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Abstract

Self-Consistency samples diverse reasoning
chains with answers and chooses the final an-
swer by majority voting. It is based on for-
ward reasoning and cannot further improve per-
formance by sampling more reasoning chains
when saturated. To further boost performance,
we introduce backward reasoning to verify can-
didate answers. Specifically, for mathematical
tasks, we mask a number in the question and
ask the LLM to answer a backward question
created by a simple template, i.e., to predict
the masked number when a candidate answer is
provided. Instead of using forward or backward
reasoning alone, we propose FOBAR to com-
bine FOrward and BAckward Reasoning for
verification. Extensive experiments on six stan-
dard mathematical data sets and three LLMs
show that FOBAR achieves state-of-the-art per-
formance. In particular, FOBAR outperforms
Self-Consistency, which uses forward reason-
ing alone, demonstrating that combining for-
ward and backward reasoning is more accurate
in verification. In addition, FOBAR achieves
higher accuracy than existing verification meth-
ods, showing the effectiveness of the simple
template used in backward reasoning and the
proposed combination.

1 Introduction

Pre-trained Large Language Models (LLMs)
(Chowdhery et al., 2022; OpenAl, 2023; Wu et al.,
2023; Jiang et al., 2023) generalize well on unseen
tasks by few-shot prompting (or in-context learning
(ICL) (Brown et al., 2020; Min et al., 2022; Chen
et al., 2022; Li et al., 2023; Xiong et al., 2024).
This is performed by concatenating a few exam-
ples (e.g., question-answer pairs) as a prompt, and
then appending the testing question. However, it is
still challenging for LLMs to answer mathematical
questions by simply prompting the question-answer

*Correspondence to: Yu Zhang

pairs, as mathematics is more complex and often
requires many steps to derive the answer.

Recently, Wei et al. (2022) propose chain-of-
thought (CoT) prompting, which generates explicit
intermediate steps that are used to reach the answer,
for LLMs. Specifically, each in-context example
is augmented with several thinking steps described
in natural language. A few examples are concate-
nated as a CoT prompt. In inference, the testing
question is appended to the prompt and then fed
to an LLM. The LLM is expected to imitate the in-
context examples, i.e., generating several reasoning
steps before giving the answer. CoT prompting has
achieved promising performance on mathematical
reasoning tasks (Wei et al., 2022; Wang et al., 2023;
Zheng et al., 2023; Zhang et al., 2023b), and many
works have been proposed to improve its effective-
ness (Fu et al., 2023; Zheng et al., 2023; Zhou et al.,
2023; Yao et al., 2023; Pitis et al., 2023) and effi-
ciency (Zhang et al., 2023b; Kojima et al., 2022;
Diao et al., 2023; Lu et al., 2022).

Self-Consistency (Wang et al., 2023) is a sim-
ple yet effective approach to improve CoT prompt-
ing. Using temperature sampling (Ackley et al.,
1985; Ficler and Goldberg, 2017), it samples a
diverse set of reasoning chains which may lead
to multiple candidate answers. The one that re-
ceives the most votes is then chosen as the final
answer. However, our experimental results' shows
that simply sampling more reasoning paths may not
lead to improvement in testing accuracy, particu-
larly when the number of sampling paths is already
large. Moreover, among the failure questions of
Self-Consistency, about 60% have at least one rea-
soning chain reaching the correct answer (Table
4 in Section 4.8). Hence, the majority voting of
Self-Consistency can be improved using a more
reliable verifier.

We introduce backward reasoning (or backward

"Details are in Figure 7 in Section 4.6.1.
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Question (ground-truth: 21): The sum of three consecutive odd numbers is 69. What is the smallest

of the three numbers?

Candidate answers generated by Self-Consistency: 21 (16 times), 23 (24 times)

Forward probability: Pr(21) = 16 40,

Pp(23) = 24 40

Backward question (with answer 21): The sum of three consecutive odd numbers is x. What is the
smallest of the three numbers? If we know the answer to the above question is 21, what is the value of

unknown variable x?

(we sample 10 backward chains and all predict x = 69, thus, 10 correct backward chains)

Backward question (with answer 23): The sum of three consecutive odd numbers is x. What is the
smallest of the three numbers? If we know the answer to the above question is 23, what is the value of

unknown variable x?

(we sample 10 backward chains and all predict x = 75, thus, no correct backward chains)

Backward probability: Ps(21) =10 (10 +e),

Combined probability: P(21) x Pg(21)Pp(21)

Pp(23) =€ (10+¢)
0.63( )

(e=107%)

P(23) x Pp(23)Pp(23) 2.45 x 107° (x)

Figure 1: A case study for the proposed FORBA method.

chaining) (Pettit and Sugden, 1989; Russell and
Norvig, 1995; Khot et al., 2021; Liang et al., 2021;
Yu et al., 2023) to verify candidate answers. Fig-
ure 1 gives a case study. For each candidate answer
A,, we mask a number in the question by “x”,
and design a template “If we know the answer to
the above question is A,, what is the value of un-
known variable x?”” to form a backward question.
This is then fed to the LLM to sample multiple
backward reasoning chains to predict the masked
number. As the ground-truth value of x is known,
we can check whether the masked number is pre-
dicted correctly. Intuitively, a correct candidate
answer is more likely to help predict the masked
number than wrong answers (as verified in Figure
5). Then, by defining the vote of A, as the number
of chains that predict the masked number exactly,
we estimate the backward probability IP’B(AC) as
the proportion of votes A, gets in the backward
direction. When using backward reasoning alone,
the prediction is arg max ; Pg (A.).

As forward reasoning and backward reason-
ing are complementary, we propose a FOrward-
BAckward Reasoning (FOBAR) method to com-
bine them. By estimating the forward probability
IP’F(/XC) as the proportion of votes A. gets in the
forward direction, we propose to estimate the prob-
ability that A.. is correct (denoted by P(A,.)) as the
geometric mean of forward and backward prob-
abilities, i.e., P(A.) o (Pr(A.))" (Pe(A.))' .
Extensive experiments on six data sets and three
OpenAl’s LLMs (including text-davinci-003 (Ope-
nAl, 2022a), GPT-3.5-Turbo (OpenAl, 2022b),
and GPT-4 (OpenAl, 2023)) show that FOBAR
achieves state-of-the-art (SOTA) performance.

