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Abstract

Large language models (LLMs) have shown
great abilities of solving various natural lan-
guage tasks in different domains. Due to
the training objective of LLMs and their pre-
training data, LLMs are not very well equipped
for tasks involving structured data generation.
We propose a framework, Prompting with It-
erative Verification (PiVe), to improve graph-
based generative capability of LLMs. We show
how a small language model could be trained
to act as a verifier module for the output of an
LLM (i.e., ChatGPT, GPT-4), and to iteratively
improve its performance via fine-grained cor-
rective instructions. We also show how the ver-
ifier module could apply iterative corrections
offline for a more cost-effective solution to the
text-to-graph generation task. Experiments on
three graph-based datasets show consistent im-
provement gained via PiVe. Additionally, we
create GenWiki-HIQ and highlight that the veri-
fier module can be used as a data augmentation
tool to help improve the quality of automati-
cally generated parallel text-graph datasets.1

1 Introduction

Large language models (LLMs) like ChatGPT and
GPT-4 (OpenAI, 2023) have been quite success-
ful in solving different generative and reasoning
tasks. The combination of their abilities in lever-
aging in-context learning as well as instruction fol-
lowing have unlocked new state-of-the-art results
across the natural language processing (NLP) field.
The existing LLMs are mostly pre-trained on a
huge volume of unstructured data from the internet
including books, articles, webtexts, repositories,
Wikipedia, etc. Training on unstructured data nat-
urally leads to relatively poor performance when
dealing with tasks that demand organizing text into
structured machine-readable format.

1Our code and data are available at https://github.
com/Jiuzhouh/PiVe.
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Figure 1: Framework of PiVe.

A semantic graph, as a form of graph-structured
data, stores information in a machine-accessible
way (van Harmelen et al., 2008). Generating
a semantic graph from text is known as text-to-
graph (T2G) generation and is previously attempted
mostly by fine-tuning small language models (Xu
et al., 2022; Guo et al., 2020). However, generat-
ing graph-structured data remains a challenge for
LLMs even in the presence of reasonable number
of few-shot examples. In fact, regardless of the
number of few-shot examples or prompting style
the outputs from LLMs (e.g., GPT-3.5) still contain
errors and require correction (§4.4).

In this paper, we focus on how to improve the
graph-based generative capability of LLMs. To this
end, we propose the Prompting through Iterative
Verification (PiVe) framework shown in Figure 1.
Specially, PiVe involves leveraging an external ver-
ifier module (i.e., a much smaller LM) and incorpo-
rating the feedback from verifier module into the
prompt. PiVe iteratively utilises the verifier module
and refines the prompts, via corrective instructions,
before sending them back into the LLM, leading
to substantially improved quality of the generated
semantic graphs.

In particular, to train the verifier modules, we
start from a seed dataset of text and graph (T,G)
pairs, and construct an arbitrarily large graph-
perturbation dataset via a simple procedure which
takes any graph G from the seed set and perturbs
it arbitrarily on its entities (E), relations (R), or
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triples (Tr). The text and perturbed graph (Ḡ),
along with a corrective description to invert the ap-
plied perturbation (IP) form a verification dataset
of (T,Ḡ,IP) triples which serve as the training data
for self-supervised learning of our verifier module.
The verification dataset could be as large as de-
sired (i.e., for any seed dataset D, containing graphs
of |E| entities, |R| relations, |Tr| triples, it could
produce O(|D|×|E|× |R|×|Tr|) perturbations
only by deleting.2 We then devise fine-tuning and
instruction-tuning to train domain-specific and uni-
fied verifiers, respectively.

During the T2G generation via the LLM (e.g., in
the zero-shot setting "Transform the text into a se-
mantic graph: Text: ... Graph:"), the verifier takes
the text T, the output graph from the LLM, and
sends a corrective signal to the LLM (e.g., "Trans-
form the text into a semantic graph and add the
given triples to the generated semantic graph: Text:
... Triples: ... Graph:"). This process continues
till the verifier module verifies the output as cor-
rect and terminates. We refer to this as Iterative
Prompting. Additionally, there is another (more
cost effective) mode to the verifier module, which
starts by calling the LLM once at the start to get
an initial graph, and then the rest of the corrective
steps are all applied step-by-step and iteratively
through the verifier offline. We refer to this as
Iterative Offline Correction.

Our extensive experiment results on three graph-
based datasets demonstrate the effectiveness of the
proposed PiVe framework in consistently improv-
ing the quality of the LLM output via providing
iterative corrective guidance by an average of 26%
across 3 datasets. We also create GenWiki-HIQ,
a high-quality text-graph dataset and show how
verifier module could be leveraged as a data aug-
mentation technique to improve the quality of auto-
matically constructed text-graph datasets.

2 Basic Definitions

A semantic graph is a network that represents se-
mantic relations between entities. Each semantic
graph has its corresponding verbalisation, and can
have different textual representations. A set of
triples (i.e., [subject, predicate, object])
represents a semantic graph. Given a text, the task
of text-to-graph generation is to query an LLM to
generate a semantic graph of the text. The semantic

2We also try other perturbation methods and show the
results in Appendix C.

graph should cover the information in the text as
much as possible.

To prompt the LLM, we use few-shot by show-
ing an example of T2G in the prompt to specify the
expected format of the semantic graph (i.e., set of
triples). We report experiments under various num-
ber of shots (§4.6). The basic form of instruction
we use in the prompt is "Transform the text into a
semantic graph." followed by a text and a semantic
graph pair as a demonstration. We also show results
under different prompting strategies (§4.7). Differ-
ent demonstrations are used for different datasets
to adapt to the style of different datasets. We show
the used demonstrations in Appendix G.

3 The PiVe Framework

We first explain our training protocol for the verifier
module (§3.1), and then present our framework of
iterative verification prompting (§3.2).

3.1 Verifier Module
The quality of the generated semantic graph from
LLM prompting could be quite poor. For instance
the LLM often misses triples in the generated graph.
In other words, some semantic relations between
entities in the text are difficult to be captured for
LLMs when they are generating a semantic graph.
To detect the missing or incorrect parts of the gen-
erated semantic graph, we design a verifier module.

The verifier module is trained on a small pre-
trained LM (§4.2). A typical graph-based dataset
contains parallel text and semantic graph (T,G)
pairs. For different graph-based datasets, we
use their corresponding training data for the seed
dataset to create data for the verifier module. In
particular, for each text-graph pair in the original
dataset, we create one correct instance and one
perturbed instance. We concatenate the text with
graph using a separator token <S> and the target is
to generate a specific output, denoted as IP, during
training. For correct instances, the IP is simply the
word "Correct". For perturbed instances, we have
two methods to create them:

• Random method: if the graph contains more
than one triple, we randomly omit one triple
from it and concatenate the text with perturbed
graph using a separated token <S>. The target
is to generate the missing part (e.g., triple Tr).

• Heuristic method: Based on the observation
that LLMs tend to miss the triples whose sub-
ject and object are not in the text, in addition
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to randomly omitting one triple from the graph
we also omit the triple from the graph if sub-
ject and object of it are not in the text.

