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Abstract

Despite recent advances in large language
models, building dependable and deployable
NLP models typically requires abundant, high-
quality training data. However, task-specific
data is not available for many use cases, and
manually curating task-specific data is labor-
intensive. Recent work has studied prompt-
driven synthetic data generation using large
language models, but these generated datasets
tend to lack complexity and diversity. To ad-
dress these limitations, we introduce a method,
DataTune, to make better use of existing, pub-
licly available datasets to improve automatic
dataset generation. DataTune performs dataset
transformation, enabling the repurposing of
publicly available datasets into a format that is
directly aligned with the specific requirements
of target tasks. On a diverse set of language-
based tasks from the BIG-Bench benchmark,
we find that finetuning language models via
DataTune improves over a few-shot prompting
baseline by 49% and improves over existing
methods that use synthetic or retrieved training
data by 34%. We find that dataset transforma-
tion significantly increases the diversity and
difficulty of generated data on many tasks. We
integrate DataTune into an open-source reposi-
tory to make this method accessible to the com-
munity.1

1 Introduction

The major bottleneck in modern AI research is data.
Despite the paradigm-shifting developments of pre-
training and prompting, the recipe for achieving
peak performance on any particular task has hardly
changed: obtain large amounts of high-quality
training data and fine-tune your model. This is
particularly valuable for developing models with
fewer than 3 billion parameters; in this regime,

∗equal contribution.
1https://github.com/neulab/prompt2model
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Figure 1: Obtaining task-specific annotated data can
be tricky. Existing solutions include (1) data gener-
ation methods either by employing human annotators
(incurring high costs) or synthetically, such as using
LLMs (risking low diversity) or (2) cross-task transfer,
where related but task-misaligned datasets are used (for
instance, for the task of generating English language de-
scriptions based on code, this could be a public dataset
with coding questions, solutions, and test cases but no
explicit descriptions). Our approach combines these
strategies by adaptively transforming existing datasets
for the target task (using the "solution" field from the
public dataset and asking an LLM to create description
or make any formatting changes required) preserving
original dataset diversity while ensuring the quality of
synthetically generated data.

supervised finetuning can be significantly more ef-
fective than in-context learning (Mosbach et al.,
2023). However, this recipe can be challenging
for specialized or novel tasks where task-specific
annotated data is limited.

Prior works have proposed strategies for fine-
tuning in this low-resource setting. The most in-
tuitive way is obtain labeled data through manual
curation (Callison-Burch, 2009; Zhang et al., 2022),
which assumes access to domain experts and may
require considerable financial resources to com-
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pensate annotators fairly (Huang et al., 2023). An
increasingly popular alternative to large-scale man-
ual annotation is to synthetically produce datasets
using existing large models (Wang et al., 2022;
Peng et al., 2023; Tang et al., 2023). We will refer
to this method as synthetic data generation. Un-
fortunately, directly generating synthetic datasets
that simultaneously have high correctness and suf-
ficient diversity is difficult. Models trained on syn-
thetic datasets are typically significantly worse than
those trained on manually curated data when stan-
dardizing for dataset size, suggesting that current
synthetic dataset generation methods still leave sig-
nificant room for improvement in dataset quality
(Ding et al., 2023).

On the other hand, cross-task transfer entirely
sidesteps the need for strictly in-domain data by
training models either in a multi-task fashion on a
wide range of datasets (Sanh et al., 2021) or on task-
specific datasets closest to the new target task (Vu
et al., 2020). We focus on the latter, which we
refer to as existing data. Recent methods such as
Prompt2Model (Viswanathan et al., 2023b) com-
bine both of the above methods, showing the ad-
ditive benefits of synthetic data generation and ex-
isting datasets for finetuning in few-shot settings.
However, they report that even for the machine
reading question answering dataset of SQuAD (Ra-
jpurkar et al., 2016), a dataset considered today to
be largely “solved”, training on existing data alone
is significantly worse than training on manually or
synthetically created data.

