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Abstract

We introduces LLaST, a framework for build-
ing high-performance Large Language model
based Speech-to-text Translation systems.We
address the limitations of end-to-end speech
translation (E2E ST) models by exploring
model architecture design and optimization
techniques tailored for LLMs. Our approach
includes LLM-based speech translation archi-
tecture design, ASR-augmented training, mul-
tilingual data augmentation, and dual-LoRA
optimization. Our approach demonstrates su-
perior performance on the CoVoST-2 bench-
mark and showcases exceptional scaling capa-
bilities powered by LLMs. We believe this
effective method will serve as a strong baseline
for speech translation and provide insights for
future improvements of the LLM-based speech
translation framework1.

1 Introduction

The speech-to-text translation (ST) task, which
transcribes spoken language into written text in
a different language, is pivotal for bridging com-
munication barriers. This capability has a wide
array of applications, including facilitating global
communication, enabling automatic subtitling, and
aiding in language learning.

Conventional ST systems are typically com-
posed of two distinct components: an automatic
speech recognition (ASR) module that transcribes
spoken speech into written text in the source lan-
guage, and a machine translation (MT) module that
subsequently translates this text into the target lan-
guage. These modules can be trained using paired
ASR and text-to-text translation data, significantly
enhancing the overall performance of ST systems.
Despite their modular design, cascade systems are
prone to error accumulation, where inaccuracies
from the ASR stage are compounded in the MT

1We release the data, code and models in
https://github.com/openaudiolab/LLaST

phase, often leading to sub-optimal translations.
Recently, the focus has shifted towards the devel-
opment of end-to-end speech translation (E2E ST)
models that bypass the need for separate automatic
speech recognition (ASR) and machine translation
(MT) modules by directly converting spoken in-
put into text in the target language. Nonetheless,
these approaches often necessitate extensive train-
ing datasets and are contingent upon sophisticated
model architectures to achieve strong performance.

Speech translation is intrinsically linked to nat-
ural language processing (NLP), as it involves the
conversion of spoken language into written text in a
target language, necessitating a deep understanding
of both the source and target languages’ linguistic
structures and semantics. The unprecedented ca-
pabilities that large language models (LLMs) have
demonstrated across a variety of NLP tasks (Tou-
vron et al., 2023a,b; Achiam et al., 2023) have
opened up new possibilities to construct potent
speech translation systems by leveraging these
LLMs as a foundation. Recent research has seen
some preliminary attempts exploring this direc-
tion (Chu et al., 2023; Wu et al., 2023; Huang et al.,
2023). Despite these advancements, the question
remains on how to most effectively harness the vast
potential of LLMs to develop a high-performance
ST system in an efficient manner, without compro-
mising on quality or scalability.

In this study, we focus on the exploration of best
practices for constructing an effective speech trans-
lation system powered by Large Language Models
(LLMs), which we term LLaST. The paper delves
into the core aspects of the development process,
specifically the model architecture design and opti-
mization techniques. Our exploration begins with
the creation of a minimalist model architecture, ex-
amining the selection of key modules such as the
speech encoder and LLMs. Subsequently, we inves-
tigate training strategies, including ASR-augmented
training and dual-LoRA optimization. Moreover, to
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deepen our understanding of scaling laws in LLM-
based ST, we also scrutinize the impact of model
size variations. Through these concerted efforts,
we aim to uncover insights that can significantly
enhance the performance and training efficiency of
LLaST.

Our contributions are listed as follows.
• We explore the LLMs-based speech translation
method, including model architecture design, train-
ing strategies, and data recipe.
• Extensive evaluations demonstrate the superiority
of our approach, surpassing the previous SOTA
methods (Barrault et al., 2023) and achieving 45.1
BLEU on the fr→en test set of CoVoST-2.
• We are dedicated to making all data recipes, train-
ing methodologies, and model weights associated
with LLaST openly accessible to the community.
By doing so, we foster transparency, collaboration,
and advancement in the field of LLM-based speech
translation technology.