The output to generate for perturbed examples is
the missing triple, Tr. By utilising these two meth-
ods, we can create an arbitrarily large verification
dataset to train a verifier module which will be used
at inference time during prompting the LLM.

3.2 Iterative Prompting

During the LLM prompting, the generated seman-
tic graphs from LLMs is fed into the verifier mod-
ule and the outputs from the verifier module is col-
lected. If verifier generated "Correct" in its output,
it means we do not need to make changes to the
generated graph. Otherwise, the generated output
from the verifier is added to the original prompt
to create a new prompt. The new prompt is then
used to query the LLM again. We repeat the whole
process iteratively. The iteration process will stop
when no missing triple is predicted or a maximum
number of iterations is reached.

New Prompt Design As with the prompt used
in the first iteration, we still provide an example in
the new prompt for the subsequent iterations. The
new prompt is "Transform the text into a semantic
graph and also add the given triples to the gener-
ated semantic graph." In addition to the text, we
also include some triples predicted by the verifier
module which LLMs are likely to miss. This explic-
itly instructs the LLM to generate semantic graph
and include the given triples. The given triple set
contains the predicted missing triples from each
iteration, which prevents the LLM from making
the same mistakes as in previous iterations. See
Appendix G for the used demonstrations.

3.3 Iterative Offline Correction

Similar to Iterative Prompting, the Offline Correc-
tion starts from the online LLM, but then continues
with the step-by-step verification and correction
steps offline. This approach is more cost effective
as it relies only on one API call per instance (as op-
posed to several API calls of iterative prompting),
however it is potentially weaker as it relies on the
capability of the small verifier LM to both verify
and apply the needed corrections. The offline cor-
rection stop under the same stopping criterion to
Iterative Prompting.

4 Experiments

We describe the datasets and pre-processing
method (§4.1), introduce the models and imple-
mentation details (§4.2) and the evaluation metrics
(§4.3). In Subsection 4.4, we describe the main
result from PiVe, and compare the two modes of
verifier: Iterative Prompting vs. Iterative Offline
Correction (§4.5). We then conduct various con-
figurations of shots (§4.6), and prompting (§4.7).
In Subsection 5, we show how PiVe could be used
for data augmentation of automatically generated
graph-text datasets (e.g., GenWiki).

4.1 Datasets and Preprocessing

We evaluate PiVe on three graph-based datasets,
KELM (Agarwal et al., 2021), WebNLG+2020
(Gardent et al., 2017), GenWiki (Jin et al., 2020).

KELM is a large-scale synthetic corpus that con-
sists of the English Wikidata KG and the corre-
sponding natural text. It has ∼15M sentences syn-
thetically generated using a fine-tuned T5 model.
Each graph in KELM is a linearised KG containing
a list of triples of the form [subject, relation,
object]. If a triple has a sub-property, then it is
quadruplet instead. We use a subset (∼60K) of
KELM which is named as KELM-sub. The cre-
ation of KELM-sub follows two criteria. We found
that most graphs in KELM contain no more than six
triples and only around 2,500 graphs contain more
than six triples. Therefore, 1) we only consider the
graphs with no more than six triples, and 2) we do
not consider the graphs containing any triple with a
sub-property. Based on these two criteria, for each
size of graph (from one triple to six triples), we
sampled equal number of (T,G) pairs. In total, the
created KELM-sub contains 60,000/1,800/1,800
samples as train/validation/test set.

WebNLG+2020 contains a set of triples ex-
tracted from DBpedia (Auer et al., 2007) in 16
distinct DBpedia categories and text description
generated using diverse lexicalisation patterns. It
contains ∼38K graphs and each graph has at most
three different descriptions.

GenWiki is a large-scale, general-domain dataset
collected from general Wikipedia which contains
1.3 million non-parallel text and graphs with
shared content. It has two versions: GenWikiFULL
(∼1.3M), and a fine version, GenWikiFINE
(∼750K), which adds constraints on the text and
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Dataset Train Dev
KELM-sub 110,000 3,300
WebNLG & GenWiki 70,630 2,500

Table 1: Statistics of the seed datasets for training the
verifier modules on three datasets.

graphs to force them to contain highly overlapped
entity sets. Both datasets are collected in a scalable
and automatic way. GenWiki also has a human-
annotated test set of 1,000 parallel text-graph
pairs with high quality. Since both GenWikiFULL
and GenWikiFINE are non-parallel text and graphs
datasets, we cannot use it to train the verifier mod-
ule. However, the relation types in GenWiki and
WebNLG have some overlaps, so we use the veri-
fier module trained on WebNLG+2020 and test it
on GenWiki test set.

We use the method described in Section 3.1 to
create the data for training the verifier module. Ta-
ble 1 shows the statistics of the created training
data on these three seed datasets.

4.2 The LLM and Verifier Modules

ChatGPT (gpt-3.5-turbo) is used as our default
LLM to perform the T2G task.3 We also experi-
ment with GPT-4 in Subsection 4.7. For verifier
module, we use T5-Large (Raffel et al., 2020), and
Flan-T5-XXL (Chung et al., 2022) as the backbone
models for dataset-specific verifier module, and
unified verifier module, respectively. T5 models
follow the encoder-decoder architecture and treat
all NLP tasks as unified text-to-text transduction
tasks. Flan-T5 is instruction-fine-tuned version of
T5 which was trained on 1,836 NLP tasks initial-
ized from fine-tuned T5 checkpoint. For T5-large,
we fine-tune all parameters for separate verifier
modules per each dataset. While for Flan-T5-XXL,
we use LoRA (Hu et al., 2022) as a parameter-
efficient fine-tuning method, to train a unified veri-
fier module which can follow the instruction. When
using the unified verifier, we specify the dataset
name in the instructions as datasets have different
naming convention for relations.

The verifier is implemented using Pytorch
(Paszke et al., 2019) and Transformers (Wolf et al.,
2020). For the training, we use Adam optimizer
(Kingma and Ba, 2015). Details about hyperpa-
rameter setting is provided in Appendix A. For

3We also compare the graph-based generative capability
between ChatGPT and GPT-3 in Appendix D and report the
fine-tuned results on small language model in Appendix E.

the implementation of parameter efficient training
method used in Flan-T5-XXL, we use PEFT (Man-
grulkar et al., 2022) and 8-bit quantization tech-
nique (Dettmers et al., 2022). All training was
done using a single A40 GPU with 48GB of RAM.

4.3 Evaluation Metrics

To evaluate the quality of the generated graphs
given the ground-truth graphs, we use four auto-
matic evaluation metrics:

Triple Match F1 (T-F1) calculates F1 score
based on the precision and recall between the
triples in the generated graph and the ground-truth.
We calculate the F1 scores for all test samples and
compute the average F1 score as the final triple
Match F1 score.

Graph Match F1 (G-F1) focuses on the entirety
of the graph and evaluates how many graphs are
exactly produced the same. For all test samples, we
calculate the F1 score based on the precision and
recall between all predicted graphs and all ground-
truth graphs. This F1 score is the final Graph Match
F1 score. Since graphs are represented in a lin-
earised way, we could not simply use the string
match method to check whether two graphs are
the same. Instead, we first build directed graphs
from linearised graphs using NetworkX (Labora-
tory et al., 2008), then we consider the two graphs
to be the same when all node and edge attributes
match.

