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Abstract

Verifying a question’s validity before answer-
ing is crucial in real-world applications, where
users may provide imperfect instructions. In
this scenario, an ideal model should address
the discrepancies in the query and convey
them to the users rather than generating the
best possible answer. Addressing this require-
ment, we introduce a new compositional vi-
sual question-answering dataset, VISREAS,
that consists of answerable and unanswer-
able visual queries formulated by traversing
and perturbing commonalities and differences
among objects, attributes, and relations. VIS-
REAS contains 2.07M semantically diverse
queries generated automatically using Visual
Genome scene graphs. The unique feature
of this task, validating question answerabil-
ity with respect to an image before answer-
ing, and the poor performance of state-of-the-
art models inspired the design of a new mod-
ular baseline, LOGIC2VISION that reasons
by producing and executing pseudocode with-
out any external modules to generate the an-
swer. LOGIC2VISION outperforms generative
models in VISREAS (+4.82% over LLaVA-1.5;
+12.23% over InstructBLIP) and achieves a sig-
nificant gain in performance against the classi-
fication models.1

1 Introduction

In visual question answering (VQA), validating
question authenticity with the corresponding image
and then reasoning over it is an important require-
ment in real-world application dynamics where
users may make errors in judgment, leading to
invalid queries. Confirming a question’s validity
becomes pivotal to maintaining consistency, rectify-
ing mistakes, and preventing misguided responses
(Rajpurkar et al., 2018). Following the prior VQA

datasets’ (Goyal et al., 2017; Krishna et al., 2016;

1Code and data at https://github.com/RE-N-Y/
visreas.git
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Question: What color do the bags and the seat to the right of the green bush share in the image?

Reasoning Steps:

 selected_bag = select(bag) # None

 selected_bush = select(bush) # bush

 filtered_bush = filter_color(green, selected_bush) # green bush

 related_seat = relate(seat, to the right of, filtered_bush) # seat

 colors = query_color(selected_bag, related_seat) # [None, white]

 result = common(colors) # None

Answer: The question itself is problematic (No bags in the image)

Answer Generation

Figure 1: Overview of VISREAS dataset construction
process. Using scene graphs, we cluster objects (or-
ange), relations, and attributes of the related objects
(blue) based on the attribute of the corresponding ob-
jects (orange). Then the question engine takes each
template as input and traverses all possible clusters to
generate the query as well as the reasoning steps. Each
function in the reasoning steps can return NONE if any
object, attribute, or relation is absent in the image.

Hudson and Manning, 2019b) focus on answer-
able questions only, a system trained solely for
answerable questions may exhibit unstable behav-
iors when faced with unanswerable queries. For
instance, a delivery robot receiving an incorrect
address but a valid instruction like “place the
package by the yellow door” might overlook
the error unless prompted to reevaluate its deci-
sion. In contrast, presuming the correctness of the
query would likely lead to unpredictable behaviors.
Therefore, a reliable and responsible system should
be able to question the validity of the instruction it
receives before acting upon it.

However, aligning questions with the region of
interest in the image breaks down visual reasoning
task into perception (object detection and scene
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representation learning) and reasoning (question
interpretation and inference grounded in the scene).
Datasets and models proposed to date have shown
significant improvement in the detection task which
therefore improved the perception system (Goyal
et al., 2017; Krishna et al., 2016; Tan and Bansal,
2019), but they face critical vulnerabilities due
to the lack of generalities in the datasets (Zhang
et al., 2016a; Agrawal et al., 2016). Recent datasets
(Johnson et al., 2017; Selvaraju et al., 2020; Hud-
son and Manning, 2019b) encourage reasoning be-
yond surface-level object recognition and focus on
multi-step inference. But they tend to reason about
object relations (often questions revolving around
single object) instead of reasoning over clusters of
objects in the image that share common attributes
or relations. Reasoning over general sets of ob-
jects requires both identifying objects and under-
standing their attributes and relations.Where prior
scene-graph based work assumes reasoning follows
from traversing a single path to generate an answer,
our goal is to establish a multi-hop approach of
identifying cliques with shared properties.

Bridging the gap in prior benchmarks, we intro-
duce a new dataset, VISREAS (Visual Reasoning),
for studying reasoning over commonalities and dif-
ferences across objects. The unnatural assumption
in the current VQA datasets - “a correct answer
for every question” causes models to produce an
answer even when the question is inapplicable and
has no possible answer. To ensure that models ver-
ify the consistency of question text with the image
before answering, we curate questions that have
no answer given the image by altering relations
and attributes among the objects. We design a
question generation engine that takes the informa-
tion about objects, attributes, and relations from
the Visual Genome scene graphs (Krishna et al.,
2016) and finds common features shared among
multiple objects. Based on this retrieved informa-
tion, we generate 2.07M unique questions covering
vast semantic variations. Each question is paired
with a scene graph and a semantic program that
specifies the series of reasoning steps needed to be
performed to produce the answer. Our generated
questions require visual reasoning abilities such
as comparing, differentiating, counting, clustering
objects, and performing logical reasoning. Most
importantly, unlike other VQA datasets, VISREAS

enforces the VQA models to verify the information
in the question with the image in each reasoning

step before predicting an answer.
We find existing VQA models less robust in

the reasoning and unanswerable settings presented
by VISREAS. Motivated by the shortcomings of
existing models, we propose a new architecture,
LOGIC2VISION that has been trained to produce
logical reasoning steps from the query at first and
then predict answers based on the reasoning steps
and the image. Unlike prior generative models,
LOGIC2VISION is compute and cost-efficient as
it does not require any external expensive APIs or
modules and solely relies on the reasoning capa-
bilities of visual language models (VLM). Exper-
iments on VISREAS shows that LOGIC2VISION

outperforms the current fine-tuned VQA models:
obtaining 66.20% (+4.82% over LLaVA-1.5 (Liu
et al., 2023), +12.23% over InstructBLIP (Dai et al.,
2023)) accuracy on VISREAS.

In short, our contributions are twofold:

• We introduce VISREAS, a dataset containing
complex yet natural reasoning. Our dataset
makes the first step towards developing reliable
VLM adaptable to real-world scenarios where
user instructions may not always be impeccable.

• We present LOGIC2VISION, that aims to han-
dle spatial reasoning by executing consecutive
pseudocode with verification in each step.

