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Abstract

Text-Video Retrieval (TVR) aims to align rel-
evant video content with natural language
queries. To date, most state-of-the-art TVR
methods learn image-to-video transfer learn-
ing based on large-scale pre-trained vision-
language models (e.g., CLIP). However, fully
fine-tuning these pre-trained models for TVR
incurs prohibitively expensive computation
costs. To this end, we propose to conduct ef-
ficient text-video Retrieval with a sparse-and-
correlated AdaPter (RAP), i.e., fine-tuning the
pre-trained model with a few parameterized lay-
ers. To accommodate the text-video scenario,
we equip our RAP with two indispensable char-
acteristics: temporal sparsity and correlation.
Specifically, we propose a low-rank modulation
module to refine the per-image features from
the frozen CLIP backbone, which accentuates
salient frames within the video features while
alleviating temporal redundancy. Besides, we
introduce an asynchronous self-attention mech-
anism that first selects the top responsive visual
patches and augments the correlation model-
ing between them with learnable temporal and
patch offsets. Extensive experiments on four
TVR datasets demonstrate that RAP achieves
superior or comparable performance compared
to the fully fine-tuned counterpart and other
parameter-efficient fine-tuning methods.

1 Introduction

Text-Video Retrieval (TVR) (Gabeur et al., 2020;
Gorti et al., 2022; He et al., 2021a; Lei et al., 2021;
Luo et al., 2022; Ma et al., 2022; Wang et al., 2022)
is a pivotal task in the realm of multimodal re-
search, which aims to find the most relevant video
content within a repository in response to the text
query, and vice versa. With the rapid progress in
large-scale image-text pre-training (Jia et al., 2021;
Radford et al., 2021; Yu et al., 2022; Yuan et al.,

* Equal contributions.
† Corresponding author.

modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Property #1: Temporal Sparsity

Query: A man is talking about his car’s features while inside his car.

Query: A cartoon shows two dogs talking to a bird.

Property #2: Temporal Correlation

w/ vanilla self-attention

w/ asynchronous self-attention

Figure 1: Top: Illustrations of temporal sparsity. We
visualize the modulation weight w/ or w/o low-rank
decomposition. Down: Illustrations of temporal cor-
relation. The query patch is marked by the yellow cross
and the similarity map within other frames are plotted.

2021), current research focuses on how to transfer
pre-trained image-text models (e.g., CLIP (Radford
et al., 2021)) to the video-text domain. However,
fully fine-tuning the video model is computation-
ally expensive and may have the risk of overfitting.

To alleviate this dilemma, Parameter-Efficient
Fine-Tuning (PEFT) stemmed from natural lan-
guage processing (Houlsby et al., 2019; Lester
et al., 2021; Zaken et al., 2022; Hu et al., 2021)
has also aroused extensive research interest in the
field of computer vision (Chen et al., 2022b,a) and
cross-modal learning (Sung et al., 2022). Recently,
some exploratory work (Zhang et al., 2023; Jiang
et al., 2022; Diao et al., 2024) has also attempted
to introduce PEFT into TVR. These methods, how-
ever, simply introduce existing PEFT algorithms
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Figure 2: Text-to-video retrieval performance on
MSR-VTT dataset. Marker sizes are proportional to
the number of tunable parameters.

(Houlsby et al., 2019; You et al., 2022; Karimi Ma-
habadi et al., 2021) without considering the inher-
ent characteristics of video data.

To this end, we argue that an ideal PEFT method
for VTR should be equipped with two characteris-
tics: 1) Temporal Sparsity: As shown in Figure 1,
the video data inherently contains lots of redun-
dancies or repetitions in the temporal perspective.
The visualized frame-by-frame embedded CLIP
features are over-smooth, resulting in the loss of im-
portant details or nuances within the video data. In
contrast, the video feature adapted from pre-trained
CLIP should capture the most informative frames,
allowing for a more sparse representation. 2) Tem-
poral Correlation: The desired video adapter is
supposed to incorporate the dependencies and rela-
tionships between consecutive frames, especially
when dealing with actions or events that happen
in several frames, as the features can encapsulate
the evolving context over time. For example in
Figure 1, the query sentence contains two entities
including dog and bird. Given the query patch (
in frame #3), we visualize the similarity distribu-
tion within the other patches. As in this example,
vanilla self-attention can only attend to the dog in-
stance while the other bird instance is overlooked.

In the realm of video processing and analysis, the
temporal dimension often contains redundancies
due to the inherent correlation between adjacent
frames. This redundancy can lead to inefficiencies
in computational resources and storage when deal-
ing with large-scale video data. Therefore, there
is a need to extract meaningful and informative
features while reducing temporal redundancy.

To alleviate these aforementioned issues, we

propose an efficient text-video Retrieval frame-
work with sparse-and-correlated AdaPter (dubbed
as RAP). Our proposed RAP not only streamlines
the trainable parameters, enhancing efficiency in
computational resources, but also tailors the archi-
tecture to adeptly capture and model the nuanced
temporal characteristics of video data.