2 Related Work

2.1 Cascaded Speech Translation

Historically, the construction of speech translation
systems has been approached in a cascading fash-
ion, incorporating both an ASR and an MT subsys-
tem (Stentiford and Steer, 1988; Ney, 1999; Naka-
mura et al., 2006). The procedure involves initially
converting the input speech into text in the source
language, which is subsequently translated into
the target language. The primary objective of this
line of research has been to mitigate error accumu-
lation, including the use of multiple recognition
outputs and the development of robust MT mod-
els (Casacuberta et al., 2008; Kumar et al., 2014;
Sperber et al., 2017). Sperber et al. (2019b) in-
troduces a self-attention mechanism to handle the
lattice inputs, and Zhang et al. (2019) proposes a
lattice transformer, equipped with a controllable
lattice attention mechanism, to derive latent repre-
sentations. Lam et al. (2021) establishes a feedback
cycle in which the downstream performance of the
MT system serves as a signal to enhance the ASR
system via self-training.

2.2 End-to-End Speech Translation

The development of end-to-end speech translation
(E2E ST) models, which bypass the requirement
for intermediary stages such as ASR outputs and
lattices, has been a significant stride in mitigating
error propagation. Research indicates that these

E2E ST models demonstrate encouraging results
and offer performance on par with cascaded mod-
els (Sperber et al., 2019a; Ansari et al., 2020; Ben-
tivogli et al., 2021; Ye et al., 2021). Moreover,
these models present additional benefits such as
lower latency and the potential to be applied to
languages that lack a written form (Bérard et al.,
2016).

Data scarcity and the modeling burden are recog-
nized as two significant obstacles impeding the per-
formance of E2E ST (Xu et al., 2023). Firstly, the
intrinsic complexity of speech translation, which
integrates transcription and translation, presents a
challenge in optimizing a single model to accom-
plish these cross-modal and cross-lingual tasks in
one step. Secondly, ASR datasets are typically less
extensive than MT datasets, and the extension to ST
datasets further exacerbates this size discrepancy.
To address this issue of data scarcity, researchers
have employed strategies such as data augmenta-
tion (Tsiamas et al., 2023; Lam et al., 2022), pre-
training (Wang et al., 2020c; Ao et al., 2022), and
knowledge distillation (Liu et al., 2019), which
leverage external datasets.

To alleviate the modeling burden, a variety of
multi-task learning strategies have been investi-
gated (Zhang and Yang, 2018). Originating from
the multi-task encoder-decoder architecture (Weiss
et al., 2017), some researchers have chosen to split
the decoder into two separate components (Liu
et al., 2020a; Anastasopoulos and Chiang, 2018):
one dedicated to transcription and the other to trans-
lation. Parallel research efforts (Liu et al., 2020b;
Cheng et al., 2023) have similarly decoupled the
encoder, with further work showing that a shared
encoder can be independently partitioned (Tang
et al., 2021; Ye et al., 2022) to make better use of
ASR data. In addition, non-autoregressive (NAR)
modeling has been explored as a means to decrease
latency (Inaguma et al., 2021; Chuang et al., 2021).

Significantly, recent advancements have also
delved into multi-tasking within the context of
large-scale training, leading to impressive results
on ST benchmarks. For instance, Whisper (Rad-
ford et al., 2023) and SeamlessM4T (Barrault et al.,
2023) have incorporated 680k and 470k hours of
multilingual speech data in their training.

2.3 LLM-based Speech Translation
Inspired by the robust linguistic capabilities of
LLMs (Brown et al., 2020; Touvron et al., 2023b),
recent initiatives have sought to harness the
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Figure 1: Model Architecture of LLaST We introduce dual-LoRA in the optimization, and keep weights of the
speech encoder and LLM frozen. We use a 3-layer MPLs for adaptor and fine-tune its parameters together with
dual-LoRA.

power of LLMs to address various speech tasks,
aided mainly by instruction tuning. The prevail-
ing method involves integrating an LLM (back-
end) with a speech encoder (frontend). Models
like LauraGPT (Chen et al., 2023) and Qwen-
audio (Chu et al., 2023) support a range of multi-
modal speech tasks, demonstrating performance
comparable to task-specific E2E ST models. Vi-
oLA (Wang et al., 2023) employs a neural codec
model (Défossez et al., 2022) to discretize the
speech input while tuning the LLM. Similarly, Au-
dioPaLM (Rubenstein et al., 2023) discretizes the
speech input and achieves commendable results on
CoVoST-2 (Wang et al., 2020b).

Salmonn (Tang et al., 2023) employs two en-
coders as the frontend and uses LoRA (Hu et al.,
2021) for efficient fine-tuning. However, the extent
of its performance improvement on ST remains
largely unexplored. Some recent studies (Wu et al.,
2023; Zhang et al., 2023a) specifically target the ST
task and delve into efficient tuning strategies, but
their performance enhancements have been some-
what limited. In an industrial study focusing on
translation between Chinese and English, Huang
et al. (2023) additionally incorporates the Chain-
of-Thought (CoT) technique (Wei et al., 2022), en-
abling a step-by-step approach using LLMs.

