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Abstract

The performance of the reward model (RM)
is a critical factor in improving the effective-
ness of the large language model (LLM) during
alignment fine-tuning. There remain two chal-
lenges in RM training: 1) training the same
RM using various categories of data may cause
its generalization performance to suffer from
multi-task disturbance, and 2) the human anno-
tation consistency rate is generally only 60%
to 75%, causing training data to contain a lot
of noise. To tackle these two challenges, we in-
troduced the idea of Mixture-of-Experts (MoE)
into the field of RM for the first time. We pro-
pose the Double-Layer MoE RM (DMoERM).
The outer layer MoE is a sparse model. Af-
ter classifying an input into task categories,
we route it to the corresponding inner layer
task-specific model. The inner layer MoE is
a dense model. We decompose the specific
task into multiple capability dimensions and
individually fine-tune a LoRA expert on each
one. Their outputs are then synthesized by an
MLP to compute the final rewards. To mini-
mize costs, we call a public LLM API to obtain
the capability preference labels. The validation
on manually labeled datasets confirms that our
model attains superior consistency with human
preference and outstrips advanced generative
approaches. Meanwhile, through BoN sam-
pling and RL experiments, we demonstrate that
our model outperforms state-of-the-art ensem-
ble methods of RM and mitigates the overop-
timization problem. Our code is available at:
https://github.com/quanshr/DMoERM.

1 Introduction

After an initial stage of pre-training and subse-
quent instruction fine-tuning (Quan, 2024), large
language models (LLMs) undergo a crucial stage of
high-quality alignment fine-tuning based on Rein-
forcement Learning with Human Feedback (RLHF)
to improve their abilities (Ouyang et al., 2022; Sti-
ennon et al., 2020). During the RLHF process,

a reward model (RM) often needs to be trained,
which acts as a proxy of human preferences and as-
signs scores to the outputs of the LLM. The scores
are then used as reward signals to optimize the
LLM through reinforcement learning (RL). In this
process, the LLM and RM are interdependent and
iteratively optimized, and the RM is expected to be
highly consistent with human preferences. In addi-
tion, during the inference stage, the RM can also be
augmented with Best-of-n (BoN) sampling strate-
gies to further enhance the quality of the outputs
of the LLM (Ouyang et al., 2022; Nakano et al.,
2021).

Training of reward models relies on the data
derived from human annotators who manually
rank the varying outputs under a single input by
their preferences. However, many studies have
found that agreement rates among human annota-
tors typically only range between 60-75% (Ziegler
et al., 2019; Stiennon et al., 2020; Dubois et al.,
2023), thereby introducing a minimum of 25%
noise within the labeled dataset. One important
reason for this phenomenon is the multifaceted na-
ture of evaluation—it is often observed that one
response may excel in one aspect while simultane-
ously falling short in another. This multifaceted
evaluation conundrum has been exemplified in pre-
vious studies (Dai et al., 2023; Ganguli et al., 2022;
Bai et al., 2022), which illustrate the inherent ten-
sions between enhancing helpfulness and harmless-
ness. As these attributes can at times be inversely
related, adjudicating between a response that is
more helpful yet potentially less harmless poses a
significant challenge for comparative assessment.
We further validate this perspective through empir-
ical studies.

In this study, we pioneer the integration of
the Mixture-of-Experts (MoE) framework (Jacobs
et al., 1991; Lepikhin et al., 2021; Du et al., 2022)
into Reward Modeling. Our approach employs a
double-layer MoE architecture. The outer layer
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Figure 1: The outer MoE routes inputs to corresponding
task-specific inner MoE.

comprises a sparse MoE model specifically de-
signed to avoid multi-task disturbance (Standley
et al., 2020). As shown in Figure 1, We cate-
gorize inputs into several distinct tasks and use
a pre-trained router to route the inputs to their
corresponding task-specific expert. This strategy
can also facilitate distributed deployment and en-
hance the model’s capacity and capabilities with-
out a commensurate increase in computational de-
mands (Rajbhandari et al., 2022; Xue et al., 2022).
Subsequently, within each inner layer lies a
dense MoE model, which is tailored to the spe-
cific capabilities set required for its category. For
instance, in roleplay scenarios, we divide it into six
core capabilities, including personality and emo-
tional investment, conversational sense, empathy
ability and so on (details are in Appendix Table 12).
We obtain preference labels on these single capa-
bility points by calling a public API, which greatly
reduces annotation costs and is sufficient to achieve
satisfactory results in our experiments. Considering
that capability points are equivalent to a decompo-
sition of tasks in a low dimensional space, using
low-rank adaptation (LoRA) (Hu et al., 2022) fine-
tuning will be very suitable. Each LoRA fine-tuned
model effectively becomes an expert in scoring
on a singular capability point. Lastly, we aggre-
gate the outputs from these expert models into a
unified one-dimensional score with an MLP to de-
termine the final reward value. We believe this
methodology can improve the interpretability and
performance of RMs since it is just like the Chain
of Thought (CoT) for RMs. Both preference con-
sistency and optimization evaluations indicate our
model is more effective in optimizing LLMs and
can mitigate the overoptimization problem against
other state-of-the-art RM ensemble methods.

2 Related Work

2.1 Mixed-of-Experts

Mixture-of-Experts or MoEs was introduced early
for machine learning applications (Jacobs et al.,
1991; Jordan and Jacobs, 1994), where researchers
control the allocation of different weights to dif-
ferent models through gate networks to mitigate
interference between different types of samples.
MOoE can enhance the model’s generalization capa-
bility by decomposing complex tasks into several
subtasks, which will help avoid multi-task distur-
bance (Standley et al., 2020) and meanwhile confer
greater flexibility in development (Ma et al., 2018).
Recently, much ongoing research has focused on
the top-k (e.g., top-1 or top-2 in many works) acti-
vation MoE model (Ramachandran and Le, 2019;
Clark et al., 2022; Dai et al., 2022), since it can be
leveraged to enlarge parameter count and enhance
model capability while keeping computational com-
plexity nearly unchanged for both training and in-
ference due to its sparse activating nature (Shazeer
et al., 2017; Fedus et al., 2022). While MoE has
achieved great success in the field of large genera-
tive language models (Shen et al., 2023; OpenAl,
2023), how to efficiently train more effective RM
with MoE architecture remains largely unexplored.