To achieve temporal sparsity, we propose a Low-
Rank Modulation (LoRM) module to refine the
pre-trained CLIP feature (Radford et al., 2021) on
the principle of redundancy reduction and essential
information extraction. This design stems from
a simple hypothesis that the change in temporal
weights resides on a low intrinsic rank (Zhang and
Tao, 2012). Therefore, we introduce layer-wise
low-rank scale parameters and shift parameters,
which could be considered as variance and mean
to modulate the CLIP feature. Specifically, both
scale and shift parameters are instantiated by the
multiplication of two low-rank trainable matrices.
These parameters are input-independent and there-
fore more flexible. LoRM allows us to calibrate
the video features to highlight salient frames and
mitigate temporal redundancy.

For temporal correlation modeling, we replace
vanilla self-attention with the proposed Asyn-
chronous Self-Attention (ASA), which introduces
temporal dynamics among video frames to capture
temporal relationships. Since the attention comput-
ing in pre-trained CLIP is constrained within each
frame feature, it is challenging to apply to the video
domain due to the temporally dynamic nature of
video frames. Previous methods employ either tem-
poral Transformer (Jiang et al., 2022; Yang et al.,
2022; Zhang et al., 2023) or 3D convolution net-
works (Yao et al., 2023; Liu et al., 2023) to encode
temporal dependencies. Instead of introducing ad-
ditional modules, we propose an asynchronous self-
attention that only warps partial patch tokens in a
parameterized way. Firstly, for each frame, we filter
semantically significant patches via a parameter-
free text-conditioned selection mechanism. Specif-
ically, we compute the similarities between patch
features and the corresponding sentence and se-
lect the patches with the highest responses. Sec-
ondly, each selected patch within the current frame
is dynamically warped to attend to the temporally
related patches in other frames. The proposed asyn-
chronous self-attention empowers the flexibility in
capturing correlations between video frames at the
fine-grained patch level.

Overall, the main contributions of this work are:
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• We propose RAP to adapt the pre-trained CLIP
to efficient TVR, which not only reduces the tun-
able parameters but also generates temporally
sparse and correlated video features.

• To alleviate the temporal redundancy, a low-rank
modulation module is introduced to calibrate the
frame-wise representation linearly.

• We propose an asynchronous self-attention that
captures long-range dependencies with negligi-
ble computational overheads.

• Extensive experiments show that our RAP is
on par with or even superior to previous PEFT
methods and the fully fine-tuned counterpart.

2 Related Work

Text-Video Retrieval. TVR (Yu et al., 2018;
Croitoru et al., 2021; Yang et al., 2021; Wang et al.,
2021; Chen et al., 2020; Wang and Shi, 2023; Jin
et al., 2022, 2023a,b; Liu et al., 2022) is a fun-
damental research topic in the video-language do-
main which aims to retrieval the relevant video/text
based on the given text/video query. The pioneer
works (Yu et al., 2018; Gabeur et al., 2020) rely on
pre-extracted features from frozen video and text
encoders. To facilitate the end-to-end training, Clip-
BERT (Lei et al., 2021) proposes a sparse sampling
strategy for efficient text-video training. With the
great success of large-scale image-text pretraining
model CLIP (Radford et al., 2021), the majority of
the state-of-the-art TVR methods (Luo et al., 2022;
Ma et al., 2022; Wang et al., 2023; Hannan et al.,
2023; Jin et al., 2022) focus on transferring the
powerful CLIP encoder to the video-text domain
by designing various cross-modal alignment strate-
gies. As the first attempt, CLIP4Clip (Luo et al.,
2022) employs mean-pooling or Transformer to ag-
gregate video features and conduct coarse-grained
(video-sentence level) contrastive alignment. In-
stead of using the text-agnostic aggregation man-
ner, X-CLIP (Ma et al., 2022) proposes to aggre-
gate video representations conditioned on the text’s
attention weight and conduct the multi-grained con-
trastive learning at the frame-word, video-sentence,
video-word and sentence-frame levels. For more
comprehensive alignment, UCOFIA (Wang et al.,
2023) unifies the coarse-grained and fine-grained
alignment to capture both the high-level and low-
level correspondence between text and video.

Most of the current TVR methods follow the
fully fine-tuning paradigm. This scheme, however,
is computation-intensive and may have the risk of

overfitting. Besides, additional temporal model-
ing models are required to bridge the image and
video gap. In this paper, we propose RAP which
conducts parameter-efficient fine-tuning for TVR
which provides a more computationally efficient
and potentially more robust approach. Besides, the
tunable parameters in our RAP also bear the respon-
sibility for temporal modeling, thus eliminating the
need for external temporal modules.
Parameter-Efficient Transfer Learning. PEFT
(Houlsby et al., 2019; Hu et al., 2021; Lester et al.,
2021; He et al., 2021b; Zaken et al., 2022; Sung
et al., 2021) is firstly introduced in the NLP domain
to reduce the number of trainable parameters while
maintaining the comparable performance with the
fully fine-tuning setting. Inheriting the merit from
NLP, PEFT in computer vision (Jia et al., 2022;
Bahng et al., 2022; Jie and Deng, 2022; Sung
et al., 2022) also gained extensive research atten-
tion. VPT (Jia et al., 2022) follows the prompt tun-
ing strategy by introducing the task-specific learn-
able prompts on the vision Transformer. To be
more compatible with vision tasks, Convpass (Jie
and Deng, 2022) introduces the inductive bias of
convolutional layers by reconstructing the spatial
structure of the token sequence via convolution op-
erations. VL-Adapter (Sung et al., 2022) pioneer-
ingly benchmarks different types of PEFT tech-
niques including Adapter (Houlsby et al., 2019),
Hyperformer (Mahabadi et al., 2021), and Com-
pacter (Karimi Mahabadi et al., 2021) in the multi-
task setting.

