 8 62M 27.54 82.27 26.4
Mega-Softmax † (Ma et al., 2022) 6-6 512 - 1 64M 28.11 82.79 27.0

Our System

Transformer 24-6 512 64 8-8 118M 29.05 83.60 27.9
PartialFormer (w/o Head Scaling) 24-6 512 64 8-8 66M 28.86 83.35 27.7
PartialFormer 24-6 512 64 24-16 115M 30.09 84.17 29.0

Transformer 6-6 512 64 8-8 62M 27.43 82.19 26.4
PartialFormer (w/o Head Scaling) 6-6 512 64 8-8 42M 27.15 81.75 26.1
PartialFormer 6-6 512 64 24-16 63M 28.60 83.21 27.5

Transformer 24-6 360 45 8-8 62M 28.00 82.72 27.0
PartialFormer (w/o Head Scaling) 24-6 360 45 8-8 36M 27.88 82.49 26.8
PartialFormer 24-6 360 45 24-16 61M 29.23 83.74 28.1
PartialFormer 24-6 360 45 30-16 68M 29.56 83.94 28.4

Table 1: Results on the WMT’14 En-De task. For a more fair comparison, we also re-implemented some state-of-
the-arts models with same data and training strategy, as indicated by †.

joint byte pair encoding (BPE) (Sennrich et al.,
2016) with sizes of 32K for all the tasks except the
En-Ro task (20K), and CNN-DailyMail (30K).

Training & Evaluation. We trained models on
GeForce RTX 3090 cards via Fairseq (Ott et al.,
2019) toolkit primarily following the training strat-
egy in Wang et al. (2019). For machine translation
evaluation, we utilized multi-BLEU (Papineni et al.,
2002), COMET-22 (Rei et al., 2022) and sacre-
BLEU (Post, 2018) scores. Following Wang et al.
(2019), beam sizes were 4, 4, and 5 for En-De, En-
Fr, and En-Ro tasks respectively. Length_penalty
of 0.6, 0.8, and 1.3 were applied to En-De, En-Fr,
and En-Ro tasks respectively. For the WMT’17
benchmark, beam size and Length_penalty were
set to 4 and 1, respectively. We used an ensemble of
last 10 checkpoints. For abstractive summarization,
we set beam size, Length_penalty, minimum length
and maximum length to 4, 2.0, 55 and 140, respec-
tively. The evaluation metric was F1-Rouge (Lin,
2004)(Rouge-1, Rouge-2 and Rouge-L).

5 Experiments

5.1 Machine Translation

Table 1 presents the results for the WMT’14 En-De
task. N−M , d, dk, H and sBLEU denote encoder-
decoder depths, embedding dimension, head di-
mension, number of heads and SacreBLEU, respec-
tively. We made the following observations:

• PartialFormer achieves BLEU scores of 28.60,

29.56, and 30.09 in three different configu-
rations, surpassing the standard Transformer
by 1.17 BLEU points, 1.56 BLEU points, and
1.04 BLEU points with a similar model capac-
ity. These observations are further supported
by COMET-22 and sacreBLEU scores.

• Without the head scaling strategy, Partial-
Former performs slightly worse than the stan-
dard Transformer (27.15 vs. 27.43, 27.88 vs.
28.00, and 28.86 vs. 29.05) but is significantly
more parameter-efficient (42M vs. 62M, 36M
vs. 62M, 66M vs. 118M). This is due to
our PG-FFN structure, which maintains high
hidden dimensions while reducing parameter
usage.

• PartialFormer surpasses other multi-branch
Transformers and state-of-the-art weight-
sharing methods like ODE Transformer (Li
et al., 2022a), as well as strong baselines such
as Mega (Ma et al., 2022). Notably, ODE
Transformer and Mega use extra relative posi-
tion encoding and require more computational
resources. Moreover, while Mega and DMAN
train for up to 500K updates and 220 epochs,
achieving BLEU scores of 29.01 and 29.10,
our strategy involves only 50K updates, lead-
ing to their sub-optimal scores of 28.11 and
27.54 under similar conditions.