2 Related Works

Recent years have witnessed tremendous progress
in visual understanding. Multiple attempts have
been made to mitigate the systematic biases of
VQA datasets (Goyal et al., 2017; Zhang et al.,
2016b; Agrawal et al., 2018; Johnson et al., 2017),
but they fall short in providing an adequate solu-
tion: Some approaches operate over constrained
and synthetic images (Zhang et al., 2016b; Johnson
et al., 2017), neglecting the realism and diversity
natural photos provide. Suhr et al. (2019) intro-
duced a dataset for reasoning about semantically-
diverse natural language descriptions of images in
the form of a classification task. While the dataset
exhibits diverse semantic phenomena, this task
rarely requires much beyond a single type of object
recognition and its associated relation and attribute.
Unlike these datasets, VISREAS is open-ended
and consists of both unanswerable and answer-
able queries based on the similarity/dissimilarity
of multiple objects in the image. VISREAS jointly
evaluates VQA models’ alignment, multihop rea-
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soning, and verification ability which cannot be
approximated by simply finding the most likely
object/relation/attribute to answer the question.

Recent transformer-based models have (Tan and
Bansal, 2019; Lu et al., 2020; Nguyen et al., 2022)
achieved promising performance on visual reason-
ing tasks. Yet, these models are prone to repro-
ducing spurious correlations without accurately
learning true causal relations (Agrawal et al., 2016;
Jia and Liang, 2017; Tenenbaum, 2018). Neural-
symbolic methods (Andreas et al., 2016; Hu et al.,
2017; Hudson and Manning, 2018, 2019a) explic-
itly perform symbolic reasoning on the object and
language representations. These models offer mod-
ularity and interpretability in the reasoning process.
However, as module parameters are usually de-
rived solely from end-task supervision, there is a
potential for the program to deviate from accurately
explaining the model’s behavior (Ross et al., 2017;
Jain and Wallace, 2019; Subramanian et al., 2020).

Conversely, a recent approach to modularity
leverages Large Language Models (LLM) to craft
code or Python programs using expensive APIs
(Chen et al., 2021; Surís et al., 2023; Gupta and
Kembhavi, 2023; Subramanian et al., 2023). How-
ever, these approaches outsource basic aspects of
the reasoning to external components rather than
performing reasoning as part of the model itself.
For example, prior works outsource basic cogni-
tive abilities such as recognizing objects, counting,
and even arithmetic operations. Focusing on these
limitations, our proposed LOGIC2VISION aims to
leverage single VLM to address complex reasoning
in a modular approach that shows promising perfor-
mance across models of three different categories.

3 VISREAS: Visual Reasoning

The VISREAS dataset is an attempt towards better
aligning model capabilities with real application cir-
cumstances. In parallel, VISREAS aims to develop
complex compositional reasoning into the machine
that involves consideration of relations among mul-
tiple objects and verification of alignment between
information provided in the question and the image.
In the following sections, we provide details about
the VISREAS data generation pipeline and a com-
prehensive analysis of the VISREAS dataset. In
the supplementary material, we conduct a detailed
comparative study between VISREAS and the well-
established GQA dataset, followed by details of the
human evaluation process using Mechanical Turk.

3.1 Data Generation

Our dataset is constructed in three major steps: (1)
Process scene graphs, (2) Define templates and rea-
soning functions that the question will involve, (3)
Automatically generate corresponding reasoning
steps in pseudocodes along with the final answer
from each query as shown in Fig. 1. Finally, to
prevent models from learning statistical biases in at-
tribute, reasoning, or answer type distributions, we
meticulously balance the VISREAS dataset across
three distinct paradigms (Appendix A).

3.1.1 Scene Graph Processing

To begin with the data construction process, we
run two phases of processing on the scene graphs
before passing them to the question engine.

First Phase. We clean up the scene graphs by
removing opposite attributes and discarding ob-
ject nodes with similar names that share similar at-
tributes and relations. Our processed scene graphs
contain 1703 distinct objects, 14 attributes, and 114
relationships. It is also observed that one object
name in the image might correspond to multiple
object IDs and bounding boxes in the scene graph.
This will cause ambiguity in the later question-
generation process. Thus, we merge bounding
boxes corresponding to the same object name with
a high IoU (> 0.7). In addition, there can be im-
ages where a bigger bounding box contains mul-
tiple small bounding boxes, which can be either
parts of the object represented by the bigger bound-
ing box (e.g., a cat (bigger bounding box) has a
tail, ear, face (small bounding boxes), etc.) or they
can collectively represent the object in the bigger
bounding box (e.g., lime and apple can together be
mentioned as fruits). These overlapping bounding
boxes will be problematic while clustering objects
based on similar attributes (e.g., fruits and lime
are all green; for ‘What has the same color as the
lime?’ the answer generation module will produce:
fruits and apple - which is ambiguous). To discard
these cases, we measure the ratio of intersection
area vs individual bounding box area and check
whether the smaller objects are subclasses of the
bigger one using Wordnet (Miller, 1994). If the
ratio is high and the larger object is a superclass
of the smaller one, we discard the larger bounding
box during preprocessing to avoid ambiguity.

Second Phase. We cluster the scene graphs
based on the common attributes and relations
among the objects in each image and create several
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Attribute Templates Train Validation
Color 12 1326086 1500
Cleanliness 8 7794 900
Material 15 368337 1500
Size 4 116438 1500
Pose 18 36687 1500
Height 10 9894 1200
Weather 6 31376 1500
Length 11 45764 1500
Tone 11 37184 1500
Shape 15 30119 1500
Activity 21 15639 1500
Sport Activity 21 13215 1500
Age 12 19594 1500
Pattern 18 14313 1500
Total 182 2072440 20100

Table 1: Question-template distribution over attributes

sub-graphs as seeds for the question engine. Ini-
tially, we cluster objects based on a single relation
or attribute, later we merge the clusters recursively
if there are objects with multiple attributes or rela-
tions in common. Finally, each cluster represents
a collection of objects that share a similar set of
attributes and relations and the question engine
exhaustively traverses all clusters to generate ques-
tions. For each object in a cluster, we also store
other objects that are related to that object along
with their relation name. This information is used
to populate nested compositional references for
multi-hop relation traversal.

3.1.2 Question Engine

For question generation from the clusters, we manu-
ally create 182 templates on different attributes (Ta-
ble 1). Our templates cover five categories of rea-
soning (query, count, compare, verify, and choose)
which can be further broken down into nine broad
categories of reasoning mentioned in Appendix.
For some categories, we have list answers and no-
answer cases. All of our templates are formulated
considering clusters of objects to facilitate multi-
object comparison. To generate no-answer cases,
we apply two approaches: (1) We either add an out-
lier (object not present in the image) to the cluster
or include an object that exists in the image but
not in the cluster and has different relations and
attributes from the objects in the cluster. (2) We
perturb the existing relation/attribute of an object
inside a cluster (e.g., change ‘apple to the left of
knife’ to ‘apple to the right of knife’) which derives
no-answer cases.
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VQA 614,163 204,721 6.2 ± 2.0 D DD
Visual7W 327,939 47,300 6.9 ± 2.4 DDDD
CLEVR 853,554 100,000 18.3± 3.5 DD
GQA 1,750,623 113,000 7.9 ± 3.1 D D
VISREAS 2,072,437 113,000 19.4 ± 4.6 DDDDD
Table 2: Comparisons on existing VQA datasets. VIS-
REAS covers a wide variety of reasoning along with
No Answer cases. The average question length is also
higher in VISREAS compared to others.