G-BERTScore (G-BS) is a semantic-level met-
ric proposed by (Saha et al., 2021), which extends
the BERTScore (Zhang et al., 2020) for graph-
matching. It takes graphs as a set of edges and solve
a matching problem which finds the best alignment
between the edges in predicted graph and those in
ground-truth graph. Each edge is considered as a
sentence and BERTScore is used to calculate the
score between a pair of predicted and ground-truth
edges. Based on the best alignment and the overall
matching score, the computed F1 score is used as
the final G-BERTScore.

Graph Edit Distance (GED) (Abu-Aisheh et al.,
2015) computes the distance between the predicted
graph and the ground-truth graph. It measures how
many edit operations (addition, deletion, and re-
placement of nodes and edges) are required for
transforming the predicted graph to a graph iso-
morphic to the ground-truth graph. Lower GED
between two graphs indicates the two graphs are
more similar. In practice, the cost of each operation
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Single Verifier Module Unified Verifier Module
T-F1↑ G-F1↑ G-BS↑ GED↓ T-F1↑ G-F1↑ G-BS↑ GED↓

KELM-sub

Base 13.50 4.89 83.92 13.20 13.50 4.89 83.92 13.20
Iteration 1 17.92 5.78 85.91 12.37 19.64 6.00 86.39 12.08
Iteration 2 19.46 6.44 86.57 12.08 22.11 6.44 87.31 11.68
Iteration 3 20.17 6.61 86.83 11.95 23.11 7.50 87.70 11.35

WebNLG
Base 17.29 13.43 89.59 11.46 17.29 13.43 89.59 11.46

Iteration 1 18.32 14.00 89.74 11.23 18.22 13.83 89.67 11.23
Iteration 2 18.57 14.00 89.82 11.22 18.55 13.88 89.74 11.20

GenWiki
Base 20.13 6.60 88.48 10.99 20.13 6.60 88.48 10.99

Iteration 1 20.54 6.80 88.70 10.87 20.88 6.70 88.66 10.90
Iteration 2 21.09 6.80 88.78 10.83 20.99 6.70 88.91 10.88

Table 2: Results of using PiVe on three datasets across all metrics. Single verifier module represents single
dataset-specific verifier module trained on T5-Large and Unified verifier module is trained on Flan-T5-XXL using
instruction-tuning.

is set to be 1. For each sample, GED is normalized
by a normalizing constant which is the upper bound
of GED to make sure it is between 0 and 1. For
demonstration, we multiply GED by 100 to show
more decimals.

4.4 Results

We report the evaluation results of using PiVe with
ChatGPT on the test set of three datasets in Table
2. All results presented under Base mean the di-
rect output of the LLM without any verification.
By utilising PiVe, on each dataset, we can see the
consistent improvement of the quality of the gener-
ated graphs. For instance, in GenWiki which uses
the same verifier module that was trained on the
training data of WebNLG, the improvement of the
scores over all metrics indicates the effectiveness of
PiVe. Since the graphs are generated by the LLM
through one-shot learning, G-F1 as the most strict
metric, it is hard to get high G-F1 score (basically
aiming for exact match without any minor devia-
tion in wording, spelling, entities, or relations).

On WebNLG and GenWiki datasets, single ver-
ifier module performs slightly better than unified
verifier module. While on KELM-sub dataset, uni-
fied module performs far better. We speculate this
is due to the size of training data for KELM-sub
verifier module being larger than that for WebNLG
and GenWiki (as shown in Table 1). Since unified
verifier module combines the training data of dif-
ferent datasets, more training data leads to better
performance for instruction-tuning. We conducted
human evaluation which we include in Appendix F
due to page limit.

4.5 Iterative Prompting vs. Iterative Offline
Correction

Instead of iteratively prompting the LLM, another
way to utilise the results from verifier module is
to append the predicted missing triples to the pre-
viously generated graph. The results of the com-
parison between iterative prompting and iterative
offline correction using single verifier module and
unified verifier module on KELM dataset is shown
in Table 3. Iterative offline correction performs
worse than iteratively prompting. This might be
because iteratively prompting has the chance of
doing self-correction. In each iteration, when we
prompt the LLM, the generated graphs can proba-
bly correct the mistakes that were made in previous
iteration. For example, in Figure 4, in Base the pre-
dicted relation regarding birth date is “birth year”,
while the reference is “date of birth”. As the PiVe
iteration continues, in Iteration 2, the relation “birth
year” is regenerated as “date of birth” even though
we didn’t mention this in the prompt. Due to the
page limit, we report the comparison results on
WebNLG and GenWiki datasets in Appendix B.
Similarly, iterative prompting can achieve better re-
sults than iterative offline correction over all using
different verifier modules.

4.6 Impact of More Shots

While in our main experiments, for cost reason, we
used only one-shot demonstrations for the LLM
prompting (i.e., GPT-3.5), we show that PiVe is
effective in improving the results regardless of the
underlying number of shots. Here we report the
results of k-shot (k=6, 8, 10) with the iterative
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Iterative Prompting Iterative Offline Correction
Time T-F1↑ G-F1↑ G-BS↑ GED↓ Time T-F1↑ G-F1↑ G-BS↑ GED↓

Single Verifier

Base 36.0 13.50 4.89 83.92 13.20 36.0 13.50 4.89 83.92 13.20
Iteration 1 +13.5 17.92 5.78 85.91 12.37 +4.5 17.76 5.83 86.42 12.37
Iteration 2 +4.7 19.46 6.44 86.57 12.08 +1.1 18.51 6.11 86.91 12.19
Iteration 3 +2.1 20.17 6.61 86.83 11.95 +0.2 18.55 6.17 86.94 12.18

Unified Verifier

Base 36.0 13.50 4.89 83.92 13.20 36.0 13.50 4.89 83.92 13.20
Iteration 1 +118.9 19.64 6.00 86.39 12.08 +105.0 16.99 5.67 87.08 12.95
Iteration 2 +46.8 22.11 6.44 87.31 11.68 +40.6 17.76 5.67 87.48 12.96
Iteration 3 +21.1 23.11 7.50 87.70 11.35 +10.4 17.85 5.67 87.52 12.96

Table 3: Comparison between Iterative Prompting and Iterative Offline Correction on KELM-sub dataset across all
metrics using Single Verifier and Unified Verifier. Time denotes the total inference time in minutes.

6−shot

8−shot

10−shot

35 36 37 38 39 40TF1

6−shot

8−shot

10−shot

12.5 15.0 17.5GF1
Iter. 1 2 3 4

86 87 88 89 GBS

9.0 9.5 10.0          8.5 GED

Figure 2: Results of various number of shots (k=6, 8,
10) on KELM-sub with Iterative Offline Correction. The
colors represent Base, and corrective iterations 1, 2, 3.

offline correction (i.e., only using the LLM once
to get the initial graph, while the correction steps
are all applied step-by-step and offline). Figure 2
demonstrates the results on KELM-sub using uni-
fied verifier with iterative offline correction. The
results show, as expected, that PiVe still provides
consistent improvement even with the increase in
the number of shots. Additionally, as the shots
grow the improvement from PiVe also increases.