To overcome the limitations of these approaches,
we introduce DataTune, a system that automatically
repurposes public datasets for new tasks. DataTune
identifies the most relevant public datasets and uses
a large language model to transform them into a
format aligned with the target task’s needs. For in-
stance, for a task requiring descriptions of Python
code in English (as shown in Figure 1), DataTune
finds a dataset with programming questions and
code solutions (along with other, irrelevant data
columns). It transforms the retrieved dataset by
using the code solutions as input and generating a
synthetic description of the code as output. This
approach maintains the original dataset’s diversity
while matching the task specification, boosting per-
formance by 22 points over baselines. We refer
to this synthetic adaptation of publicly available
datasets as Dataset Transformation.

We evaluate the effectiveness of DataTune on six

challenging language-based tasks from the BIG-
Bench benchmark (BIG Bench Authors, 2023),
which are designed to gauge the system’s perfor-
mance across diverse NLP task categories. When
compared to few-shot prompting of the same base
model (Mistral-7B) without fine-tuning, DataTune-
enhanced models improve by an average of 5.2
points on five tasks, demonstrating its value for
domain-specific fine-tuning. DataTune also can be
used additively with existing synthetic dataset gen-
eration approaches, yielding an 8-point improve-
ment over the few-shot prompting baseline. Com-
paring DataTune with existing methods of synthetic
data generation, we find that DataTune often pro-
duces more difficult and diverse examples, and on a
small sample of data we observe that these benefits
do not come at the expense of data correctness.

2 Problem Setup

We study the problem of how to automatically re-
trieve and transform existing datasets to prepare a
fine-tuning dataset for a new task. In our problem
setting, a user specifies the task of interest with
a textual prompt T (optionally containing a few
demonstration examples). We assume access to a
large, diverse collection of labeled datasets D, a
large language model that can be prompted, and a
small language model M that we can fine-tune.

The goal here is to automatically generate a syn-
thetic training dataset D′ which, after finetuning M
on D′, will improve M ’s ability to satisfy the task
specification. For each task T in a known set of
task descriptions T , we can measure our progress
towards this goal by evaluating the trained model
MT against labeled data obtained for task T .

3 Methods

DataTune focuses on selecting and transforming a
dataset to align it with a specific task. First, it finds
relevant datasets from D that are good candidates
for further transformation, through dataset retrieval
and reranking. Then, it performs data transforma-
tion (i.e., synthetically modify each entries in the
selected dataset) to create a new dataset D′ that
better aligns with the task requirements.

3.1 Dataset Retrieval

The first phase of DataTune involves identifying
relevant datasets for our task from a large repository
of existing datasets. We confine our dataset space
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Figure 2: The data transformation component of DataTune, explained with an example (in yellow).

D to the HuggingFace Hub (Lhoest et al., 2021),
which consists of over 75,000 datasets.

To efficiently complete this task, we use a
dual-stage retrieval approach. We first retrieve a
set of documents using DataFinder (Viswanathan
et al., 2023a), a bi-encoder retriever specifically
trained for retrieving datasets from natural lan-
guage queries using textual descriptions of each
dataset. We then rerank these datasets to increase
the likelihood that our selected dataset can be effec-
tively transformed for the target task. Inspired by
Sun et al. (2023), who showed that LLMs can effec-
tively rerank documents, we similarly use LLMs
for reranking datasets. While we use only descrip-
tions of the dataset to generate our initial candi-
date datasets, this is often inadequate for localizing
to the best dataset for a given task. For instance,
for a math-based task which have multiple choice
questions (MCQs), the dataset descriptions of both
GSM8K2 and math_qa3 make them valid choices,
but it is only when we look at the schema and sam-
ple rows of math_qa (which has multiple choice
options) do we see that it is a better choice for
our task than GSM8K (which has open-ended ques-
tions). Thus we also provide additional dataset
attributes such as its schema and a small sampling
of rows, to aid with the reranking. The reranking
step concludes with the name (and any versions) of
the chosen dataset DR. We include the reranking
prompt we used in Appendix. A.1.
Additionally, to improve the reliability of dataset
chosen, we employ self-consistency decod-
ing (Wang et al., 2023), where we run the reranker
multiple times, and choose the most frequently re-

2https://huggingface.co/datasets/gsm8k
3https://huggingface.co/datasets/math_qa

turned dataset. It is also possible for no suitable
dataset being found, acknowledging that not every
task has a relevant dataset.