3 Method

This section presents our method in detail. We
begin by introducing the problem setting of the
speech-to-text translation task in Sec. 3.1. Then,
we explain the structure of the proposed model in
Sec. 3.2, followed by the description of the training

and inference processes in Sec. 3.3.

3.1 Problem Setting
We now present the problem setting of speech trans-
lation. Given a speech translation dataset D =
{(S,Ysrc,Ytgt)}, the source language speech S’s
acoustic features (e.g., mel-spectrogram) are de-
noted as Xs, and we have:

Xs = Fa(S), Xs = {x1, x2, . . . , xT }

where Fa is the acoustic feature extraction opera-
tion, and T is the timesteps of the input features.
Ysrc and Ytgt are the transcripts of S in the source
and target languages, respectively. The goal of
speech translation is to generate the prediction text
of target language Ŷtgt from the source speech S.

We can formulate the whole process as:

Ŷtgt = F(S)

and F represents the entire ST system. Perfor-
mance of ST system is typically assessed by com-
paring the predicted output Ŷtgt with the ground
truth Ytgt using metrics like BLEU (Papineni et al.,
2002).

3.2 Model Architecture
Our objective is to develop the LLaST model with
a simple architecture, as depicted in Figure 1. The
design of LLaST comprises three key components:
a speech encoder to process the input speech, an
adaptor that projects these speech features into the
compatible feature space for Large Language Mod-
els (LLMs), and finally, a decoder-only LLM for
multi-modality decoding.
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Example of Speech-text Prompt for LLaST

Speech Translation Prompt: Expected Output:
<audio><AudioInputs></audio> Translate the French sentence to English. Hello world.
Transcripts of AudioInputs is "Bonjour le monde."

Automatic Speech Recognition Prompt: Expected Output:
<audio><AudioInputs></audio> Transcribe the French sentence to French. Bonjour le monde.
Transcripts of AudioInputs is "Bonjour le monde."

Figure 2: An example for training data.

Speech Encoder Acoustic features Xs encap-
sulate a wealth of information, including speaker
traits, emotions, prosody, background noise, and
more. The role of the speech encoder is to disentan-
gle these variabilities and generate robust linguistic
representations, denoted as Zs. We define this pro-
cess mathematically:

Zs = Fse(Xs)

where Fse represents the speech encoder func-
tion. Our work investigates various options for
the speech encoder, with a focus on mHubert (Hsu
et al., 2021; Lee et al., 2021) and Whisper (Radford
et al., 2023). For an in-depth analysis and discus-
sion on the speech encoder selection, please refer
to Sec. 5.1.

Adaptor The adaptor acts as a bridge between
the speech encoder and the Large Language Model
(LLM), consisting of a lightweight set of trainable
parameters. Fine-tuning these parameters aligns
speech features more effectively with the LLM’s
representation space. Its function is to project the
extracted linguistic representations, Zs, into the
embedding realm of the LLM, thus yielding Hs:

Hs = Fada(Zs)

This transformation process facilitates a smooth in-
tegration of speech data into the LLM’s text-based
context. We adopt a 3-layer multilayer percep-
trons(MLPs) for adaptor.

Large Language Model Equipped with the pro-
jected speech feature Hs, our objective is to utilize
the Large Language Model (LLM) for generating
the translated text of the original speech. To facili-
tate this, we construct a speech-text prompt input
for the LLM. The text component of this prompt,
denoted as Xq, conveys the specific translation

task instruction, such as "Translate the French
sentence into English". Post-tokenization and
embedding, Xq is transformed into the LLM’s in-
put representation, Hq. Subsequently, the LLM
generates translation predictions based on the con-
catenated speech-text features (for simplicity, we
omit bos and eos tokens in the equation below):

Ŷtgt = Fllm([Hs,Hq])

This process allows the model to fuse speech and
textual information effectively to produce transla-
tions.

In summary, the entire process can be expressed
as:

Ŷtgt = F(S) = Fllm([Fada(Fse(Fa(S))),Hq])

3.3 Training and Inference

This section delves into the optimization techniques
employed in LLaST and elucidates its inference
methodology.