Tables 2, 3, and 4 showcase results for the WMT’14
En-Fr, WMT’16 En-Ro, and WMT’17 benchmarks,
respectively. Similar trends are observed in these
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Model N d dk H Param BLEU COMET-22

Weighted Transformer (2017) 6 - - - 211M 41.40 -
Evolved Transformer (2019) - - - - 64M 40.60 -
Delight (2021) - 640 - - 54M 40.50 -
ODE Transformer (RK4) (2022a) 6 - - - 69M 42.56 -
ODE Transformer (RK2, Learn.) (2022a) 24 - - - 123M 43.48 -
Multi-Path Transformer (2022) - - - - 168M 42.44 -

Transformer 24 512 64 8-8 120M 42.33 85.62
PartialFormer 24 512 64 24-18 119M 43.10 86.34
PartialFormer 24 512 64 24-24 127M 43.29 86.61

Transformer 6 512 64 8-8 63M 40.79 84.27
Transformer 24 360 45 8-8 64M 40.96 84.42
PartialFormer 24 360 45 24-18 63M 42.16 85.61
PartialFormer 24 360 45 24-24 67M 42.39 85.74

Table 2: Results on the WMT’14 En-Fr task.

Model N d dk H Param BLEU COMET-22

Delight (Mehta et al., 2021) - 640 - - 53M 34.70 -
Subformer (Reid et al., 2021) - - - - 48M 34.70 -
ODE Transformer (RK2 γ) † (2022a) 6 1024 64 16-16 192M 35.00 82.63

Transformer 24 512 64 8-8 111M 35.00 82.11
PartialFormer 24 320 40 24-24 48M 35.30 82.52

Table 3: Results on the WMT’16 En-Ro task. †denotes
re-implementation with same data and training strategy.

Model Fi←→En De←→En Lv←→En Avg.
Fi→ En En→ Fi De→ En En→ De Lv→ En En→ Lv

Transformer 26.07 22.14 35.04 28.59 17.59 16.23 24.27
PartialFormer 27.48 23.35 35.60 29.91 19.65 17.37 25.56

Table 4: Results on the WMT’17 benchmark. Partial-
Former has the same depth and d as the Transformer but
consumes 1M fewer parameters on average.

tasks as in the En-De task.

MACs Comparison. Table 5 displayed the
multiplication-addition operations (MACs), a met-
ric for measuring neural network computations, on
the En-De task. We made the following obser-
vations: 1) A deeper and narrower Transformer
architecture consumes fewer computations while
exhibiting superior performance (#1 vs. #2), 2) Par-
tialFormer achieves comparable performance to the
vanilla Transformer with the same width and depth,
while utilizing fewer computations and parameters
(#2 vs. #3), and 3) Head scaling is an efficient
scaling strategy for PartialFormer to significantly
improve its capacity (1.68 BLEU points) by adding
1.7B MACs and 32M parameters (#3 vs. #4).

5.2 Abstractive Summarization

Table 6 exhibited results on the CNN-DailyMail
task. We can see that PartialFormer achieves bet-
ter performance, as evidenced by higher Rough-
1, Rough-2, and Rough-L scores, despite hav-
ing fewer parameters (37M vs. 61M). This high-
lights the efficiency and effectiveness of the Partial-
Former architecture in this task.

# Model N -M d dk H MACs Param BLEU

1 Transformer 6-6 512 64 8-8 9.9B 62M 27.43

2 Transformer 24-6 360 45 8-8 6.3B 62M 28.00
3 PartialFormer (w/o hs) 24-6 360 45 8-8 5.2B 36M 27.88
4 PartialFormer 24-6 360 45 30-16 6.9B 68M 29.56

Table 5: MACs denote the multiplication-addition op-
erations. We compute them via 20 source and target
tokens following Mehta et al. (2021).

Model N -M d dk H Param RG-1 RG-2 RG-L

Transformer 6-6 512 64 8-8 61M 41.21 18.32 37.83
PartialFormer 6-6 400 50 24-16 37M 41.50 18.60 38.25

Table 6: Rough-1, Rough-2 and Rough-L comparisons
on CNN-DailyMail task.

# Model Param BLEU

1 Transformer (N = 24, d = 360) 62M 28.00
2 Pure Attention (N = 24, d = 360) 31M 25.70

3 PartialFormer 68M 29.56
4 w/o Partial-level Gated FFN 52M 27.51
5 w/o Residual-like Attention Calculation 66M 29.26
6 w/o Head Scaling 36M 27.88

7 PartialFormer (encoder only) 67M 29.15
8 PartialFormer (decoder only) 63M 28.80

9 PG-FFNs with Sigmoid activation 68M 29.21
10 PG-FFNs with Tanh activation 68M 29.03

Table 7: Ablation studies on WMT’14 En-De task.