3.2 Dataset Transformation

Having selected an appropriate dataset DR from
D, we now focus on tailoring it to the task re-
quirements to create D′. This transformation pro-
cess can include modifications ranging from adjust-
ing the input/output format to more closely match
that of the few shot examples to more substantial
changes like generating new fields that the present
dataset may not currently have.

To accomplish this complex task, we split it into
two primary steps. First, the Planning Module gen-
erate a multi-step plan illustrating the sequence of
transformations needed to convert examples from
DR into the desired output. Next, the Execution
Module executes the plan on each datapoint in DR

to create our resulting synthetic training dataset D′.
Empirically, we notice that the Planning Module

is more effective when given descriptions of the
source dataset (DR) and target task (T ) that are de-
tailed and specific. As such, we further implement
two more scaffolding modules — a Schema Selec-
tor that removes irrelevant columns from dataset
DR (providing a clearer source description) and a
Task Expansion Module that enriches task descrip-
tions T with requirements (giving a better target
specification).

Below, we describe the four modules in their
execution sequence (examples in Figure 2).

Task Expansion The brevity of task descriptions
often hampers the creation of an effective plan, and
often the subtleties of the task are more readily
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Sample Plan

1. Extract the "solutions" field from the dataset as this contains the Python code snippets.
2. For each "solutions" entry, identify the primary operation or functionality of the Python code.
This may require parsing the code and understanding its logic.
3. Generate a set of multiple-choice descriptions ("choices") for each code snippet. These should
include one correct description of what the code does and several incorrect descriptions. The
incorrect descriptions can be plausible but should not accurately describe the code’s functionality.
4. Format the "input" field by labeling it as "Python code:" followed by the actual code snippet
from the "solutions" field. Below the code, list the generated "choices" with the label "choice:"
preceding each option.
5. Determine the correct "choice" that accurately describes the code’s behavior. This will be the
"output" field.
6. Combine the "input" field and the "output" field to create the final data in the required format
for the task examples.
7. If a "solutions" entry does not contain a Python code snippet or is not relevant to the task
description, ignore the data sample and return null for that entry.

Figure 3: We show an example plan for the task of providing concise descriptions of Python code. The retrieved
dataset contains natural language questions and code solutions. The plan then specifies that the transformation must
create the correct description, create incorrect descriptions to create an multiple choice dataset, and format changes
required to match the target task examples.

grasped through the examination of examples.4 To
address this issue, we implemented an intermedi-
ate step wherein the LLM is utilized to scrutinize
both the task description and provided examples
and generate an expanded version of the task de-
scription. This enhanced task specification helps
in devising a more detailed and actionable plan,
encompassing more explicit steps tailored to the
task at hand. The task expansion prompt is linked
in the Appendix A.6.

Schema Selection The schema selection compo-
nent is designed by instructing LLMs to identify the
most pertinent columns within a dataset for a given
task. For example, for the task of code comment
generation, where we have a dataset of internet
code, the code snippet column is extremely useful,
whereas the URL column code would not be useful.
To identify these relevant columns, we provide the
LLM with detailed information, including the task
description T , the chosen dataset DR, the names
of existing columns in DR, and samples of dataset
rows from DR. The LLM is then tasked with iden-
tifying which columns are relevant to the specific
task T . This approach ensures a targeted selection

4This is akin to requirement elicitation in Software En-
gineering, where a deeper understanding of requirements is
achieved through further analysis (Lamsweerde, 2009).

of dataset features that are directly applicable to
the task requirements, optimizing the dataset DR

for the intended application. The schema selection
prompt is linked in the Appendix A.2.

Planning Module Now, the LLM generates a
comprehensive plan to adapt each data point from
the retrieved dataset DR to the task requirements.
This plan is a series of concrete, concise steps.
These steps may include combining data fields,
elaborating on existing fields, or creating new fields
derived from the existing data or excluding the data
sample altogether if it is irrelevant. The LLM is
provided with the expanded task description, along
with the optimized dataset, complete with its de-
scription and sample rows. A sample plan is shown
in Figure 3. We are only required to create a plan
once per task, since the same task-level plan will
get executed for each row of the retrieved dataset.
The planning module prompt is linked in the Ap-
pendix A.3.