Optimization with Dual-LoRA Fintuning To
enhance training efficiency, we employ the
LoRA (Hu et al., 2021) tuning method for model
optimization. This technique significantly reduces
trainable parameters by introducing trainable rank
decomposition matrices to each Transformer layer,
while keeping the pre-trained weights frozen.

In LLaST, we introduce the dual-LoRA fine-
tuning, applying LoRA separately to both the
speech encoder (S-LoRA) and the Large Language
Model (L-LoRA). This approach ensures effective
adaptation to speech translation tasks with mini-
mal parameter updates. Specifically, we perform
instruction-tuning on prediction tokens using the
original auto-regressive training objective of LLM.
For a target translation result Ytgt of length N , its

6979



Model Speech Encoder Adaptor LLM

LLaST-2B Whisper-large-v2 MLPs TinyLlama-1.1B-Chat
LLaST-8B Whisper-large-v2 MLPs Llama2-7B-Chat
LLaST-14B Whisper-large-v2 MLPs Llama2-13B-Chat

Table 1: Configurations of LLaST models. We use Whisper(large-v2) and 3 layers MLPs for all LLaST models.

probability is calculated as:

P (Ytgt|Xs,Xq) =

N∏

i=0

Pθ(yi|Xs,Xq,Ytgt,<i)

This strategy allows us to efficiently tune LLaST
without extensive retraining, maintaining both com-
putational efficiency and task-specific effective-
ness.

Training with ASR-augmentation To enhance
the performance of LLaST, we adopt the strat-
egy from prior work (Barrault et al., 2023; Rad-
ford et al., 2023) to incorporate Automatic Speech
Recognition (ASR) tasks for data augmentation
during training. Given the structural similarity
between ASR and ST tasks—both involve con-
verting speech to text, we can simply modify
the ASR prompt to match ST objectives, such
as "Transcribe the French sentence into
English". The examples of prompts are listed in
Fig. 2. This ASR-augmentation significantly boosts
the effectiveness of LLaST across various language
pairs, as detailed in Sec. 5.2.

Inference Methodology During inference, we
construct prompts in the same format as depicted
in Fig. 1. To generate translation text sequences
Ŷtgt, we employ a beam search algorithm with a
beam size of 5.

4 Experiments

In this section, we conduct a series of experiments
to validate the effectiveness of our method. We
start by detailing experimental configurations in
Sec. 4.1, followed by an overview of quantitative
results in Sec. 4.2.

4.1 Configurations

Datasets Our speech translation models are
trained and evaluated on CoVoST-2 (Wang et al.,
2020b), a large-scale multilingual dataset that sup-
ports translations between English and 15 other

languages, as well as from 21 languages into En-
glish. For monolingual experiments, we utilize
six subsets with source languages translating to
English, focusing on French-English for training
and testing. In the multilingual setup, we em-
ploy Fr→En, Es→En, De→En, It→En, Zh→En,
and Ja→En subsets and three English-to-X sub-
sets: En→Zh, En→Ja, and En→De . Audio sam-
ples are downsampled from 48kHz to 16kHz in all
experiments.

Model Architecture Tab. 1 presents the three
LLaST model configurations. Each model utilizes
a Whisper-large-v2 speech encoder, contributing
approximately 1B parameters. The adaptor is a
compact multilayer perceptron with three layers,
ingesting 1280-dimensional inputs and adjusting its
output dimensions to match those of the subsequent
LLMs. Consequently, the overall parameter count
is predominantly influenced by the LLM compo-
nent. Hence, we denote our models as LLaST-2B,
LLaST-8B, and LLaST-14B.

Hyperparameters All models are optimized
with AdamW, setting β1 = 0.9 and β2 = 0.98.
A warmup-then-linear decay learning rate sched-
ule is adopted, peaking at 0.0002. Training spans
one epoch for each model. By default, the rank
of S-LoRA (Whisper LoRA) is set to 128, while
L-LoRA (LLM LoRA) rank is 512 unless specified
otherwise. The LLaST-8B and LLaST-14B models
are trained using 32 NVIDIA A100 GPUs, each
with a batch size of 32, while the smaller LLaST-
2B model is trained on a setup consisting of 8 A100
GPUs, maintaining the same batch size per GPU.

