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Abstract

Visual grounding (VG) aims at locating the
foreground entities that match the given natural
language expressions. Previous datasets and
methods for classic VG task mainly rely on
the prior assumption that the given expression
must literally refer to the target object, which
greatly impedes the practical deployment of
agents in real-world scenarios. Since users usu-
ally prefer to provide intention-based expres-
sion for the desired object instead of covering
all the details, it is necessary for the agents
to interpret the intention-driven instructions.
Thus, in this work, we take a step further to
the intention-driven visual-language (V-L) un-
derstanding. To promote classic VG towards
human intention interpretation, we propose a
new intention-driven visual grounding (IVG)
task and build a large-scale IVG dataset termed
IntentionVG with free-form intention expres-
sions. Considering that practical agents need
to move and find specific targets among vari-
ous scenarios to realize the grounding task, our
IVG task and IntentionVG dataset have taken
the crucial properties of both multi-scenario
perception and egocentric view into considera-
tion. Besides, various types of models are set
up as the baselines to realize our IVG task. Ex-
tensive experiments on our IntentionVG dataset
and baselines demonstrate the necessity and ef-
ficacy of our method for the V-L field. To foster
future research in this direction, our newly built
dataset and baselines will be publicly available
at https://github.com/Rubics-Xuan/IVG.

1 Introduction

Recently, the research community has witnessed
the rapid advancement of multimodal embodied
intelligence (Ahn et al., 2022; Reed et al., 2022;
Driess et al., 2023; Shah et al., 2023; Gao et al.,
2023; Brohan et al., 2023). For an intelligent
agent, the capability of locating the target objects

*Equal contribution.
†Corresponding author.

in the unpredictable open-world scenarios based
on natural language expressions is crucial, under-
scoring the importance of visual grounding (VG)
task within the broader context. Notably, instruc-
tions provided by users often encapsulate their gen-
uine needs through nuanced intention-driven ex-
pressions, which are usually not literal or explicit
with much details as classic VG task. This nuance
brings to light the critical role of VG based on user
intention expressions, where challenge lies in inter-
preting and responding to user commands in a way
that truly reflect their underlying desires, transcend-
ing surface-level expressions to foster more flexible
and understanding human-machine interactions.

Contrary to the classic VG task, realizing
intention-based grounding involves several unique
aspects that require consideration. 1) Intention-
Driven Descriptions: Since humans tend to pro-
vide intention-based expressions to get the desired
objects rather than detailing every aspect, it is im-
perative for intelligent agents to interpret these
intention-driven instructions and act accordingly,
focusing on the semantic core of the requests rather
than their literal descriptions. However, previous
studies in this field have primarily concentrated
on literal textual descriptions, with scant atten-
tion to understanding user intentions. 2) Egocen-
tric Perspective: As explored in prior studies (Qi
et al., 2020; Kurita et al., 2023; Zhu et al., 2023a;
Lee et al., 2023), the practical agents actually re-
ceive all visual information from a first-person
view. However, most classic VG datasets are pre-
dominantly collected from third-person perspective,
which greatly deviate from the application contexts
of an embodied agent. 3) Multi-Scene Perception:
Given that agents are expected to navigate and iden-
tify specific targets across diverse scenarios in the
real world, the capability to perceive and interact
within dynamic multi-scene environments is crucial
for accurately accomplishing visual grounding task.
Yet, most prior research on VG has overlooked this
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Figure 1: Task Comparison between Affordance Detection (AD), Task-Driven Object Detection (TDOD), Referring
Expression Comprehension (REC), Intention-Oriented Object Detection (IOOD) and Intention-driven VG (IVG).

critical aspect, focusing mainly on static, single-
scene visual input. In summary, while intention-
based VG is highly meaningful for multimodal em-
bodied intelligence, there is a notable scarcity of
research on visual grounding based on human inten-
tions, and the current lack of relevant data further
compounds the challenge of this task.

Therefore, in this work, we attempt to fill this im-
portant blank space that has been neglected before
and move towards intention-oriented visual ground-
ing. Specifically, based on classic VG, we propose
a new intention-driven visual grounding (IVG) task
to push towards intention-oriented vision-language
understanding, which requires the models to iden-
tify the corresponding scene and target object that
match the intent expressions from the given multi-
scene input. To solve the data scarcity problem of
intention-oriented grounding task, we build a large-
scale grounding dataset termed IntentionVG which
is also the first grounding dataset to support free-
form intention expressions. Besides, we also con-
struct several baseline models as straightforward
solutions to our proposed IVG task, including both
zero-shot & fine-tuning settings and integrated &
end-to-end model types. The constructed baselines
set the new state-of-the-art (SOTA) performance
on our IntentionVG benchmark dataset for IVG
task, which leaves further room for achieving per-
formance improvement by future research.