3.1.3 Answer Generation
The answer generation step involves two consecu-
tive phases. Initially, we formulate the reasoning
steps in pseudocode (Figure 1) and produce the
intermediate results for each line of code using
our designed parser (Figure 9). For each question
template and reasoning type, we have hand-coded
the basic reasoning steps necessary to answer the
query. Based on the number of objects, relations,
and attributes, our parser generates all intermediate
reasoning steps along with the answers. Finally,
we combine all intermediate results to come up
with the answer. If any intermediate reasoning step
results in ‘NONE’, the final answer becomes ‘the
question itself is problematic’ indicating
some objects, relations, or attributes mentioned in
the question text cannot be found in the image.

3.2 Dataset Analysis and Comparison
The VISREAS dataset consists of 113K images
from the Visual Genome where each image is an-
notated with dense descriptions of the scene stored
in the scene graphs. We refine the existing scene
graphs and generate 2, 072, 437M unique ques-
tions, twice the size of current VQA datasets (Ta-
ble 1), that combine features of multiple objects
and their relations and require the implementation
of consecutive complex reasoning skills with an
in-depth understanding of object attributes and re-
lations in the image. Our dataset covers 14 different
attributes and 114 diverse relations among 1703 dif-
ferent objects from real-life images. We define five
major types of reasoning (Figure 2) while generat-
ing the corpus based on the overall nature of the
query template. Figure 5 shows details of the query
structures along with examples. However, the in-
termediate reasoning steps that are necessary to an-
swer the query can be diverse and can combine all
five types of reasoning for a single query (as in Fig-
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ure 1). We balance the dataset combinedly across
14 attributes and 5 reasoning types (Appendix A).

Pattern
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Figure 2: Overview of VISREAS statistics. (Top left)
The dataset covers 14 attributes in a balanced ratio. (Top
right) It consists of five reasoning types of queries
in a balanced distribution. (Bottom left) Compari-
son of multi-hop relation traversal for different VQA
datasets. Majority questions of VISREAS require multi-
hop traversal compared to others. (Bottom right) Com-
parison of number of objects mentioned in the question
for different datasets where VISREAS questions contain
larger amount of objects.

Compared to existing VQA tasks, VISREAS em-
phasizes creating longer reasoning chains (multi-
hop) with a larger number of objects (Figure 2).
The average number of reasoning hops for VIS-
REAS is 1.42 (95% CI: [1.415, 1.417]), signifi-
cantly higher than GQA (mean: 0.52; 95% CI:
[0.517, 0.519]) and CLEVR (mean: 0.84; 95% CI:
[0.839, 0.843]). However, to limit the question
length and increase human readability (Figure 6),
the majority of the questions require at most two
hops relation traversal for each object.

Reflecting on human clustering ability based on
commonalities, VISREAS consists of queries that
require consideration of multiple objects based on
their attribute or relation similarities. Therefore,
unlike existing datasets, the majority of VISREAS

queries are composed of more than three objects
from the image. The average objects per question
for VISREAS is 3.91, which is higher than both
GQA (1.12) and CLEVR (1.63). Hence, VISREAS

requires multiple object detection and consecutive
reasoning to answer a single query (Figure 2). In
addition, each query can have multiple attributes
associated with it (Figure 7a). For example, in ques-
tion, ‘What is the common material among the
silver and blue utensils?’, both <material>
and <color> attributes are needed to be consid-
ered for answer generation that involves multiple

attribute filtering along with the associated objects.

Fork to the left of the knife, to the right of the cake and to 
the right of the ring

------------------------------------------------------------

Fork 

         to the left of the knife

         to the right of the cake and

         to the right of the ring

Knife to the right of the fork to the right of the cake



-----------------------------------------------------------

Knife to the right of the fork

                                             fork to the right of the cake

Star Relation Chain Relation

What is the color of the fork to the right of the ring, to the 
right of the cake, and to the left of the knife?

What is the color of the knife to the right of the fork to the 
right of the cake?

Right

Right
Right

Right

Left

Figure 3: VISREAS contains two types of relation traver-
sals. Star relation states a single object that shares mul-
tiple relations with other objects (Left). Chain relation
states multiple objects that share a single relation with
each other (Right).

In contrast to other spatial reasoning datasets
that focus primarily on one-hop relation traversals
(Bottom left of Figure 2), we explore two ways
of novel traversals: (1) Star Relation: The target
object shares multiple relations with other objects
(e.g. is the center of the star and other objects are
connected to it with a relation – Figure 3 left), and
(2) Chain Relation: The target object is related
to an object that is related to another object and
the relation traversal is linear (Figure 3 right). The
inclusion of these traversals adds multi-hop com-
plexity to the corpus and makes the each-step veri-
fication process harder for unanswerable questions
(as Figure 10).

4 LOGIC2VISION

In recent years, LLMs combined with code genera-
tion and chain-of-thought prompting have shown
impressive performance in complex reasoning by
generating intermediate reasoning steps before in-
ferring the answer (Zhang et al., 2023a; Surís et al.,
2023). However, these frameworks are often prone
to hallucinations of LLMs and are too restricted in
terms of reasoning they can perform and dependent
on expensive external modules to execute the rea-
soning (Zhang et al., 2023b; Surís et al., 2023). To
address these limitations and elicit the reasoning
capability of VLMs, we propose LOGIC2VISION,
a two-stage VQA framework that (1) plans the nec-
essary reasoning steps using the question and (2)
executes the plan with the help of an image lever-
aging the SOTA VLM (Figure 4).
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PROMPT: Given an image, the user asks a question and assistant executes 
the code and logs the results step-by-step to provide an answer.