4.2 Main Results

Comparisons with Other Models Tab. 2
presents a comparison between our proposed
LLaST models and previous methods, with Sacre-
BLEU scores evaluated across six language pairs:
Fr→En, Ja→En, De→En, Zh→En, Es→En, and
It→En. Notably, LLaST-2B outperforms Seam-
lessM4T(medium) and demonstrates competi-
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Model Parms. X→ English
French Japanese German Chinese Spanish Italian

Baseline Models
S2T_Transformer (Wang et al., 2020a) 0.04B 27.2 N/A 18.2 N/A 25.1 N/A
SpeechLLaMA (Wu et al., 2023) 7B 25.2 19.9 27.1 12.3 27.9 25.9
Whisper-small (Radford et al., 2023) 0.25B 27.3 17.3 25.3 6.8 33.0 24.0
Whisper-large-v2 (Radford et al., 2023) 1.6B 36.4 26.1 36.3 18.0 40.1 30.9
Qwen-audio (Chu et al., 2023) 8B 38.5 N/A 33.9 15.7 39.7 36.0
SeamlessM4T(medium) (Barrault et al., 2023) 1.2B 38.4 15.2 34.7 18.0 38.7 36.5
SeamlessM4T(large-v2) (Barrault et al., 2023) 2.3B 42.1 23.8 39.9 22.2 42.9 40.0

Our Models
LLaST-2B 2B 41.2 24.2 36.8 19.2 43.2 39.3
LLaST-8B 8B 44.1 24.4 40.8 23.3 45.3 42.1
LLaST-14B 14B 45.1 28.8 41.2 24.8 46.1 43.0

Table 2: Performance comparison on CoVoST-2 X→ English test set. We use SacreBLEU scores as metrics for
all experiments, the models are trained with multi-lingual data.

Speech Encoder LLM BLEU

mHuBERT TinyLlama 24.4
Whisper-base TinyLlama 28.7

Table 3: Influence of different speech encoders. For
speech encoder, mHuBERT-base(95M) and Whisper-
base(74M) share the similar model size. We use
TinyLlama-1.1B-Chat (Zhang et al., 2024) in this study.
We report SacreBLEU scores on CoVoST-2 fr→ en test
set for all experiments.

tive performance against SeamlessM4T(large-v2).
LLaST-8B significantly excels by improving upon
the Qwen-audio model of similar scale with an
impressive 5.6 BLEU point gain on the Fr→En
task. Furthermore, LLaST-14B achieves state-of-
the-art (SOTA) results, attaining a BLEU score
of 45.1 on CoVoST-2’s Fr→En subset, surpass-
ing SeamlessM4T(large-v2) by 3.0 BLEU points.
These results convincingly demonstrate the supe-
riority of LLaST and highlight the promising po-
tential of exploring LLMs for speech translation
tasks.

5 Ablation Analysis

In this section, we delve into a meticulous ablation
study and analysis of LLaST. We begin by examin-
ing the impact of model architecture in Sec. 5.1, fol-
lowed by an exploration of optimization strategies
in Sec. 5.2. Finally, we investigate the relationship
between model scale and performance in Sec. 5.3.

5.1 Model Architecture Design
Choice of Speech Encoder We experiment with
various speech encoder architectures, including

mHuBERT (Hsu et al., 2021; Lee et al., 2021) and
Whisper (Radford et al., 2023) model. For the mHu-
BERT, we adhere to the preprocessing approach
from (Dong et al., 2023; Lee et al., 2021) to extract
semantic units. For a fair comparison, we select the
Whisper-base model, which is comparable in size
to the mHuBERT model. Performances reported in
Tab. 3 indicate that the Whisper model yields supe-
rior performance, demonstrating a 4.3 BLEU score
improvement over mHuBERT. This improved per-
formance can be attributed to the fact that Whisper
has been trained on significantly more data, thus
generating more representative linguistic features.

Choice of Large Language Models We exam-
ine the impact of different large language models
within LLaST to discern how variations in language
modeling performance affect its speech translation
capabilities. We present X→en results in Figure 3.
Notably, Qwen achieves a score of 47.3 on the
en→zh test set, outperforming Llama2 (Touvron
et al., 2023a) by 4.9 BLEU points. Similarly, In-
ternLM2(Cai et al., 2024) surpasses Llama2 by
5.0 BLEU points. These findings suggest that
Chinese-oriented LLMs notably enhance perfor-
mance on Chinese-related ST tasks, exemplified by
En→Zh and Zh→En. The LLaST model, when cou-
pled with Llama2, demonstrates exceptional per-
formance particularly in the Fr→En and De→En
language pairs. This intriguing observation under-
scores the potential of LLM-based ST approaches,
as they allow for effortless integration of diverse
LLM strengths tailored to specific languages or
tasks.
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Figure 3: Influence of different language models. We use Whisper-large-v2 as speech encoder and report
SacreBLEU scores on CoVoST-2 test set for all experiments.