There also exist several works (Yang et al., 2022;
Pan et al., 2022; Lin et al., 2022; Li and Wang,
2023; Yao et al., 2023; Jiang et al., 2022; Zhang
et al., 2023; Lu et al., 2023) focusing on the image-
to-video transfer learning. Based on the pre-trained
CLIP model, these methods either introduce tem-
poral convolution (Pan et al., 2022) or Transformer
(Lu et al., 2023) in sequential (Zhang et al., 2023;
Jiang et al., 2022) or parallel (Yao et al., 2023)
ways. However, they overlook the inherent tempo-
ral structure of video data while our RAP pinpoints
two key issues in video feature modeling and gen-
erate more representative video features.

3 Method

Text-video retrieval aims to search for and retrieve
relevant videos/texts based on textual/video queries
by evaluating the similarity between the video-
sentence pairs. Our proposed RAP is devoted to
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Figure 3: An overview of RAP. (a) LoRM sets up learnable shift parameters cv and scale parameters sv to calibrate
the vanilla CLIP features. For the temporally sparse requirement, cv and sv are generated by low-rank decomposition
on the temporal dimension. (b) Asynchronous self-attention first filters out patch set St via text-conditioned selection.
Then, the filtered patches are warped based on the learnable patch offset γ and temporal offset δ.

bridging the gap between the frozen CLIP feature
and the dynamic video scenario by introducing neg-
ligible parameter overheads.

The schematic illustration of our RAP is illus-
trated in Figure 3. In Sec. 3.1, we first present
the preliminaries of RAP including the video and
text feature embedding. Then we describe the pro-
posed low-rank modulation and the asynchronous
self-attention in Sec. 3.2 and Sec. 3.3, respectively.

3.1 Feature Embedding

Video Embedding. We utilize the visual back-
bone (ViT (Dosovitskiy et al., 2020)) of CLIP as
the video encoder. Given the video data, we fol-
low ViT (Dosovitskiy et al., 2020) to process each
frame independently. Specifically, each frame with
shape H ×W is split into non-overlapping patches
with shape P × P and then linearly projected into
the embedding space. Such linear projection gener-
ates N = HW/P 2 patch features for each frame.
Besides, a learnable [CLS] token is prepended to
each frame patch feature sequence to represent the
global frame representations. The positional em-
bedding is also added to incorporate positional in-
formation explicitly. Through the above process,
we obtain the tth frame feature x0

t ∈ R(N+1)×Dv ,
t ∈ [1, T ], where Dv is visual feature dimension
and T is the total frame number.

The residual structure with serially connected
multi-head self-attention (MHSA) and multilayer
perceptron (MLP) is applied to capture sequential
dependencies and contextual relationships within
each frame patch sequence. Repeating the above
steps for each frame, we obtain the video embed-

ding at lth layer xl ∈ RT×(N+1)×Dv , l ∈ [1, L],
where L denotes the layer number. Specifically,
we decompose xl = [f l,pl], where f l ∈ RT×Dv

represents the frame-wise features (i.e., [CLS] to-
ken feature) while pl ∈ RT×N×Dv is patch-wise
representation at the lth layer.
Text Embedding. For text embedding, we directly
use the text encoder of CLIP to generate the textual
representation. The text encoder is a Transformer
(Vaswani et al., 2017) with the architecture mod-
ifications as described in (Radford et al., 2019).
An [EOS] token is also appended to encode the
global sentence feature. Concretely, we denote the
sentence features at the lth layer as wl ∈ R1×Dt ,
where Dt is the text feature dimension.

3.2 Low-rank Modulation

In this section, we elaborate on the feature modula-
tion for both video and text features. Since all the
layers share the same modulation process, we omit
the superscript of layer index l for brevity.
Low-rank Modulation for Video. The frame-by-
frame encoded video features x cannot reflect the
characteristics of the video data. The redundancy in
the temporal dimension is a major feature that dis-
tinguishes videos from static images. To this end,
we introduce low-rank scale parameters and shift
parameters, which serve as the variance and mean
values to modulate the pre-trained CLIP feature.
These parameters are input-independent, rendering
them comparatively lightweight in nature and hope-
fully more scalable. Specifically, the video scale
parameter cv ∈ RT×Dv and video shift parameter
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sv ∈ RT×Dv are decomposed as follows:

cv = ca · cb, sv = sa · sb, (1)

where ca, sa ∈ RT×R, cb, sb ∈ RR×Dv are learn-
able parameters and we set rank R≪ min(T,Dv)
to implement the low-rank requirement. The low-
rank modulation is applied as follows.

u = cv ⊙ x+ sv, (2)

where ⊙ denotes the element-wise multiplication
with broadcast. During training, the vanilla feature
x is extracted through frozen CLIP backbone and
the learnable cv and sv help modify x to be of
temporally low-rank. u ∈ RT×(N+1)×Dv is the
modulated video feature.
Modulation for Text. We also modulate the textual
embedding w with parameters ct and st as follows.

z = ct ⊙w + st, (3)

where ct, st ∈ R1×Dv are learnable parameters. We
do not conduct modulation at the word level or use
parameter low-rank decomposition since the tex-
tual data do not exhibit the sparsity characteristic.