Overall, our main contributions of this work can
be summarized as follows:
• We propose a new IVG task (as presented in

Fig. 1) and introduce a new setting based on
egocentric viewpoint with multi-scene percep-
tion to better evaluate the embodied agents’ per-
ceiving ability, transcending the classic VG task
towards better understanding of human desires
in the open-world scenarios.

• We build an intention-oriented grounding bench-
mark named IntentionVG, which to the best of
our knowledge is the first large-scale intention-

driven grounding dataset that supports free-form
intention-based vision-language annotations.

• We develop a series of baseline models under
both zero-shot and fine-tuning settings to effec-
tively realize precise vision-language understand-
ing for our IVG task, setting new SOTA perfor-
mance on our IntentionVG benchmark dataset.

2 Related Work

Classic Visual Grounding is to locate the target
object corresponding to the given natural language
expression in an image. The two fundamental VG
tasks are distinguished by their output form. Re-
ferring Expression Comprehension (REC) (Mao
et al., 2016; Chen et al., 2018; Deng et al., 2021,
2023; Bai et al., 2023; Zhu et al., 2023b; Chen et al.,
2023a,b; You et al., 2023) and Referring Expres-
sion Segmentation (RES) (Hu et al., 2016; Ye et al.,
2019; Ding et al., 2021; Yang et al., 2022; Wang
et al., 2022b; Lai et al., 2023; Zou et al., 2023b,a;
Wang et al., 2024) have been well studied by previ-
ous works, among which REC is the main focus of
this work given its heightened significance. How-
ever, previous studies in this field are mainly stuck
on the literal description based grounding with a
single input image, and the images among previous
datasets are typically collected in a third-person
perspective. In this work, we pioneeringly propose
a new IVG task and an intention-based grounding
dataset IntentionVG based on egocentric view and
multi-scene perception, pushing towards human
intention understanding in the practical scenarios.

Vision-Language Complex Reasoning aims at
understanding intricate textual-visual input infor-
mation and accomplishing the vision-language (V-
L) tasks based on reasoning, in which broader
knowledge and strong expression comprehension
ability are essential thus posing a greater challenge
compared with conventional V-L tasks. Due to the
reasoning ability and rich prior knowledge in large
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Figure 2: The illustration about the overall pipeline of our intention-driven visual grounding task, which mainly
comprises intention interpretation, multi-scene perception and the subsequent visual grounding.

language models (LLMs), numerous methods such
as (Pi et al., 2023; Zhao et al., 2023; You et al.,
2023; Li et al., 2024; Chen et al., 2024) leverage
LLMs to understand complex instructions. How-
ever, prior works mainly focus on literal description
reasoning, falling short in understanding potential
user intentions. Recently, LISA (Lai et al., 2023)
introduces a challenging RES benchmark that in-
corporates complex expressions, and RIO (Qu et al.,
2023) proposes a new IOOD dataset that includes
the specific affordance of the objects. The format
of RIO’s sentences is "Something can be used...",
which fails to describe the intentions directly from
the user’s perspective but simply describes the af-
fordance of the target objects. Therefore, in this
work, starting from a perspective that aligns more
closely with real-world scenarios, we for the first
time integrate egocentric viewpoint of data collec-
tion, multi-scene perception, and free-form expres-
sion of human intentions to construct a new IVG
task with a corresponding IntentionVG benchmark
dataset, thereby enhancing LLMs’ reasoning capa-
bilities to better understand human intentions.

3 IVG Task & IntentionVG Dataset

In this section, we first introduce our IVG task’s
definition (Sec. 3.1) and present collection pipeline
for IntentionVG data (Sec. 3.2). Then, the spe-
cific details and evaluation metrics about our Inten-
tionVG are provided (Sec. 3.3 and Sec. 3.4).

3.1 IVG Task Description
As presented in Fig. 2, the visual-textual input
and corresponding ground truth consist of a hu-
man intention query Q, a set of scene candidates
I1, ..., IN , a positive scene index Nth, and a tar-
get bounding box (x1, y1, x2, y2) together with its
object category <Object> in the positive scene im-
age INth

. The overall pipeline of our proposed

IVG task can be decomposed into two stages. The
first stage (i.e., intention interpretation and multi-
scenario perception) is aimed at identifying the
target scene image INth

from a predefined set of
potential scenes that aligns mostly with the given
intention expressions, based upon query Q made by
users. In this phase, it is imperative for the models
to comprehend the textual queries posed by humans
in conjunction with the observed visual scenes, and
subsequently make correct judgments by return-
ing the correct scene index Nth. The second stage
(i.e., visual grounding) involves the localization of
specific object within the chosen scene image, re-
turning the target bounding box (x1, y1, x2, y2) and
its category tag <Object>. In essence, our new IVG
task necessitates the model’s proficiency in con-
currently understanding both user intention-based
requests and multi-scene visual inputs, as well as
the models’ capability to perform scene selection
and visual localization in alignment with the un-
derlying human intentions. The complete response
can be organized into the following format:

<Object>(x1, y1, x2, y2) in <Nth Scene> (1)

3.2 Data Collection Engine
As shown in Fig. 3, we build our IntentionVG
dataset based on the egocentric grounding dataset
EgoObjects (Zhu et al., 2023a), inheriting the an-
notations of object categories and bounding boxes.
The entire data collection process involves three
steps. Since the practical applications require the
agents capable of conducting visual perception
among diverse scenes, we first conduct scene cat-
egory labeling of each image. Specifically, the
inherited EgoObjects data is manually annotated
with indoor scene categories, resulting in a total of
10 scene classes. In the second step, with the rapid
developments of multimodal large language mod-
els, we take advantage of GPT-4 (Achiam et al.,
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Figure 3: The illustration of data collection engine for IntentionVG. We start by inheriting EgoObjects (Zhu et al.,
2023a) data and conduct scene category labeling for each image. Then we feed GPT-4 with V-L input to generate
the draft of intention-driven response. At last, we conduct data filtering by manually selecting the well matched
expression-bounding box (bbox) pairs.

2023) to adeptly comprehend the visual relation-
ship between object categories and given images,
generating their associated intention expressions.
Utilizing the collected images and object category
information, we craft well-designed prompts with
examples (i.e., "According to the <Image>, fol-
low the examples below to generate sentences ex-
pressing the need for <object>. Example: [I have
appointments later and must keep track of time]
for <watch> ...") to query GPT-4 for the expected
outputs. At last, we manually review and refine
the response generated by GPT-4, making sure that
the intention expression of each object is objec-
tively aligned with the scene category of the image.
Subsequently, based on the proportional distribu-
tion within each scene category, we partition our
IntentionVG data into training and testing sets with
98,269 and 3,379 images, respectively.

3.3 IntentionVG Dataset Details

As detailed in Table 1, prevailing datasets, such as
the widely-used benchmark RefCOCO (Yu et al.,
2016), exhibit limitations in terms of small data
scale and a scarcity of natural language expres-
sions that reflect human intentions. We compare
the built IntentionVG dataset with existing bench-
mark (including the datasets for classic VG, AD,
IOOD and our IVG tasks) to highlight the distinct
and significant properties of our dataset, as outlined
in Table 1. Besides, the dataset statistics of Inten-
tionVG are presented in Fig. 4, Fig. 5 and Fig. 10
in Appendix Sec. A.4, illustrating its data diversity
and potential for practical applications, while Fig.
6 and Fig. 11 in Appendix Sec. A.4 showcase the
examples from our IntentionVG dataset.

Datasets #Imgs#Labels Intentions #Cats#Avg Len

Classic Visual Grounding
ReferIt 20K 97K – 238 3.2
RefCOCO 20K 50K – 80 3.6
RefCOCO+ 20K 49K – 80 3.5
RefCOCOg 26K 54K – 80 8.4
GRES 20K 60K – 80 3.7

Referring Video Object Segmentation
Refer-Youtube-VOS 4K 7K - 94 Unknown
RefEgo 12K 12K - 505 13.4

Affordance Detection
ADE-Aff 10K 26K Verbs 150 /
PAD 4K 4K Verbs 72 /
PADV2 30K 30K Verbs 103 /
COCO-Tasks 40K 64K Phrases 49 2.6

Intention-Oriented Object Detection
RIO 40K 130K Template 69 15.7

Intention-Driven Visual Grounding
IntentionVG 100K 500K Free-Form 1096 11.2

Table 1: Comparison with classic VG (Kazemzadeh
et al., 2014; Yu et al., 2016; Nagaraja et al., 2016; Liu
et al., 2023a), referring video object segmentation (Seo
et al., 2020; Kurita et al., 2023), AD (Chuang et al.,
2018; Luo et al., 2021; Zhai et al., 2022; Sawatzky et al.,
2019) and RIO (Qu et al., 2023) datasets. # denotes the
number, where Intentions, Cats and Avg Len denote the
intention expression types, object/affordance categories
and average expression length. “-”, “/” denote the inten-
tion and non-verb expressions are unavailable.

Figure 4: IntentionVG dataset statistics. (a) the number
of referring expressions per object’s category in the log
scale. (b) the word cloud highlights the head categories.
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Figure 5: Word clouds of partial categories from our
IntentionVG benchmark dataset.

Figure 6: Visualizations of samples from our Inten-
tionVG benchmark dataset.

Intention-Driven Descriptions. In comparison
to the previous grounding counterparts, our newly
built IntentionVG is the first visual grounding
dataset covering free-form intention-oriented ex-
pressions for each object in the provided images.
Compared with the affordance detection coun-
terparts, our IntentionVG dataset transcends the
closed-set affordance categories, providing infor-
mative and unique intention-driven language ex-
pressions for each bbox.