Figure 4: Influence of different LLMs and ASR-
augmentation. We report SacreBLEU scores on
CoVoST-2 test set for all experiments.

5.2 Optimization

Training with ASR Augmentation Automatic
Speech Recognition (ASR) is a task akin to speech
translation, as both involve converting speech into
text. Prior research has leveraged ASR tasks as
auxiliary objectives for ST training (Zhang and
Yang, 2018; Ye et al., 2022; Zhang et al., 2023b),
or used models pre-trained on ASR data (Wang
et al., 2020a). In LLaST, we adopt this concept
and incorporate ASR tasks to optimize LLaST per-
formance. An example of the speech-text prompt
structure can be found in Fig. 2, where ST and ASR
samples are randomly mixed during training, with
the focus remaining on the ST task at inference
time. The results presented in Fig. 4 demonstrate
the efficacy of ASR augmentation in optimizing
LLaST. We observe across nearly all test sets that
ASR augmentation improves ST performance, sug-
gesting that leveraging ASR or multi-task training
within LLM-based ST frameworks is a promising
direction with significant potential for future work.

Speech Encode Multi-Ling. BLEU

Whisper-large-v2 % 42.5
Whisper-large-v2 ! 44.1

Table 4: Study of training with multilingual data. We
use Llama2-7B-Chat for LLMs and report SacreBLEU
scores on CoVoST-2 fr→ en test set for all experiments.

Multilingual Data Augmentation In our exper-
iments, we explore both monolingual and multi-
lingual settings. Specifically, for the monolingual
setup, we employ the Fr→En language pair. In
the multilingual scenario, we introduce additional
language pairs while maintaining the Fr→En data
identical to that in the monolingual experiment.

The results presented in Tab. 4 reveal that incor-
porating other language pairs indeed benefits the
Fr→En translation task, with a 1.6 BLEU score
improvement observed upon adding multilingual
data augmentation. This finding aligns with similar
phenomena reported in LLM research (Team, 2023;
Zeng et al., 2022), where exposure to multilingual
corpora has been shown to enhance the language
modeling capabilities of these models.

Dual-LoRA Optimization We investigate the
impact of employing dual-LoRA for both speech
encoders and large language models. In the ab-
lation experiments, we utilize Whisper-large-v2
and Llama2-7B. The results from scenarios with-
out any LoRA, with LoRA applied only to Whisper,
LoRA applied only to Llama2, and dual-LoRA are
reported in Table 5. From these outcomes, it is
evident that even with a lightweight adaptor, lever-
aging a strong speech encoder and LLM can yield
commendable performance. We also discover that
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Adaptor S-LoRA L-LoRA BLEU

! % % 40.5
! ! % 41.3
! % ! 43.6
! ! ! 44.1

Table 5: Ablation study of dual-LoRA optimization
strategy. S-LoRA means LoRA used in Whisper, and L-
LoRA means the LoRA used in LLM. We use Whisper-
large-v2 and Llama2-7B-Chat for speech encoder and
LLMs, respectively. And we report SacreBLEU scores
on CoVoST-2 fr→ en test set for all experiments.

applying single LoRA to either Whisper or Llama2
separately leads to substantial gains, improving
scores from 40.5 to 41.3 and 43.6, respectively.
More notably, when dual-LoRA is used to jointly
optimize both speech encoder and large language
model, an additional improvement is achieved, cul-
minating in a 44.1 BLEU score on test set.

5.3 Impact of Model Scale
Different Size of Speech Encoder We maintain
a constant language model, Llama2-7B, and vary
the size of Whisper models acting as speech en-
coders to examine the effect of encoder size on per-
formance. The range of encoder sizes spans from
40M to 800M parameters. As shown in Table 6,
we observe that as the encoder size increases, the
BLEU score of the model consistently improves;
however, the rate of improvement diminishes with
each incremental increase in size. The base en-
coder achieves a BLEU score of 37.0, while the
large encoder attains a peak score of 44.1. This
considerable leap underscores the importance of
scaling up speech encoders for better speech-to-
text translation. However, future research should
consider the trade-offs between model size, com-
putational efficiency, and overall performance to
strike the right balance for practical applications.