6 Analysis

6.1 Ablation Studies

Table 7 presents an ablation study of PartialFormer
on the WMT’14 En-De task, demonstrating the
critical role of each component. Omitting any ele-
ment causes performance decline, underscoring the
holistic design. The PG-FFN removal (#3 vs. #4)
results in a large performance drop of 2.05 BLEU
points, despite a mere 16 million parameters re-
duction. This evidence corroborates previous find-
ings (Dong et al., 2021) on the subpar performance
of pure attention networks sans FFN, highlighting
the essential role of PG-FFN in PartialFormer.

Besides, Table 7 shows the results of differ-
ent PartialFormer configurations on the WMT’14
En-De task. The encoder-decoder PartialFormer
achieves the highest performance, reaching 29.56
BLEU points, indicating the effectiveness of our
approach in enhancing both the encoder and the
decoder. Employing our concept to either the en-
coder or the decoder individually also improves per-
formance, yet the encoder-decoder configuration
persistently surpasses others, marking the greatest
performance improvement.
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Setting H d dk Param BLEU

Varying Encoder H
30-16 360 45 68M 29.56
24-16 360 45 61M 29.23
16-16 360 45 51M 29.02

Varying Decoder H
16-16 360 45 51M 29.02
16-24 360 45 56M 28.85
16-30 360 45 60M 29.20

Varying dk
30-16 360 30 49M 28.70
30-16 360 60 86M 29.68
30-16 360 90 124M 30.00

Varying d
30-16 180 45 35M 27.61
30-16 270 45 51M 28.80
30-16 450 45 84M 29.41

Table 8: Parameters analysis on WMT’14 En-De task.

6.2 Comparison of Gating Strategy
Table 7 (#9 and #10) presents a comparison of vari-
ous activation functions used in PG-FFN. The re-
sults indicate that the default choice, ReLU activa-
tion, yields the best performance. One explanation
is that the ReLU activation provides hard masks for
filtering the information of different heads, com-
pared to other activation functions. Such hard
masks can make different heads more diverse.

6.3 Hyper-Parameter Analysis
Since the proposed method relies on multiple pa-
rameters, we conducted additional experiments and
analyses with different hyper-parameters, includ-
ing the number of heads, head dimensions, and
embedding dimensions, to further strengthen the
robustness of our findings. Table 8 presented the
results on the WMT’14 En-De task. We can ob-
serve that PartialFormer demonstrates strong per-
formance across various choices of H , dk, and d.
This suggests that the superiority of PartialFormer
arises from its efficient architecture design rather
than hyper-parameter optimization.

6.4 Analysis of Scaling Approaches for
PartialFormer

To disentangle the contribution of our proposed
scaling method from the PartialFormer architec-
ture, Figure 3 compares the WMT’14 En-De per-
formance of different scaling methods. Specifically,
the initial setting is the PartialFormer (N −M =
6 − 6, H = 8 − 8, d = 360). It’s important to
note that our hybrid scaling initially employs depth
scaling, followed by head scaling. In general, all
scaling methods improve BLEU scores with the
cost of more parameters, but our hybrid scaling
method can further improve BLEU, by up to 2.3%,
than other scaling methods, suggesting the impor-
tance of our proposed hybrid scaling.

Head scaling can also improve the vanilla Trans-
former, though it is not as effective as in Partial-
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Figure 3: (a) Scaling Up PartialFormer with Different
Methods. (b) Scaling Transformer and PartialFormer
with Head Scaling.

Former. Notably, PartialFormer attains 0.0525
BLEU per million parameters, significantly out-
performing the vanilla Transformer (0.0243). This
highlights the suitability of head-scaling for Partial-
Former’s design, a key contribution of this paper.

6.5 Analysis on Behaviours of FFN
Metric. Following Zhang et al. (2022), we exam-
ine FFN behaviors across four aspects: activation
neuron count (namely nact.), FFNs’ hidden dimen-
sion, activation-neuron ratio (activations divided
by hidden dimension, namely Ract.), and FFN effi-
ciency (activations divided by parameters, namely
ηffn). Notably, for PartialFormer, the hidden di-
mension represents the concatenation of hidden
dimensions from all smaller FFNs.