4.7 Baselines on LLMs

To probe other prompting techniques as baselines
of generating graphs from the LLM, we compare
three diverse prompts. The first one we use is the
default prompt used across our main experiments.
This prompt is fairly direct and simple. Prompt
1: Transform the text into a semantic
graph. In the second prompt, we aim to instruct
the LLM to generate larger graph with more triples.
This is to increase the chance of LLM recover-
ing more triples during the generation. Prompt 2:
Transform the text into a semantic graph
consisting of a set of triples. Generate
as many triples as possible. For the third
prompt, inspired by Chain-of-thought (Wei et al.,
2022; Kojima et al., 2022) approach, we also ask
the LLM to generate the semantic graph in two
steps. Prompt 3: Transform the text into
a semantic graph consisting of a set
of triples. First produce all relations

T-F1↑ G-F1↑ G-BS↑ GED↓
Base 13.50 4.89 83.92 13.20
Iteration 1 14.54 3.00 84.85 13.90
Iteration 2 14.33 2.44 84.57 14.43
Iteration 3 13.79 2.28 84.20 15.18

Table 4: Self-Refine (Madaan et al., 2023) results on
KELM-sub using Single Verifier.

possible, then produce the graph.

We conduct experiments on Chat-
GPT (gpt-3.5-turbo) and GPT-4 (gpt-4)
in 6-shot learning on KELM-sub, using unified
verifier with iterative offline correction. The results
are shown in Figure 3 (for detailed numbers see
Table 14 and Table 15 in Appendix). In general, as
expected, GPT-4 performs far better than ChatGPT
on the T2G task, but the effect of different prompts
varies across these two models. Specifically, on
ChatGPT, Prompt 2 achieves the best results while
on GPT-4, Prompt 1 is outperforming the rest on
most metrics. PiVe can consistently improve the
results across all different settings, with the biggest
jump in performance emerging in the first iteration,
with slight improvements also observed between
the second and third iterations of correction.

We also compare PiVe with the recent Self-
Refine (Madaan et al., 2023) method, which lever-
ages LLM itself to provide feedbacks for self-
refinement. Table 4 shows the self-refine results
on KELM-sub dataset. The results show that self-
refine could not provide effective feedback, thus
leading to the performance drop as the iteration
goes. The performance gap is obvious comparing
with our PiVe result. Since LLMs are not trained
as rigorously on structured data compared to text,
expecting them to provide meaningful feedbacks
on their outputs is expected to fail.
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Figure 3: Results of using 3 diverse prompts with 6-
shot on KELM-sub with Iterative Offline Correction on
ChatGPT and GPT-4. The colors represent Base, and
corrective iterations 1, 2, 3.

4.8 Computational Cost and Trade-off

Training and Inference The training and infer-
ence of both single verifiers and unified verifier are
on a single A40 GPU. Each single verifier takes
around 6 hours and the unified verifier takes around
40 hours to train. The computation cost for train-
ing of verifiers is a feasible one-off cost. Once the
training is finished, the inference of the verification
of each instance takes 0.15s for single verifier, and
3.5s for unified verifier. See the Time column in
Table 3. Different verifiers present performance-
speed trade-offs and are significantly effective in
augmenting the LLMs.

Stopping Criterion In theory, the verification
module could run till no missing triple is predicted
or a maximum number of iterations is reached.
However, running more iterations increases the as-
sociated cost (i.e., OpenAI API charges). We set a
maximum of 3 iterations.

4.9 PiVe Examples

In Figure 4, we demonstrate an example from
KELM-sub test set using unified verifier. In Base,
based on the prediction from the LLM, the verifier
module predicts the missing triple [“Francisco
Uranga”, “occupation”, “swimmer”]. By sug-
gesting this missing triple in the next iteration
of prompt, the prediction from LLM includes
it. Then, the verifier predicts the missing triple
[“Francisco Uranga”, “sex or gender”,
“male”]. In Iteration 2, both of these two missing

triples are included in the prediction from LLM,
and at this time, the verifier predicts “Correct”. The
prediction from Iteration 2 contains all information
correctly in the reference. See another example in
Appendix H.

5 GenWiki-HIQ

Training a good G2T or T2G model requires a large
amount of high-quality parallel text and graph pairs
or pre-training protocols to accommodate for lack
of data (Han and Shareghi, 2022). However, creat-
ing the parallel data by human is a labour-intensive
and time-consuming work. Jin et al. (2020) pro-
posed GenWiki, an automatically constructed large
dataset containing non-parallel text and graphs with
shared content. Although the text and graphs con-
tain shared content, it can still only be used for
unsupervised training due to the low entity and re-
lation overlap between text and graph. Our verifier
module can naturally serve as a data augmentation
tool to improve the overlap between the text and
graph of automatically constructed datasets.

Iterative Augmentation. Based on GenWikiFINE
(∼750K), first we filter out the text that has lit-
tle overlap with the graph. After filtering, we got
around 110K text-graph pairs called GenWikiFINE-f.
Then following the process described in Section
3.1, we use the WebNLG verifier module and the
iterative offline correction to improve the coverage
and quality of GenWikiFINE-f and formed GenWiki-
HIQ. The maximum number of iterations is four.

To evaluate the effectiveness of the verifier mod-
ule as data augmentation tool, as well the quality
of the generated graph, first we use Flan-T5-XL
model to generate a description of each graph in
zero-shot setting by using the prompt "Transform
the semantic graph into a description."
for each iteration. Then we leverage automatic
quality evaluation metrics to calculate the score
between the generated description and the corre-
sponding text. Ideally, the higher the similarity
between the graph and the corresponding text, the
higher the score of the generated description and
corresponding text. We use four commonly used
quality evaluation metrics which are BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), TER (Snover et al., 2006), BERTScore.

Result. We used the dataset-specific verifier mod-
ule to do the data augmentation. We conducted four
iterations and the evaluation results are shown in Ta-

6708



Text: Francisco Uranga was born in 1905 and represented Argentina at the 1928 Summer Olympics. He competed in
the men's 50 metre freestyle.

LLM Prediction: [["Francisco Uranga", "birth year", "1905"], ["Francisco Uranga", "represented", "Argentina"],
["Argentina", "participated in", "1928 Summer Olympics"], ["Francisco Uranga", "competed in", "men's 50 metre
freestyle"]]

Verification Module Output: ["Francisco Uranga", "occupation", "swimmer"]

Base

LLM Prediction: [["Francisco Uranga", "occupation", "swimmer"], ["Francisco Uranga", "birth year", "1905"],
["Francisco Uranga", "represented", "Argentina"], ["Argentina", "participated in", "1928 Summer Olympics"],
["Francisco Uranga", "competed in", "men's 50 metre freestyle"]]

Verification Module Output: ["Francisco Uranga", "sex or gender", "male"]

Iteration 1

LLM Prediction: [["Francisco Uranga", "occupation", "swimmer"], ["Francisco Uranga", "sex or gender", "male"],
["Francisco Uranga", "date of birth", "1905"], ["Francisco Uranga", "represented", "Argentina"], ["Argentina",
"participated in", "1928 Summer Olympics"], ["Francisco Uranga", "competed in", "men's 50 metre freestyle"]]

Verification Module Output: Correct

Iteration 2

Reference: [["Francisco Uranga", "occupation", "swimmer"], ["Francisco Uranga", "date of birth", "01 January 1905"],
["Francisco Uranga", "country of citizenship", "Argentina"], ["Francisco Uranga", "sex or gender", "male"], ["Francisco
Uranga", "participant of", "1928 Summer Olympics"], ["Francisco Uranga", "sport", "Swimming ( sport )"]]

Figure 4: An example from KELM-sub test set using unified verifier module.