2.2 Reward Model Ensembling

Reward Model Ensembling has been tried in the
field of safe RLHF (Dai et al., 2023). The research
is based on a widely observed imagination: the
pursuit of greater helpfulness and harmlessness
may often conflict in practice (Ganguli et al., 2022;
Bai et al., 2022). Another weave of research en-
semble RMs through multi-objective reward mod-
eling (Ramé et al., 2023b,a) or weight-averaged
reward modeling (Ramé et al., 2024), but they are
struggling to formulate non-linear relationships. In
addition, some research works (Coste et al., 2024,
Eisenstein et al., 2023; Zhai et al., 2024) have found
that training multiple reward models and aggregat-
ing them by changing the data training order, batch
size, and learning rate can alleviate the overopti-
mization problem (Gao et al., 2023) of RM and
increase its performance. However, the aggrega-
tion methods they chose were only 1) mean, 2) min,
and 3) mean minus std, and the performance of ag-
gregation was very dependent on the diversity of
several models (Zhai et al., 2024), which required
a lot of attempts in experiments.
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3 Empirical Study
3.1 Multi-Task Training

It has been frequently observed that using irrele-
vant training data to train LL.Ms will cause their
generalization performance to decrease in other
tasks (Dong et al., 2023; Wen et al., 2023). This
also applies to RMs. Dai et al. (2023) found that
training RMs on harmlessness and helpfulness si-
multaneously will lead to the model getting sub-
optimal results on both types of data. In order to
further explore whether data of different categories
interfere with each other, we selected the prefer-
ence data for three tasks: roleplay, chitchat, and
text creation. We train on different combinations of
training sets and testing on all test sets. The results
are shown in Table 1.

Dataset ‘ #A #B #C
#A 56.7% 51.1% 49.8%
#B 524% 54.3% 50.3%
#C 50.8% 51.0% 58.1%
#AU#B | 54.2% 52.6% 50.2%
#AU#C | 53.3% 50.9%  55.6%
#BU#C | 51.7% 52.5%  56.4%
#AU#B UHC | 52.0% 51.5% 54.8%

Table 1: The results of training on different combina-
tions of training sets and testing on all test sets. #A,
#B, and #C represent roleplay, chitchat and text creation
respectively. The best values are written in bold.

We find that using separate category data give
the best results in this category, and using data
from other categories may affect the generalization
ability under original task.

3.2 Anneotation Consistency

The consistency rate of manually labeled prefer-
ence data is generally only 60-75% (Ziegler et al.,
2019; Stiennon et al., 2020; Dubois et al., 2023),
which brings a lot of noise to the training data.
Inspired by the fact that Chain-of-Thought (CoT)
can improve the accuracy of reasoning (Wei et al.,
2022; Zhou et al., 2023), we try to improve the
consistency rate through CoT. We first conduct ex-
periments on humans. We select the text creation
subtask and randomly divide 200 pairs of responses
into two groups. For the first group, we let three
annotators directly rank the preference and record
the average agreement rate between any two anno-

tators, which is represented as A. For the second
group, we divide the text creation into five capabil-
ity points: 1) intent conformity, 2) expressiveness,
3) readability, 4) content richness, 5)logic, and ask
the annotators to first score the content in each sin-
gle capability point, and then evaluate the overall
preference. The average agreement rates on five
capability points are represented as B-1 to B-5, re-
spectively, and the final overall agreement rate is
B-f. We record these results in Figure 2, and a
screenshot of the annotation interface is shown in
Figure 8 in the Appendix.

10%

0%

Figure 2: The results of consistency study.

We find that the consistency on capability points
is significantly higher than the consistency of di-
rectly evaluating the overall preference, and the
method of evaluating capability points first can in-
crease the final overall consistency rate.

4 Methodology
4.1 Outer Layer MoE

Our first layer is a sparse MoE structure, and only
the top-1 expert is activated each time. We divide
the input into five categories according to tasks:
text creation, roleplay, objective knowledge QA,
subjective knowledge QA, and chitchat, and train
an MokE for each category. When new input comes,
we use a small frozen top-1 gating network pre-
trained on category labels to act as the router. For-
mally, we have

chosen = arg%nax E(te|x) (1)
e=0
Y= RMchosen(-T) (2

., t4 represent five tasks respectively,
., RM4 represent the

Here to, ..
x represents input, RMp, . .
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Figure 3: The training framework of each inner layer MoE. The LoRA components in the figure is only for
illustration, as in actual experiments we will inject the LoRA layers into each layer of the transformers. Training

details are in Section 4.2.2.

expert RMs corresponding to each task, and y rep-
resents the RM’s output.

4.2 Inner Layer MoE

4.2.1 Modeling

For each task, we first obtain a base task-specific
model RMy, . from a general RM through training
on task-specific preference data. Then, we divide
the tasks into distinct capability points. Capability
points are equivalent to a decomposition of tasks
in a low-dimensional space. Define the input space
as X, we need to learn an expert RM,, : X — Z,.
In this work, we obtain RM;;, by performing LoRA
fine-tuning on RMy, .

Let Z = Zy, ..., Z;_1. After we have learned k
experts, we use an aggregation network to aggre-
gate the output results of k experts to produce the
final output; that is, we learn RM; : Z — R. This
is a Markov process and X — Z — R construct a
homogeneous Markov chain.

We employ a FCN following each expert RM ¢;
to serve as the value head to generate one-
dimensional scores, which further maps to the
range of [0, 1] using the sigmoid activation func-
tion. Let W (%#5¢) represent the initial base model
RM tpase, AW represent the fine-tuned LoRA
network learned for capability point ¢, and w; and
b; represent the FCN network associated with ca-
pability point ¢. The score r; for capability point ¢
is then expressed as follows:

zi = (W) L AW @)y 3)

ri = o(w;z; + b;) “

To obtain a single score as the final reward
from multiple experts, we concatenate all low-
dimensional representations of experts and use a
two-layer MLP to aggregate them. Then the final
reward score r is:

k—1
=0
r = o(Wi PReLU(Woz + Bo) + B1)  (6)

Note that our MLP does not act on the final scalar
outputs, but rather on the multiple low-dimensional
decomposition without being fed into FCNs, as
we believe there may be underlying correlations
between different capability points, which can be
learned using MLP in their low-dimensional em-
bedding space.

We use logsigmoid as the loss function, which
is also the most commonly used loss function for
training RMs, where k represents the number of
responses in a piece of data:

L— _(,{)E(x,yw,ylmuogw(r(yw) —r(y)))

2
(N
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4.2.2 Training

Figure 3 illustrates the training framework of each
inner layer MoE. We use a pre-trained RMy,  as
the base general RM, and then perform the follow-
ing three phases of training in sequence:

 Phase 1: Task-Specific Training. Use 60%
of the task-specific preference data to full-
parameter fine-tune on RMy, . to get base
task-specific model RMy, .

e Phase 2: Capabilities Training. Use the
data with capability point labels (the method
of obtaining these labels is introduced in Sec-
tion 4.3) to train RM; using LoRA fine-tuning
to obtain RMy,,...,RM;, ,. Each time, a
new linear head is learned from the original
linear head of RMg, ..

* Phase 3: Ensemble Training. Remove the
original FCN on each expert RM and use an
MLP to aggregate RMy,, ..., RM;, to obtain
the final model RM,, and use the remaining
40% task-specific preference data to train it.
During this phase, RM;,  and the LoRA lay-
ers are frozen, and only the newly added MLP
layer is trained.