Our contributions are summarized as follows.
(i) We introduce backward reasoning to mathe-

matical verification by masking a number in the
original question and asking the LLM to predict
the masked number when a candidate answer is
provided. (ii) We propose FOBAR to combine
forward and backward reasoning for verification.
(ii1)) Experimental results on six standard mathe-
matical benchmarks and three LLMs show that FO-
BAR achieves SOTA performance. In particular,
FOBAR outperforms Self-Consistency which uses
forward reasoning alone, demonstrating that com-
bining forward and backward reasoning is better.
Additionally, FOBAR outperforms Self-Verifica-
tion, confirming that using the simple template and
the proposed combination is more effective.

2 Related Work

Chain-of-Thought (CoT) Prompting. Wei et al.
(2022) propose augmenting question-answer pairs
with intermediate steps such that the LLM can
solve questions step-by-step. Specifically, each
in-context example is a triplet (Q(*), R, A*(),
where R(®) is a reasoning chain with natural lan-
guage descriptions of steps leading from the ques-
tion Q) to the ground-truth answer A*(). In infer-
ence, a new question () is appended to the prompt:

Pcor = “Question: QW) \n Answer: R, A*(1)
... Question: Q) \n Answer: R 4*(K)»

and “Pcor \n Question: Q \n Answer:” is fed to
the LLM for generating both its reasoning chain R
and answer A. CoT prompting has achieved SOTA
performance on a wide variety of tasks (Wei et al.,
2022; Kojima et al., 2022; Fu et al., 2023; Zhang
et al., 2023b; Wang et al., 2023; Zheng et al., 2023;
Zhou et al., 2023; Zhang et al., 2023c; Wei et al.,
2024).
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Q: Jim spends 2 hours watching TV and
then decides to go to bed and reads for

A: Jim spends 2 hours
watching TV ... spend
4*9=36 hours on TV and
reading. The answer is 36.

half as long. He does this 3 times a
week. How many hours does he spend
on TV and reading in 4 weeks?
(answer: 36)

g

(Mgt a

A: Jim spends 2 hours
watching TV and reads for
half ... The answer is 12.

g a )

[Al

candidate answers A = {A.}/4]

( I

| Backward Reasoning I N

Q: Jim spends 2 hours watching TV and

then decides to go to bed and reads for
half as long. He does this x times a

A: Jim spends 2 hours ... The
value of x is 3.

week. How many hours does he spend

on TV and reading in 4 weeks? If we
know the answer of the above question is
36, what is the value of unknown

A: Jim watches 2 hours TV,
then ... The value of x is 3.

variable x?

then decides to go to bed and reads for
half as long. He does this x times a
week. How many hours does he spend
on TV and reading in 4 weeks? If we

Q: Jim spends 2 hours watching TV and

A: Jim spends 2 hours ...
The value of x is 4.

- Ze+ €
7 Po(Ad)= o —
S Zo + elAl

know the answer of the above question is
12, what is the value of unknown variable

A: Jim watches 2 hours
TV ... The value of x is 3.

\X? e=10"% )

- l FOBAR: FOrward-BAckward Reasoning l N
P(Ac) o (Pr(4c)*(Pa(4c))

(. J

Figure 2: Overview of forward/backward reasoning and the proposed FOBAR. The detailed procedure is shown in Algorithm 1.

Recently, many works (Fu et al., 2023; Zheng
et al., 2023; Madaan et al., 2023; Paul et al., 2023;
Shinn et al., 2023; Welleck et al., 2023; Zhou et al.,
2023; Chen et al., 2023; Zhang et al., 2023a) have
been proposed to improve the quality of reason-
ing chains in CoT prompting. ComplexCoT (Fu
et al., 2023) selects examples with more steps as in-
context examples, while PHP (Zheng et al., 2023)
iteratively uses the previous answers as hints in
prompting. These aforementioned works can be
viewed as forward reasoning (Shao et al., 2023;
Weng et al., 2023), which starts from the question
and generates a reasoning chain to reach the an-
swer. Instead of taking a single reasoning chain
by greedy decoding, Self-Consistency (Wang et al.,
2023) samples a diverse set of chains and obtains a
set of candidate answers. The final answer is then
selected by majority voting.

Backward Reasoning. Backward reasoning (a.k.a.
backward chaining) (Pettit and Sugden, 1989; Rus-
sell and Norvig, 1995; Khot et al., 2021; Liang
et al., 2021; Yu et al., 2023) starts with an an-
swer and works backward to verify the sequence

of steps or conditions necessary to reach this an-
swer. Backward reasoning is particularly useful in
domains when the answer is known, e.g., in auto-
mated theorem provers (Russell and Norvig, 1995;
Rocktidschel and Riedel, 2016; Wang and Deng,
2020; Kazemi et al., 2023; Poesia and Goodman,
2023). Recently, Self-Verification (Weng et al.,
2023) rewrites the question with an answer into
a declarative statement and then asks the LLM to
predict the masked number. RCoT (Xue et al.,
2023) regenerates a sentence (a sequence of to-
kens) in the question conditioning on the answer
and detects whether there is factual inconsistency
in the constructed question through three compli-
cated steps. The complicated checking procedure
may lead to inaccurate verification. In contrast, for
creating backward questions, we simply append a
template to the original question without additional
rewriting and reconstruction; for verification, the
proposed FOBAR just needs to check whether the
number is predicted correctly by string comparison,
which is much simpler and more accurate. Fur-
thermore, the proposed FOBAR combines forward
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and backward reasoning together for verification,
while Self-Verification and RCoT use backward
reasoning alone. Different from MetaMath (Yu
et al., 2024) which uses backward reasoning to aug-
ment questions for finetuning, we focus on using
backward reasoning for verification.