Execution Module The execution of the trans-
formation plan for each dataset sample from DR is
done using an LLM. The LLM receives three key
pieces of information for each row of the dataset:
the row itself, detailed specifications of the input
task, and the transformation plan formulated earlier.
Conditioned on these pieces of information, the
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Task Name Task Category Abbreviation Task Instruction

Temporal Sequences Logical Reasoning Time Answer questions about which times certain events could have occurred.

Code Line Descriptions Coding Code Give an English language description of Python code.

Elementary Math Math Math Answer a multiple choice mathematical word problem.

Cause and Effect Causal Reasoning C&E Answer multiple-choice questions distinguishing cause and effect.

Medical Questions in Russian Domain Specific Russian Answer a yes/no question about medical text in Russian.

Implicatures Contextual QA Impl. Predict whether Speaker 2’s answer to Speaker 1 is affirmative or negative.

Table 1: We evaluate our method on 6 diverse text-based tasks from BIG-Bench.

model responds by producing an adjusted dataset
row which, hopefully, meets the requirements of
the input task. The execution module prompt is
linked in Appendix A.4. The adjusted dataset rows
form our synthetic dataset D′ used for fine-tuning.

3.3 Using Multiple Datasets

The transformation process of data points may re-
sult in a significant number of them getting filtered
out. Additionally many datasets may be small to be-
gin with. Both these factors can result in a reduced
quantity of transformed data. To balance quantity
and quality, we adopt a strategy of transforming
multiple highly ranked datasets until we reach our
desired dataset set. Furthermore, if a considerable
proportion of data sample transformations fail (e.g.
noisy data samples in the dataset) for a specific
dataset, we opt to exclude it from consideration.

4 Experimental Setup

Evaluation procedure We evaluate DataTune
and related baselines over 6 tasks from the
BIG-Bench benchmark (BIG Bench Authors,
2023), which we list in Table 1. BIG-Bench
focuses on challenging tasks believed to be beyond
the capabilities of current language models,
covering a variety of task categories. We choose
tasks to simulate real-world examples, which
span over question answering, logical reasoning,
coding, math, causal reasoning, multilinguality,
and domain specific tasks. For each task, we create
3000 data points through DataTune, and apply the
training procedure highlighted earlier. We evaluate
all models for two-shot performance, as per the
BIG-Bench testing suite.5

Methods We compare the effectiveness of var-
ious dataset collection strategies, by using the
resulting data to finetune the same base model,

5https://github.com/google/BIG-bench

Mistral-7B (Jiang et al., 2023), a leading open-
source LLM within its size category. As shown
in Table 2, this includes: (1) retrieving ex-
isting data using dense retrieval (Viswanathan
et al., 2023a), (2) generating synthetic data, (3)
Prompt2Model (Viswanathan et al., 2023b) (a state-
of-the-art method that combines retrieving exist-
ing data and synthetic data generation), (4) our
DataTune approach, and (5) a combination of
DataTune and synthetic data generation, which rep-
resents an integration of all the existing methods.

We also include two prompting baselines: (6)
few-shot prompting on the base model Mistral-7B,
and (7) GPT-3.5-Turbo, a significantly larger
model, which we include as a robust benchmark
due to its extensive capabilities.

Dataset Creation Setup Our initial retrieval step
using DataFinder retrieves 25 candidate datasets
that are processed for reranking. We transform
upto 4 datasets per task until we meet our desired
set of 3000 data points. The LLM used for all
components is GPT-4-Turbo, except for the final
execution step, which uses GPT 3.5-Turbo.6 The
cost for each task is detailed in Appendix B.

Training Setup We used the Mistral-7B model,
following the approach of Jiang et al. (2023),
and applied QLoRA (Dettmers et al., 2023) for
fine-tuning. The process was carried out over
3 epochs. We select parameters by running 4
runs across two sets of hyperparameters over
two values( learning rate: 5e−5 and 1e−4, and
QLoRA’s α parameter between 16 and 24 and
choose the run with the lowest validation loss
at any point. We used the AdamW optimizer
(Loshchilov and Hutter, 2017) and set QLoRA
r = 8. We conduct our training on 2 NVIDIA
RTX A6000 GPUs.