Results. Figure 4 (a-c) exhibits the results on
the En-De test set. It is evident that PartialFormer
has a lower activation ratio than the vanilla Trans-
former, as shown in Figure 4 (b). This indicates that
PG-FFNs present lower utilization of the hidden
dimension compared to the vanilla FFNs. However,
our PG-FFN is parameter consumption friendly,
enabling larger hidden layer dimensions with the
same parameter budget (e.g., 5400 vs. 1440). De-
spite lower utilization of hidden dimension, it can
still own more activated neurons, as depicted in Fig-
ure 4 (a). Additionally, our PG-FFN exhibits higher
efficiency compared to vanilla FFNs, as shown in
Figure 4 (c).

6.6 Analysis on Head Diversity
Metric. We select the same metric, namely
Doutput, as that in Li et al. (2018) to measure the
diversity among head features. In this metric, a
larger value indicates a higher level of diversity.

Results. From Figure 4 (d), we can observe that
PartialFormer exhibits more diverse head features
compared to the vanilla Transformer. This aligns
with previous study (Li et al., 2018), which demon-
strates the positive impact of head feature diversity
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Figure 4: Analysis on behaviours of FFNs and head diversity in Transformer and PartialFormer.

# Model Batch Size Total Updates Training Speed
(sec. / 100 updates) BLEU

1 Vanilla Transformer 8 x 4096 x 2 50K 28 28.00
2 Mega-Softmax 8 x 8192 x 1 500K 37 29.01
3 Mega-Softmax (50k updates) 8 x 8192 x 1 50K 37 28.11
4 ODE Transformer 8 x 4096 x 2 50K 34 29.03
5 ODE Transformer (reproduced) 8 x 4096 x 2 50K 34 28.88
6 SubFormer 8 x 8192 x 2 250K (max) 42 28.50
7 PartialFormer 8 x 4096 x 2 50K 40 29.56

(a) Training Phase

# Model Param Speed (Tok./s) Peak Memory COMET

PartialFormer vs. vanilla Transformer

1 Transformer 62M 4325 3.0G 82.72
2 PartialFormer (larger batch) 36M 6579 3.0G 82.49

PartialFormer vs. ODE Transformer

3 ODE Transformer 118M 3254 8.9G 83.94
4 PartialFormer 68M 3023 3.3G 83.94

(b) Inference Phase

Table 9: Efficiency analysis between PartialFormer and other Transformer variants.

on the Transformer model’s performance. Thus, we
conclude that the insertion of FFNs into attention
mechanism may be a more optimal design.

6.7 Efficiency Analysis
Convergence Analysis Table 9 (a) compared the
convergence updates, training speed and BLEU
scores of PartialFormer with other methods. We
made the following observations:

• PartialFormer and ODE Transformer do not re-
quire more training updates to achieve higher
performance than vanilla transformer, unlike
other strong baselines.

• All improved methods indeed lead to in-
creased running latency.

• PartialFormer achieve highest BLEU scores
among all the comparisons.

Overall, we believe PartialFormer can achieve sig-
nificant performance improvements while main-
taining good training efficiency.

Inference Analysis Table 9 (b) exhibits the in-
ference efficiency on the test set of En-De task.
We can see following observations: 1) Under the
constraints of desired memory and performance,
PartialFormer exhibits higher inference efficiency
(6579 vs. 4325) when compared to the vanilla
Transformer (#1 vs. #2). This revealed that Partial-
Former has good practicability, and 2) In compari-
son to ODE Transformer, PartialFormer achieves
similar inference speed and performance while sig-
nificantly reducing memory consumption. This un-
derscores PartialFormer’s superiority over weight-
sharing methods by effectively eliminating redun-

dant computations.

6.8 PG-FFNs vs. Vanilla Lightweight FFN

In this section, we further emphasized PG-FFNs’
superiority over vanilla lightweight FFN.

Settings. We replaced the Transformer’s FFNs
with our PG-FFNs. In the decoder, we only inte-
grated PG-FFNs for cross-attention, aligning with
the vanilla Transformer. We set Transformer with
reduced FFN hidden dimensions (384) as baseline.

Results. Table 10 (a) showcases the superior effi-
ciency of our PG-FFNs. They outperform vanilla
lightweight FFNs (26.82 vs. 26.07) with similar
computational resources (40M vs. 41M, 7.7B vs.
7.7B). This is attributed to PG-FFNs’ ability to
maintain a large hidden dimension while using
fewer parameters and computations, setting them
apart from existing lightweight FFNs.