3 Forward-Backward Reasoning for
Verification

In this section, we propose the FOBAR method for
verification. An overview is shown in Figure 2. We
first consider mathematical reasoning tasks. A set
of candidate answers is generated in the forward di-
rection, and we estimate each answer’s probability
based on the votes it receives (Section 3.1). Next,
we mask a number in the question and propose
a simple template to create backward questions
for verifying candidate answers (Section 3.2). We
further propose FOBAR (Section 3.3) to combine
forward and backward reasoning. Extension to
non-mathematical tasks is discussed in Section 3.4.

3.1 Forward Reasoning

Forward reasoning starts with a question and gener-
ates multiple intermediate steps toward the answer.
Specifically, for a question (), we prepend it with a
base prompt Pg (e.g., CoT prompting (Wei et al.,
2022) or ComplexCoT prompting (Fu et al., 2023))
and feed the tuple (P, Q) to the LLM for generat-
ing a reasoning chain and candidate answer. Using
temperature sampling (Ackley et al., 1985; Ficler
and Goldberg, 2017), we sample Mg candidate rea-
soning chains { R;}""; and extract the correspond-
ing candidate answers {Ai}z‘]\i}:l (see Figure 2, top).
Let A = {AC}L“ill be the set of answers dedupli-
cated from {Al}f\i ;- Unlike greedy decoding (Wei
et al., 2022), we may have several different can-
didate answers (i.e., |[A| > 1). We propose to
estimate the probability that the candidate A e A
is correct as the proportion of votes it receives from
the reasoning paths:

. 1 .
Pr(A.) = 7 > 14 = A, (1)
=1

where I(-) is the indicator function. Choosing A..
with the largest IP’F(AC) corresponds to the state-of-
the-art method of Self-Consistency (Wang et al.,
2023). However, as shown in Figure 7, the per-
formance of Self-Consistency saturates when Mg

is sufficiently large. Thus, simply sampling more

reasoning paths brings negligible performance im-
provement.

3.2 Backward Reasoning

In backward reasoning, we mask a number con-
tained in the question and ask the LLM to pre-
dict the masked number by using a provided candi-
date answer. Specifically, suppose that question ()
involves Ng numbers {num(”)}fjfl. We replace
each of them one by one with x. The resultant
masked question Q™ is then concatenated with
the following template, which contains a candidate
answer A, € A.

Template For Creating Backward Question

T (A.) = If we know the answer to the above question is

{A.}, what is the value of unknown variable x?

Each (Q™, T(A.)) pair is called a backward
question. In total, we obtain Ng backward ques-
tions. Some examples of backward questions are
shown in Example A.1 of Appendix A. Note that
Self-Verification (Weng et al., 2023) needs the
assistance of an LLM to rewrite a (question, an-
swer) pair into a declarative statement.” In con-
trast, the proposed template is simpler and avoids
possible mistakes (an example illustrating Self-
Verification’s rewriting mistakes is shown in Ap-
pendix B).

To predict the masked number, we prepend the
backward question with a prompt Py, which con-
sists of several (backward) question-answer de-
mos with reasoning chains. An example question-
answer demo is shown in Example A.2 of Appendix
A. We feed each of (Pg, Q™ T(A.)) (where
n =1,..., Ng) to the LLM, which then imitates
the in-context examples in Py and generates a rea-
soning chain for the prediction of the masked num-
ber. We sample Mp such reasoning chains with
predictions {rﬁlr\ngz)}é\g (see Figure 2, middle).
For each candidate answer A., we count the num-
ber of times that the masked number is exactly
predicted:

No Mg
Z.=Y" S 1(mm{}) = num™). ()
n=1 b=1

The probability that candidate answer A, is correct

“For example, “How many hours does he spend on TV
and reading in 4 weeks?” with a candidate answer of 36 is
rewritten to “He spends 36 hours on TV and reading in 4
weeks”.
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is estimated as
Ze+ €

[P)B (Ac) - )
S Zo + €A

3)

where ¢ = 1078 is a small positive constant to
avoid division by zero. One can simply choose A,
with the largest Pg (flc) as the prediction. A more
effective method, as will be shown in Section 3.3, is
to combine the probabilities obtained from forward

and backward reasoning.

3.3 FOBAR (FOrward and BAckward Reasoning)

As forward and backward reasoning are comple-
mentary (i.e., backward reasoning may succeed
in the cases where forward reasoning fails, and
vice versa, as shown in Examples C.1 and C.2 in
Appendix C), we propose to combine them for ver-
ification. Intuitively, a candidate answer is likely
to be correct when it receives many votes in for-
ward reasoning and also helps the LLM to predict
the masked numbers in backward reasoning. We
estimate the probability that A, is correct as

P(A.) o (Pr(A.)* (Pe(A))' 7, )

with weight @ € [0,1] (see Figure 2, bottom).
When o = 1, it reduces to Self-Consistency (Wang
et al., 2023); When « equals 0, it reduces to back-
ward reasoning for verification. In the experiments,
we combine the forward and backward probabil-
ities by the geometric mean (i.e., a = 0.5) since
we expect the final candidate answer to have non-
negligible probabilities in both forward and back-
ward directions. Finally, we select the answer
as argmax; . 4 P(A.). The whole procedure is
shown in Algorithm 1. As all the probability calcu-
lations are simple, the additional computation cost
of Algorithm 1 is negligible.

Compared with training an LLM as veri-
fier (Cobbe et al., 2021), which is computationally
expensive and labor-intensive in collecting extra
annotation data, FOBAR is training-free (thus, no
additional data collection) and more effective in
verification (Table 6 in Appendix D.1). The pro-
posed backward reasoning can be combined with
other forward reasoning methods such as step-by-
step verification proposed by Ling et al. (2023)
(Table 7 in Appendix D.2).

3.4 Extension to Non-Mathematical Tasks

In mathematical questions, numbers are the most
informative words. For non-mathematical tasks,

Algorithm 1 FOBAR.