3.3 Asynchronous Self-Attention
Let’s review the vanilla self-attention in the video
encoder. For clarity, we take the tth frame of the
input video for illustration. The corresponding
modulated feature is denoted as ut ∈ RN×Dv , t ∈
[1, T ] (c.f . Equation (2)). Note that here we define
ut as the patch-wise feature which does not contain
the global [CLS] token features. We also omit the
superscript of layer index l.

The vanilla self-attention first performs three
different linear projections on the input feature ut

to obtain the triplet of query, key, and value, i.e.,

qt = ut ·Wq, kt = ut ·Wk, vt = ut ·Wv, (4)

where Wq,Wk,Wv ∈ RDv×Dv are frozen trans-
formation weights. Then the scaled dot-product
attention is computed to achieve the contextual in-
formation.

The vanilla self-attention only attends to the
intra-frame correlation modeling, which leads to
the modality gap between video and image. In-
stead of introducing an additional serial or parallel
temporal modeling module (temporal Transformer
(Liu et al., 2023; Yang et al., 2022) or 3D Convolu-
tion (Pan et al., 2022)), we propose a novel asyn-
chronous self-attention which introduces patch-
wise temporal offset to model inter-frame relation-
ship. Besides, to stabilize the training process, we
propose a text-conditioned selection mechanism.

Text-conditioned Selection. Here we take the
video-to-text retrieval as an example to illustrate
this. For given frame-wise video feature f ∈
RT×Dv , we conduct mean pooling on the frame
dimension to obtain the video-level features f ∈
R1×Dv . Then we select the most similar sentence
w∗ ∈ W as follows.

w∗ = argmax
w∈W

(
Proj(f) ·w⊺) , (5)

where w ∈ R1×Dt is the candidate sentence fea-
tures. Proj(·) is a linear projection layer to trans-
form the visual dimension Dv to the textual dimen-
sion Dt.

Then, we compute the sentence-patch similarity
and select the top K responded patches.

St = arg topk
t∈[1,T ]

(Proj(ut) ·w∗⊺) , (6)

where St is the filtered patch index set.
Asynchronous Self-Attention. Then we only ap-
ply the proposed asynchronous self-attention on
patches indexed by the set of St. Specifically, the
query features are adapted as follows.

k̂
n

t , v̂
n
t =

{
k
n+γn
t+δt

,v
n+γn
t+δt

, n ∈ St
kn
t ,v

n
t , n /∈ St

(7)

where γ ∈ RN×1, δ ∈ RT×1 are layer-shared
learnable parameters representing the offset dis-
tance in the patch and temporal dimension, respec-
tively. kn+γn

t+δt
and v

n+γn
t+δt

denote the key and value
features of the (n + γn)

th patch in the (t + δt)
th

frame, respectively. k̂t, v̂t ∈ RN×Dv represents
the adapted features. Finally, asynchronous self-
attention is computed as follows.

Atten(qt, k̂t, v̂t) = softmax(
qtk̂

⊺
t√

Dv
)v̂t, (8)

where qt is illustrated in Equation (4) while k̂t and
v̂t are defined in Equation (7).

4 Experiments

4.1 Experimental Settings
Datasets. We validate the performance of our pro-
posed RAP on four benchmarked datasets. 1) MSR-
VTT (Xu et al., 2016) contains 10,000 YouTube
videos and each video is associated with 20 textual
descriptions. We follow the 1k-A split (Yu et al.,
2018) where 9,000 videos are used for training
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Table 1: Comparisons with state-of-the-art methods on MSR-VTT dataset. µ denotes using the frozen visual
encoder. RAP∗ denotes the RAP model with DSL post-processing (Cheng et al., 2021). b refers to the text-encoder
being trainable. The best performance is in bold and the second best is underlined.

Trainable Text → Video Video → Text
Type Methods Params (MB) ↓ R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓

with CLIP-ViT-B/32

Fine-tune
CLIP4Clip (Luo et al., 2022) 151.28 42.6 70.8 79.9 16.1 43.9 70.0 81.4 11.7
CLIP4Clip (µ CLIP) 0 31.1 53.7 63.4 41.6 26.5 50.1 61.7 39.9

Prompt

VPT (Jia et al., 2022) 0.21 37.5 63.0 73.9 21.6 36.5 62.8 74.3 20.0
VPT b (Jia et al., 2022) 63.43 40.5 67.3 78.6 17.9 40.9 70.0 79.2 12.5
CoOp (Zhou et al., 2022) 0.02 38.3 62.3 73.4 18.9 41.0 66.6 77.4 13.4
VoPP (Huang et al., 2023) 0.50 40.1 65.7 77.7 16.9 42.5 70.0 79.9 12.4
VoPC (Huang et al., 2023) 14.30 40.8 68.1 79.0 15.8 42.3 70.1 81.1 11.4