4.3 Capability Point Labels Obtaining

Since it is costly to obtain all preference labels on
each capability point, instead of manually sorting
or scoring, we use the method of calling the public
Ernie Bot API! to obtain the comparative prefer-
ence of the single capability point in each response
pair, which significantly reduces the labeling cost.

To avoid the positional bias inherent in LLMs,
we employ a strategy that involves swapping posi-
tions and requiring each pair to be processed twice.
We then selectively retain only those data pairs that
exhibit consistency in twice-calling. This method
also doubles as a data cleansing technique, as it
effectively filters out pairs with minimal discrep-
ancies, which may introduce potential noise into
training data. The prompt template is shown in
both Chinese (Table 13) and English (Table 14) in
the Appendix.

Our approach does not require additional data
since the task-specific data from training Phases
1 and 3 can be directly utilized as raw response

'The ERNIE Bot API has similar functions to ChatGPT,
but it is much cheaper and can achieve the same level of
proficiency in Chinese: https://cloud.baidu.com/doc/
WENXINWORKSHOP/s/f1fmc9do2

pairs, which enables us to acquire capability point
preferences based on them. In our experiments, we
reutilize all the task-specific data as raw response
pairs during Phase 2.

5 Experiment Setup

5.1 Model

We use Qwen-1.8B-Chat? as both the policy model
and the base reward model, which is an open source
Chinese-English bilingual Transformer-based large
language model proposed by Alibaba Cloud. To
make a fair comparison, we use the same model as
the base model of our baseline ensemble methods.

5.2 Baseline

We use a single RM baseline and collect three state-
of-the-art ensembling methods for reward models
from a range of papers (Coste et al., 2024; Eisen-
stein et al., 2023; Zhai et al., 2024). All baseline
methods and our model are trained and evaluated
with the same dataset.

* Single RM
We use the training of a single reward model
as the most basic benchmark.

* Mean Optimization

Mean optimization simply takes the mean of
the outputs of the different ensemble mem-
bers:

ri(z) ®)

* Worst-Case Optimization

Worst-case optimization (WCO) creates a con-
servative estimate by choosing the lowest re-
ward from the ensemble at every step:

k-1
Rwco(z) = IZn:l(I)l ri(x) 9

Uncertainty-Weighted Optimization

Uncertainty-weighted optimization (UWO)
calculates reward by combining the average
reward across all models in an ensemble with
the intra-ensemble variance, weighted by a

2https: //huggingface.co/Qwen/Qwen-1_8B-Chat
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coefficient A\. Mathematically, this objective

is given by:
Ruywo(z) =
1 k—1
Fy(@) = A7 0 (ri(e) = Ry(2)?
—— o
mean
(10)
5.3 Dataset

Our prompt dataset are very diverse and can
be mainly classified into five categories: role-
play, chitchat, subjective knowledge QA, objec-
tive knowledge QA, and text creation, with some
others (including logical reasoning, mathematical
calculations, code understanding and generation,
translation, etc). Our dataset is over 98% Chinese.
We ensure that the training and test sets contain
no intersection and heuristically eliminate dupli-
cate prompts. We also filter prompts containing
personally identifiable information (PII).

Our data has a turn range of 1 to 27, with an
average of 3.72 (a turn contains a user query and
an LLM response). Each sample’s final query has
multiple responses generated through either auto-
mated or manual processes. These responses are
then assigned preference rankings through manual
labeling. A detailed statistic of our data is shown
in Table 2.

Table 2: The statistics of our dataset.

Categories Count | Avg. Turn
text creation 6,498 2.96
roleplay 4,150 5.32
objective knowledge QA | 3,595 3.77
subjective knowledge QA | 3,413 3.50
chitchat 3,315 3.45
others 709 3.40
all | 21,680 | 3.72

We employ a rigorous annotation process with
clear documentation guides to direct our annota-
tors (we have shown an example in our GitHub
repository). Each piece of data is evaluated by two
annotators to ensure quality, and the final ranking
is established through discussion to reach a con-
sensus. We have observed that the consistency rate
between each pair of annotators reached 74% on
average.

6 Result

6.1 Training Phases

In this section, we use roleplay as an example to
demonstrate the progress of the model at different
training phases. By recording the accuracy of the
reward model’s ranking on the pairs of responses
in training and testing sets, we can intuitively dis-
play the training results. The results are shown in
Figure 4. We find:

* In Phase 1 (Figure 4a): the accuracy of the
training set improves rapidly, while the im-
provement of the test set dataset is slow, even-
tually stabilizing at 56%.

* In Phase 2 (Figure 4b to 4g): we divide the
roleplay task into six capability points, namely
1) personality and emotional investment, 2)
conversational sense, 3) empathy ability, 4)
manifestation of relationship traits, 5) person-
alized characteristic expression, and 6) con-
tent richness. We find that depending on dif-
ferent single capability points, an accuracy of
80-86% can be achieved on the test set. Note
that the training and testing set labels here are
only one capability point and not an overall
preference.

* In Phase 3 (Figure 4h): the improvement in
the test set was rapid, reaching a peak of 68%.
Compared with the 56% accuracy in Phase 1,
it can be proven that our method of training
multiple experts based on different capability
points and aggregating those experts can sig-
nificantly improve the model’s performance.

6.2 Preference Consistency Evaluation

Since RM is essentially an imperfect proxy for hu-
man preferences, testing the consistency rate of
trained RM using human-labeled preference data
is a direct and effective evaluation method. Given
a pair of preference data, we use the trained RMs
to assign scores to each response and record the
consistency between the sorting of scores and the
sorting of manual labels. Higher consistency rates
(or accuracy) mean better performance of RMs
as the proxies for human preferences. Compared
with the methods introduced in Section 5.2, we add
the GPT-4 generative evaluation benchmarks for a
more comprehensive evaluation. Their implemen-
tation details are introduced in Appendix B.3.3.
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Figure 4: The progress of the model at different training stages. The horizontal axis of each image represents the
number of training steps, and the vertical axis represents the accuracy of sorting pairs of responses on the training
and testing set. Figure 4a shows the results of the training Phase 1. Figures from 4b to 4g show the results of the
training Phase 2. Figure 4h (top-right) shows the results of the training Phase 3.
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(e) manifestation of relationship traits (f) personalized characteristic expression (g) content richness
Categories text creation roleplay okqa skqa chitchat others | overall
Zero-shot GPT-4 58.9 56.1 64.7 63.5 54.8 60.1 59.5
One-shot GPT-4 61.4 59.9 66.5 66.2 58.4 61.7 62.3
Single 58.1 57.6 60.4 62.0 54.3 54.4 58.2
Mean 63.3 62.0 65.2 66.3 58.5 56.6 62.4
WCO(min) 63.6 62.3 65.5 66.1 59.1 56.7 62.6
UWO(mean minus std) 63.4 61.8 65.4 66.5 59.0 56.6 62.6
DMoERM-w/o-Outer(ours) 68.3 66.5 70.1 71.3 63.2 61.3 67.0
DMoERM(ours) 71.9 68.2 73.8 74.2 66.4 63.0 70.7

Table 3: The consistency with human preferences. Note that for the methods except GPT-4, the overall results is
not simply adding each up but train with all data and test. The best performance is in bold and the second best is
underlined.
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Figure 5: The optimization results for BoN and PPO for the roleplay task. The x-axes have a square-root scale, and
the KL divergence scale differs between BoN and PPO due to differences in the algorithm and the KL calculation.
All RMs will be normalized to have a zero mean after training.
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We present the results in Table 3. There are
two noteworthy findings: firstly, our DMoERM
achieves the best results in all categories and over-
all experiments, with a 6 to 8 percentage point
improvement compared to other methods. This in-
dicates that our training method can better learn
human preferences without increasing the amount
of training data or model parameters. Secondly,
the DMoERM-w/o0-Outer model removes the outer
layer and instead uses the same capability point
partition to train on various categories. It achieves
the second effect and still has a significant improve-
ment compared to other methods, making it a vi-
able alternative when memory or task-specific data
is limited.