Require: number of reasoning chains Mg and Mg,
prompts Pr and Py; € = 1078 o = 0.5;
1: Input: a question () with Ny numbers;
2: feed (Pp, Q) to LLM, sample Mp reasoning
chains with candidate answers {Ai}f\fl;

3: deduplicate {4;}2% to A = {flc}‘c“i‘l;

4; compute Pp(A.) by Eq. (1) for A.€ A;

5. for A, € Ado

6: forn=1,...,Ngdo

7: create Q(”) by masking the nth
number num™ in Q;

8: feed (Pp, QM. T(flc)) to LLM;

9: sample Mp predictions {n/uﬁlg) é\iBl;

10: end for

11: compute Z. by Eq. (2);

12: end for

13: compute Pg (/Alc) by Eq. (3) for A e A;

14: compute P(A.) by Eq. (4) for A. € A;
15: return arg max ; o P(A.).

we can analogously mask an informative word and
ask the LLLM to guess the masked word given a
candidate answer. For example, consider the fol-
lowing question-answer pair from the Last Letter
Concatenation task (Wei et al., 2022; Zhou et al.,
2023): “Take the last letters of each word in ‘Whit-
ney Erika Tj Benito’ and concatenate them” with
ground-truth answer “yajo”. We can mask one of
the four words (e.g., “Erika”). Given a candidate
answer A, we create a backward question as “Take
the last letters of each word in ‘Whitney ___ Tj Ben-
ito’ and concatenate them. If we know the answer
to the above question is AC, which is the word at
the blank, Erika or Dghjz’, where “Dqhjz” is ob-
tained by shifting each letter of “Erika”. The LLM
is more likely to choose “Erika” if the second letter
in /lc is “a”.

4 Experiments

4.1 Setup

Datasets. Experiments are conducted on six
benchmark mathematical data sets which are com-
monly used in evaluating CoT reasoning abil-
ity (Zheng et al., 2023; Wang et al., 2023):
(1) AddSub (Hosseini et al., 2014), (ii) Multi-
Arith (Roy and Roth, 2015), (iii) SingleEQ (Kon-
cel-Kedziorski et al., 2015), (@v) SVAMP (Patel
et al., 2021), (v) GSMS8K (Cobbe et al., 2021),

6651



(vi) AQuA (Ling et al., 2017). Some statistics and
example question-answer pairs are shown in Ta-
ble 8 in Appendix E. Questions in AddSub and
SingleEQ are easier and do not need multi-step cal-
culations. Questions in the other data sets are more
challenging as many steps are required.

Baselines. We compare the proposed FOBAR
with (i) In-Context Learning (ICL) using ques-
tion-answer pairs as demonstrations (Brown
et al., 2020), and recent CoT prompting meth-
ods, including: (ii) CoT prompting (Wei et al.,
2022); (iii) ComplexCoT prompting (Fu et al.,
2023) which selects demonstrations with com-
plex reasoning steps; (iv) RE2 (Xu et al,
2023) which re-reads the question in the prompt;
(v) PHP (Zheng et al., 2023) which iteratively uses
the previous answers as hints in designing prompts;
(vi) RCoT (Xue et al., 2023) which reconstructs
the question based on the candidate answer and
checks the factual inconsistency for verification;
(vii) RCI (Kim et al., 2023) which recursively criti-
cizes and improves its previous output; (viii) Self-
-Consistency (Wang et al., 2023), which samples
multiple reasoning chains and selects the answer
by majority voting; (ix) Self-Verification (Weng
et al., 2023), which chooses the top-2 candidate an-
swers obtained from Self-Consistency and re-ranks
them based on the verification scores computed in
the backward procedure.

Following Zheng et al. (2023), we experiment
with three LLMs: (i) text-davinci-003 (OpenAl,
2022a), (ii) GPT-3.5-Turbo (OpenAl, 2022b),
and (iii) GPT-4 (OpenAl, 2023). GPT-3.5-Turbo
and GPT-4 are more powerful than text-davinci-
003. The proposed FOBAR is general and can
be integrated into any prompting method. Here,
we choose the CoT prompting and ComplexCoT
prompting as base prompts as in Zheng et al.
(2023).

Implementation Details. Following (Wang et al.,
2023; Zhou et al., 2023; Zheng et al., 2023), the
temperature for sampling is 0.7 for both forward
and backward reasoning. The « in Eq. (4) is set
to 0.5. For text-davinci-003, Mp is 40 as in (Wang
et al., 2023; Zheng et al., 2023); whereas the more
powerful LLMs (GPT-3.5-Turbo and GPT-4) use
a smaller Mg (i.e., 10). My is set to 8 for all
three LLMs. We do not repeat the experiments
using different seeds as querying OpenAl’s LLMs
is costly, which is a standard protocol in CoT-based
research (Fu et al., 2023; Wang et al., 2023; Zhou

et al., 2023). The number of forward chains is iden-
tical for Self-Consistency, Self-Verification, and
FOBAR, while the number of backward chains is
identical for Self-Verification and FOBAR

4.2 Main Results

Table 1 shows the testing accuracies. As can be
seen, for all three LLMs, FOBAR with Complex-
CoT prompting achieves the highest average accu-
racy, showing that FOBAR is effective in verifying
candidate answers. This new finding suggests that
verification is a promising direction to improve
the performance of CoT-based methods. When
using CoT as the base prompt, FOBAR outper-
forms Self-Consistency most of the time, demon-
strating that combining forward and backward rea-
soning is better than using forward reasoning alone.
Furthermore, FOBAR performs better than Self-
Verification on almost all datasets, demonstrating
that using the proposed simple template in back-
ward reasoning and the proposed combination is
more effective in verification. FOBAR (with ei-
ther CoT or ComplexCoT) on GPT-4 achieves the
highest average accuracy, as GPT-4 is currently the
SOTA LLM. Moreover, for all three LLMs, FO-
BAR using ComplexCoT as base prompt achieves
higher accuracy than using CoT on average, which
is consistent with observations in (Fu et al., 2023;
Zheng et al., 2023) that ComplexCoT is better than
CoT.