Adapter

ST-Adapter (Pan et al., 2022) 14.22 39.5 65.1 74.2 20.0 37.1 64.5 75.9 19.7
ST-Adapter b (Pan et al., 2022) 77.45 42.5 70.0 80.1 17.0 42.1 70.0 81.2 11.4
LoRA (Hu et al., 2021) 0.49 40.5 67.1 78.9 16.4 42.1 70.0 79.8 13.5
SSF (Lian et al., 2022) 0.34 40.8 68.2 78.6 17.0 42.0 68.6 80.2 13.2
RAP (Ours) 1.06 44.8 71.4 81.5 14.4 44.0 71.9 82.4 10.1

with CLIP-ViT-B/16
CLIP4Clip (Luo et al., 2022) 149.62 45.4 72.1 81.1 14.5 44.9 72.2 81.8 10.4
VoPP (Huang et al., 2023) 0.50 43.9 70.0 80.9 12.9 - - - -
VoPC (Huang et al., 2023) 14.30 44.6 71.8 80.2 14.6 - - - -
MV-Adapter (Zhang et al., 2023) 3.87 46.0 72.0 82.1 - 45.6 74.0 83.8 -
RAP (Ours) 1.06 46.5 73.9 82.0 12.1 45.3 76.4 84.8 9.1
RAP∗ (Ours) 1.06 52.1 77.3 86.7 10.0 51.6 78.7 86.9 8.0

and 1,000 videos for testing. 2) MSVD (Chen and
Dolan, 2011) is composed of 1,970 videos. Fol-
lowing the official split, we used 1,200 videos for
training and 670 videos for testing, respectively. 3)
ActivityNet Captions (Krishna et al., 2017) cov-
ers 20,000 untrimmed videos of complex human
activities with an average duration of two minutes.
We report results on the “val1” split (10,009 train-
ing videos and 4,917 testing videos) as in (Gabeur
et al., 2020). 4) DiDemo (Anne Hendricks et al.,
2017) consists of 10,464 unedited, personal videos
in diverse visual settings annotated with 40,543 text
descriptions. We follow the training and evaluation
protocol in (Luo et al., 2022).

Evaluation Metrics. Following the previous work
(Luo et al., 2022), we evaluate the performance
with standard retrieval metrics: recall at rank K
(R@K, higher is better), median rank (MdR, lower
is better) and mean rank (MnR, lower is better).
R@K is defined as the percentage of samples for
which the correct result is found in the top-K re-
trieved results. We set K to {1, 5, 10} in our exper-
iments. MdR calculates the median of the ground-
truth results in the ranking while MnR calculates
the mean rank of all the correct results.

Implementation Details. We set the input frame
length to 12, 64, 12, 64 and the caption token length
to 32, 64, 32, 64 for MSR-VTT, DiDeMo, MSVD,
and ActivityNet Captions, respectively. The pre-

trained CLIP (Radford et al., 2021) was adopted
as the video and text encoders. BertAdam was
used as the optimizer, with 0.1 proportion warm-
up cosine annealing, and a learning rate of 1e-4.
All the models were trained for 5 epochs except
on DiDeMo which was fine-tuned with 10 epochs.
The temporal rank R and the number of selected
tokens K were both set to 3. All experiments were
carried out on 4 NVIDIA Tesla A100 GPUs.

4.2 Comparisons with State-of-the-Arts
The comparison results are summarized in Table 1
and Table 2. Specifically, we set three sets of com-
parison experiments: 1) Fine-tuning: We take the
fully fine-tuned CLIP4clip (Luo et al., 2022) for
comparisons. Besides, we also list the zero-shot
performance of CLIP4clip, i.e., µ CLIP in Table 1,
for comparisons; 2) Prompt-tuning: We compare
our proposed RAP to prompt-tuning methods in-
cluding CoOp (Zhou et al., 2022), VPT (Jia et al.,
2022) and VoP (Huang et al., 2023). Since VPT
is tailored for purely visual tasks, we experiment
by fine-tuning or freezing the textual branch of
CLIP, respectively; 3) Adapter: We conduct experi-
ments with the state-of-the-art adapters including
ST-Adapter (Pan et al., 2022), LoRA (Hu et al.,
2021) and SSF (Lian et al., 2022). Notably, ST-
Adapter is applied on the visual branch and the
textual branch is either fine-tuned or freezed. For
the experiments with CoOP, we insert 32 learnable
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Table 2: Comparisons with state-of-the-art methods on DiDeMo, MSVD, and ActivityNet Datasets. µ denotes
using the frozen visual encoder. RAP∗ denotes the RAP model with DSL post-processing (Cheng et al., 2021).

DiDeMo MSVD ActivityNet
Type Methods R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓

Fine-tune
CLIP4Clip (Luo et al., 2022) 42.3 69.1 78.2 18.6 45.5 75.4 84.1 10.3 39.4 71.1 83.3 7.9
CLIP4Clip (µ CLIP) 26.8 52.7 62.7 47.0 36.6 64.5 73.9 20.4 21.6 46.5 60.3 37.6

Prompt

VPT (Jia et al., 2022) 32.6 59.7 71.3 30.3 40.8 69.8 79.8 13.7 27.8 56.0 70.0 20.2
CoOp (Zhou et al., 2022) 29.7 56.9 67.9 34.9 38.9 69.2 78.9 14.0 29.1 57.3 72.2 14.2
VoPP (Huang et al., 2023) 38.9 67.7 78.1 17.2 - - - - 32.8 62.3 75.4 12.3
VoPC (Huang et al., 2023) 40.0 68.0 78.5 18.3 - - - - 32.6 62.5 76.5 12.0