6.3 Optimization Evaluation

In the optimization evaluation, we use BoN and
PPO as optimization strategies to optimize the same
policy model. Since we have verified in section 3.1
that the outer MoE will improve performance by
dividing different categories to train different mod-
els, for the sake of fair comparison, we restrict the
task within roleplay to comparing the effects of
the corresponding inner MoE with other aggrega-
tion methods. Under the same degree of optimiza-
tion measured by KL divergence, we use another
pre-trained reward model® fine-tuned on our task-
specific data with a larger number of parameters as

3https://huggingface.co/IDEA-CCNL/
Ziya-LLaMA-7B-Reward
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(b) PPO

the referee to judge the outputs of results, which
we called the gold reward model. Model strategies
that score higher under the gold reward model are
considered better. We evaluate BoN for a maxi-
mum of n,,4, = 60,000 samples, which roughly
equals 10 nats of KL. The reported results repre-
sent the mean outcomes derived from a set of 500
distinct prompts. For PPO, we train for 3, 000 PPO
steps and compute the average results derived from
three distinct random seeds. We give further details
on implementation and other hyperparameters in
Appendix B.3.

We showcase the results in Figure 5. Both BoN
and PPO optimization results demonstrate that our
model consistently outperforms alternative integra-
tion approaches when policy models are optimized
to the same degree. Moreover, after n = 8,000
(KL =~ 8 nats) in the BoN optimization experi-
ment, our model maintaine stability without signs
of overoptimization, unlike other ensemble meth-
ods that exhibit varying degrees of overoptimiza-
tion. These findings suggest that our model outper-
forms baselines in optimizing LLMs and is capable
of addressing the issue of overoptimization.

7 Conclusion

In this work, we propose DMoERM to enhance
RMs’ performance. The outer layer MoE divides
inputs into different tasks to avoid multi-task dis-
turbance, while the inner layer MoE reduces the
impact of data noise by learning LoRA experts on
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different capability points. Preference consistency
experiments demonstrate our model is more rep-
resentative of human preferences. Optimization
evaluations indicate our model is more effective
in optimizing LL.Ms and can mitigate the overopti-
mization problem.

Limitations

Although we attempt to reduce annotation costs
by calling public LLM API instead of manual la-
beling, it is still costly as using the ERNIE Bot
API will cost approximately $3, 000 in total, and
using the ChatGPT API will cost about ten times
more. However, if the annotation standards for
human are predetermined in advance, it will not
significantly bring more annotation costs. In our
annotation process, we found that due to the anno-
tators spending most of their time understanding
the queries and various responses, the proposed
annotation method (first annotates the preferences
of pre-determined capability points and then an-
notates the overall preferences) only reduces the
annotator’s speed by about 10%, but can increase
the annotation consistency by 5 percentage points.

Another problem is the training time, with about
80 NVIDIA A100 GPU hours to train one inner
MoE, which is about eight times longer than train-
ing a traditional single RM with the same amount
of parameters. While many works focus on ex-
ploring efficient training methods, we reserve this
problem as a future work.
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A Additional Related Work

A.1 Reinforcement Learning with Human
Feedback

Reinforcement Learning with Human Feedback
(RLHF) is a foundational method for fine-tuning
language models to align with human preferences.
RLHF has been applied to a variety of tasks, in-
cluding text summarization (Stiennon et al., 2020)
and improving the helpfulness and harmlessness
of language models (Bai et al., 2022). In particu-
lar, InstructGPT (Ouyang et al., 2022) employs a
three-step RLHF process that includes a supervised
learning technique and the PPO algorithm (Schul-
man et al., 2017), which has proven to be effective
for ChatGPT. Despite its success, RLHF encoun-
ters several challenges, such as low sample effi-
ciency (Snell et al., 2023; Giil¢ehre et al., 2023)
and overoptimization (Gao et al., 2023). Since we
require no additional data to improve performance
and mitigate overoptimization, our method works
in both two aspects.

RLHF heavily depends on reward modeling
as a proxy for human preferences. Recent re-
search has attempted to bypass the reward mod-
eling step (Yuan et al., 2023; Song et al., 2023).
Specifically, Direct Policy Optimization (DPO)
aims to refine policies by classifying human pref-
erence data without reward models. Although this

method is simpler to implement and offers training
stability, more recent studies reveal several advan-
tages of using reward models. Investigations into
the robustness of reward-model-based strategies
suggest they are more resistant to overfitting due
to the limitations of KL regularization (Azar et al.,
2023). Moreover, in comparison to DPO, reward-
model-based RLHF shows great advantages on out-
of-preference samples (Li et al., 2023).

A.1.1 the Overoptimization Problem of RMs

As the learned reward model is only a proxy for
the true reward function, optimizing it may not al-
ways result in an improvement according to true hu-
man preferences. In practice, optimizing a (fixed)
learned reward model almost always leads to im-
provement according to this learned reward model
but only improves according to the true reward
model (i.e., humans) for some initial period, after
which performance often begins to regress. This
phenomenon is referred to as overoptimization.

B Additional Experiment Setup

B.1 Hyperparameters

Since in different training phases there are different
sets of model parameters that need to be trained, we
use different learning rates to better adapt to these
three phases and allocate different proportions of
training set for Phase 1 and Phase 3. The settings
are shown in Table 4.

learning rate ‘ proportion

Phase 1 1x1077 60%
Phase2 | 5x 107° —
Phase3 | 1x 1076 40%

Table 4: The hyperparameters used in different training
phases.

We set the minibatch size to 1 and conduct an
evaluation on the validation set every 100 training
steps. If the best result on the validation set does
not improve for 20 consecutive evaluations, we im-
plement early stopping and use the best-performing
model for the next training phase or the final testing
if it is already Phase 3.

The settings for the LoORA components are pre-
sented in Table 5, applicable to both our LoRA
experts and the LoRA ensembles used in the base-
line comparisons.
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rank 32

lora alpha 32

target modules q_proj & v_proj

0.05

lora dropout

Table 5: LoRA configurations.