6Our dataset transformation method requires making an
LLM query for each instance in the dataset. Therefore, the de-
cision to use GPT-3.5-turbo was made for budgetary reasons.
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Metrics Following BIG Bench Authors (2023),
we use a normalized aggregate score evaluation
that normalizes a multiple choice grade score, such
that a score of 0 implies random chance perfor-
mance, and 100 implies human expert performance.
Additionally, a score less than 0 indicates perfor-
mance worse than random chance.

5 Results and Analysis

5.1 Performance Comparison

DataTune consistently outperforms few-shot
prompting, as well as existing individual data
collection methods. From Table 2, we see that
fine-tuning our base model on DataTune outper-
forms the base Mistral-7B model by 6.4 points on
average, improving over it in five out of six tasks.
We also show that DataTune provides an average
improvement of 11 and 2.9 points over fine-tuning
on existing data and synthetically generated data
respectively.

DataTune’s transformation is complementary to
synthetic data generation. It is noteworthy that the
combination of DataTune and synthetically gener-
ated data results in a marked performance increase.
This synergistic improvement yields an overall av-
erage score of 44.5 on the BIG-Bench tasks we
consider. We provide a more detailed analysis of
the synergy between DataTune and existing syn-
thetic dataset generation methods in Section 5.5.

Our system (DataTune + Synthetic Data
Generation) outperforms SOTA baselines like
Prompt2Model. In order to make a fair compar-
ison with baselines such as Prompt2Model that
fine-tune on both existing data and synthetically
generated data, we define our system as the base
Mistral-7B model fine-tuned on DataTune-created
data and synthetically generated data. Our analysis
in Table 2 highlights significant differences in per-
formance between our system and Prompt2Model,
with our system demonstrating a notable advantage
over Prompt2Model five out of six tasks, with an
average improvement of 8.3 points. These findings
underscore the effectiveness of our system to create
quality datasets for fine-tuning across a wide range
of tasks and domains.

5.2 DataTune Impact on Dataset Diversity

Sampling diverse yet high-quality examples from a
language model is a challenging task. Prior work
has shown that the correctness of a synthetic dataset
sampled from a language model is inversely corre-
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Figure 4: Synthetic dataset generation often suffers from
the problem of generating multiple duplicates of the
same example in a given dataset. On 3 of 5 tasks, we
find that data transformation from retrieved datasets
significantly mitigates this issue. The other two datasets,
Russian and Temporal, represent failure modes of our
system. Gold represents the BigBench Dataset for a
given task.

lated with its diversity (Ye et al., 2022). Generating
synthetic data directly from a language model (us-
ing a method like Prompt2Model) often contains
near-duplicate examples.

Does transforming existing datasets reduce the
incidence of duplicate examples? Using ROUGE-
L to determine lexical uniqueness (Lin, 2004;
Wang et al., 2022), we determine a sentence s
in dataset D′ to be unique up to threshold7 T if
maxs′∈D′\{s}ROUGE(s, s′) < T . In Figure 4,
we observe that over 50% of examples generated
synthetically are near-duplicates for 3 of 5 tasks; in
each of those cases, using DataTune instead effec-
tively eliminates this problem.

We observe similar trends with lexical diversity
across all dataset creation methods. In Table 3, we
measure the number of unique bigrams per gen-
erated input example. DataTune significantly in-
creases the number unique bigrams per example
(and moderately increases the length of each exam-
ple) on 3 of 5 datasets.

According to both measures, dataset diversity de-
creases on Temporal Sequences and Medical Ques-
tions in Russian, which are also the two tasks where
DataTune fails to improve over training on fully
synthetic data. We discuss these two tasks in Sec-
tion 5.5 and Limitations, respectively.

7We set the ROUGE-L threshold to 0.8 for Code Line
Descriptions, where examples are Python snippets, 0.9 for
Temporal Sequences, where examples are long English texts,
and 0.7 for the other datasets.
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Method Steps # Train.
Points

Tasks

Retrieval Type Generation Time Code Math C&E Russn. Impl. Avg.