Egocentric View & Multi-Scene Perception.
Unlike most existing grounding datasets, our In-
tentionVG is the first work to incorporate the ego-
centric perspective and multi-scene perception that
are critically needed by multimodal agents in real-
world scenarios. The grounding data within Inten-
tionVG are annotated with scene categories, with
its training and testing sets specifically designed
to support model training and evaluation under
multi-scene setting, which moves beyond the typ-
ical single-image input of classic VG and more
closely aligns with application scenarios.

Breakable Data Scales & Object Categories.
To the best of our knowledge, our IntentionVG
stands as the largest-scale dataset within the
grounding research community to date. In terms of
the number of images, object instances, and refer-

ential tokens, IntentionVG significantly outpaces
the previous largest classic grounding dataset, Re-
fCOCOg (Nagaraja et al., 2016), multiplying its
scale by nearly 4, 9, and 12 times respectively.
Meanwhile, it encompasses intention-based expres-
sion counts that exceed the largest existing AD
dataset COCO-Tasks (Sawatzky et al., 2019) and
IOOD dataset RIO (Qu et al., 2023) by 8, 4 times
separately. Featuring 1096 object categories and
nearly 500K expressions about user intentions, In-
tentionVG spans a broader spectrum of multimodal
knowledge, marking a pivotal advancement in the
pursuit of open-world intention understanding.

More Complex and Free-Form References.
Benefiting from the powerful GPT-4 (Achiam et al.,
2023) and our carefully crafted prompt template,
the reference expressions of IntentionVG dataset
are enriched with visual context to capture human
intentions more effectively. Without sticking to a
rigid template (e.g., [Something to ...] format in
RIO (Qu et al., 2023)), our IntentionVG allows for
the diverse intentions behind interacting with vari-
ous target entities to be articulated and emphasized
through flexible natural language expressions.

3.4 Evaluation Metrics

To advance the IVG task’s applicability in practical
scenarios, we have introduced two grounding task
settings based on the quantity of images provided:
single-scene and multi-scene grounding. We have
also tailored evaluation metrics for each setting,
enabling a thorough assessment of model perfor-
mance across different contexts.

Single-Scene. In this setting, the model’s ground-
ing capability is assessed with just one provided
image. We use Precision@0.5 (P@0.5) as the met-
ric to evaluate models’ grounding performance.
This measure reflects the model’s ability to cor-
rectly identify the target object in alignment with
the user’s intention with its top one prediction. A
prediction is considered correct if the Intersection
over Union (IoU) between the predicted and the
ground truth (GT) bbox exceeds a threshold of 0.5
(i.e., threshold > 0.5), indicating a significant
overlap and, hence, an accurate localization result.

Multi-Scene. Since the intelligent agents need to
move and search for the expected targets among
different scenarios in practice, it is vital for embod-
ied agents to accomplish our IVG task based on
multi-scenario perception in the first-person view.
To assess the accuracy of models in multi-scene
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perception and the subsequent VG, we utilize the
metrics of Recall@1 (R@1) and Precision@0.5
(P@0.5). Recall@1 measures the ratio of cases
accurately identified within the top-1 perception
result to the overall count of cases in the test set,
reflecting the model’s precision in pinpointing the
most intention-relevant image from a multitude of
scenes. Additionally, we introduce Precision@0.5
given Recall@1 correct cases (P@0.5|R@1) as
an evaluation metric to gauge the grounding per-
formance of models specifically for those cases
correctly identified in the multi-scene perception
phase. These employed metrics ensure a nuanced
understanding of the models’ effectiveness in accu-
rately grounding objects across multiple scenes.

4 Baseline Construction

To realize our IVG task based on multi-scene per-
ception and egocentric viewpoint, we formulate
two different kinds of baseline models below. More
illustrations of the baseline structures can be found
in Appendix Sec. A.3 for better understanding.

4.1 Zero-shot Setting

For zero-shot setting, it is intuitively to follow a
two-step integrated approach to realize the multi-
scene perception and VG for IVG task. We initially
employ EVA-CLIP (Sun et al., 2023) as perceiver
to extract multi-scene representations and features
of intention expressions, followed by feature simi-
larity matching to select the scene that best matches
the textual expression. Subsequently, the well
matched single scene is fed to the grounding model
with the corresponding intention expression to de-
duce the associated bounding box. The adopted
grounding models can be categorized into two
types: specialists and generalists. Specialist base-
lines are the SOTA methods designed for classic
VG task, including MDETR (Kamath et al., 2021),
SeqTR (Zhu et al., 2022) and Polyformer (Liu et al.,
2023b), which are trained on VG datasets. Gen-
eralist baselines comprise models capable of han-
dling various V-L tasks that are trained on large-
scale visual question answering (VQA) and VG
datasets, such as LLM-based method Shikra (Chen
et al., 2023b) and Mini-GPTv2 (Chen et al., 2023a).
We also incorporate LLMs (e.g., GPT-4 (Achiam
et al., 2023)) as the optional interpreter which could
translate intention expressions into explicit object
descriptions, helping the following perceiver and
grounding model better solve our IVG task.