BLEU↑ METEOR↑ TER↓ BERTScore↑
Base 4.75 18.02 80.72 89.47
Iteration 1 11.86 26.25 73.79 91.49
Iteration 2 14.90 29.69 72.29 92.00
Iteration 3 15.93 31.05 72.01 92.14

Table 5: Results of iterative augmentation on filtered
110K text-graph pairs from GenWikiFINE across four
metrics after each iteration. We take the text-graph pairs
from Iteration 3 as the created GenWiki-HIQ dataset.

ble 5. The results in Base represent the scores over
non-parallel graph-text pairs from GenWikiFINE,
which have low overlap between graph and text. By
using verifier module iteratively, we add more miss-
ing triples to the original graph, thus leading the
higher quality scores. As the iteration progresses,
fewer missing triples are added and we take the
augmented graph-text pairs from the last iteration
as the final created GenWiki-HIQ dataset. We
also conducted G2T experiments in Appendix 5.1
to further demonstrate the quality of GenWiki-
HIQ. The G2T model trained on GenWiki-HIQ
performs far better than the G2T model trained on
GenWikiFINE-f on the human annotated GenWiki
test set. This indicates that GenWiki-HIQ contains
parallel text-graph pairs with high overlap.

Qualitative Example. In Figure 5, we demon-
strate an example from the created GenWiki-HIQ

Text : Timma is a village development committee in Bhojpur
District in the Kosi Zone of eastern Nepal. At the time of the
1991 Nepal census it had a population of 3336 persons
living in 621 individual households.

GenWiki-FINE:
[[Timma, populationTotal, 3336],
[Timma, pushpinMap,Nepal],
[Timma, country, Nepal]]
GenWiki-HIQ:
[[Timma, populationTotal, 3336],
[Timma, pushpinMap,Nepal],
[Timma, country, Nepal],
[Timma, is Part Of, Bhojpur District Kosi Zone],
[Timma, county Development Committee, Bhojpur District],
[Timma, number OfHouseholds, 621]]

Figure 5: An example from GenWiki-HIQ compared to
the original graph in GenWikiFINE.

dataset and the original graph in GenWikiFINE. Af-
ter the data augmentation process, the graph in
GenWiki-HIQ contains more information in text.

5.1 G2T Results on GenWiki-HIQ

To further verify the quality of GenWiki-HIQ
dataset, we use T5-large as the backbone model
to train a G2T model, which generates the corre-
sponding text based on the graph. Then we test it
on the original GenWiki test set containing a 1,000
high-quality human annotated parallel text-graph
pairs. As comparison, we also train another G2T
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BLEU↑ METEOR↑ TER↓ BERTScore↑
GenWikiFINE-f 35.71 36.67 65.19 93.74
GenWiki-HIQ 48.17 42.03 41.94 95.44

Table 6: Results of G2T generation on original GenWiki
test set training on different datasets. GenWikiFINE-f
contains the filtered 110K text-graph pairs from original
GenWikiFINE as described in Section 5. GenWiki-HIQ
is the augmented dataset based on GenWikiFINE-f.

model on GenWikiFINE-f which is the seed dataset
of GenWiki-HIQ.

The result is demonstrated in Table 6. On
original Genwiki test set, the model trained on
GenWiki-HIQ performs far better than the model
trained on GenWikiFINE-f across all metrics. This
indicates that GenWiki-HIQ contains parallel text-
graph pairs with high overlap.

6 Background and Related Work

6.1 In-Context Learning

With the scaling of model size and training corpus
size (Brown et al., 2020; Chowdhery et al., 2022),
LLMs demonstrate new abilities of learning from
a few demonstrations which contain some training
examples (Dong et al., 2023). As a new paradigm,
In-Context Learning does not require parameter
updates and directly performs predictions on the
pre-trained language models. The provided demon-
stration examples in the prompt follow the same for-
mat, which are usually written in natural language
templates. By concatenating a query question with
the demonstrations in the prompt, LLMs can learn
from the given examples and make a prediction of
the query question. Previous research (Liu et al.,
2022; Lu et al., 2022) has shown that the num-
ber and order of the demonstrations can influence
the In-Context Learning performance. These are
further points of future investigation, which could
potentially improve the initial graph produced by
the LLM, which could further be corrected with
the PiVe framework.

6.2 Instruction-Tuning

Instruction-Tuning (Mishra et al., 2022; Wang et al.,
2022; Longpre et al., 2023) is a framework of
doing multi-task learning, which enables the use
of human-readable instructions to guide the pre-
diction of LLMs. This novel training paradigm
can improve the performance of the downstream
tasks and also shows great generalisation ability
on unseen tasks (Chung et al., 2022; Sanh et al.,

2022). Wang et al. (2023) proposed a unified in-
formation extraction framework based on multi-
task instruction-tuning. Zhou et al. (2023) utilised
instruction-tuning to perform controlled text gen-
eration following certain constraints. In our work,
we use instruction-tuning to train a unified veri-
fier module, which can follow the instruction to
perform predictions on different datasets.

6.3 Verifiers

Leveraging small models could further improve
the performance of LLMs. Cobbe et al. (2021)
proposed to solve math word problem by utilising
verifier. The verifier is used to judge the correctness
of model-generated solutions. During test time,
based on multiple candidate solutions generated,
verifier calculates the correctness probability and
the final answer will be selected by the verifier from
the ranked list. Welleck et al. (2023) proposed self-
correction, an approach that trains a small model
to iteratively apply self-correction. The idea of
self-correction looks similar to our PiVe. While
Welleck et al. (2023) focuses on the design of a self-
correcting language model, PiVe presents a very
simple verifier module design and a simple data
perturbation strategy to train such model. The ideas
presented in our work are developed concurrently
and independently.