The PPO hyperparameters and generation hyper-
parameters are shown in Tables 6 and 7, respec-
tively.

learning rate 1.41 x 107°
cosine annealing scheduler 1 x 1077
PPO steps 3,000

batch size 32

KL penalty 0.1

clipping range 0.2

clipping value 0.2

gamma 1.0

lambda 0.95

Table 6: PPO hyperparameters.

max instruction length 1,024
max new tokens (answer length) 1,024
top-p 0.8
temperature 1.0

Table 7: Generation hyperparameters.

All experiments are run on a single machine with
eight NVIDIA A100 80G GPUs, and we use Adam
optimizer for the optimization process.

B.2 Ensemble Creation for Baseline Methods

To create an ensemble for the Mean, WCO, and
UWO baselines, under Coste et al. (2024); Eisen-
stein et al. (2023) guidance, we train a fixed number
of proxy reward models using identical data and
hyperparameters. Each model, however, is initial-
ized with different random seeds. This leads to
variations in the random initialization of the scalar
reward head that is added on top of the pre-trained
language model, as well as in the data shuffling
order. Table 5 presents the LoRA parameters for

these models. We have trained an ensemble of
five reward models, aligning with the configura-
tions used in previous works. This number is also
comparable to the number of LoRA experts in our
model, which ranges from five to six, depending
on the numbers of capability points allocated under
a category.

B.3 Optimization Method
B.3.1 Best-of-n Sampling

Best-of-n (BoN) sampling, also called rejection
sampling, is a simple inference-time optimization
method (Nakano et al., 2021; Ouyang et al., 2022).
For a given prompt, n responses are generated from
the policy model, and the answer with the highest
proxy reward model score is returned. To evaluate
the degree of optimization, the KL divergence * is
defined analytically as a function of n:

1
KLpon = logn — = (11)
n

In our experiments, we evaluate BoN for a maxi-
mum of n,,4, = 60,000 samples, which roughly
equals 10 nats of KL.

B.3.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is a policy-gradient-based online rein-
forcement learning method that maximizes a given
reward function by repeatedly performing small
incremental updates to the policy. PPO is the stan-
dard algorithm used in fine-tuning language mod-
els based on human feedback (Ouyang et al., 2022;
Bai et al., 2022; Stiennon et al., 2020; Zheng et al.,
2023). When using PPO to fine-tune a language
model, a KL penalty term is added during the re-
ward calculation to regularize the policy by pre-
venting it from deviating far from the initial policy:

R™9(g,r) = R(q,r) — BKLppo

P

(12)
where 7770 is the policy being optimized and 7™t
is the initial (pre-trained) language model.

The naive way to calculate KL divergence be-
tween the PPO-optimized policy 7F© and the ini-
tial model is as follows:

*A recent work (Beirami et al., 2024) claims to have proved
that this boundary is not so accurate and provided a tighter
boundary defined by the binary entropy function. At present,
they have not been widely recognized, and even if they are
correct, our experimental conclusions are still valid in terms
of trends.
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TFPPO(TICJ)]

13)
However, this estimator suffers from high vari-
ance and may yield negative values. Consequently,
we employ the following estimator (Coste et al.,
2024):

KLppo (FPPO, Winit) = E(q’T)Nﬂ.PPO [log

KLPPO (ﬂ_PPO ,ﬂ_init) _
7.I_PPO (

rla) o
wi(rlg) )
(14)

E(q7T)N7TPPO [5 (log

We train a total of 3, 000 PPO steps, and the PPO
parameters are shown in Table 6.

B.3.3 Generative Baseline

Apart from RM-based methods, if only the pref-
erence order of response pairs needs to be given,
a simple way is to call the public language model
API through zero-shot or few-shot. It can also be
combined with BoN or DPO to optimize LLM. For
a more comprehensive evaluation, in preference
consistency experiments, we have added the GPT-4
baseline.

* GPT-4 (OpenAl, 2023) We use the most ad-
vanced gpt-4-1106-preview ° as the evaluator
to evaluate a pair of preference data. Each
time, we swap the positions of the responses
and make two requests, and we will re-request
until we get identical results from two requests
as the final results.

We try to find well-prompted instruction and use
both zero-shot and one-shot to evaluate and do not
use few-shot for comparison, for we find it will
make the context much longer and the result is not
better than one-shot. There are also some other
generative evaluation methods. Since they have
reported in their papers that their performance is
just similar with (Ke et al., 2023) GPT-4 or even
worse than (Wang et al., 2023) GPT-4, we just use
GPT-4 to represent these methods.

C Discussion on Model Interpretability

The single traditional RM only outputs the final
reward score and we have no clues about why a
5https://platfor'm.openai.com/docs/models/

gpt-4-and-gpt-4-turbo We called the API in January
2024.

response gets its score, which makes it have poor in-
terpretability. However, our DMoERM first learns
latent embedding at different capability points un-
der specific tasks, and the final score is learned
from and based on an ensemble of embeddings
of different capability points. By using the FCN
trained in Phase 2 to act on the corresponding hid-
den embedding, we can know the score on each
capability point of a response. In this way, we can
identify which aspects of a good response are effec-
tive and which aspects of a poor response are not.
Similarly, if the overall consistency of the model is
not satisfactory, we can also identify the problem
and prescribe targeted solutions by analyzing the
performance of each single capability point.

The method that our DMoERM checks the task
of inputs, works on different capability points, and
aggregates latent embeddings of each expert to
obtain the final reward is just like the Chain-of-
Thought of the reward models, which can enhance
the reasoning (give the reward under the context)
ability of reward models as well as the interpretabil-
ity of the reward models.

D Additional Experimental Result

D.1 Larger Model Performance

We further apply the preference consistency evalua-
tion to the Qwen7B-Chat and Qwen14B-Chat mod-
els. Except for adjusting the learning rate to adapt
to different parameter sizes ([5¢ — 8, 2.5e — 5, 5e —
7] for the 7B model and [3e—8, 1.5¢—5, 3e—7] for
the 14B model, during the three training phases),
the other parameter settings and dataset partition-
ing are consistent with the paper, and the specific
experimental results are shown in the Table 10.
We find that our DMoERM achieved the best
results among all categories and all model sizes
(in bold), while DMoERM-7B achieved the sec-
ond best results (is underlined). Meanwhile, in the
comparison between our DMoERM in different
parameter sizes, the final results for different cat-
egories improve by about 1.9% for 7B and 3.6%
for 14B against the smallest 1.8B model, indicating
that our model structure can benefit from scaling up
the size of parameters. The increase in consistency
rate is not too significant when scaling up due to
the presence of certain noise in the labeled data
(with observed 74% consistency among human an-
notators), which leads to it being challenging to
further improve when consistency rates near the
70% mark. Meanwhile, due to the amount of train-
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ing data is fixed, the larger models may not have
been sufficiently trained, which may also be a fac-
tor contributing to the less significant improvement.