4.3 Combining Forward and Backward
Probabilities

In this experiment, we study how the combination
weight o in Eq. (4) affects performance. Figure 3
shows the testing accuracies (averaged over the six
data sets) with o € [0, 1] using the three LLMs.
As can be seen, FOBAR is insensitive to o over a
large range for all three LLMs. In the sequel, we
use o = 0.5, which corresponds to the geometric
mean of the forward and backward probabilities.

Alternatively, one can combine the forward and
backward probabilities by the arithmetic mean, i.e.,
P(A,) = : (IP’F(AC) +Pg (Ac)) Figure 4 shows the
testing accuracies for the three LLMs. As shown,
the arithmetic mean has comparable performance
as the geometric mean. Hence, Figures 3 and 4
together suggest that FOBAR is robust to the com-
bination of forward and backward probabilities.
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Table 1: Testing accuracies (%) on six data sets using three LLMs. For each LLM, methods are grouped according to the base

prompt they used. The best in each group is in bold. Results with T are from the original publications.

is not reported in the original publication.

@

means that the result

AddSub  MultiArith ~ SingleEQ SVAMP GSM8K AQuA  Average
ICL (Brown et al., 2020) 90.4 37.6 84.3 69.1 16.9 29.1 54.5
CoT (Wei et al., 2022) 91.4 93.6 92.7 79.5 55.8 46.5 76.6
PHP' (Zheng et al., 2023) 91.1 94.0 93.5 81.3 57.5 444 77.0
- | B RE2T (Xu et al., 2023) 91.7 93.3 93.3 81.0 61.6 44.5 77.6
%. O | Self-Consistency (Wang et al., 2023) 91.7 95.9 94.5 83.1 67.9 55.1 81.4
g Self-Verification (Weng et al., 2023) 87.4 95.3 929 82.2 59.8 374 75.8
g FOBAR 91.9 100.0 96.1 86.8 70.8 55.1 83.5
aS]
5 | & | ComplexCoT (Fu etal., 2023) 88.9 95.3 93.7 78.0 67.7 48.8 78.7
= ‘2 PHP' (Zheng et al., 2023) 91.6 96.6 95.0 83.7 68.4 53.1 81.4
.%: Self-Consistency (Wang et al., 2023) 89.4 98.5 91.1 82.7 79.1 58.7 83.2
g Self-Verification (Weng et al., 2023)  89.9 95.5 94.1 80.1 72.0 38.2 78.3
O | FOBAR 90.6 100.0 95.3 87.0 78.7 58.7 85.0
ICL (Brown et al., 2020) 88.6 87.6 88.8 80.6 322 31.1 68.2
CoT (Wei et al., 2022) 89.4 97.9 92.9 84.2 77.2 54.3 82.7
RE2! (Xu et al., 2023) 89.9 96.5 95.3 80.0 80.6 58.3 83.4
g Self-Consistency (Wang et al., 2023) 90.6 98.6 93.1 86.4 81.9 62.6 85.5
2 Self-Verification (Weng et al., 2023) 90.4 97.4 92.9 83.1 74.9 60.6 83.2
é FOBAR 89.4 99.3 94.5 88.9 85.1 62.6 86.6
2 Complex CoT (Fu et al., 2023) 87.9 98.3 94.5 81.1 80.7 59.1 83.6
E 5 RCoTT (Xue et al., 2023) 88.2 - 93.0 84.9 84.6 53.3 -
O 5 PHP' (Zheng et al., 2023) 85.3 98.0 92.9 83.1 85.1 60.6 84.2
g RCI' (Kim et al., 2023) 90.6 99.21 93.7 87.4 84.3 - -
8 Self-Consistency (Wang et al., 2023) 88.1 98.8 94.5 85.0 86.4 63.0 86.0
Self-Verification (Weng et al., 2023) 87.9 96.6 93.3 81.0 78.2 61.4 83.1
FOBAR 88.4 99.8 94.3 88.5 87.4 63.4 87.0
ICL (Brown et al., 2020) 92.1 98.6 94.3 90.9 48.5 48.0 78.7
CoT (Wei et al., 2022) 92.7 99.0 95.7 92.9 93.4 69.7 90.6
B Self-Consistency (Wang et al., 2023) 92.2 99.0 95.9 93.3 94.8 71.3 91.1
« | © Self-Verification (Weng et al., 2023)  92.7 99.0 95.7 93.1 93.7 70.1 90.7
g«; FOBAR 924 99.0 96.1 94.1 95.4 71.3 914
© — | Complex CoT (Fu et al., 2023) 91.9 98.3 94.5 92.4 95.1 724 90.8
L:) PHP' (Zheng et al., 2023) 89.6 98.1 93.1 91.9 95.5 79.9 91.3
% Self-Consistency (Wang et al., 2023) 91.4 98.5 94.7 93.4 96.2 75.2 91.6
g Self-Verification (Weng et al., 2023) 91.6 98.5 94.7 93.0 95.7 75.6 91.5
O | FOBAR 91.9 98.6 94.7 944 96.4 752 91.9
86.0 88.0 93.0
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Figure 3: Testing accuracy (averaged over the six data sets)
of FOBAR w.r.t. .
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Figure 4: Testing accuracy of FOBAR (averaged over the
six data sets) with geometric/arithmetic mean of forward and
backward probabilities.

ComplexCoT

(c) GPT4.

We perform an ablation study on forward (FO)
and backward (BA) reasoning. We consider the
four combinations: (i) using neither forward nor
backward reasoning (which reduces to greedy de-
coding (Wei et al., 2022)); (ii) use only for-
ward reasoning (i.e., Self-Consistency); (iii) use
only backward reasoning in selecting answers (i.e.,
a = (0 in Algorithm 1); (iv) use both forward and
backward reasoning (i.e., the proposed FOBAR).
Table 2 shows the testing accuracies (averaged over
the six data sets) for the three LLMs. As can be
seen, in all the settings, using forward or backward
reasoning is consistently better than using neither
of them. Moreover, combining forward and back-
ward reasoning is always the best. Examples C.1
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Table 2: Average testing accuracies (%) with different combi-
nations of forward (FO) and backward (BA) reasoning.