6.9 Combination with Existing Architectures

We further investigated the adaptability and effec-
tiveness of PartialFormer by applying it to three
kinds of existing state-of-the-art architectures: 1)
weight sharing methods (Lan et al., 2020), 2) gated
linear units (Dauphin et al., 2017) and 3) deep
Transformer methods (Wang et al., 2019). We
utilized the ODE Transformer (Li et al., 2022a),
known for its parameter efficiency. Addition-
ally, we selected Swi-GLU (Shazeer, 2020) and
DLCL (Wang et al., 2019).

Table 10 (b) shows the results. PartialFormer-
DLCL achieved the highest performance, outper-
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Model N -M ddk H MACs Param BLEU COMET

Transformer 6-6 512 64 8-8 9.9B 62M 27.43 82.19
Transformer + LW FFNs 6-6 512 64 8-8 7.7B 41M 26.07 81.13
Transformer + PG-FFNs 6-6 512 64 8-8 7.7B 40M 26.82 81.72

(a) PG-FFNs vs. Vanilla FFNs.

Model Param BLEU

PartialFormer 68M 29.56
PartialFormer-ODE 68M 29.71
PartialFormer-GLU 68M 29.67
PartialFormer-DLCL 68M 29.88

(b) Results of PartialFormer variants.

Table 10: (a) PG-FFNs offer a compelling alternative to vanilla FFNs; (b) More results of PartialFormer variants.
Metrics are reported on WMT’14 En-De.

forming PartialFormer by 0.32 BLEU points, while
PartialFormer-GLU showed the smallest improve-
ment with an increase of 0.11 BLEU points. We at-
tribute this to the fact that DLCL is an architecture-
level modification addressing different issues from
PartialFormer. In contrast, both GLU and ODE
focus on the parameter-efficiency problem. Al-
though ODE is also an architecture-level modifi-
cation, its goal significantly overlaps with that of
PartialFormer, leading to moderate performance
improvements when combined. This indicates that
PartialFormer already significantly enhances pa-
rameter efficiency, as adding ODE and GLU does
not yield substantial performance gains.

7 Related Work

Lightweight Transformers Several strands of re-
search have been dedicated to enhancing the param-
eter efficiency of the Transformer architecture, each
taking a distinct approach to the problem at hand.
The first category aims to mitigate redundancy di-
rectly through architectural innovations, employing
more efficient transformation operations (Mehta
et al., 2019, 2021), integrating disparate yet syn-
ergistic patterns (Wu et al., 2020), or leveraging
neural architecture search techniques (So et al.,
2019). Another avenue of research explores weight
sharing as a means of improving parameter effi-
ciency, exemplified by the Universal Transformer’s
cross-layer parameter sharing strategy (Dehghani
et al., 2019; Reid et al., 2021). Moreover, Li
et al. (2022a) introduced an ordinary differen-
tial equation-inspired weight-sharing approach to
achieve higher performance. Different from them,
our study focus on the design of lightweight FFN.

Multi-Branch Transformer The multi-branch
strategy is widely used in Transformer design.
Weighted Transformer (Ahmed et al., 2017) em-
ploys a multi-branch FFN, while Multi-attentive
Transformer (Fan et al., 2020), Multi-units Trans-
former (Yan et al., 2020), and Multi-Path Trans-
former (Lin et al., 2022; Li et al., 2023) extend this

concept to different components of the Transformer.
Our PartialFormer can be viewed as a pure multi-
branch architecture based on natural subspaces.

Scaling Strategy in Transformer Deepen-
ing (Bapna et al., 2018; Wang et al., 2019; Li et al.,
2020) and widening (Vaswani et al., 2017; Wu et al.,
2021) Transformer have been well-acknowledged
as two strategies to improve the capacity of Trans-
former in literature. In this work, PartialFormer
adopts two alternative strategies to improve the ca-
pacity: specifically, it enhances both the number of
attention heads and the dimensions of each head.