D.2 Human Evaluation

In the process of BoN and PPO optimization, we
both set three checkpoints (n = 30,1000, 6000
for BoN and 1000, 2000, 3000 PPO steps for PPO)
and use 100 prompts at each checkpoint for human
evaluation. Specifically, for the different outputs
obtained from these prompts under optimizations
from different RMs, we require annotators to sort
them according to their preferences, and we record
the winning rates of our model against other en-
semble methods in Figure 6.

We have two findings: Firstly, compared to
BoN, the comparison improvement under PPO op-
timization is slower. Secondly, in both optimiza-
tion experiments, the winning rates of our model
increase steadily as optimization progresses, ulti-
mately reaching approximately 87% for BoN and
68% for PPO.

Figure 6: The winning rates of DMoERM against other
ensemble methods in human evaluation.
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D.3 OOD Optimization Evaluation

In contrast to several previous works (Gao et al.,
2023; Coste et al., 2024; Eisenstein et al., 2023;
Zhai et al., 2024) where the RM training set, op-
timization set, and evaluation set are typically
independently and identically distributed (IID),
our following experiments involve using out-of-
distribution (OOD) RM training sets in PPO I and
OOD evaluation sets in PPO II (since BoN is a
training-free optimization method used in the infer-
ence stage, the optimization prompt set is directly
the evaluation prompt set, so we only conduct OOD
optimization experiments on PPO). We use Align-
Bench (Liu et al., 2023), a publicly and popularly
used alignment benchmark in Chinese, to evalu-
ate the effectiveness of different models. We use
the DMoERM-w/o-Outer for comparison and set
the reward models and policy models in the same
model sizes of 7B. Due to the models being larger,
we compare the optimization results of different
RMs using GPT-4 as the referee, which we believe
has the most sufficient capability to evaluate the
generation results and is naturally fair. The RM
training set, the optimization set, and the evaluation
set used in PPO I and PPO II are represented in
Table 8 and the experimental results are shown in
Figure 7.

RM training | optimization | evaluation
I our dataset AlignBench | AlignBench
II | our dataset our dataset | AlignBench

Table 8: The datasets used in different periods of PPO
I and PPO II. Note that the datasets are randomly sam-
pled from overall datasets and have no intersection in
different periods.

We have two significant findings: First, PPO I
and PPO II show consistent trends, both steadily
improving the winning rate against the baseline
method during the optimization process. Second,
In PPO II, the winning rate initially increased more
rapidly (before 1, 000 steps), while the growth in
PPO I was more stable and persistent in all opti-
mization periods.

Intuitive analysis: Due to the fact that in PPO
II, the optimization set and training set are 11D, the
reward model can provide a clear reward signal
during optimization, enabling training to quickly
achieve positive optimization; conversely, In PPO
I, while the optimization and evaluation sets are
IID, they are OOD with the training set, making
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Figure 7: The winning rates of DMoERM against other
ensemble methods in OOD optimization.
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the reward signal is not such clear and strong, but
advantages can gradually be reflected in the contin-
uous optimization process.

D.4 Annotation Quantitative Experiment

Since our method requires more annotation costs,
to provide a more comprehensive evaluation of our
method, we quantified the annotation consumption
and maintained consistency between our method
and the baseline method in terms of annotation
consumption. In this experiment, we compared
DMoERM-w/o-Outer with other baseline models
in all three model sizes on the entire dataset. Due to
the need that our model requires each piece of data
5 times additional annotations on intent conformity,
logic, conversational sense, content richness, and
readability, we only randomly sample one-sixth of
the data to train our model, while other models use
all the data to control the consistency of the number
of annotations. The experimental results are shown
in Table 9.

We also recorded the performance of our
DMoERM-w/o-Outer at the end of the training
Phase 1 as DMoERM-Phasel. At this point, it is
equivalent to a Single RM trained with only one-

sixth of the data, so the effect is poor. But when the
three training phases ended (denoted as DMoERM-
Phase3), its performance improved by 9.3 percent-
age points on average and exceeded all baseline
models in three model sizes.

Note that this experiment is not very fair because
in our empirical experiments, we found that our an-
notation method only reduces the annotator’s speed
by about 10%, but can increase the annotation con-
sistency by 5 percentage points. In the experiment,
we only used one-sixth of the data, but exceeded
all the baseline methods by at least 1.4 percentage
points, indicating the compelling advantages of our
method.

D.5 Qualitative Sample

Throughout our experiments, quantitative metrics
play a pivotal role as they enable the rapid and com-
prehensive evaluation of various methods. In this
section, we offer a concise insight into the qualita-
tive aspect of the approaches discussed in this study.
Specifically, for a given prompt, responses from
the ultimate policies (n = 60,000 for BoN and
3,000 steps for PPO) of each method in Figure 5
are provided.

The main findings are as follows. Firstly, the
brevity of BoN’s response is due to the differing
manner in which policy optimization occurs com-
pared to PPO. Secondly, there are indications of
failure and overoptimization in the other ensemble
RMs. As shown in Table 11, for BoN, this mani-
fests in inadequate answers. For PPO, this means
bad answers that are incorrectly long and repeti-
tive. These are obvious signs of overoptimization.
Lastly, we observe that even in scenarios where
other ensemble RMs struggle, our DMoERM is
capable of yielding robust qualitative outcomes.
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Model Size | Single Mean WCO UWO DMoERM-Phasel DMoERM-Phase3
1.8B 58.2 624 626 62.6 54.8 64.1
7B 59.2 636 63.5 63.6 55.9 65.3
14B 60.5 64.9 65.1 65.1 57.2 66.5

Table 9: The results of labeling quantitative experiment. We record the performance of our model at the end of the
training Phase 1 as DMoERM-Phasel and at the end of three training phases as DMoERM-Phase3.

Model Size Method text role okqa skqa chat others | overall
Zero-shot GPT-4 58.9 56.1 64.7 63.5 54.8 60.1 59.5
One-shot GPT-4 61.4 599 66.5 662 584 61.7 62.3
Single 58.1 57.6 604 620 543 5H44 58.2
Mean 63.3 62.0 652 66.3 585 56.6 62.4
| SB WCO(min) 63.6 62.3 655 66.1 59.1 56.7 62.6
' UWO(mean minus std) | 63.4 61.8 654 66.5 59.0 56.6 62.6
DMoERM-w/o0-Outer | 68.3 66.5 70.1 71.3 63.2 61.3 67.0
DMoERM 71.9 682 738 742 664 630 | 70.7
Single 59.1 5H8.7 61.7 63.2 553 553 59.2
Mean 64.7 63.1 66.6 674 594 578 63.6
7B WCO(min) 644 634 66.6 672 593 5H7.7 63.5
UWO(mean minus std) | 64.4 63.4 66.7 67.0 593 57.8 63.6
DMoERM-w/o-Outer | 70.0 679 71.6 72.9 645 624 68.4
DMoERM 73.2 696 752 755 676 643 | 721
Single 60.2 59.9 62.7 646 56.1 56.6 60.5
Mean 66.0 64.7 68.1 68.7 60.6 5H8.7 64.9
14B WCO(min) 66.3 64.6 684 685 60.6 58.8 65.1
UWO(mean minus std) | 66.0 64.7 68.1 68.6 60.6 58.8 65.1
DMoERM-w/o-Outer | 70.8 694 73.0 73.9 65.7 63.7 69.6
DMoERM 74.7 71.2 767 770 69.1 655 | 732

Table 10: The consistency of different model sizes with human preferences. In each model size, the best
performance is in bold and the second best is underlined. We can observe that our DMoERM and DMoERM-w/o-
Outer consistently achieve the best and second-best results at different model sizes.
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Table 11: A set of example answers to an evaluation query.