USER : What is the material of the fence that the black bird is sitting on?

selected_bird = select(bird)

filtered_bird = filter_color(black, selected_bird)

related_fence = relate(fence, sitting on, filtered_bird)

result = query(material, related_fence)

selected_bird = select(bird)

filtered_bird = filter_color(black, selected_bird)


related_fence = relate(fence, sitting on, filtered_bird)

result = query(material, related_fence)

Step 2 : Pseudocode Guided Reasoning

ASSISTANT:

# OUTPUT

objects : black bird / brown bird

objects : black bird

objects: wooden grey fence

Answer : wooden

Finetune with LoRA
LLaVA 1.5

+

LLaVA generates output of pseudocode

without relying on external APIs

VICUNA-13B

Given the user's question, generate the code that 
answers the question. 
USER: What is the material of the fence that the 
black bird is sitting on?

ASSISTANT:  

selected_bird = select(bird)

filtered_bird = filter_color(black, selected_bird)

related_fence = relate(fence, sitting on, filtered_bird)

result = query(material, related_fence)

Step 1 : Pseudocode Generation

Finetune with LoRA

Figure 4: Overview of LOGIC2VISION. In Pseudocode Generation phase, we generate pseudocode which outlines
the reasoning steps. During Pseudocode-Guided Reasoning, the pseudocodes along with the question and image
are provided to the model. The model executes all intermediate pseudocodes to arrive at the final answer.

4.1 Stage 1: Pseudocode Generation

Given a natural language question, this module
generates a consecutive set of reasoning steps as
pseudocodes. For training our pseudocode gen-
eration model, we take advantage of the existing
VQA dataset: GQA as it provides a semantic string
that decomposes the question into a sequence of
reasoning steps. For instance, the semantic string
for the question ‘Is there a red apple on
the table?’ would be ‘select: table →
relate: on, subject, apple → exist: ?’.
We build a custom parser (Figure 9) that converts
each line of GQA semantic string to pseudocode
and extracts all the intermediate expected outputs
along with the final answer from the scene graph.
The parsed (pseudocode, output) pairs serve
as a rationale to solve the question (Figure 8).
For the pseudocode generation, we use an instruc-
tion finetuned VICUNA-13B (Chiang et al., 2023)
model which has shown good performance across
various language tasks including code generation.
We finetune VICUNA using LoRA on (question,
pseudocode) pairs (Hu et al., 2022) to generate
the pseudocode for a given question. The fine-
tuned model achieves 98.6% METEOR (Banerjee
and Lavie, 2005) score and 96.3% ROGUE-L (Lin,
2004) score against ground-truth code parsed from
GQA semantic strings.

4.2 Stage 2: Pseudocode-Guided Reasoning

Since the Pseudocode Generation module outlines
the necessary steps to answer the question, the
remaining task is to perform pseudocode-guided
sequential reasoning on the image. For this stage,
we choose state-of-the-art VLM, LLaVA-1.5 (Liu
et al., 2023), due to its impressive performance in
diverse reasoning tasks. As LLaVA-1.5 was not

trained to reason with pseudocode and image, we
fine-tuned it to generate an answer by executing
sequential reasoning with the pseudocode and the
image. To adapt this framework in our case, we
rearrange the instruction as below:

USER:<Image> Executes the code and logs the results step-

by-step to provide an answer to the question.

Question: {Question}

Code: {Code}

ASSISTANT:

Logs: {Logs}

Answer: {Answer}

Here LOGIC2VISION takes the image, question,
and the corresponding sequential pseudocodes as
input and produces all intermediate outputs of the
codes as logs along with the final answer. There-
fore, during fine-tuning, LOGIC2VISION not only
learns to generate the final answer but also must
predict all intermediate responses correctly. This
includes predicting NONE when there is no answer
possible in any intermediate step. The ability
to produce intermediate outputs as logs makes
LOGIC2VISION more explainable compared to oth-
ers. As each line of the pseudocode requires a dif-
ferent reasoning ability (e.g., select, compare or
relate), we can detect which reasoning task the
model is failing by simply tracking the logs. The
essential training details of this stage can be found
in subsection C.3.

5 Experiments and Analysis

In the subsequent sections, we conduct a compre-
hensive analysis of the VISREAS dataset and assess
the performance of various benchmarks including
LOGIC2VISION, GPT-4V (OpenAI, 2023), and hu-
man participants, revealing a notable disparity from
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Model Accuracy (%)
GQA VISREAS

Z
S

GEN
BLIP-2 (2023) 44.70 35.16
InstructBLIP (2023) 49.50 36.84
LLaVA-1.5 (2023) 63.3∗ 38.98

Code-GEN ViperGPT (2023) 48.10 10.31
VisProg (2023) 50.50 20.82

FT

CLS
LXMERT (2019) 60.05 50.15
ViLBERT (2020) 60.65 53.05
CRF (2022) 72.10 53.56

Logic-GEN LOGIC2VISION 60.32 66.20

Table 3: Performance comparison among baseline mod-
els on GQA and VISREAS. (*) GQA trainset images
were used during training.

human performance.

5.1 Baseline Experiments

To analyze the complexity and generalizability of
our dataset and model, we run experiments with
models trained on both classification and generative
tasks. We cover two types of generative models:
GEN (relies on pretrained visual-language aling-
ment module) and Code-GEN (generates a pro-
gram and utilizes external APIs to solve VQA tasks).
We categorize LOGIC2VISION as Logic-GEN as
it produces intermediate logical reasoning steps be-
fore answering. All model configurations can be
found in Appendix C. To make the training and
inference consistent, we define our own prompt for
all generative models (as subsection C.4). Table
3 shows the results of different baselines on both
GQA and VISREAS. All baseline models perform
worse on VISREAS than on GQA, highlighting the
unique challenge provided by VISREAS. Table 4
presents the performance on VISREAS across di-
verse baselines along with GPT-4V and human ac-
curacy. We break down the performance along two
axes: the reasoning type and answerability. We
finetune models in the CLS and the GEN groups to
obtain stronger baseline results. We could not fine-
tune models in the Code-GEN group due to their
close-sourced weights. Logic-GEN outperforms
all others baselines at a significant margin.

[CLS] For models trained with classification
task, we finetune and evaluate on both GQA and
VISREAS. From the fine-tuning results of the CLS
models, it is obvious that VISREAS proposes a dif-
ferent task than GQA that can not be easily solved
by scaling the model size or changing the pretrain-
ing corpus. Furthermore, the higher performance
gap of the models between GQA and VISREAS

tasks suggests the inefficacy of the existing CLS

models on our proposed spatial reasoning task.