8 Conclusion

In this paper, we present PartialFormer, a new
parameter-efficient Transformer architecture that
offers an alternative approach to the design of the
lightweight FFN. By employing multiple small
FFNs and leveraging matrix factorization tech-
niques, PartialFormer effectively reduces the num-
ber of parameters in the FFN. Moreover, we pro-
pose two innovative operations to further efficiently
enhance the model capabilities. Experimental re-
sults across various machine translation tasks show-
case the significant performance improvements
achieved by PartialFormer, while maintaining com-
parable parameter consumption.
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Limitations

Despite the potential advantages of Partialformer
in terms of parameter utilization and performance

7288



within a limited parameter budget, it is important
to note that the existing conclusions regarding its
effectiveness have not been thoroughly examined
in the context of large-scale datasets and a higher
number of parameters. Further research is needed
to validate the claims and assess the scalability of
Partialformer in more challenging scenarios.
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A Detailed Setups of Experiments

A.1 Dataset

Table 11 displays the statistics of all the 9 transla-
tion task.

A.2 Training Details

Table 12 and 13 exhibits the training details on all
translation tasks.

B Implementation of Previous
State-of-the-art Methods

The accuracy of fairseq-based translation results
can vary due to tokenization methods and other
factors. To address fairness concerns, we re-
implemented three state-of-the-art approaches in
our codebase. To ensure absolute fairness, we em-
ployed the identical training strategy and data usage
as in our PartialFormer model.

Data. The dataset is sourced from Google’s open
release, featuring BPE operations totaling 32K.

Training Strategy. Our training strategy is the
same as that of Wang et al. (2019), where 0.002
learning rate, 16000 warmup steps, pre-norm,
relu_dropout=0.1, attention dropout=0.1, 4096 to-
kens per GPUs (8 GPUs) and update the parameters
every 2 steps.

C Ablation on Design of Decoder

The design of the Decoder is a crucial component
of the Transformer architecture due to its direct
association with decoding. We evaluated three con-
figurations: 1) Integrating PG-FFNs into both the
decoder’s self-attention and cross-attention, while
halving the hidden dimension, 2) Incorporating PG-
FFNs solely into the decoder’s cross-attention, and
3) Incorporating PG-FFNs solely into the decoder’s
self-attention.

Table 14 exhibited the results on the WMT’14
En-De task. Our observations are as follows: 1)
The first configuration yields the best performance,
aligning with the insights from Gulati et al. (2020);
Lu et al. (2019), 2) Using a single PG-FFN in
each layer also delivers commendable results with
a score of 29.21, and 3) Excluding PG-FFNs from
the decoder’s cross-attention results in erratic train-
ing, which is expected since there are no FFNs to
handle the cross-attention features.

D Metric Definition

D.1 Measurement of Head Diversity
Following Li et al. (2018), we measure the head
diversity as follows:

Doutput = exp(− 1

H2

H∑

i=1

H∑

j=1

|Oi ·Oj |
∥Oi∥∥Oj∥) (7)

During evaluation, we calculate the metric on all
samples and average the values to obtain the final
result.

Dataset Sentence BPE Vocab
Train Dev Test

WMT’14 En-De 4.5M 2999 3003 32K 34040
WMT’14 En-Fr 36M 26815 3003 32K 37288
WMT’16 En-Ro 0.6M 1999 1999 20K† 19064
WMT’17 En-De 5.9M 7998 3004 32K 35488
WMT’17 De-En 5.9M 7998 3004 32K 35448
WMT’17 En-Fi 2.7M 4225 3002 32K 32584
WMT’17 Fi-En 2.7M 4225 3002 32K 32584
WMT’17 En-Lv 4.5M 2003 2001 32K 32368
WMT’17 Lv-En 4.5M 2003 2001 32K 32368

Table 11: The details of datasets of 9 translation tasks.†:
we follow the settings in Li et al. (2022b).

En-De En-Ro En-Fr

GPUs 8 4 8
Batch Size 4096 4096 4096
Update Frequency 2 1 8
Optimer Adam Adam Adam
Adamβ (0.9, 0.997) (0.9, 0.997) (0.9, 0.997)
LR 0.0020 0.0020 0.0020
LR scheduler inverse sqrt inverse sqrt inverse sqrt
Initial LR 1e−7 1e−7 1e−7

Total updates 50K 25K 100K
Warmup updates 16000 8000 16000
Weight decay 0.0000 0.0000 0.0000
Label smoothing 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1
ReLU dropout 0.1 0.1 0.1

Table 12: The training setups of WMT’14 En-De,
WMT’16 En-Ro and WMT’14 En-Fr tasks.