Adapter

ST-Adapter (Pan et al., 2022) 36.6 63.4 72.0 26.7 42.5 72.0 81.7 12.4 29.8 59.5 73.7 14.5
LoRA (Hu et al., 2021) 38.4 65.9 75.7 22.6 45.1 75.0 84.0 10.8 27.7 55.8 69.3 18.8
SSF (Lian et al., 2022) 38.3 65.8 77.7 21.8 43.9 73.3 82.8 11.2 33.2 63.6 77.0 11.3
RAP (Ours) 42.6 70.4 79.6 18.0 44.9 73.7 83.1 11.1 40.8 71.0 82.2 8.3
RAP∗ (Ours) 47.1 74.1 82.4 13.9 49.8 78.2 86.1 9.7 48.4 76.2 86.4 7.0

Table 3: Comparisons of the memory footprint and
GFLOPs. The input frame number is set to 12 and the
ViT-B/32 is employed as the backbone. b refers to the
text-encoder being trainable.

Method #Params (M) Memory (G) GFLOPs R@1

CLIP4clip 151.3 12.9 54.4 42.6
ST-Adapter 14.2 10.3 62.8 39.5
ST-Adapter b 77.5 11.2 62.8 42.5
LoRA 0.5 9.5 67.6 40.5
SSF 0.3 17.1 54.5 40.8
RAP_light (Ours) 0.4 12.2 55.3 43.2

prompt tokens at the input of the textual encoder.
The comparison results demonstrate the superior

performance of our proposed RAP. For example,
on the MSR-VTT dataset, our RAP surpasses the
fully fine-tuned CLIP4clip by 2.2% (42.6 vs. 44.8)
on R@1 with only 0.7% parameters (1.06 M vs.
151.28 M) using CLIP-ViT-B/32 backbone. Be-
sides, we also achieve superior performance com-
pared to current prompt-tuning and adapter-tuning
methods. Although the parameters of our RAP are
slightly higher than LoRA and SSF, considering
the considerable performance improvement, our
RAP strikes a better balance between parameters
and performance.

Besides, to further probe the memory usage and
computational complexity of the proposed model,
we summarize the GPU memory usage during the
training process and GFLOPs of the model in Table
3. For fair comparisons, we coequally set the num-
ber of input frames of each model to 12 frames and
experiment with the ViT-B/32 backbone. We set up
a lightweight RAP which only applies LoRM and
ASA at the last four layers. As shown, compared to
the fully fine-tuned Clip4clip, RAP_light remark-
ably reduces the tunable parameters, slightly lowers
the memory footprint and boosts the performance.
In brief, our RAP_light achieves the balance be-

Table 4: Ablations of model components of RAP.

Mode LoRM ASA R@1 R@5 R@10 #Params (M)

#1 ✓ ✓ 44.8 71.4 81.5 1.06
#2 ✓ ✗ 43.3 70.9 81.8 0.76
#3 ✗ ✓ 42.5 70.1 80.3 0.64
#4 ✗ ✗ 40.8 68.2 78.6 0.34

Table 5: Ablations of decomposition manners. ∅ de-
notes RAP without any variants of LoRM. “T", “S" and
“L" represent temporal, spatial, and layer, respectively.

Mode R@1 R@5 R@10 MdR MnR

#1 ∅ 40.8 68.2 78.6 2.0 17.0
#2 T 43.3 70.9 81.8 2.0 14.7
#3 S-T 43.2 69.4 80.7 2.0 15.1
#4 S-T-L 42.0 67.8 80.3 2.0 14.5

tween computational overhead and performance,
i.e., paying affordable overhead while obtaining
considerable performance gains.

4.3 Ablations Study

We conduct all the ablation studies on the MSR-
VTT dataset with the ViT-B/32 backbone. The
input frame number is set to 12.
Component Ablations. We ablate the proposed
low-rank modulation module and the asynchronous
self-attention. The results are summarized in Ta-
ble 4. We can conclude that both components are
crucial to superior performance at the cost of neg-
ligible parameter overhead. For example, LoRM
yields a 2.3% performance boost on R@1 with the
cost of 0.42 M parameter (mode #1 vs. mode #3).
Ablations on the low-rank decompose manner
of LoRM. In Equation (1), we conduct the low-
rank decomposition in the temporal dimension,
and the modulation weights are with the dimen-
sion of RT×Dv , i.e., RT×Dv ← RT×R · RR×Dv .
Here we ablate more decomposition options: i)
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Table 6: Ablations of selection manners. ∅ indicates
that none of the token selection policies is used.

Mode R@1 R@5 R@10 MdR MnR

text-top-K 44.8 71.4 81.5 2.0 14.4
text-bottom-K 43.0 70.7 80.3 2.0 14.8
vision-top-K 44.5 71.3 80.7 2.0 14.8

vision-bottom-K 43.5 70.6 80.3 2.0 15.1
random 43.2 70.8 81.2 2.0 14.9

∅ 41.4 68.9 79.9 2.0 15.7

Table 7: Ablations of warping in Asynchronous at-
tention. T-Warp and S-Warp denote warping only on
the temporal and spatial dimensions, respectively.