FO BA | text-davinci-003 GPT-3.5-Turbo  GPT-4

X X 76.6 82.7 90.6
5 v X 81.4 85.5 91.1
O X v 82.1 86.2 91.2

VY 83.5 86.6 91.4
5 x X 78.7 83.6 90.8
$ v o« 83.2 86.0 916
g X v 81.3 86.3 91.8
S v v 85.0 87.0 91.9

wrong
correct
216

wrong
correct
472

accuracy (%)

o
ComplexCoT CoT

0
CoT ComplexCoT CoT

(a) text-davinci-003. (b) GPT-3.5-Turbo.
Figure S: Accuracy (averaged over all backward questions
across the six data sets) of predicting the masked number in
backward questions with correct/wrong candidate answers.

ComplexCoT

(c) GPTA4.

and C.2 in Appendix C show that FOBAR is able to
rectify some failure cases of forward and backward
reasoning, respectively.

4.5 Correct Candidate Helps Backward
Reasoning

In this experiment, we verify the intuition that the
correct candidate answer helps LLM to predict the
masked numbers. Figure 5 compares the accura-
cies of predicting the masked numbers in backward
questions with the correct/wrong candidates. As
can be seen, using the correct candidate has 2x
higher accuracy (averaged over the six data sets)
than the wrong ones in predicting masked numbers,
demonstrating that using backward reasoning to
verify candidate answers is reasonable.

4.6 Number of Forward and Backward
Reasoning Chains

4.6.1 Varying My

In this section, we study how the performance of
FOBAR varies with the number of forward reason-
ing chains M. Figure 6 shows the testing accura-
cies (averaged over the six data sets) for the three
LLMs. As can be seen, using a very small M (e.g.,
< 5) is clearly undesirable, but the accuracy sat-
urates quickly with increasing Mp. This suggests
that one can use a small Mg to reduce the com-
putational cost. Moreover, the accuracy curves of
FOBAR are higher than those of Self-Consistency
in Figure 7, again demonstrating that integrating

840 e P 87.0 == w0 |
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Figure 6: Testing accuracy of FOBAR (averaged over the six
data sets) with M.
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Figure 7: Testing accuracy (averaged over six data sets) of

Self-Consistency versus number of sampling paths (MF).

accuracy (%)
accuracy (%)

78.0 ,
|

\‘
3
o

85.0 — 92,04
i 87.0 o ———
918
g /
<9164/
3

y L~ Py
£91.44
3

84.0 g -
<865 /
>

86.0 8
©91.2+

82.0 —— ComplexCoT —— ComplexCoT —— ComplexCoT
CoT 855 CoT 91.0 CoT

6‘23Mééw‘o 6é3Méé1‘o 62‘2:M‘ss‘1‘o
(a) text-davinci-003. (b) GPT-3.5-turbo. (c) GPT-4.
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Table 3: Accuracies on the non-mathematical tasks of Date
Understanding (denoted DateU) and Last Letter Concatena-
tion (denoted LastLetter) using GPT-3.5-Turbo. Results with
T are from the original publications. “=" means that the result
is not reported in the original publication.

DateU  LastLetter

ICL (Brown et al., 2020) 52.0 8.0
CoT (Wei et al., 2022) 61.3 81.0
RE2f (Xu et al., 2023) 47.2 -
E Self-Consistency (Wang et al., 2023)  65.6 81.4
Self-Verification (Weng et al., 2023) 66.1 81.8
FOBAR 66.4 82.6
2 ComplexCoT (Fu et al., 2023) 74.8 814
3 RCoT' (Xue et al., 2023) 71.7 -
g Self-Consistency (Wang et al., 2023)  77.5 81.2
g Self-Verification (Weng et al., 2023) 76.2 81.6
© FOBAR 78.0 82.4

backward reasoning into verification is effective.

4.6.2 Varying Mp

Next, we study how the performance of FOBAR
varies with the number of backward reasoning
chains Mp. Figure 8 shows the testing accuracies
(averaged over the six data sets) for the three LLMs.
Note that Mp = 0 corresponds to using only for-
ward reasoning. As shown, using a very small Mp
(e.g., < 4) is clearly undesirable, but the accuracy
saturates quickly when My increases. Hence, using
a small Mp can achieve a good balance between
performance and efficiency.
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Table 4: Statistics on the failure cases of Self-Consistency on the six data sets.

AddSub  MultiArith ~ SingleEQ SVAMP GSMS8K AQuA Total

#failures 47 7 28 150 179 94 505

#failures with no correct answer 28 0 14 57 60 52 211
#failures with at least one correct answer 19 7 14 93 119 42 294

Table S: Statistics on the failure cases of FOBAR on the six data sets.

AddSub  MultiArith  SingleEQ SVAMP GSM8K AQuA Total

#failures 46 1 29 115 166 94 451

##failures with no correct answer 28 0 14 57 60 52 211
#failures with at least one correct answer 18 1 15 58 106 42 240

4.7 Extension to Non-Mathematical Tasks

In this section, we perform experiments on two
commonly-used non-mathematical tasks: Date Un-
derstanding (Wei et al., 2022; Fu et al., 2023) and
Last Letter Concatenation (Wei et al., 2022; Zhou
et al., 2023). Examples are shown in Table 8 (Ap-
pendix E). We compare FOBAR with other CoT-
based methods and ICL using GPT-3.5-Turbo. PHP
does not report results on non-mathematical tasks.

Table 3 shows the testing accuracies. As shown,
FOBAR performs better than all the baselines with
either CoT or ComplexCoT as base prompt. More-
over, all CoT-based methods significantly outper-
form ICL.