4.2 Fine-tuning Setting

For fine-tuned baselines, we incorporate both inte-
grated and end-to-end models. For the two-step in-
tegrated baselines, we first utilize contrastive learn-
ing loss to fine-tune EVA-CLIP (Sun et al., 2023)
with the annotations of scene categories, enhancing
its capability of discerning the similarity between
scenes and intention expressions. Then we perform
fine-tuning on generalist grounding models using
their respective training prompts for grounding task,
followed by putting together the fine-tuned scene
perceiver and grounding models.

The end-to-end baseline model is built upon gen-
eralist Qwen-VL (Bai et al., 2023). Since only
Qwen-VL possesses the capability to accommo-
date multiple images as inputs, we introduce a
well-designed prompt that facilitates the simulta-
neous input of multiple scenes and intention ex-
pressions and build the end-to-end baseline upon
Qwen-VL. Through instruction tuning under cross
entropy loss, our fine-tuned Qwen-VL can concur-
rently conduct scene perception and grounding.

To be noticed, since target object matching the
intent description may appear in multiple scenes si-
multaneously, to ensure that only the positive scene
contains the corresponding object, we impose a
strong constraint on the input scenes to force that
only one of them exists the object. Besides, two
hyper-parameters including input scene number N
and multi-scene occurrence rate α are introduced
during fine-tuning. A higher number N of input
scenes implies that the baseline models need to
identify the most relevant scene and target object
from a larger set of images during fine-tuning, thus
increasing the difficulty of the training objective.
Besides, a higher α value means that the baseline
models are more likely to encounter multi-scene
input samples during fine-tuning, as opposed to the
classic VG’s typical single-image input. α=0 or
1.0 represents extreme circumstances during fine-
tuning, where the model is exclusively fed either
single-scene or multi-scene input samples.

5 Experiments

To evaluate the effectiveness and the designing ra-
tionale of our data and baseline models, compre-
hensive experiments are conducted on our built
IntentionVG dataset for the new IVG task.
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Methods Framework
Type

Intention-Driven Visual Grounding
Single-Scene Multi-Scene

P@0.5 R@1 P@0.5|R@1 P@0.5
Zero-shot Setting

Perceiver + MDETR (Kamath et al., 2021) Integrated 14.23 54.00 16.48 8.90
Perceiver + SeqTR (Zhu et al., 2022) Integrated 9.38 54.00 9.38 5.07
Perceiver + Polyformer (Liu et al., 2023b) Integrated 16.50 54.00 18.64 10.07
Perceiver + Grounding DINO (Liu et al., 2023c) Integrated 14.51 54.00 16.99 9.18

Perceiver + OFA (Wang et al., 2022a) Integrated 18.57 54.00 18.57 10.03
Perceiver + Shikra (Chen et al., 2023b) Integrated 22.45 54.00 24.44 13.20
Perceiver + Ferret (You et al., 2023) Integrated 21.80 54.00 24.19 13.06
Perceiver + LISA (Lai et al., 2023) Integrated 15.32 54.00 17.73 11.08
Perceiver + Qwen-VL (Bai et al., 2023) Integrated 20.72 54.00 22.71 12.27
Perceiver + MiniGPT-v2 (Chen et al., 2023a) Integrated 13.04 54.00 14.51 7.84

Interpreter + Perceiver + Shikra (Chen et al., 2023b) Integrated 37.55 62.63 42.35 26.45
Interpreter + Perceiver + MiniGPT-v2 (Chen et al., 2023a) Integrated 42.57 62.63 45.80 28.68

Fine-tuning Setting

Perceiver + SeqTR (Zhu et al., 2022) Integrated 36.69 62.63 42.99 26.75
Perceiver + Shikra (Chen et al., 2023b) Integrated 47.19 62.22 50.43 31.38
Perceiver + MiniGPT-v2 (Chen et al., 2023a) Integrated 44.18 62.22 49.92 31.06

Qwen-VL (Bai et al., 2023) End-to-End 50.58 74.13 53.02 39.30

Table 2: Comparisons with the classic VG SOTA approaches on our ItentionVG testing set. “Perceiver" and
“Interpreter" separately denote the EVA-CLIP model and GPT-4 employed for multi-scene perception and user
intention understanding. Besides, “Integrated" and “End-to-End" respectively refer to the baseline is a grounding
model combined with Perceiver or Interpreter and the single grounding model as an end-to-end structure.