[GEN] From generative domain, we select
three SOTA models, BLIP-2, InstructBLIP, and
LLaVA-1.5, that try to leverage the LLMs using
two types of vision-language alignment modules:
Q-Former and MLP cross-modal connector. We
evaluate the models on zero-shot GQA and VIS-
REAS to probe the relevance of our proposed task
to their training domain. We notice that BLIP-
2 performs poorly on our task compared to GQA

where InstructBLIP and LLaVA-1.5 shows higher
accuracy. Both LLaVA-1.5 and InstructBLIP are in-
struction tuned on diverse downstream tasks which
allows them to excel in VQA tasks compared to
BLIP-2. However, LLaVA-1.5 gains the highest
zero-shot accuracy in this category due to its train-
ing set images being overlapped with VISREAS.
Yet, it shows a significant drop (-24.32%) in ZS
accuracy compared to GQA, which proves that VIS-
REAS highlights a novel reasoning task that can
not be generalized using GQA. Furthermore, the
smaller performance gap among these models on
VISREAS suggests the inefficacy of the current
VLMs on our proposed spatial reasoning task.

[Code-GEN] From modular Code Genera-
tion models, we analyze recent works - ViperGPT
and VisProg. These models employ an LLM

to generate an executable program that uti-
lizes a pre-defined API, including functions
such as detect(image, obj_category) or
segment(image, obj_category). VisProg also
utilizes the “in-context learning” abilities of LLMs,
enabling the model to respond to new queries with
just a few examples of input and output behav-
ior. Zero-shot evaluations of Code-GEN models
on GQA and VISREAS reveal that current models
are struggling with our task more than GQA, where
both corpora use similar images. We find these
models heavily biased to answerable setting that
they tend to ignore the discrepancies between the
question and the image. Furthermore, the codes
generated by these models are often incomplete or
runs into error when passed to the compiler. We
term these cases as incorrect responses for consis-
tent evaluation. We believe that problematic ques-
tions can be handled better with modified prompts
which would require additional expensive few-shot
prompting. However, their poor performance in
Non-Problematic questions denotes the inability of
these models to reason with longer relational hops
and cluster multiple objects based on commonali-
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Metric CLS GEN Code-GEN Logic-GEN GPT-4V Humans
LXMERT ViLBERT CRF BLIP-2 InstructBLIP LLaVA-1.5 ViperGPT VisProg LOGIC2VISION

Choose 74.23 82.91 83.30 71.21 78.50 84.11 10.37 15.86 82.54 82.61 91.30
Compare 65.62 69.86 71.87 28.72 53.29 67.75 5.97 26.09 59.25 68.33 86.12
Count 45.32 47.80 49.59 25.88 49.86 43.08 7.85 6.02 39.47 39.52 85.78
Query 44.05 47.65 48.11 41.55 47.77 50.31 4.35 19.30 63.79 58.78 81.78
Verify 76.10 82.18 83.03 70.77 49.48 81.27 3.10 44.18 84.54 82.16 93.94
Problematic 67.54 77.08 78.41 25.39 64.68 68.04 0.25 0.16 55.34 70.18 90.29
Non-Problematic 56.11 59.16 61.60 51.41 52.25 60.31 11.97 24.17 67.94 55.47 84.89

Accuracy (%) 50.15 53.05 53.56 47.81 53.97 61.38 10.38 20.82 66.20 62.83 87.21

Table 4: Accuracy breakdown of baseline models and humans on VISREAS across different reasoning types.
Problematic type consists of questions that contain certain relation, attribute, or object that is missing/ not consistent
with the image. In contrast, Non-Problematic questions have correct answers as the question is consistent with the
image. Except for the Code-GEN models, we provide fine-tuned results on VISREAS for all other models.

ties.

5.2 Analysis

According to Table 4, all the models including
GPT-4V struggle in Compare, Count, and Query
question-types which require grounding, cluster-
ing, and verifying the existence of multiple objects,
relations, and attributes. Specifically in Query, the
performance gap between humans and the mod-
els is significantly higher which demonstrates the
limitation of current models to perform complex
multi-hop reasoning. LOGIC2VISION, on the other
hand, shows a promising result in Query questions.
We hypothesize that structured pseudocode helps
the model consider each object and its correspond-
ing attributes and relations before answering while
the other models try to learn from the surface-level
word distribution. In addition, Query questions
are in general lengthier than other types of ques-
tions which makes it easier for the models to lose
attention to the details (Figure 7b).

In contrast, GPT-4V outperforms all generative
models in Problematic questions. After analyzing
the predictions, we find that GPT-4V excels at iden-
tifying problematic questions that involve an object
not present in the image or an object with a false
attribute. However, when the question becomes
problematic due to an incorrect relation, GPT-4V

consistently struggles to recognize it which also
holds for other models. This signifies the unique-
ness of our corpus that emphasizes understanding
relations beyond simple object detection. It is also
notable that GPT-4V often denies to answer ques-
tions related to a person and sometimes just ignores
questions by saying ‘I’m sorry, but I can’t assist
with identifying or making assumptions about peo-
ple in images.’ For fair comparison with other mod-
els, we report all these occurrences as incorrect
answers.
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7B 81.20 54.90 35.13 59.24 82.75 55.38 63.92 62.74
13B 82.54 59.25 39.47 63.79 84.45 55.34 67.94 66.20

Table 5: Breakdown of accuracies on VISREAS for
LOGIC2VISION’s VICUNA model size. We observe that
VICUNA’s model size improves performance in most
question-types except the problematic ones.

To investigate the effect of LLM’s scale on the
VQA task, we test two versions of LLMs (VICUNA

7B and 13B) within VISREAS architecture. Table 5
breaks down the performance of LOGIC2VISION

in the presence of different LLMs. We observe
that increasing LLM’s size dramatically increases
the accuracy of longer questions (Figure 7b) such
as Non-Problematic, Count, Query, and Compare
instances and marginally improves performance on
question categories such as Choose and Verify.
This finding reassures the ability of larger LLM to
reason with longer context. However, for prob-
lematic questions, increasing LLM size has no im-
pact. As this category requires verification and
grounding of information with image, both LLM

and vision-language alignment need to be strong to
excel in this domain.

6 Conclusion

We introduce the VISREAS dataset, for real-world
complex and multihop visual reasoning and com-
positional question answering. The dataset empha-
sizes object commonalities, differences, and rela-
tional aspects, necessitating validation of question-
text relevance with the image before answering. We
describe the dataset curation process along with the
performance of SOTA models from three different
domains in our task. Addressing the shortcom-
ings in grounding and clustering in recent models,
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we propose a novel LOGIC2VISION baseline that
deconstructs questions into pseudocodes and se-
quentially executes them using images to generate
answers. We anticipate that this dataset and model
will catalyze advancements in VQA research, push-
ing it toward complex semantic comprehension,
robust reasoning, and addressing unanswerability
when the provided context is not sufficient.