E More Comparison with Previous
Lightweight Transformer

Table 15 presents a comprehensive comparison of
previous lightweight Transformer models on the
En-De task’s test set, with a specific focus on op-
erating within a smaller parameter budget. The
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En-{De, Lv} {De, Lv}-En En-Fi Fi-En

GPUs 8 8 8 8
Batch Size 4096 4096 4096 4096
Update Frequency 2 1 1 4
Optimer Adam Adam Adam Adam
Adamβ (0.9, 0.997) (0.9, 0.997) (0.9, 0.997) (0.9, 0.997)
LR 0.0020 0.0020 0.0020 0.0020
LR scheduler inverse sqrt inverse sqrt inverse sqrt inverse sqrt
Initial LR 1e−7 1e−7 1e−7 1e−7

Total updates 50K/17K 50K/17K 40K 10K
Warmup updates 16000 16000 16000 16000
Weight decay 0.0000 0.0000 0.0000 0.0000
Label smoothing 0.1 0.1 0.1 0.1
Dropout 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1
ReLU dropout 0.1 0.1 0.1 0.1

Table 13: The training setups of WMT’17 benchmark.

Model Param BLEU

PartialFormer 68M 29.56
-PGFFNs in decoder self-AFFN 66M 29.21
-PGFFNs in decoder cross-AFFN 66M Failed

Table 14: Utilizing PG-FFNs in both the decoder’s
self-attention and cross-attention mechanisms is
a preferable option. BLEU points are reported in
WMT’14 En-De task.

Model Param BLEU

DELIGHT (Mehta et al., 2021) 23M 26.70
EdgeFormer (Ge et al., 2022) - 26.90
Lite Transformer (Wu et al., 2020) - 26.50
PartialFormer 27M 27.50

Evolved Transformer (So et al., 2019) 48M 27.70
DELIGHT (Mehta et al., 2021) 37M 27.60
ODE Transformer (Li et al., 2022a) 37M 28.24
PartialFormer 36M 28.35

Table 15: Comparison with state-of-the-art models of
smaller capacities on the En-De task.

AG AL Param BLEU

RPR MHSA 62M 35.76

Table 16: Results of several PartialFormer variants on
the En-De task.

results prominently showcase the outstanding per-
formance of PartialFormer, even when faced with
constraints on model capacity. This outcome fur-
ther emphasizes the superior capabilities of Partial-
Former in scenarios with limited resources.

F PartialFormer with Different AG for
Small Dataset

Table 16 showcases the results of PartialFormer on
the WMT’16 En-Ro task, a small-scale translation
dataset, specifically when AG is calculated using

local attention (Shaw et al., 2018). Notably, these
results reveal that by adopting such an approach,
PartialFormer achieves an impressive BLEU score
of 35.76. We hope this can shed lights on the area
of model integration.

G Analysis on Token Uniformity

Following (Dong et al., 2021; Wang et al., 2022),
we measure the token uniformity among token rep-
resentations. We use pearson correlation to com-
pute it.

From Figure 5, we can observe that Partial-
Former owns a lower token uniformity among to-
ken representations than the vanilla Transformer,
revealing that PartialFormer can benefit from depth
scaling efficiently (Dong et al., 2021; Wang et al.,
2022).
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Figure 5: Comparison of token uniformity (lower is
better) in Transformer and PartialFormer.

H Preliminary Experiments on Language
Modeling

We also evaluate the effectiveness of PartialFormer
on the language modeling task.

Dataset. For the language modeling task, we
utilized the WikiText-103 dataset for evaluation.
The training set comprises 103 million words from
28,000 articles, while the validation and test sets
contain 218,000 and 246,000 words, respectively.
We followed the data acquisition and preprocessing
instructions from Fairseq (Ott et al., 2019).

Training & Evaluation. The training and evalu-
ation settings adhere to the standard guidelines for
language modeling in PyTorch (Ott et al., 2019).
We trained all models over 286,000 updates.

Results. Table 17 exhibited results on the
WikiText-103 task. PartialFormer surpasses the
Adaptive Input model (Baevski and Auli, 2019)
with a lower test perplexity of 19.87 compared to
21.11. Remarkably, PartialFormer achieves this
with slightly fewer parameters (143M vs. 147M),
demonstrating its efficiency and effectiveness as a
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Model N d dk H Param Test PPL

Adaptive Input 8 1024 128 8 147M 21.11
PartialFormer 16 1024 256 4 143M 19.87

Table 17: Results on the WikiText-103 dataset.

language model for WikiText-103. We will present
more comprehensive experiments in the future.
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