T-Warp S-Warp R@1 R@5 R@10 MdR MnR

✓ ✓ 44.8 71.4 81.5 2.0 14.4
✗ ✓ 44.0 70.4 81.4 2.0 14.8
✓ ✗ 44.2 70.9 81.2 2.0 14.8

the spatial-temporal decomposition: The modula-
tion is applied at the spatial-temporal dimension
with the weight of RT×N×Dv , i.e., RT×N×Dv ←
RT×N×R · RR×Dv , where T and N denote and
frame number and the patch number within each
frame, respectively. ii) the spatial-temporal-layer
decomposition: We uniformly decompose all the
modulation weights across all the layers. Specif-
ically, the modulation weights are of the shape
of RM×T×N×Dv , i.e., RM×T×N×Dv ← RM×R ·
RR×T×N×R · RR×Dv , where M denotes the in-
serted module number of all layers.

The comparison results are summarized in Ta-
ble 5. From the comparison results, we observe
that using temporal decomposition alone brings
about the optimum performance. Additionally in-
troducing decomposition on the spatial and layer-
wise dimension leads to the performance degrade.
These results manifest our motivation that video
data exhibits a substantial degree of redundancy in
the temporal dimension.
Ablations on the text-conditioned selection man-
ners. To stabilize the training process of ASA,
we propose a text-conditioned selection strategy to
constrain the asynchronous attention computation
within the selected top-related patch features (c.f .
Sec. 3.3). For clarity, we denote this filter manner
as text-top-K. Here we experiment with more vi-
sual token selection manners: i) random: randomly
select K patch feature within each frame; ii) text-
bottom-K: For each patch token feature, we com-
pute the sentence-patch similarity and select lowest
K responded patches; iii) vision-top-K: Instead
of using sentence features, we compute the simi-

Table 8: Ablations on plug-and-play performance. X-
CLIP∗ denotes freezing the CLIP backbone of X-CLIP
(Ma et al., 2022).

Method R@1↑ #Param (M)↓

X-CLIP (Ma et al., 2022) 46.1 151.3
X-CLIP∗ + LoRM 46.6 0.76

X-CLIP∗ + LoRM + ASA 47.9 1.06

Table 9: Ablations on hyper-parameters including the
temporal rank R and the number of selected token K.

R 1 3 5 7 9

R@1 42.6 44.8 44.0 43.2 43.0

K 1 3 5 7 9

R@1 44.5 44.8 43.8 43.6 42.9

larities between each patch feature and the [CLS]
token feature of the frame. The filtered set is con-
stituted by selecting the top K responsive patches;
iv) vision-bottom-K: Similar to vision-top-K, we
compute patch-wise similarities with [CLS] token
and select lowest K responded patches; v) ∅: none
of the selection strategies are used and all the patch
features are wrapped. The comparison results of
the above selection strategies are summarized in Ta-
ble 6. We have the following findings. Firstly, not
using the token selection strategy (i.e., ∅ in Table
6) causes substantial performance degradation, e.g.,
reaching only 41.4% on R@1. This is probably
because warping each patch tokens wreaks havoc
on the well-trained CLIP weights. Secondly, our
proposed text-top-K policy outperforms the other
ones on all five metrics. This demonstrates that
selectively warping partial patch tokens in a param-
eterized way can better adapt the vanilla CLIP to
the video scenario.
Ablations on the warping manner of ASA. In
Sec. 3.3, we predict the patch-wise warping dis-
tance in both the temporal and spatial dimensions.
Here we ablate either of the two dimensions to
see the difference. As shown in Table 7, restrict-
ing warping in either temporal or spatial dimen-
sion will lead to performance degradation, which
demonstrates that free-form patch-wise warping is
crucial to the final performance.
Ablations on plug-and-play performance. Both
the proposed LoRM and ASA modules serve as
plug-and-play modules and can be compatible with
versatile CLIP-based methods. To demonstrate
this, we conduct experiments based on the more
advanced CLIP-based method X-CLIP (Ma et al.,
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2022). Specifically, we freeze the CLIP backbone
and then insert LoRM within each Transformer
layer and replace the vanilla self-attention with our
proposed ASA. The comparison results in Table 8
show that our LoRM and ASA can consistently ben-
efit the retrieval performance even with the more
advanced X-CLIP baseline. Besides, compared
to the fully finetuned counterpart, our proposed
LoRM and ASA show great advantages in terms of
tunable parameters.
Ablations on hyper-parameters. We conduct ab-
lation studies on the temporal rank R and selected
token number K in Table 9. We set R = 3 and
K = 3 to achieve the best retrieval performance.

5 Conclusions

In this work, we present RAP to efficiently transfer
the pre-trained CLIP model to TVR. To accom-
modate the inherent video structure and the cross-
modality setting, we introduce a low-rank mod-
ulation module to achieve the frame-wise sparse
representation and an asynchronous self-attention
module to enhance the cross-frame correlations.
Extensive experiments illustrate that RAP achieves
comparable or even better performance than previ-
ous arts and the fully fine-tuned counterpart.