4.8 Failure Cases of Self-Consistency and
FOBAR

We conduct an analysis on the failure cases of Self-
Consistency and FOBAR on the six data sets, us-
ing GPT-3.5-Turbo with ComplexCoT prompting.
Table 4 shows the number of failure cases of Self-
Consistency, with a breakdown into the numbers
of cases with no chain reaching the correct answer
and at least one chain reaching the correct answer.
As can be seen, about 60% of the total failure cases
have at least one correct chains (the remaining 40%
have no correct chains and thus cannot be solved
by backward reasoning). These 60% cases can po-
tentially be fixed with a better verifier (such as the
proposed FOBAR). Table 5 shows the statistics on
the failure cases of FOBAR. As can be seen, FO-
BAR rectifies 54 (i.e., 294 — 240) out of the 294
failure cases that have at least one correct answer
in Self-Consistency.

5 Conclusion

In this paper, we study the problem of verifying
candidate answers to mathematical problems us-
ing chain-of-thought prompting. To complement

the use of only forward reasoning for verification,
we introduce backward reasoning: A simple tem-
plate is introduced to create questions and a prompt
is designed to ask the LLM to predict a masked
word when a candidate answer is provided. Further-
more, we proposed FOBAR to combine forward
and backward reasoning for verification. Extensive
experiments on six standard mathematical data sets
and three LLMs show that the proposed FOBAR
achieves state-of-the-art performance on mathemat-
ical reasoning tasks. FOBAR can also be used
on non-mathematical tasks and achieves superior
performance.

Limitations and Potential Risks

Limitations In this paper, we focused on math-
ematical reasoning tasks, with extension to two
non-mathematical reasoning tasks. However, ex-
tensions to more complicated non-mathematical
reasoning tasks such as Common-Sense Question-
Answering (CSQA) (Wei et al., 2022) and Strate-
gyQA (Wei et al., 2022; Fu et al., 2023) are still to
be explored, as identifying the informative words
to mask is more challenging.

When a number is superfluous in the question
(unnecessary in solving the question), the number
is probably unpredictable when a candidate answer
is provided. Hence, the superfluous numbers may
not affect the number of correct backward chains
Z.’s, which mainly depend on the critical num-
bers. Thus, FOBAR is still applicable. Though it
is more accurate to avoid masking redundant num-
bers, checking whether a number is redundant is
challenging and will be studied in our future work.

Potential Risks All data sets used in this work do
not contain any information that names or uniquely
identifies individual people or offensive content.
Hence, there is no concern about ethical considera-
tions and data privacy.
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A Question-Answer Demos of Backward
Reasoning

Example A.1 shows three backward questions that

mask different numbers in the original question.

Example A.2 shows a backward question and its
answer.

Example A.1: Backward questions.

Question: Jim spends x hours watching TV and
then decides to go to bed and reads for half as
long. He does this 3 times a week. How many
hours does he spend on TV and reading in 4
weeks? If we know the answer to the above
question is {A.}, what is the value of unknown
variable x?

Question: Jim spends 2 hours watching TV and
then decides to go to bed and reads for half as
long. He does this x times a week. How many
hours does he spend on TV and reading in 4
weeks? If we know the answer to the above
question is {A.}, what is the value of unknown
variable x?

Question: Jim spends 2 hours watching TV and
then decides to go to bed and reads for half as
long. He does this 3 times a week. How many
hours does he spend on TV and reading in x
weeks? If we know the answer to the above
question is { A}, what is the value of unknown
| variable x?

Example A.2: Backward Reasoning.

Question: Randy has 60 mango trees on his
farm. He also has x less than half as many co-
conut trees as mango trees. How many trees
does Randy have in all on his farm? If we know
the answer to the above question is 85, what is
the value of unknown variable x?

Answer: Let’s think step by step. We know
that Randy has 60 mango trees on his farm. We
also know that he has x less than half as many
coconut trees as mango trees. Let’s use C to
represent the number of coconut trees. So we
can write: C = (1/2)*60 - x = 30 - x. The total
number of trees on Randy’s farm is the sum of
the number of mango trees and coconut trees:
60 + (30 - x) =90 - x. We are given that the total
number of trees on Randy’s farm is 85, so we
can write: 90 - x = 85. Solving for x, we get: x
| =35. The value of x is 5.

J

B Example Rewriting Mistake in
Self-Verification

rQuestion: A class of 50 students has Variousw
hobbies. 10 like to bake, 5 like to play basketball,
and the rest like to either play video games or
play music. How many like to play video games
if the number that like to play music is twice the
number that prefer playing basketball? (answer:
25)

We mask the first number (i.e., 50) by x and a
candidate answer 25 is provided. The following
shows the backward questions obtained by Self-
Verification and FOBAR. We can see that Self-
Verification makes a mistake in rewriting the ques-
tion into a declarative statement, while the pro-
posed simple template in FOBAR does not need
rewriting.

rQuestion (Self-Verification): A class of x stu-
dents has various hobbies. 10 like to bake, 5
like to play basketball, and the rest like to either
play video games or play music. The number of
people who like to play video games is equal to
the number of people who prefer playing basket-
ball multiplied by two. The number of people
who like to play video games is 25. What is the
answer of x?

Question (FOBAR): A class of x students has
various hobbies. 10 like to bake, 5 like to play
basketball, and the rest like to either play video
games or play music. How many like to play
video games if the number that like to play music
is twice the number that prefer playing basket-
ball? If we know the answer to the above question
is 25, what is the value of unknown variable x?

. J

C Example Cases showing that Forward
and Backward Reasoning are
Complementary

In this section, we show that forward and backward
reasoning are complementary, i.e., failure cases in
forward reasoning can be corrected by backward
reasoning, and vice versa. We use cases from the
SingleEQ data set using text-davinci-003 with CoT
prompting. Example C.1 shows a case where for-
ward reasoning (i.e., Self-Consistency) fails but
backward reasoning succeeds. We can see that
this problem is difficult to solve in the forward di-
rection, but the correctness of a candidate answer
can be easily verified in the backward direction.
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Example C.2 shows a case where backward rea-
soning fails but forward reasoning succeeds. More-
over, FOBAR can choose the correct answer in
both cases.