5.1 Implementation Details

Our work is implemented based on Pytorch (Paszke
et al., 2019) and trained with 8 NVIDIA A800
GPUs. The original weights of all the adopted base-
lines are inherited for the subsequent fine-tuning
and evaluations under zero-shot setting. For base-
line constructions under fine-tuning setting, we ei-
ther directly fine-tune the end-to-end baseline (i.e.,
Qwen-VL (Bai et al., 2023)) or put together the
separately fine-tuned intention interpreter, multi-
scene perceiver and grounding models for the in-
tegrated baseline construction. Taking EVA-CLIP
(Sun et al., 2023) as scene perceiver, we introduce
the annotations of bounding boxes and scene cat-
egories to respectively tune the grounding models
and EVA-CLIP. Training details about fine-tuning
are presented in Table 7 in Appendix Sec. A.1.

5.2 Main Results and Analysis

To quantitatively evaluate the intention-oriented
grounding performance of all the constructed base-
line models for our new IVG task, we conduct
experimental comparison on the newly built In-
tentionVG testing set. As illustrated in Table 2,
the baseline models can be categorized into two
settings based on the evaluation manner: zero-
shot and fine-tuning, and into two types based on
the framework structure: integrated and end-to-
end. For a fair comparison, we re-implement these

SOTA methods and report their performance on our
IntentionVG testing set. It is evident from Table 2
that the zero-shot setting baselines, having not been
exposed to our intention-driven grounding data,
struggle to comprehend user intentions and iden-
tify corresponding targets, resulting in generally
lower performance compared to the fine-tuned base-
lines. With EVA-CLIP serving as the multi-scene
perceiver, neither specialists nor generalists classic
VG SOTA methods can effectively address our IVG
task directly, particularly in the multi-scene setting.
In contrast, baselines under the fine-tuning setting,
both integrated and end-to-end types, have wit-
nessed significant performance improvements on
our IVG task with the support of IntentionVG data.
Additionally, the introduction of the LLM-based
intention interpreter has substantially enhanced the
performance of zero-shot baselines on the IVG task,
underscoring the critical importance of genuinely
comprehending user intentions for accurately ac-
complishing the intention-driven grounding task.
Due to the significantly higher difficulty of our IVG
task’s multi-scene setting compared to single-scene
counterpart, the multi-scene accuracy value is cor-
respondingly lower than the other one. This fur-
ther emphasizes the vital importance of researching
intention-oriented visual grounding where previous
SOTA methods have fallen short.

For qualitative analysis, we further present the
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Figure 7: The visual comparison of baseline’s predic-
tions before and after fine-tuned on IntentionVG dataset.

Figure 8: The visual comparison of grounding results
between different baselines on IntentionVG dataset.

qualitative results of taking Qwen-VL as baseline
model before and after being fine-tuned on our
IntentionVG dataset, the prediction comparisons
between several different baseline models, which
can be respectively found in Fig. 7 and Fig. 8. It’s
clear to see in Fig. 7 that before fine-tuned on our
IntentionVG dataset, the baseline model could not
accurately understand user intentions and locate
the targets corresponding to the given intention de-
scriptions. However, after fine-tuning on our Inten-
tionVG data, the models significantly improve their
capability in the IVG task based on understanding
user intentions. Moreover, as shown in Fig. 8,
both the LLM-based SOTA REC method LISA
(Lai et al., 2023) and the non-LLM-based SOTA
REC method SeqTR (Zhu et al., 2022) struggle to
accurately locate the targets matching user inten-
tions under the zero-shot setting. However, models
(i.e., Qwen-VL (Bai et al., 2023)) fine-tuned with
data from our IntentionVG dataset can accurately
locate the corresponding targets, achieving results
with high consistency with the real labels.

5.3 Ablation Study

To justify the efficacy of our IntentionVG’s data,
we conduct extensive ablation experiments on In-

tentionVG testing set. As illustrated in 3.4, the ta-
bles below involve both the traditional single-scene
and harder multi-scene settings. For all ablations,
Qwen-VL (Bai et al., 2023) stays employed as our
baseline and the multi-scene input is adopted as
5 images for fair evaluation. Except for the 1st
ablation, 10% of our IntentionVG data is used to
fine-tune the baseline for ablations. Noticeably,
more ablations can be found in Appendix Sec. A.2.

Effect of Data Scale. First, we investigate the ef-
fect of different percentages of introduced training
samples in our IntentionVG dataset. The results are
shown in Table 3. It is clear in Table 3 that model
performance under both settings for our intention-
oriented grounding task is consistently improved
with more and more training samples, validating
the efficacy and high quality property of our col-
lected data. Since the original Qwen-VL can not

Ratios Single-Scene Multi-Scene
P@0.5 R@1 P@0.5|R@1 P@0.5

0% 20.72 0.00 0.00 0.00
10% 46.01 70.64 48.96 34.58
25% 47.63 73.46 50.67 37.22
50% 48.75 73.82 51.66 38.14

100% 50.58 74.13 53.02 39.30

Table 3: Ablation study on effect of data scale.

handle the multi-scene grounding task at all, when
ratios=0 (i.e., without employing our intention-
based data) the corresponding performance is much
poor. As the ratios of employed training samples
continually rise, there’s no sign of diminishing per-
formance gains, suggesting that our dataset has
great potential to help multimodal large language
models better understand human intentions with
consistently scaled up training data.