Query

WA RE R S RO FE RN E T B
A H

How to briefly describe the aroma of the
dim sum floating out of the box

Single
(BoN)

HRITIF RO ER, IME IS BRI
F—FERH R, EURAORE 07 Bk b
T, WREOEZERER .

When you open the snack box, the aroma will float
out like a kite, making your taste buds seem to jump
on the clouds and making you feel happy.

Mean
(BoN)

T RbE, IR ARE SR —R
e T EAERE, JhEEwE E
EATESSHBER, L AARERL=
N

Open the box of refreshments, the pleasant aroma
lights up the whole room like a beam of light, as if
you can see them jumping in the air, which makes

people can’t help salivating.

WCO
(BoN)

—BESNETERH, RO
AR, AR AR T ik, #&
BT B -

A fragrance floats out of the box, which is the aroma
of refreshments, making people’s saliva flow out,

and desire condenses in the air.

Uwo
(BoN)

T & F—AI85. SONE
A—2&R, SR=H, BEEZS
4 ATRRERR -

The instant I opened the box, the aroma of the dessert
spread in the air like a wisp of spring breeze lin-
gering around for three days, which made people’s

mouths water.

DMoERM
(BoN)

The aroma of dim sum overflows from the box,
tempts the taste buds, fills the room with fragrance,

and intoxicates people.

Single
(PPO)

AOET BFE RS — ML S R
¢, RREM AT BRI EITF -
WS & R, X AE R UK
T T &, EAEZRTIR N
8], JT 85 %% 2 3w DU JE RS - e AR
—NEENDLL, PIHFF, HEL
VFHIRBEM AR, —m— IRk
K. SLR—ZEFEHELMME, LA
OAERER, FEEIEER T Ly, ZfE
BT R € - ERIPAES S BRER -
Jie#e , 58— >R 50 4 R R A
ZIEE T AT R B B T £

el

7

The dim sum box hides an ineffable temptation,
a unique sweet aroma that belongs exclusively to
desserts. With the lightest lifting of the lid, this fra-
grance seems to be endowed with life, no longer
confined to its narrow space and begins to slowly
diffuse outwards. Like a shy maiden emerging from
her shell, it tentatively and bashfully peeks out, lit-
tle by little. At first, it’s a mere hint of sweetness
that leaves one puzzled, but it gradually strengthens
and becomes clearer and more definite. It seems to
dance and swirl in the air, intimately caressing every
olfactory cell, evoking a deep-seated yearning for

sweetness within people’s hearts.

7023

Continued on the next page



Query

WA RS HEE DR ERNE T B
A H

How to briefly describe the aroma of the
dim sum floating out of the box

Mean
(PPO)

BETRBRETIT, SO08E S B R
18 . IREARARRE, ZIRIRE,
W — 2 2 AWK IR - —FERE,
— e, RN, B — A
EhEft, FEHEZESH, ROMEE
i NBFERGR, ODAEWE -

The box opens gently, and the aroma of the dessert
instantly spreads. It is the warmth of glutinous rice,
the sweetness of red bean paste, and a trace of fresh
tea flavor. Wave upon wave, continuous and unend-
ing, like a poetic sweet melody lingering in the air,
the fragrance of the dessert makes people salivate
and feel delighted.

WCO
(PPO)

AOBERMNE T BEEME, —Ik
N— IR IR IAe, ARERERERY
FFEAMT b E%RE - B —NES
EHEHE ANEREAMEE, EAZA
FERREZ—O - X VD HIRE T,
EMERBERL, —IRX— Uk
EIE=PNIIE

The aroma of the dim sum slowly wafts out of the
box, hitting the nostrils over and over again, like
waves of the tide, constantly impacting the taste buds.
Each wave of fragrance brings tempting crunch and
sweetness, making it hard to resist taking a bite. This
is the charm of dim sum, its fragrance is like magic,

attracting people over and over again.

UWO
(PPO)

FOBIES, WEREZEIE, R
MMNEFRERF RS . —Ik, W
R, B—REG_REZSSFREH—
EENINE . BRE—H, IESNH
R TR, WETFERMHRE, —ik
R%m,%%ﬂ%E%%%ﬁ,tA
DB -

The aroma of the dim sum, like the singing of elves,
spills out of the cracks of the box in a continuous
stream. Once, twice, each time it seems to draw a
sweet arc in the air. With a gentle sniff, the aroma
is awakened again, flowing out of the box, over and
over again, like an endless melody that intoxicates

the senses.

DMoERM
(PPO)

ROBESIER, ZEMAEENE
TR, WBESST . IE R
57, IRER I, TEBERE
B PR, b ARHE S
UL, JUBEAE X (7 M AT IR A S IR T 5
i,

The aroma of the dim sum, like light smoke, es-
capes slowly from the exquisite box and pervades
the air. That sweet fragrance, as if magical, silently
tempts every olfactory cell, drawing people irre-
sistibly closer, intoxicated by this irresistible pre-

view of deliciousness.
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data_id ES

12822 XABIE
HEHE
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o APHEF & # A Gradic ES

Figure 8: The screenshot of the interface for the annotation consistency experiment. The content in the red box
is the preference selection for the five capability points. We find that removing them would lead to a drop of 5
percentage points in the overall consistency of preferences.
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Category Capability Points Chinese
personality and emotional investment | A FIERHT A
conversational sense X 15 2%
roleplay empathy ability HIERES]
manifestation of relationship traits KRN AR
personalized characteristic expression | MAEACFFAEARIE
content richness WEFEEME
conversational sense XTI
proactivity FohE
chitchat emotion expression THRFIA
empathy ability HAERET)
content richness WEFEENME
convincing ability VAR T
logic B
subjective knowledge QA viewpoint richness WEFEEE
breadth of knowledge FIRTH S
question specific R
correctness BRI
objectiveness AR
objective knowledge QA reasoning ability HEFRRE )
logic BEENE
depth of knowledge FRTEIR
question specific PR X
intent conformity BEIMFEER
expressiveness FIkRES
text creation readability Al
content richness WEFEN
logic B
intent conformity BRIMFEER
logic B
overall -
conversational sense X 1 %
(for DMoERM-w/o-Outer)
content richness WEFEN
readability Al