Example C.1: Forward reasoning fails but
backward reasoning succeeds.

Question: The sum of three consecutive odd
numbers is 69. What is the smallest of the three
numbers?

Ground-truth answer: 21

Forward reasoning: Pr(21) = 0.4, Pp(23) =
0.6

Backward reasoning:
0.8,P5(23) = 0.2
FOBAR: P(21) = 0.62,[P(23) = 0.38

A backward question: The sum of three con-
secutive odd numbers is x. What is the smallest
of the three numbers? If we know the answer
to the above question is 21, what is the value of
unknown variable x?

Example C.2: Forward reasoning succeeds
but backward reasoning fails.

Question: While digging through her clothes
for ice cream money, Joan found 15 dimes in
her jacket, and 4 dimes in her shorts. How much
money did Joan find?

Ground-Truth answer: 1.9

Pg(21) =

Forward reasoning: Pgr(1.9) =
0.7, Pr(190) = 0.3
Backward reasoning: Pg(1.9) =

0.43,Pg(190) = 0.57

FOBAR: P(1.9) = 0.57,IP(190) = 0.43

A backward question: While digging through
her clothes for ice cream money, Joan found 15
dimes in her jacket, and x dimes in her shorts.
How much money did Joan find? If we know the
answer to the above question is 1.9, what is the

| value of unknown variable x?

D Additional Experiments

D.1 Comparison between FOBAR and
Trained Verifiers

Compared with Cobbe et al. (2021), which trains
an LLM for verifying answers, FOBAR has two ad-
vantages. (i) (training-free) Training an LLM for
verification is computationally expensive and labor-
intensive in collecting extra annotation data, while
backward reasoning for verification is training-free
and requires no additional data collection. (ii)

Table 6: Comparison between FOBAR and a trained verifier
on GSMSK.

Training GPT-3 (175B) for Verification (Cobbe et al., 2021)  56.0

FOBAR (text-davinci-003 + CoT) 70.8
FOBAR (text-davinci-003 + ComplexCoT) 78.7
FOBAR (GPT-3.5-Turbo + CoT) 85.1
FOBAR (GPT-3.5-Turbo + ComplexCoT) 87.4
FOBAR (GPT-4 + CoT) 95.4
FOBAR (GPT-4 + ComplexCoT) 96.4

Table 7: Accuracy of FOBAR when combining backward rea-
soning with three types of forward reasoning for verification.
BR stands for “Backward Reasoning”.

AddSub GSMSK AQuA

Self-Consistency 88.1 86.4 63.0
Self-Consistency + BR 88.4 87.4 63.4
NP (Ling et al., 2023) 93.67 87.05 7034
NP + BR 93.92 87.89  71.65
NP + DV + UPV (Ling et al., 2023)  93.54 86.01  69.49
NP + DV + UPV + BR 93.92 87.19  70.86

(more effective) As training the GPT-3 (175B)
model is extremely expensive and their code is
not publicly available, we compare our FOBAR
with the result reported in Figure 5 of (Cobbe et al.,
2021), where the candidate answers are generated
by GPT-3. Table 6 shows the accuracy of GSMSK.
As shown, FOBAR consistently performs much
better than the trained verifier (+14.8).

D.2 Comparison between FOBAR and
Step-by-Step Forward Verification

Recent works (Lightman et al., 2023; Ling et al.,
2023) propose verifying the steps of forward rea-
soning chains. Lightman et al. (2023) propose to
label exclusively steps of forward reasoning chains
generated by LLMs. The labeled data are then used
to train an LLM for verification. Compared with
(Lightman et al., 2023), which is computationally
expensive in training an LLM and labor-intensive
in labeling data, our backward reasoning is training-
free for verification and requires no additional data
annotation.

Ling et al. (2023) propose a natural language-
based deductive reasoning format that allows the
LLM to verify forward reasoning steps. Different
from (Ling et al., 2023), we use backward reason-
ing to verify the candidate answers instead of the
steps in forward chains. As backward and forward
reasoning are complementary, the proposed back-
ward reasoning can be combined with their step-
by-step forward methods. We replace the forward
reasoning in FOBAR (i.e., Eq. (4)) with step-by-
step verification proposed by Ling et al. (2023),
and conduct experiments on AddSub, GSM8K, and
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Table 8: Statistics of data sets used in the experiments.

#samples Ng (mean + std) example
AddSub 195 264 0.7 Benny picked 2 appl.es anq Dan picked 9 apples from the apple tree. How
many apples were picked in total?
e Katie picked 3 tulips and 9 roses to make flower bouquets. If she only
MultiArith 600 3.1+£0.3 used 10 of the flowers though, how many extra flowers did Katie pick?
, Joan went to 4 football games this year. She went to 9 football games last
SingleEQ 508 2.2£0.7 year. How many football games did Joan go to in all?
- Rachel has 4 apple trees. She picked 7 apples from each of her trees. Now
E] SVAMP 1000 2.8+0.7 the trees have a total 29 apples still on them. How many apples did Rachel
= pick in all?
GSMSK 1319 38416 A robe takgs 2 bolts of lf)lue fiber and half that much white fiber. How
many bolts in total does it take?
If the population of a city increases by 5% annually, what will be the
AQuA 254 20+1.3 population of the city in 2 years time if its current population is 780007
’ ' Answer Choices: (A) 81900 (B) 85995 (C) 85800 (D) 90000 (E) None of
these
% Last Letter Concatenation 500 4.0+ 0.0 Take the last letters of each word in “Whitney Erika Tj Benito” and con-
= catenate them.
& . The deadline is Jun 1, 2021, which is 2 days away from now. What is the
S| Date Understanding 369 12407 date a month ago in MM/DD/YYYY?

AQuA using GPT-3.5-Turbo. Table 7 shows the
testing accuracy. As can be seen, combining back-
ward reasoning with forward reasoning methods

consistently boosts performance.

E Data Sets

Table 8 shows the statistics on the data sets used in

the experiments.
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