Scenes (N) Single-Scene Multi-Scene
P@0.5 R@1 P@0.5|R@1 P@0.5

1 45.51 19.37 1.34 0.26
3 45.35 51.17 37.52 19.20
5 46.01 70.64 48.96 34.58
8 46.14 70.32 40.90 28.76
10 45.99 60.97 32.66 19.91

Table 4: Ablation study on effect of scene number N.

Effect of Scene Number. Furthermore, we ex-
plore the impact of varying the input scene number
during training. Scene number N implies that the
baseline model need to identify the most relevant
scene and target object from a set of given images
during fine-tuning. As shown in Table 4, the model
achieves optimal performance with an intermedi-
ate scene number of 5 under both settings. As
scene number gradually increases from 1 to 10, the
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impact on the model’s single-scene performance
remains minimal. However, under multi-scene set-
ting, the model’s ability to perform multi-scene
perception and subsequent grounding initially im-
proves and then diminishes. We believe this pattern
occurs because, with few input scenes at the start,
the model’s learned capability in perception and
grounding during tuning phase is weak. As the
number of scenes increases, the model’s related
abilities enhance. Yet, beyond the sweet spot N=5,
the model becomes overwhelmed due to the exces-
sive number of input scenes, leading to confusion
and an inability to learn the effective representa-
tions to accurately complete our IVG task.

Rates (α) Single-Scene Multi-Scene
P@0.5 R@1 P@0.5|R@1 P@0.5

0 45.70 19.71 1.48 0.29
0.25 44.57 46.41 38.81 18.02
0.5 45.54 70.61 48.58 34.31

0.75 45.92 68.84 48.43 33.34
0.9 46.01 70.64 48.96 34.58
1.0 42.77 71.68 48.45 34.73

Table 5: Ablation study on the effect of multi-scene
Occurrence rate during fine-tuning.

Effect of Multi-Scene Occurrence Rate. Addi-
tionally, we delve into the impact of the multi-scene
occurrence rate, denoted as α. α means that the
possibility of baseline models to encounter multi-
scene input samples during fine-tuning. It is evident
from Table 5 that when α=0, the model performs
poorly on our multi-scene IVG task due to the lack
of multi-scene samples during tuning. A larger α
helps the model achieve better grounding perfor-
mance based on multi-scene perception. However,
an excessively high α value, specifically α=1.0, sig-
nificantly diminishes the performance in intention-
driven grounding tasks with single-image inputs.
Therefore, α=0.9 is set as our default setting.

Supervision Types Single-Scene Multi-Scene
Scene Object P@0.5 R@1 P@0.5|R@1 P@0.5

✘ ✘ 45.89 19.84 1.63 0.32
✔ ✘ 44.76 59.46 45.65 27.15
✘ ✔ 45.70 19.37 1.34 0.26
✔ ✔ 46.01 70.64 48.96 34.58

Table 6: Ablation study on effect of GT formality.

Effect of Supervision Formality. At last, we ex-
ploit the effect of the GT formality for supervision
during training. The supervision signal includes
four different settings, which are only grounding
bbox, bbox + scene category, bbox + object tag
and bbox + scene category + object tag (the 1st to
4th row in Table 6). As shown in Table 6, with the
bbox, scene category, and object tag serving as the

most comprehensive supervision targets, the model
gains access to the fullest extent of information and
establishes explicit associations between inputs and
GTs, thereby achieving best performance. The in-
clusion of scene category and object tag as part of
the supervision signal respectively enhances the
model’s multi-scene perception and open-domain
object recognition capabilities. Thus, removing
either of these two parts leads to performance de-
cline on our IVG task. From the 1st and 3rd rows
we can observe that introducing the object tag as
an additional part of GT on top of bbox does not
result in performance improvement. We believe
this is because, without the guidance of the scene
category, the model becomes very confused dur-
ing fine-tuning and fails to learn a clear mapping
from multi-scene inputs to the target scene and
subsequent grounding results. Consequently, the
performance of these two rows remains poor on the
multi-scene grounding setting.

6 Conclusion and Broader Impact

In this paper, we move beyond previous works that
focused solely on literal description based ground-
ing and take a step further to intention-driven V-L
understanding. Specifically, by considering that
the practical agents need to move and search for
expected targets among different scenarios, we put
forward a new IVG task. The IVG task requires
agents to interpret user intentions and locate spe-
cific targets based on egocentric view and multi-
scene perception. To enable existing models to
better accomplish our IVG task and assess their
capabilities on it, we build the first also the largest-
scale intention-driven grounding dataset termed In-
tentionVG with free-form expressions and develop
a series of baseline to accomplish the IVG task.