7 Discussion and Future Work

Solving VQA tasks via code generation and exter-
nal APIs has gained attention due to its capability
to perform complex reasoning and planning in a
modular manner. However, code generation has
limitations: a fixed set of operations limits models
to specific types of questions and heavy use of ex-
ternal modules prevents end-to-end training. While
modularity encourages specialization, in practice
it requires managing multiple environments and
heavy GPU memory usage as multiple large models
are used to carry out visual and cognitive tasks like
detection and captioning. In addition, current code
generation methods (Surís et al., 2023; Gupta and
Kembhavi, 2023) rely on OpenAI’s API to gener-
ate executable code which hinders the accessibility
of benchmarking due to its high costs2 and fluctu-
ations of OpenAI models over time (Chen et al.,
2023) which makes it hard to diagnose whether cer-
tain performance gains come from OpenAI model
or improvements in other components. In contrast,
our model and dataset suggest that one can use a
single VLM model that combines both the strength
of structured reasoning and train it in a simple end-
to-end manner. VISREAS requires many opera-
tions such as select, filter, relate, and query
which are limited to cognitive skills to standard
VQA tasks and spatial reasoning. Therefore, mod-
els trained on VISREAS may not generalize well
for visual-language tasks such as visual storytelling
and image captioning which goes beyond the scope
of our dataset. A natural future direction would be
to incorporate other visual-language tasks into the
dataset as well.

2Evaluation with VisProg requires approximately 2,500 to-
kens per question including in-context examples, prompts, and
outputs. Using original text-davinci-003 model used in
original code would cost (0.0200/1000 tokens)·2500 tokens·
17171 instances ≈ 858 USD.
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A Data Balancing

A primary concern with current VQA datasets is the
prevalence of question-conditional biases, enabling
models to make informed guesses without a gen-
uine grasp of the underlying images. Nevertheless,
precise rendering of question semantics could of-
fer enhanced control over these biases, holding the
potential to significantly mitigate the issue (Zhang
et al., 2016b; Kafle and Kanan, 2017). Motivated
by this observation, we perform a rigorous balanc-
ing based on question categories, attribute/relation
types, and answer distribution.

Adopting the balancing approach outlined in pre-
vious research (Hudson and Manning, 2019b), we
employ a clustering strategy based on a fusion of

two labels: <attr/rel_type> and <res_type>.
The former denotes attributes or relation names
(e.g., red or right), while the latter signifies reason-
ing types (e.g., verify.rel). We refine the question
set within each cluster, filtering out questions that
encompass overlapping sets of objects in their texts
or that contain subsets of objects already covered
by other questions with complete sets. We priori-
tize questions featuring larger sets of objects and
multihop relations, provided their length stays be-
low 25. Finally, we introduce an additional label
<answer> and equilibrate the question sampling
through the answer distribution. After executing
this balancing in an iterative manner on 2.07M
questions, we generate a balanced corpus of 72,244
questions with images.

B Overview and Analysis of the VISREAS

This section provides an in-depth examination of
the VISREAS dataset, focusing on various aspects
of question types and their characteristics. It en-
compasses an overview of question types, the dis-
tribution of semantic lengths, question readability
scores, average question lengths per reasoning type,
the relationship between question frequency and
the number of attributes, and human accuracy on
attributed questions.

B.1 Questions Types and Templates

The VISREAS dataset features a diverse array of
question types that challenge multimodal reasoning
and compositional understanding. These question
types include query, count, compare, verify,
and choose, each requiring a unique approach to
answer. Depending on how the clusters are made,
each question type can further be broken down into
attr and rel subtypes. Therefore, in total, there
can be nine categories of questions. Figure 5 gath-
ers all templates and examples from the dataset to
offer insights into the intricacies of these question
categories.

B.2 Distribution of Relation Hops and
Readability

A comprehensive analysis of the distribution of
relation hops in VISREAS questions reveals a pre-
dominant trend toward questions that involve about
two reasoning hops. These hops can entail tracking
object relations, identifying attributes, or executing
logical operations. We conduct a readability test
using the workers from Amazon Mechanical Turk.
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Type Question Answer List No Answer Example

<query_attr> a. What <attr>  do the <objs> have common?  


b. What [is|are] the <attr> of the <objs>? (can be more 
specific depending on the attribute type)

a. <attr | attrs>



b. <attr | attrs>

a. yes



b. yes

a. yes



b. yes

What material do the pole and the bike 
next to the road have common?

<count_attr> a. Among <objs>, how many of them have [a particular 
<attr> | multiple <attrs> | a particular <attr> common 
and one of the object has another <attr>]? 




b. [Is | Are] there [less than | greater than] <num> 
objects that share [a particular <attr> | multiple <attrs>]?




c. [Is | Are] any <num> of the following things, <objs> 
<attr | opp_attr>?

a. <num>






b. <yes | no>





c. <yes | no>

a. no






b. no





c. no

a. no






b. no





c. no

Among the shirt, the pant and the hat, 
how many are red?



Are there less than three objects that 
share red color?

<compare_attr> a. [Does a particular attribute | Do multiple attributes] of 
<obj | objs> match with the <attr | attrs> of <obj | objs>? 




b. Do <objs> share the same <attr> in the image?




c. Are <objs> similar in <attr>?

a. <yes | no>





b. <yes | no>




c. <yes | no>

a. no





b. no




c. no

a. yes





b. yes




c. yes

Does the shape of the plate on the table 
match with the shape of the steel pan 
and the orange box?

<verify_attr> Do you see any [<obj | objs> of <attr>| <attr> <obj | 
objs>] in the image?

<yes | no> no no Do you see any red bike and red 
helmet?

<query_obj> [What [object | objects]| Who] in the image [has the 
same | is doing the same] <attr> as <obj | objs>?

<obj | objs> yes yes Who in the image is the same activity as 
the boy wearing blue jeans?

<choose_attr> [Is | Are | Do | Does] <obj | objs> [| look | apprear] <attr> 
or <opp_attr>?

<attr> no yes Do the driver and the passenger look 
younger or older?

<query_rel> On which side of the <attr> <obj | objs> in the image the 
<attr> <obj | objs> are located?

<rel> no yes On which side of the red car in the 
image the trees, the metal pole and the 
silver wire located?

<verify_rel> [Is | Are] the <attr> <obj | objs> <rel> <attr | attrs> <obj | 
objs>?

<yes | no> no yes Are the man on the road and the boy 
with red hair wearing a blue jacket?

<choose_rel> [Is | Are] the <attr> <obj> [located | positioned] <rel> 
<attr | attrs> <obj | objs> or <opp_rel>?

<rel> no yes Are the buses located to the left of the 
road or to the right of the road?

Figure 5: Overview of types of questions along with some templates and examples from the VISREAS corpus.