Few-Shot Baselines
GPT-3.5 - - 0 50.6 75.6 30.4 96.7 90.6 64.2 68.0

Mistral-7B - - 0 -2.5 62.3 2.9 37.2 39.8 39.0 29.8

M
is

tr
al

-7
B

+ Synthetic Finetuning Baselines
Existing data Dense - 3000 -4.7 62.3 0.8 52.9 0.0 39.9 25.2

Synthetic data - Synthetic 3000 2.0 60.8 3.8 37.2 54.0 41.9 33.3
DataTune (DT) + Reranker Transformed 3000 -2.1 71.2 1.3 56.9 48.0 41.9 36.2
Prompt2Model Dense Synthetic 6000 -2.0 73.4 4.7 33.8 86.0 44.0 40.0
DT+Synthetic + Reranker Both 6000 16.9 84.5 8.1 41.2 68.0 48.0 44.5

Table 2: We compare the performance of different few-shot learning methods across six BIG-Bench tasks. Here,
we categorize each method by what base model is used (Mistral-7B or GPT-3.5-Turbo), whether data is retrieved
(and, if so, whether a dense retriever or dense retriever + reranker is used), how the data points are generated
(whether transformed from an existing dataset, generated synthetically, or both). “# Train. Points” refers to the
number of training examples produced by the method for each task. Normalized aggregate scores below zero imply
performance worse than chance.

Dataset Unique Bigrams Total Tokens
Per Example Per Example

Code Line Description
Gold 13.2 32.3

Synthetic 2.5 35.0
Transformed 14.9 86.9

Elementary Math
Gold 10.8 48.6

Synthetic 3.3 34.4
Transformed 11.6 43.8

Implicatures
Gold 9.9 24.1

Synthetic 2.7 27.7
Transformed 17.8 39.8

Temporal Sequences
Gold 1.0 99.7

Synthetic 20.8 54.6
Transformed 0.2 73.7

Medical Questions in Russian
Gold 62.0 79.4

Synthetic 20.8 54.6
Transformed 11.6 44.8

Table 3: We observe that dataset transformation yields
datasets with greater lexical diversity than synthetic
dataset generation on 3 of 5 datasets.

5.3 DataTune Generates Harder Examples
Compared to Synthetic Data

Synthetic datasets sampled directly from a lan-
guage model tend to overrepresent with easy-
to-solve examples (Xu et al., 2023). To test
our ability to overcome this issue, we used
gpt-3.5-turbo to estimate the difficulty of
each example generated from each method
(DataTune, synthetic generation, and manual cura-
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Figure 5: Dataset Transformation leads to more diffi-
cult examples than synthetically generated examples,
which are over-represented by easy examples, rela-
tive to manually-curated BIG-Bench evaluation datasets
(Gold).

tion) for four tasks. We wrote a custom difficulty
estimation prompt (including in-context examples)
for each task; in all prompts, we specify that the
LLM should rate the example on a scale of 1 to
5. We outline an example of this prompt in Ap-
pendix A.6. As illustrated in Figure 5, we observe
that the data from DataTune exhibits a higher level
of difficulty compared to synthetically generated
data for all datasets other than Medical Questions
in Russian. We attribute this increase in difficulty
to the added knowledge introduced by the existing
dataset selected for transformation, which is often
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more nuanced and, consequently, more challenging.
In contrast, unconditional generation from LLMs
tends to produce examples that are likely to have a
high prior (prompt-independent) probability under
the language model. The exception to this effect,
Medical Question in Russian, can be attributed to
the failure of our approach’s transformation plan to
generate data in the correct language for this task.
We provide more details of this failure mode in
Limitations.

5.4 Does generating harder examples lead to
lower label accuracy?

We evaluated the label accuracy of generated data
for the Code Line Description task by compar-
ing DataTune against synthetic dataset generation.
Manually annotating a random sample of 300 data
points from each generation method for the Code
Line Description Task, we found the label accuracy
from DataTune is 88%, compared to 86.6% for syn-
thetic data generation. This comparison suggests
that DataTune can produce datasets that are com-
parable in accuracy to purely-synthetic datasets,
despite DataTune generating significantly more di-
verse and challenging examples on this task.