7 Conclusion

We proposed PiVe, an iterative verification frame-
work, to improve the graph-based generative ca-
pability of LLMs. We illustrated how a simple
perturbation technique could be used to build data
for training a verifier module which both verifies
and corrects outputs from an LLM. We used differ-
ent training strategies to build both dataset-specific
verifiers with fine-tuning, and a unified verifier with
instruction-tuning. Our verifier module could act
both as an iterative prompting guide to improve out-
puts of an LLM, as well as an iterative offline cor-
rection system that starts from an LLM outputs but
continuously improves it offline. The experimental
results on three graph-based datasets demonstrates
the effectiveness of PiVe. Furthermore, PiVe can
also be used as a data augmentation technique to
help improve the quality of automatically generated
parallel text-graph datasets. By using verifier mod-
ule, we created GenWiki-HIQ, a dataset containing
110K parallel text and graphs with high overlap for
future research in text-graph domain.
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Limitations

Although the proposed framework is a straightfor-
ward and effective method of improving the gen-
erative capabilities of black box LLMs in graph
generation, it still has some limitations. Firstly,
PiVe is only designed for few-shot prompting set-
ting on LLMs, using an external verifier module
to enhance their generative capabilities. The im-
provement is less significant when utilising PiVe
on LMs that have been fine-tuned on the task data.
Secondly, PiVe is not designed for free-form text
generation tasks. Due to the unique aspect of graph,
which has a specific structure, it allows for a much
more fine-grained detection of errors and enables
a richer corrective feedback. Translation between
text and other similar modalities of data (e.g., table,
SQL) can also effectively leverage our verification
mechanism. Thirdly, in this work, we only focus on
the triple missing mistake made by LLMs, so that
the verifier module is not sensitive to the order of
the head entity and tail entity. This means when the
order of the head entity and tail entity in a triple of
a generated graph from LLMs is incorrect, verifier
module is not able to detect this type of mistake.
It would be more effective if other error-detection
heuristic methods are developed for creating the
training dataset of the verifier.

Ethics Statement

Our work is built on top of existing pre-trained
language models. Our goal was not to attend to
alleviate the well-documented issues (e.g., privacy,
undesired biases, etc) that such models embody.
For this reason, we share the similar potential risks
and concerns posed by these models.
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Hyperparameter Assignment
Model T5-Large
Epoch 5
Batch Size 16
Optimizer Adam
Learning Rate 2× 10−5

Warm-up Step 500
Beam Size 5

Table 7: Hyperparameters of single verification module.

Hyperparameter Assignment
Model FLAN-T5-XXL
Epoch 2
Batch Size 48
Optimizer Adam
Learning Rate 3× 10−5

Warm-up Step 100
Beam Size 4

Table 8: Hyperparameters of unified verification mod-
ule.
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Appendix

A Hyperparameter Setting

B Additional Experiment Result

Table 9 and Table 10 show the results of the compar-
ison between iteratively prompt and iterative offline
correction on WebNLG and GenWiki datasets.

C Effect of Perturbation Method

As described in Section 3.1, we perturb the graph
by omitting one triple when building the verifier
module of PiVe. In addition, we also investigated
other perturbation methods to train a verifier mod-
ule, such as perturbing the head entity, relation and
tail entity. To be specific, for head entity perturba-
tion, if the graph contains more than one triple, we
randomly choose one triple and replace the head
entity with a different head entity from other triples
of the same graph. Likewise, we replace the re-
lation and tail entity for relation perturbation and
tail entity perturbation, respectively. The target is

to predict the original triple. Then we train differ-
ent verifier modules using these three perturbation
methods on KELM-sub. The results of doing differ-
ent perturbations using Iterative Offline Correction
is shown in Table 11.

Comparing with the result of omitting triple per-
turbation method shown in Table 3 using Single
Verifier with Iterative Offline Correction, these
three perturbation methods have varying effects.
While the relational perturbation works in terms
of T-F1, with more iterations, the G-BS score gen-
erally goes down for all these perturbations. This
indicates the verifier module could potentially in-
ject wrong corrections if not trained with the proper
perturbation mechanism. We speculate the reason
is because LLMs are less likely to make mistakes
at entity level, so these perturbation methods are
not useful for training a verifier module. This also
indicates when building a verifier module, choos-
ing reasonable perturbation methods is significant
and necessary.

D ChatGPT vs GPT-3

To further highlight the generalisation ability of
PiVe, in addition to ChatGPT, we also experiment
with GPT-3 (text-davinci-003) as the backbone
LLM to perform the T2G task. We perform experi-
ments on KELM-sub dataset using iterative prompt-
ing and iterative offline correction with different
verifiers. The results are shown in Table 13. Com-
pared with the results of using ChatGPT (shown in
Table 3), GPT-3 has a better graph-based generative
capability. Nonetheless, PiVe can still consistently
further improve its results over all settings. Using
iterative prompting with the unified verifier can
achieve the best result on KELM-sub.

E Comparison with Fine-tuned Baselines

While our work focuses on the fundamental ques-
tion of "How can we improve the generative capa-
bilities of black box LLMs in graph generation?",
for completeness we also provide results of fine-
tuned T5 (Raffel et al., 2020) in Table 12. As
expected, fine-tuning on large amount of data sur-
passes few-shot prompting. This underscores the
struggle LLMs face in transduction problems, and
the need for additional mechanisms (like PiVe) to
help LLM improvement.
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Iterative Prompting Iterative Offline Correction
T-F1↑ G-F1↑ G-BS↑ GED↓ T-F1↑ G-F1↑ G-BS↑ GED↓

Single Verifier
Base 17.29 13.43 89.59 11.46 17.29 13.43 89.59 11.46

Iteration 1 18.32 14.00 89.74 11.23 18.03 13.55 89.16 11.52
Iteration 2 18.57 14.00 89.82 11.22 18.10 13.55 89.19 11.51

Unified Verifier
Base 17.29 13.43 89.59 11.46 17.29 13.43 89.59 11.46

Iteration 1 18.22 13.83 89.67 11.23 18.02 13.49 89.21 11.61
Iteration 2 18.55 13.88 89.74 11.20 18.06 13.49 89.07 11.65

Table 9: Comparison between Iterative Prompting and Iterative Offline Correction on WebNLG dataset across all
metrics using Single Verifier and Unified Verifier.

Iterative Prompting Iterative Offline Correction
T-F1↑ G-F1↑ G-BS↑ GED↓ T-F1↑ G-F1↑ G-BS↑ GED↓

Single Verifier
Base 20.13 6.60 88.48 10.99 20.13 6.60 88.48 10.99

Iteration 1 20.54 6.80 88.70 10.87 20.24 6.70 89.00 10.95
Iteration 2 21.09 6.80 88.78 10.83 20.32 6.80 89.07 10.93

Unified Verifier
Base 20.13 6.60 88.48 10.99 20.13 6.60 88.48 10.99

Iteration 1 20.88 6.70 88.66 10.90 20.37 6.60 89.08 10.96
Iteration 2 20.99 6.70 88.91 10.88 20.42 6.60 89.11 10.94

Table 10: Comparison between Iterative Prompting and Iterative Offline Correction on GenWiki dataset across all
metrics using Single Verifier and Unified Verifier.

T-F1↑ G-F1↑ G-BS↑ GED↓

Head

Base 13.50 4.89 83.92 13.20
Iteration 1 13.66 4.89 83.23 13.31
Iteration 2 13.65 4.89 81.99 13.31
Iteration 3 13.65 4.89 80.83 13.31

Relation

Base 13.50 4.89 83.92 13.20
Iteration 1 15.09 4.94 83.68 12.97
Iteration 2 15.29 4.94 82.90 12.95
Iteration 3 15.33 4.94 82.09 12.96

Tail

Base 13.50 4.89 83.92 13.20
Iteration 1 13.52 4.89 83.83 13.21
Iteration 2 13.51 4.89 83.74 13.22
Iteration 3 13.50 4.89 83.64 13.23

Table 11: Results of doing different perturbations to
the graph on KELM-sub to train a Single Verifier with
Iterative Offline Correction.