Our analysis reveals that questions with larger re-
lation hops demonstrate a noticeable decline in
readability, emphasizing the complexity associated
with extended reasoning (Figure 6). To enhance
the quality of the dataset so that it can reflect the
real-world day-to-day life questions, we choose to
keep the relation hop within two.

B.3 Average Question Length per Reasoning
Type

By dissecting question lengths across different rea-
soning categories in Figure 7b, we observe a consis-
tent trend: query questions tend to be longer than
other reasoning types. This phenomenon is par-
ticularly apparent due to the inclusion of multiple
objects sharing similar attributes and their corre-
sponding relations.

B.4 Question Frequency and Attribute Usage
The VISREAS corpus has been generated using
the clusters of objects that share similar relation

or attribute. However, clusters based on shared at-
tributes/relations can share objects that possess all
of those attributes/relations. For example, a table
and a chair have the color brown and material
wood in an image. Initially, we have two clusters
with brown and wood. Now, if both clusters share
some objects, we again create a new cluster based
on brown+wood adding the shared objects (i.e.,
table and chair). Using this approach, we create
clusters that share multiple attributes and relations
and generate questions that involve filtering multi-
ple attributes/relations along with the identification
of objects of interest. Figure 7a shows the distribu-
tion of questions in VISREAS with respect to the
number of attributes/relations. As the number of
attributes/relations goes higher, the number of clus-
ters also decreases resulting in decreasing number
of questions.
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Figure 7: (a) Question distribution across the number of
attributes in a query. The question complexity increases
with the number of attributes or relations. (b) Average
question length per reasoning type in VISREAS corpus.
Query questions are lengthier than other reasoning cat-
egories as these questions contain multiple objects of
similar attributes with their relations.

B.5 Human Accuracy on Attributed
Questions

The final facet of our exploration delves into hu-
man accuracy when answering attributed questions
from the VISREAS dataset. By assessing the perfor-
mance of human subjects across different question
types and attributes, we gain a deeper understand-
ing of the challenges inherent to this multimodal
reasoning task. Figure 11 breaks down the hu-
man accuracy across different attribute types. It
is noticeable that color and material questions
have the lowest accuracy, as they contain a higher
amount of questions compared to other attributes.

In summary, this section offers a comprehensive
overview and analysis of the VISREAS dataset, en-
compassing question types, semantic lengths, ques-
tion readability, average lengths per reasoning type,
attribute-based question distribution, and human

Figure 8: Pseudocode format. Our method re-
structures the format of GQA semantic string to pseu-
docode to better leverage Code-LLMs without adding
any auxiliary information.

Figure 9: Semantic string parser. For every line of
semantic string, we use regex and string manipulation
to extract operator and its arguments. We represent
scene-graph in adjacency list format and run the parsed
operator to get formatted pseudocode and its expected
output.

accuracy. These insights contribute to a holistic
understanding of the dataset’s intricacies and its
potential to advance the field of visual reasoning
and question answering.

C Baseline Configuration

All baselines follow default settings provided by
the original author evaluation script. All configu-
rations for model, optimizer, scheduler, and train-
ing follow default parameters from Pytorch and
Huggingface library. For generative models, all
inference is done using default settings without
temperature tuning, nucleus sampling, repetition
penalty, etc. Specific settings used for zeroshot and
finetuning are presented below:

C.1 VisProg

The original VisProg script uses
text-davinci-003 model which is around
10 times more expensive than gpt-3.5-turbo
model. To cut evaluation costs, we use the
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Fork to the left of the knife, to the right of the cake and to the right of the ring

-----------------------------------------------------------

Fork 

         to the left of the knife

         to the right of the cake and

         to the right of the ring

Knife to the right of the fork to the right of the cake

------------------------------------------------------------

Knife to the right of the fork

                                             fork to the right of the cake

Star Relation Chain Relation
What is the color of the fork to the right 
of the ring, to the right of the cake, and 

to the left of the knife?

What is the color of the knife to the right 
of the fork to the right of the cake?

Star relation in Pseudocode
selected_fork = select(fork)

related_knife = relate(knife, to the left of, o, selected_fork)

related_cake = relate(cake, to the right of, o, selected_fork)

related_ring = relate(ring, to the right of, o, selected_fork)

related_fork = selected_fork && exists(related_knife, related_cake, related_ring)

Chain Relation in Pseudocode
selected_cake = select(cake)

related_fork = relate(fork, to the right of, s, selected_cake)

related_knife = relate(knife, to the right of, related_fork)
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Figure 10: Overview of pseudocodes for two different traversal types in the VISREAS corpus.
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Figure 11: Human accuracy on different attributed ques-
tions

gpt-3.5-turbo model instead. All 20 examples
are found in GQA evaluation script for code
generation.

C.2 ViperGPT

For similar reason as VisProg, we use
gpt-3.5-turbo model for code generation
to reduce costs. Since generated code doesn’t
always return functional Python code, we return
either “None” or “ERROR” in these cases. In cases
where the code throws an error, the answer defaults
to “ERROR”. In cases where the code didn’t have a
return statement, the answer defaults to “None”.

C.3 LOGIC2VISION

The effective batch size is kept at 4 across ex-
periments. LoRA modules are only attached to
query and value linear layers in attention layers.

The batch size and gradient accumulation steps
are adjusted accordingly. Due to memory require-
ments, we set batch size to 1 on each GPU and
set gradient accumulation steps to 4. We’ve have
used 2-4 A6000 GPUs with distributed data paral-
lel (DDP) strategy for multi-GPU training. Train-
ing LOGIC2VISION on VISREAS takes around 13
hours using 2 A6000 with LLaVA-1.5 backbone.

Hyperparameters Values
Effective batch size 4
Learning rate 5e-6 (GQA), 2e-5 (VISREAS)
Precision bfloat16
Optimiser AdamW
Schedule Linear warmup with cosine decay
Warmup steps 128
Epoch 1

Table 6: Hyperparameters for LOGIC2VISION model

Hyperparameters Values
Rank 8
Alpha 16
Dropout 0.05

Table 7: LoRA configurations

C.4 InstructBLIP / BLIP-2 / LLaVA-1.5
On GQA, we use identical configuration as
LOGIC2VISION for LLaVA-1.5. For InstructBLIP
and BLIP-2, we observe that batch size of 4 causes
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the model to output repetitive tokens during infer-
ence. For that reason, we increase the effective
batch size to 8. We use the same original prompt
that the authors have reported in their original pa-
pers.

On VISREAS, we again use identical configu-
ration as LOGIC2VISION for LLaVA-1.5. For In-
structBLIP and BLIP-2, we lower the learning rate
to 5e-6 and increase the effective batch size to 8 for
the same reason above.