Table 12: The capability points partitions for each task in our experiments.
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Template | 25 ESRFIFANNEE, AWrEIS1IFIESE27E ({point}] J5 M EELF
(3217]] : {query}

([EIZ1] : {responsel}

([E&2] : {response2}

Example | /AR LAAIFANEE , FIWEE RIS 27E [RHER] JrEE 51T
RIA) « kSR E R TR

(EE1] . SREEFBAFLAEERERROAR, BEARBERT DAL
M DUR R — BT E R E:

L BRV RS A SRAR BRI P B T — (IR LA, AR A RREE AT RE 2 e 2
IRRFHIANL A JE - FEXFBILN, (RFENERZSE B OB, F& B
FEANRN H CAOR & TR NACHERET AR - 2. 25T ). BRE AR Em
WEGF LRI, BlinEM - EHRKESE . GRIREFPIRAEREF, ATLUE
PR TR, GE—TEFED . ERFEERIE, MY TIERRETTIEMN
IRAVEAME & Rk, AR TSI AR - 3. 0L T BIREA RER
K—ERVLHEES, FIINRE TR RTINS - IRIREEITTER
SOXFETT, AT B YRR BB S RO E WA B o 4. DARK: FE—1 TIE
B, ATLONT A ST RIRS, TR REISANERE, X0 T AR & et R AR H A
Bhey. B, BIfEmIGESTET), MFHERATREHRSFRRAOE, FREGFHR
L& -

B2, AP~ R BT EEES R, FERGEeHEE CHPM L
ZHTES s DHEHENFEZ T HAR - WRRERIR, SRIFREMIE Y], AT
RS B CHRN -

(EIE2] . ZBEFROED, E2HEFRERLE - IFERLBERRE . 7
[EZSX AN R 2 ff, AL T NREBREFRT, @58 ERIGEE RS
BEHUGITRERIESTE /12 Ao, R, REEREAEN TIENSESS
R? A8, R BETROHENR I BE T AR SRR £ 79

WREFRIF AL, R LUETRT 12 H BT TAEERE RO E 1, A B 2 — SR B AR Y
BFE] . SR, ERIXEET RIS G IRTREF LES, HAERIH T —HT
TERERER, ATRES HINEL S B, X R ARSI & B A RE S — 252 -
FrLL, BEBVAREBRE Z 8T, REFR SN &L TS, M0 LUIRYE
PRI BB IR A AR - [FIRS, WRIREEE DR A, Haf RSk
PRI B -

FERER T, EIE2LEE 1L -

EE1BRFEMIIE T — RN K TRENEFORZLRAELZE, HHEEE
ST CER TR R, BOXHER S ERE S o AN, BB 1RE BER N IR
)& I e B AR, MRS H T — MR, X EEXHEF AT fE A5 H
3 o

MEZ T, EE2EEMNREE MR E %, =BT —SLE R REUR T BRI E R
RO, XA EMERERER, BB TR ISR . 55, BEHHT
THREERIFIEE FERGAE T BRI, WEEIRLEIEE RS 5RO E &R
HWHY o X ICE R, W ERIEN, BoRHEE K HE 0] A R R TR A
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Table 13: The Chinese original version of the prompt for calling public LLM API to get the comparison on a single
capability point. Note that we do not attach historical information, for it can greatly reduce the cost and is sufficient
to achieve satisfactory results in our experiments. We determine the model’s choice by identifying whether the
number 1 or 2 appears first in its response.
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Template

Given a query and two responses, determine which of response 1 and response 2 is better in terms of [{point}].
[Query]: {query}
[Response 1]: {responsel }

[Response 2]: {response2}

Example

Given a query and two responses, determine which of Response 1 and Response 2 is better in terms of
[conversational sense].

[Query]: Do you think I should quit my job without having another one in hand

[Response 1]: Quitting a job without a backup plan and being laid off as part of a company’s restructuring are
quite different and depend on personal circumstances and career planning. Here are some factors to consider:
1. Career Planning: If your career planning includes a long-term job, quitting abruptly might affect your future
career development. In this case, you should carefully consider your career plans and how to address current
issues without jeopardizing your long-term prospects. 2. Financial Pressure: After leaving a job, you may
face financial pressures such as rent or credit card bills. If you are not in a good financial situation, you might
consider finding a short-term job to alleviate financial stress. However, keep in mind that short-term jobs may
not meet your career development needs and may not be conducive to establishing a long-term career plan. 3.
Psychological Pressure: Resigning might bring certain psychological pressures, such as the loss of a job and
changes in your social circle. If you feel unable to cope with this pressure, consider taking a break or seeking
psychological counseling for support. 4. Personal Growth: In a job, you can continuously learn and grow,
accumulating experience and skills, which is very beneficial for future career development. Therefore, even
in the face of financial pressure, it is necessary to maintain a positive attitude and seek better development
opportunities.

In summary, quitting a job without a plan and being laid off due to company restructuring both require careful
consideration, taking into account factors such as your career planning, financial pressure, and psychological
stress. If you decide to leave, it is best to plan ahead to minimize the impact on yourself.

[Response 2]: Considering your concerns, deciding whether to resign without another job offer in hand is indeed
a decision that requires careful deliberation. Before answering this question, I'd like to first understand your
current financial situation. Are you equipped with enough savings to handle the potential financial pressures
after resigning? Additionally, are there more suitable job opportunities waiting for you in your career plan?
And, are you mentally prepared to handle the stress that may come with resigning without a backup plan?
The advantage of resigning without a backup plan is that you can temporarily escape the pressures of your
current work environment, allowing yourself some time to rest and reflect. However, the risk is that it can lead
to financial stress, and during the process of finding your next job, there may be a gap in your career which
could impact your future professional development.

Therefore, before making a decision, I suggest that you consult with career counseling experts who can provide
more specific advice based on your situation. Also, if you are feeling significant stress, consider seeking help
from a mental health professional.

In terms of conversational sense, Response 2 is better than Response 1.

Response 1, while detailing a list of factors for the questioner to consider regarding whether to quit without
a backup plan, reads more like an analytical article or a list of suggestions, lacking interactive and targeted
dialogue. Moreover, Response 1 did not directly address the questioner’s emotions or specific circumstances;
instead, it offered general advice, which may seem somewhat distant in a conversation.

By contrast, Response 2 begins by addressing the questioner’s concerns and poses specific questions to
understand their situation, which is closer to the form of a dialogue and helps to establish empathy and
understanding. Then, Response 2 also analyzes the pros and cons of quitting without a plan and concludes with
concrete suggestions, such as consulting career counseling experts or seeking mental health counseling. These
suggestions are more specific and actionable, showing a deeper understanding of the questioner’s issue.
Therefore, Response 2 performs better in terms of conversational sense.

Table 14: The English translated version of the prompt for calling public LLM API to get the comparison on a
single capability point. Note that we do not attach historical information, for it can greatly reduce the cost and
is sufficient to achieve satisfactory results in our experiments. We determine the model’s choice by identifying
whether the number 1 or 2 appears first in its response.
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