Impact Statements

Ethics Statement. Our RAP aims to conduct
parameter-efficient text-video retrieval through a
temporally sparse and correlated adapter. The ethi-
cal issues may exist in the following two perspec-
tives. Firstly, similar to many data-driven methods,
there are concerns about the issue of data privacy,
anonymization, and compliance with relevant data
protection regulations. Secondly, the considera-
tions related to potential bias in the dataset and the
retrieval model, especially concerning sensitive top-
ics, should be acknowledged. We are transparent
about the ethical considerations in our research to
uphold the integrity of the academic process and to
ensure that this work aligns with ethical standards
and norms in the field.
Limitation. Despite the remarkable progress,
our RAP still faces several limitations. Firstly, we
use the text-conditioned selection to filter the most
representative visual patches. Due to the seman-
tic gap conveyed by the textual and visual signals,
the alignment of complex concepts and contexts
across different modalities should be conducted
in a more fine-grained manner. Secondly, due to

the limitations of computing resources, we experi-
ment with the backbone of ViT-B/32 and ViT-B/16.
The salable experiments on ViT-L/14 and ViT-E/14
backbones are left for future work.
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A Appendix

A. More Experiments

Table 10: Video-to-text retrieval results on DiDeMo, MSVD, and ActivityNet Datasets. µ denotes using the
frozen visual encoder.

DiDeMo MSVD ActivityNet
Type Methods R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓

Fine-tune
CLIP4Clip (Luo et al., 2022) 42.2 70.3 79.3 11.8 56.6 79.7 84.3 7.6 41.9 72.2 84.6 7.3
CLIP4Clip (µ CLIP) 20.2 44.2 55.0 43.1 56.3 82.6 89.8 4.8 17.7 40.7 54.1 42.5

Prompt

VPT (Jia et al., 2022) 33.1 59.8 69.9 22.7 59.5 82.9 88.8 5.9 28.4 56.7 69.4 19.7
CoOp (Zhou et al., 2022) 32.3 57.0 68.2 23.4 53.8 78.3 82.9 12.4 29.0 57.6 72.4 14.0
VoPP (Huang et al., 2023) 40.6 68.3 78.6 11.6 - - - - 34.8 65.0 78.2 10.7
VoPC (Huang et al., 2023) 39.1 65.3 76.7 13.8 - - - - 34.2 64.8 78.4 10.7

Adapter

ST-Adapter (Pan et al., 2022) 35.9 61.0 72.0 20.1 53.6 80.5 87.3 5.8 29.7 58.8 73.1 15.5
LoRA (Hu et al., 2021) 39.7 66.8 77.3 13.9 64.3 87.3 92.5 4.1 30.8 60.0 73.2 15.2
SSF (Lian et al., 2022) 40.0 67.1 77.4 13.2 61.9 87.0 90.7 4.5 36.2 66.9 79.0 10.4
RAP (Ours) 44.0 69.2 80.1 10.5 65.2 88.7 93.1 4.2 41.9 73.0 84.0 7.5
RAP∗ (Ours) 47.7 74.4 83.2 9.5 69.6 91.9 95.7 2.9 48.2 76.5 86.2 6.8

Video-to-text Performance: We supplement the
video-to-text performance on the DiDeMo, MSVD
and ActivityNet Captions datasets in Table 10. The
experimental results consistently demonstrate the
superiority of our RAP. For example on the MSVD
dataset, RAP surpasses the fully fine-tuned method
by 8.6% on R@1.
Low-rank modulation on textual features: In
Sec. 3.2, we apply the low-rank decomposition
modulation in the visual branch, specifically in
the temporal dimension. Here we apply the low-
rank modulation on the textual branch to see the
differences. Concretely, the modulation weights
are with the shape of RW×Dt ← RW×Rt · RRt×Dt ,
where W denotes the total word length, Rt is the
low-rank hyper-parameter and Dt is the textual
feature dimension. We set Rt = 3.

The ablation results are shown in Table 11.
As shown, applying the low-rank modulation on
textual features causes performance degradation,
which may be because word-level representations
do not exhibit the same redundancy as frame-level
visual features.

Table 11: Ablations of the low-rank modulation
on the textual branch.

LoRM on Text R@1 R@5 R@10 MnR #Param

✗ 44.8 71.4 81.5 14.4 1.06M
✓ 44.3 72.1 81.0 14.4 1.48M

B. Visualization Results

We visualize the per-frame modulation weights
with or without the low-rank decomposition. As
shown in Figure 4, the modulation weights with de-
composition demonstrate more salient distributions,
which manifests the temporal sparsity characteris-
tic of video data.

Besides, we visualize the effect of the asyn-
chronous self-attention. We randomly select one
patch feature ( ) in the frame and compute its sim-
ilarity distribution with the patches in other frames.
The results in Figure 5 show that the proposed
asynchronous self-attention can adaptively attend
to patch-of-interest, which leads to effective tem-
poral correlation modeling.
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modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Query: A man is showing off a new vehicle.

modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Query: A man talking about the two cars he test drove.

modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Query: Someone giving demo for some game.

modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Query: Bill murray is being interviewed by David letterman 
while talking about bill’s past roles.

Figure 4: Illustrations of temporal sparsity. We visualize the modulation weight w/ or w/o low-rank decomposition.

7173



Query: Cartoon show for kids.
w/ vanilla self-attention

w/ asynchronous self-attention

Query: A puppy is crawling down some stairs.
w/ vanilla self-attention

w/ asynchronous self-attention

Query: A man extinguishes a fire outside.
w/ vanilla self-attention

w/ asynchronous self-attention

Figure 5: Illustrations of temporal correlation. The query patch is marked by the yellow cross and the similarity
map within other frames are plotted.
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