C.5 LXMERT / ViLBERT / CRF

For all three models trained with the classification
task, we used the default hyperparameters that have
been used to finetune on GQA corpus for consis-
tency. As GQA and VISREAS share the same im-
age and scenegraphs, using the same model with
the same configuration should produce different
results if the two tasks are different. And the result
section reflects the distinction between GQA and
VISREAS.

Hyperparameters LXMERT ViLBERT CRF
Learning rate 1e-5 0.00004 1e-4
Optimizer BertAdam AdamW BertAdam
Schedule Linear Warmup Linear Warmup Linear Warmup
Epoch 4 20 13

Table 8: Hyperparameters of all CLS baselines

D Effect of pseudocode finetuning

We study the effect of finetuning a VLM to perform
VQA through pseudocode-guided reasoning. Table
9 demonstrates that finetuning LLaVA-1.5 to follow
pseudocode consistently improves performance on
VISREAS for both 7B and 13B models.

Model size Without Pseudocode With Pseudocode
7B 57.36 62.74
13B 61.38 66.20

Table 9: Effect of pseucode finetuning on LLaVA-1.5

E Examples from VISREAS and GQA

In Figure 12, we show example questions from VIS-
REAS and GQA using the same image. In general,
VISREAS tends to have longer questions compared
to GQA. Additionally, VISREAS questions involve
more than two objects, whereas GQA primarily
centers on one or two objects.

F Mechanical Turk Details

To evaluate human performance, we used Ama-
zon Mechanical Turk to collect human responses
for 5000 random questions, taking a majority vote
among three workers for each question. We limited
our pool of crowdworkers to individuals located in
the US or Canada, requiring a minimum of 1,000
previously approved HITs with a 95% approval
rate. Additionally, participants had to achieve a
minimum score of 70% or higher on our qualifica-
tion task before gaining access to our main task. In
the subsequent sections, we provide details of this
response collection process.

F.1 Qualification Test for Worker Selection

To secure accurate human assessments, we care-
fully designed a qualification test using Amazon
Mechanical Turk interfaces (Figure 13). This test
aimed to select proficient workers capable of accu-
rately completing the VISREAS task: (1) The qual-
ification test encompassed two distinct tasks. The
initial task focused on careful comprehension of
instructions. Workers were required to attentively
read the instructions and subsequently answer a set
of multiple-choice questions to assess their grasp of
the task’s nuances. (2) Upon successful completion
of the first task, the qualified workers proceeded
to the task proficiency evaluation stage. Here, a
series of ten questions, each accompanied by an
image, were presented. The workers’ task was to
select the correct answer from a dropdown list of
2013 entries. The selection process for the final
evaluation cohort prioritized workers who achieved
correct answers for more than seven out of the ten
questions.

F.2 Human Accuracy Assessment Interfaces

After gathering qualified workers who are aware
and proficient in our task, we move to the final
stage of the evaluation process (Figure 14). For
each Human Intelligence Task (HIT), an image and
the corresponding question were provided. Work-
ers were tasked with selecting the correct answer
from the same dropdown list used for the worker se-
lection stage. Furthermore, we requested workers
to rate the complexity and structural integrity of the
presented question, thereby acquiring insights into
the inherent challenges posed by various question
types.

To facilitate a deeper understanding of the poten-
tial issues with the queries, we encouraged workers
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Question: Are the doll and the soda bottle found sitting on or 
standing on the armchair in the image?

Answer: The question itself problematic

Explanation: There is no armchair present in the picture.

Category:  verify.rel

VisReas

Question: What kind of furniture is the doll to the left of the figurine 
sitting on?

Answer: Table

Category:  query.obj

GQA

Question: What is the common attribute of the pole, the road 
sign and the leaves which are to the right of the store in the 
picture?

Answer: Green

Category:  query.attr

VisReas

Question: Are the cars on the left or on the right side of the photo?

Answer: Right

Category:  choose.rel

GQA

Question: Do the drawer and the floor to the right of the 
white shoes and to the left of the white dishwasher share the 
same material?

Answer: The question itself is problematic

Explanation: The floor is to the left of the white shoes and to 
the left of the white dishwasher

Category:  compare.attr

VisReas

Question: What is common to the drawer and the floor?

Answer: Material

Category:  query.attr

GQA

Question: Among knife, napkin, crust and wall, what object in 
the image has the same color as the plate and the coffee 
cup?

Answer: Napkin

Category:  query.obj

VisReas

Question: Is the coffee cup tall and white?

Answer: Yes

Category:  verify.attr

GQA

Question: Do you see any tiny stop sign on the large and 
metal post and any large flower?

Answer: No

Category:  verfy.attr

VisReas

Question: What's on the post?

Answer: Stop sign

Category:  query.obj

GQA

Question: What are the soap bottle, the bench and the pole 
in front of the brown trees made of in the image?

Answer: The question itself is problematic

Explanation: There are no soap bottle and bench present in 
the photo

Category:  query.attr

VisReas

Question: Are there any fences?

Answer: Yes

Category:  verify.obj

GQA

Question: Among the floor, the doorway to the left of the red 
graffiti and the door, how many things are made of concrete?

Answer: Two

Category:  count.attr

VisReas

Question: What is the floor made of?

Answer: Concrete

Category:  qurey.attr

GQA

Figure 12: Example questions from the VISREAS and the GQA corpuses.

to provide additional details about any perceived
problems. If a worker identified a problematic as-
pect within the question, they were encouraged
to rephrase or rewrite the query to address the is-
sue. This dynamic engagement aimed to uncover

underlying complexities and refine the evaluation
process.
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Answer Questions from Image

Figure 13: Amazon Mechanical Turk interfaces used for Qualification Test to choose the right workers for human
accuracy assessment on VISREAS task. We study the workers by deploying two tasks. In the first task, we ask the
workers to read the instructions carefully (Top left) and answer some multiple-choice questions (Top right). After
passing this task, ten questions with images will be presented and the final task would be to choose the right answer
from the answer dropdown list (Bottom right). We choose the workers for the final evaluation who have correctly
predicted more than seven answers out of ten questions.

6751



(a)

(b)

Figure 14: Amazon Mechanical Turk interfaces for human accuracy assessment on VISREAS task using the qualified
workers. (a) For each HIT, we provide an image and a question that needs to be answered from a dropdown list of
2013 entries. In addition, we ask for rating the complexity and structural soundness of the query and further look for
details if any Turker finds the question problematic. (b) To investigate what type of problem the question possesses,
we ask for further details from the workers and even encourage them to rewrite the query to remove the problem
they faced while answering the query.
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