Different Size of LLMs We further investigate
the impact of varying LLM sizes on speech trans-
lation performance. With the speech encoder con-
sistently set as Whisper-large-v2, we assess three
different scale LLMs: TinyLlama-1B, Llama2-7B,
and Llama2-13B. The outcomes are presented in
Tab. 2. Our findings reveal that there is a positive
correlation between the size of the language model
and the BLEU scores across all test sets. As the
capacity of the LLM increases, so does the overall
performance in terms of translation quality, indicat-

Speech Encoder Encoder Size BLEU

Whisper-base ∼40 M 37.0
Whisper-small ∼120 M 41.2
Whisper-medium ∼390 M 43.1
Whisper-large-v2 ∼800 M 44.1

Table 6: Ablation study of model size of Whisper
model. We use Llama2-7B-Chat for LLM and report
SacreBLEU scores on CoVoST-2 fr→ en test set.

ing that larger models can capture more nuanced
linguistic patterns and generate more accurate trans-
lations.

Comparison between the Encoder Scaling and
Decoder Scaling Given the Tab. 6 and Tab. 2,
we observe some interesting phenomena. Despite
Whisper-small+Llama2-7B-Chat and LLaST-2B
demonstrating nearly equivalent performance on
the fr->en subset, the former operates with approx-
imately 7B parameters, whereas LLaST-2B func-
tions with only about 2B parameters. This suggests
that, in terms of parameter efficiency, scaling the en-
coder is a more effective strategy. It also indicates
that, in these experiments, the encoder may play a
more significant role. Meanwhile, the performance
of the LLM-based system has yet to converge with
respect to scale. To draw more comprehensive
conclusions, we may need to continue scaling up
the Whipster model and experiment with LLMs
larger than 13B. For instance, in the domain of
vision-language models, LLaVA (Liu et al., 2023)
and InternVL (Chen et al., 2024) demonstrate that
achieving optimal performance with a larger vi-
sion encoder (6B) necessitates employing corre-
spondingly larger LLMs, such as Yi-34B (AI et al.,
2024).

6 Limitation

While our study has yielded significant findings,
it is crucial to recognize the limitations that may
impact the interpretation and broad applicability
of our results. Although we delved into the ar-
chitecture design and optimization strategies, our
reliance on a relatively narrow data source and the
use of short voice samples could potentially affect
the generalizability of our outcomes. To address
this, future research will expand to encompass a
more diverse array of data. Moreover, due to the
constraints of our current resources, we have not
ventured into exploring larger language models or
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a broader range of language pairs in this study.
In speech translation, LLaST’s use of LLMs

raises concerns in actual application as teh follow-
ing: (a)Probabilistic inaccuracy, mistranslations
may occur due to nuances or dialects, impairing
accuracy and cultural relevance. (b)Data imbal-
ances, insufficient representation in training data
can lead to biased translations or reduced effective-
ness for underrepresented groups. (c)Deployment
challenges, large model sizes and complexity may
cause latency, high energy usage, and device com-
patibility issues. (d)Harmful content generation,
despite post-processing, risks persist; ongoing mon-
itoring, filter refinement, and expert collaboration
are needed.

7 Conclusion

We presents the development and analysis of
LLaST, a novel speech translation model that har-
nesses LLM in this work. The study demon-
strates that integrating well-tuned speech encoders
like Whisper with different sizes of LLMs signifi-
cantly improves speech-to-text translation perfor-
mance. Through meticulous ablation studies, it is
shown that applying dual LoRA optimization to
both speech encoders and LLMs leads to substan-
tial gains in BLEU scores. Additionally, experi-
ments confirm that increasing the scale of either
the speech encoder or the LLM positively impacts
performance, though the rate of improvement de-
creases as size increases. Furthermore, incorporat-
ing ASR augmentation and multilingual training
further enhances the model’s performance on spe-
cific language pairs. Overall, LLaST underscores
the potential of large language models for advanc-
ing speech translation tasks and offers valuable
insights into their effective integration.

Ethical Considerations

We use the public LLMs to build LLaST, the LLMs
may produce unexpected outputs due to its size
and probabilistic generation paradigm. For exam-
ple, the generated responses may contain biases,
discrimination, or other harmful content. Addtion-
ally, we use ChatGPT and Grammarly to polish the
writing.
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