Comprehensive experiments conducted on our
Intention dataset demonstrate that most previous
methods struggle to directly understand users’ non-
literal intent expressions and locate the expected
targets. With the aid of our data, there is a signifi-
cant enhancement in the ability to comprehend in-
tentions for IVG task, but there remains substantial
room for improvement, warranting further investi-
gations by the research community. Aspiring to fos-
ter future research into intention-oriented ground-
ing and inspire new research in this direction, we
plan to release our newly built IntentionVG dataset
and baseline models to the community.
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Limitations

While this work significantly advances the classic
visual grounding task towards user intention-based
grounding that aligns more closely with real-world
applications, it is not without limitations, which
leaves opportunities and room for future research.
One potential limitation of this work is the scale
of the IntentionVG benchmark dataset and the ca-
pacity of the developed baseline models could both
be expanded and boosted to enhance performance
on our proposed intention-driven visual grounding
task. Additionally, this research primarily focuses
on the referring expression comprehension and gen-
erating bounding boxes as grounding output results,
indicating that while the built baseline frameworks
showcase new intention-driven grounding capabil-
ities, they currently can not generate dense seg-
mentation masks for the target objects. However,
integrating with visual foundation models, such
as the Segment Anything Model (Kirillov et al.,
2023) and its variations, could equip our frame-
work with the ability to produce the dense refer-
ring segmentation masks, effectively addressing
this shortcoming. This possibility opens a new av-
enue for research, aiming to create a more versatile
and powerful framework that leverages both large
language models and visual foundation models to
interact with user-provided intention-driven natural
language expressions and visual perception inputs.
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A Appendix

In this appendix, we provide the following items:
• (Sec. 1) More implementation details on the built

IntentionVG dataset for IVG task.
• (Sec. 2) More ablation studies on our newly built

IntentionVG dataset for our IVG task.
• (Sec. 3) More illustrations about the constructed

baselines for our IVG task.
• (Sec. 4) More visualizations of the dataset statis-

tics and samples from our IntentionVG dataset.

A.1 Implementation Details

Configuration Fine-tuning
Perceiver Grounding Model

Optimizer LAMB AdamW
Base Lr 0.0005 0.00001

Weight Decay 0.05 0.1
Batch Size 2048 32

Lr Decay Schedule cosine cosine
Training Epochs 25 1

Table 7: Training settings on our IntentionVG dataset.

The specific training hyper-parameter configu-
rations for fine-tuning all the baseline models on
our newly constructed IntentionVG dataset can be
found in Table 7.

A.2 More Ablation Studies

Expression Forms Single-Scene Multi-Scene
P@0.5 R@1 P@0.5|R@1 P@0.5

Object Tag 14.39 30.71 21.57 6.62

[Something to...] 44.70 66.24 46.74 30.96
[I want to...] 43.80 47.24 40.10 18.95
Free Form 46.01 70.64 48.96 34.58

Table 8: Ablation study on the effect of expression form
in our IntentionVG dataset.

Effect of Expression Form. We also probe into
the effect of our grounding data’s expression
form. As presented in Table 8, the baseline model
achieves the best result under both settings, by
learning associations between more freely enriched
expressions and target objects. During the fine-
tuning phase, relying solely on the target object’s
tag as textual description can lead to an excessive
dependence on direct target description, signifi-
cantly reducing accuracy on our IVG task. Besides,
either changing the expression form of our Inten-
tionVG data from free formality to the fixed coun-
terpart (i.e., following the fixed template [Some-
thing to...] or [I want to...] to describe affordance
or intention) will result in an considerable accuracy

decrease across the two settings, which greatly im-
pedes the potential for practical applications.

A.3 Baseline Structures
We have also provided more illustrations about the
constructed baselines of two types (i.e., integrated
and end-to-end) in Fig. 9.

Figure 9: The illustration about the overall pipeline of
our built baseline models with both integrated and end-
to-end structures for the proposed IVG task.

A.4 More Visualization Results
More IntentionVG Dataset Statistics. More data
statistics information about our newly built Inten-
tionVG dataset are presented in Fig. 10.
Samples of IntentionVG Dataset. A few ex-
amples in our newly built IntentionVG dataset
for intention-driven visual grounding task are pre-
sented in Fig. 11.
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Figure 10: Our IntentionVG dataset statistics. (a) shows the statistics of the word diversity in intention descriptions
for each category, and (b), (c), (d) separately present the occurrence frequency of a noun, adjective, verb in different
categories of intention description. The horizontal coordinates for (a), (b), (c) and (d) are respectively the examples
of the specific categories, nouns, adjectives and verbs with the ranked top 200, 75, 75 and 75 highest vertical values.

Figure 11: Visualizations of samples from our IntentionVG benchmark dataset.
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