F Human Evaluation

We conducted a human evaluation on 105 randomly
sampled instances from three datasets (KELM-sub,
WebNLG, GenWiki). Specifically, for each dataset,
first we took the test set outputs from the first itera-
tion and the last iteration, then we randomly sam-
pled 35 instances from those with different outputs.
The output from the first iteration is the original
ChatGPT output without using PiVe, and the out-
put from the last iteration is the result after using
PiVe. For the evaluation process we recruited three
annotators (1 PhD graduate and 2 PhD students in
Computer Science and NLP) to select, for a given

T-F1↑ G-F1↑ G-BS↑ GED↓
KELM-sub 58.45 47.26 94.12 8.48
WebNLG 54.77 45.31 93.51 9.11
GenWiki 36.34 29.69 91.14 9.74

Table 12: Fine-tuning results of text-to-graph generation
on three datasets on T5-Large model.

text and two graph outputs, which graph matches
the text better. Each annotator should only choose
one graph per each instance and evaluate all 105
instances.

After annotation, we took majority voting over
the result of each instance, then calculated the num-
ber of wins for ChatGPT with or without PiVe. The
results are shown in Table 16. From the results,
we can see ChatGPT with PiVe wins on 85 out of
105 samples and the total winning rate is over 80%.
This indicates the PiVe can effectively improve the
graph-based generative capability of LLMs.

For the cases that PiVe failed to improve, we did
error analysis and found that there were mainly
two types of mistakes that PiVe made: redun-
dancy and inaccuracy. In Figure 6, we demon-
strate two examples containing these two types
of mistakes shown in red text. In the first
example, the triple [“Train song Mermaid”,
“instrument”,“Singing”] predicted by PiVe is
redundant. In the second example, the relation
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Iterative Prompting Iterative Offline Correction
T-F1↑ G-F1↑ G-BS↑ GED↓ T-F1↑ G-F1↑ G-BS↑ GED↓

Single Verifier

Base 15.11 7.72 83.63 12.91 15.11 7.72 83.63 12.91
Iteration 1 19.55 8.78 85.90 11.98 18.97 8.72 86.47 12.10
Iteration 2 21.57 9.33 86.59 11.56 19.65 9.00 86.76 11.96
Iteration 3 22.49 9.89 87.10 11.37 19.69 9.00 86.77 11.95

Unified Verifier

Base 15.11 7.72 83.63 12.91 15.11 7.72 83.63 12.91
Iteration 1 21.40 8.78 86.43 11.69 20.46 8.78 87.18 11.90
Iteration 2 24.37 9.50 87.50 11.12 21.54 9.06 87.56 11.71
Iteration 3 26.06 10.22 87.99 10.83 21.57 9.06 87.57 11.71

Table 13: Results of using GPT-3-davinci as the backbone LLM on KELM-sub dataset over different settings.

T-F1↑ G-F1↑ G-BS↑ GED↓

Prompt 1

Base 35.25 10.78 85.43 10.19
Iteration 1 36.96 12.56 88.20 10.14
Iteration 2 37.25 12.61 88.47 10.13
Iteration 3 37.37 12.68 88.54 10.13

Prompt 2

Base 34.46 11.56 86.07 10.08
Iteration 1 37.38 14.22 88.48 9.35
Iteration 2 37.81 14.72 88.61 9.24
Iteration 3 37.85 14.89 88.62 9.23

Prompt 3

Base 31.89 9.78 84.16 10.58
Iteration 1 36.15 13.22 87.89 9.46
Iteration 2 37.03 13.94 88.29 9.23
Iteration 3 37.11 13.95 88.34 9.23

Table 14: Results of using diverse prompts with 6-shot
learning on KELM-sub with Iterative Offline Correction
on ChatGPT.

“date Of Retirement” in the triple [“Alan
Shepard”,“date Of Retirement",“1963”] is
inaccurate. We speculate these behaviours were
caused due to the presence of many similar texts
with similar graphs in the training data. During
training, PiVe learned the potential connections
between these similar graphs, thus leading to re-
dundant and inaccurate triples at prediction.

G Demonstrations in Prompt

Figure 7 shows the demonstrations used for KELM-
sub and Figure 8 shows the demonstrations used
for WebNLG and GenWiki. In Iteration 1, we use
the demonstration that does not contain the missing
triples. For subsequent iterations, we include the
missing triples in the demonstration.

H PiVe Examples

Figure 9 illustrates another example of PiVe
from WebNLG test set using single verification
module. In Base, the verification module predict
the missing triple [“Agremiação Sportiva
Arapiraquense”, “ground”, “Estádio
Municipal Coaracy da Mata Fonseca”], even

T-F1↑ G-F1↑ G-BS↑ GED↓

Prompt 1

Base 43.46 26.50 87.60 7.97
Iteration 1 45.68 32.50 89.86 7.39
Iteration 2 45.87 33.06 90.04 7.32
Iteration 3 45.87 33.06 90.05 7.31

Prompt 2

Base 41.67 22.67 87.28 8.47
Iteration 1 43.64 26.61 88.87 7.98
Iteration 2 43.79 27.22 88.99 7.91
Iteration 3 43.79 27.28 89.00 7.91

Prompt 3

Base 44.30 23.89 87.36 8.11
Iteration 1 46.65 29.61 89.22 7.49
Iteration 2 46.84 30.06 89.28 7.45
Iteration 3 46.85 30.08 89.30 7.45

Table 15: Results of using diverse prompts with 6-shot
learning on KELM-sub with Iterative Offline Correction
on GPT-4.

Dataset # with PiVe wins # w/o PiVe wins
KELM-sub 31 4
WebNLG 28 7
GenWiki 26 9
Total 85 20

Table 16: Human evaluation results on 105 samples
from three datasets using ChatGPT with or w/o PiVe.

though there is a similar triple but containing
mistakes in the prediction from the LLM. In
Iteration 1, the LLM corrects the mistakes in
the previous iteration, and also includes the
predicted missing triple. Based on the prediction
from the LLM, the verification module predict
the missing triple [“Campeonato Brasileiro
Série C”, “country”, “Brazil”]. In Iteration
2, the verification module predict “Correct” to
the final prediction from the LLM. After three
iterations using PiVe, the predicted graph contains
all information in the reference.
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Text: While pop rock can trace its stylistic roots back to rock music, Reggae music evolved out of different musical
genre, known as ska. Interestingly, the Train song, Mermaid, belongs to the genre of pop rock, but is also
considered to be of the reggae genre as well.

Reference: [["Mermaid Train song", "genre", "Pop rock"], ["Mermaid Train song", "genre", "Reggae"], ["Pop rock",
"stylistic Origin", "Rock music"], ["Reggae", "stylistic Origin", "Ska"]]

ChatGPT w/o PiVe: [["pop rock", "stylistic roots", "rock music"], ["Reggae music", "evolved from", "ska"], ["Train
song Mermaid", "genre", "pop rock"], ["Train song Mermaid", "also considered", "reggae genre"]]

ChatGPT with PiVe: [["pop rock", "stylistic roots", "rock music"], ["Reggae music", "evolved out of", "ska"], ["Train
song Mermaid", "genre", "pop rock"], ["Train song Mermaid", "genre", "reggae"], ["Train song Mermaid",
"instrument", "Singing"]]

Text: Alan Shepard was born November 18th, 1923 in New Hampshire and later died in California. Shepard
graduated from NWCwith an M.A. in 1957 and was also the Chief of the Astronaut Office in 1963.

Reference: [["Alan Shepard", "birth Date", "1923-11-18"], ["Alan Shepard", "served As Chief Of The Astronaut
Office In", "1963"], ["Alan Shepard", "death Place", "California"], ["Alan Shepard", "birth Place", "New
Hampshire"], ["Alan Shepard", "alma Mater", "NWC M.A. 1957"]]

ChatGPT w/o PiVe: [["Alan Shepard", "birth date", "November 18th, 1923"], ["Alan Shepard", "birth place", "New
Hampshire"], ["Alan Shepard", "death place", "California"], ["Alan Shepard", "education", "M.A. from NWC"],
["Alan Shepard", "occupation", "Chief of the Astronaut Office"]]

ChatGPT with PiVe: [["Alan Shepard", "birth place", "New Hampshire"], ["Alan Shepard", "birth date", "November
18th, 1923"], ["Alan Shepard", "death place", "California"], ["Alan Shepard", "education", "M.A. from NWC"],
["Alan Shepard", "occupation", "Chief of the Astronaut Office"], ["Alan Shepard", "status", "Deceased"], ["Alan
Shepard", "date Of Retirement", "1963"]]

Figure 6: Two examples of PiVe making two types of mistakes: redundancy and inaccuracy.

Demonstration for Iteration 1:
Transform the text into a semantic graph.
Example:
Text: Shotgate Thickets is a nature reserve in the UnitedKingdom operated by the Essex Wildlife Trust.
Semantic Graph: [["Shotgate Thickets", "instance of", "Nature reserve"], ["Shotgate Thickets", "country", "United
Kingdom"], ["Shotgate Thickets", "operator", "Essex Wildlife Trust"]]

Demonstration for Subsequent Iterations:
Transform the text into a semantic graph and also add the given triples to the generated semantic graph.
Example:
Text: Shotgate Thickets is a nature reserve in the UnitedKingdom operated by the Essex Wildlife Trust.
Triples: ["Shotgate Thickets", "instance of", "Nature reserve"], ["Shotgate Thickets", "country", "United Kingdom"]
Semantic graph: [["Shotgate Thickets", "instance of", "Nature reserve"], ["Shotgate Thickets", "country", "United
Kingdom"], ["Shotgate Thickets", "operator", "Essex Wildlife Trust"]]

Figure 7: The demonstrations used in prompt for KELM-sub.
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Demonstration for Iteration 1:
Transform the text into a semantic graph.
Example:
Text: Sportpark De Toekomst is located in Ouder-Amstel, Netherlands. It is owned and operated by AFC Ajax
N.V. and their tenants include the Ajax Youth Academy.
Semantic graph: [["Sportpark De Toekomst", "location", "Ouder-Amstel"], ["Sportpark De Toekomst", "country",
"Netherlands"], ["Sportpark De Toekomst", "owner", "AFC Ajax N.V."], ["Sportpark De Toekomst", "operator",
"AFC Ajax N.V."], ["Sportpark De Toekomst", "tenant", "Ajax YouthAcademy"]]

Demonstration for Subsequent Iterations:
Transform the text into a semantic graph and also add the given triples to the generated semantic graph.
Example:
Text: Sportpark De Toekomst is located in Ouder-Amstel, Netherlands. It is owned and operated by AFC Ajax
N.V. and their tenants include the Ajax Youth Academy.
Triples: ["Sportpark De Toekomst", "country", "Netherlands"], ["Sportpark De Toekomst", "operator", "AFC Ajax
N.V."]
Semantic graph: [["Sportpark De Toekomst", "location", "Ouder-Amstel"], ["Sportpark De Toekomst", "country",
"Netherlands"], ["Sportpark De Toekomst", "owner", "AFC Ajax N.V."], ["Sportpark De Toekomst", "operator",
"AFC Ajax N.V."], ["Sportpark De Toekomst", "tenant", "Ajax YouthAcademy"]]

Figure 8: The demonstrations used in prompt for WebNLG and GenWiki.

Text: Agremiação Sportiva Arapiraquense with 17000 members play in the Brazil Campeonato Brasileiro Série C
league. Estádio Municipal Coaracy da Mata Fonseca in located in Arapiraca and ground is Agremiação Sportiva
Arapiraquense.

LLM Prediction: [["Agremiação Sportiva Arapiraquense", "member count", "17000"], ["Agremiação Sportiva
Arapiraquense", "league", "Campeonato Brasileiro Série C"], ["Estádio Municipal Coaracy da Mata Fonseca",
"location", "Arapiraca"], ["Estádio Municipal Coaracy da Mata Fonseca", "home ground", "Agremiação Sportiva
Arapiraquense"]]

Verification Module Output: ["Agremiação Sportiva Arapiraquense", "ground", "Estádio Municipal Coaracy da Mata
Fonseca"]

Base

LLM Prediction: [["Agremiação Sportiva Arapiraquense", "membership", "17000"], ["Agremiação Sportiva
Arapiraquense", "league", "Campeonato Brasileiro Série C"], ["Agremiação Sportiva Arapiraquense", "ground",
"Estádio Municipal Coaracy da Mata Fonseca"], ["Estádio Municipal Coaracy da Mata Fonseca", "location",
"Arapiraca"]]

Verification Module Output: ["Campeonato Brasileiro Série C", "country", "Brazil"]

Iteration 1

LLM Prediction: [["Agremiação Sportiva Arapiraquense", "membership", "17000"], ["Agremiação Sportiva
Arapiraquense", "league", "Campeonato Brasileiro Série C"], ["Agremiação Sportiva Arapiraquense", "ground",
"Estádio Municipal Coaracy da Mata Fonseca"], ["Estádio Municipal Coaracy da Mata Fonseca", "location",
"Arapiraca"], ["Campeonato Brasileiro Série C", "country", "Brazil"]]

Verification Module Output: Correct

Iteration 2

Reference: [["Agremiação Sportiva Arapiraquense", "league", "Campeonato Brasileiro Série C"], ["Agremiação
Sportiva Arapiraquense", "number Of Members", "17000"], ["Agremiação Sportiva Arapiraquense", "ground",
"Estádio Municipal Coaracy da Mata Fonseca"], ["Campeonato Brasileiro Série C", "country", "Brazil"], ["Estádio
Municipal Coaracy da Mata Fonseca", "location", "Arapiraca"]]

Figure 9: An example from WebNLG test set using single verification module.
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