5.5 Transformed Data Can Be
Complementary to Synthetic Data

In two cases where DataTune fails to improve over
a synthetic data baseline, Temporal Sequences and
Elementary Math, our combined DataTune + Syn-
thetic system still outperforms all other comparable
(Mistral-based) baselines. We observe these two ap-
proaches to dataset generation can be complemen-
tary to each other, yielding additive improvements
when combined.

For a concrete example of this, we can visually
observe the two-dimensional semantic distribution
of questions generated for the Elementary Math
task via DataTune, Synthetic Generation, and from
the gold dataset in Figure 6. We encoded each
question using MiniLM v2 (Wang et al., 2021)
via sentence-transformers (Reimers and
Gurevych, 2019), then projected each embedding
into a 2D space using t-SNE (van der Maaten and
Hinton, 2008).

Visually, we observe that the embedding clusters
of questions generated via DataTune and Synthetic
Generation appear to be largely disjoint. This sup-
ports our hypothesis that these two methods system-
atically cover different distributions of the target
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Figure 6: We observe that examples generated via
DataTune and synthetic dataset generation fall into vi-
sually well-separated regions of embedding space, after
projecting to two dimensions via t-SNE.

task space, and therefore combining the examples
from each method can lead to a synergistic effect.

5.6 DataTune can be Robust to Data Scarcity
Sometimes there are tasks where dataset deemed to
be the most relevant by the dataset retrieval system
is still not sufficiently relevant. In existing dataset
retrieval-based systems where retrieved datasets
are used to automatically train a model (such as
Prompt2Model), the unrelated training signals trig-
gered by training on an irrelevant dataset can lead
to worse performance. In our system, we find that
the use of the Planning module can avoid such
negative interference. When there are no relevant
training datasets available (such as in the "Tem-
poral Sequences" task), we find that the planning
module essentially generates new data without con-
ditioning on irrelevant datasets at all.

6 Conclusion and Future Work

We presented DataTune, an improved approach for
enhancing automatic dataset generation by trans-
forming existing labeled datasets. Our method sig-
nificantly outperforms existing automatic dataset
generation techniques on several challenging tasks
from BIG-Bench. When used in conjunction with
existing synthetic dataset generation methods, it
achieve superior performance compared to other
few-shot learning methods on the base model
we used (Mistral-7B). Our analysis reveals that
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DataTune not only creates more diverse and ac-
curate datasets but also increases their complexity
for fine-tuning. An important direction is whether
transformation-based dataset creation methods like
DataTune can still be effective when examples are
retrieved from the open web rather than from the
collections of manually-curated datasets we con-
sider in our work. Another important direction for
future work will be to generate code to execute a
transformation plan (rather than querying an LLM
for each instance of data). Both of these future
directions would improve the accessibility and scal-
ability of our suggested approach.

Limitations

We identify four key limitations in our system:

1. LLM Query Cost: Our dataset transforma-
tion component requires running the Execu-
tion Module on each row of each dataset we
wish to transform. Given that our Execu-
tion Module prompts a large language model,
the number of LLM queries scales linearly
with the amount of data to be transformed.
This could be cost-prohibitive for transform-
ing very large datasets. This LLM usage re-
quirement could also exclude members of the
research community without consistent LLM
access from benefiting from our work.

2. Dependence on the Planning Module: Our
dataset transformation system relies heavily
on the Planning Module to produce clear and
comprehensive instructions for the Execution
Module to enact. Our Planning Module op-
erates by prompting a large language model.
Given that prompted LLMs can behave unpre-
dictably in changes in prompts (Sclar et al.,
2023), an important limitation of our method
is that its success depends on a large language
model following a prompt correctly. We see
this failure with Medical Questions in Rus-
sian, where the agent is supposed to trans-
late a Russian dataset into English to facili-
tate the generation of question-answer pairs.
When running our benchmarking, the Plan-
ning Agent failed to translate the generated
question-answer pairs back to Russian. This
resulted in a training dataset that, despite be-
ing conceptually close, was practically far
from correct.

3. Handling Non-English Data: Our transfor-
mation agent’s ability to process non-English
data tasks is substantially compromised, fre-
quently altering example tasks instead of the
actual data. This deficiency is primarily due
to the reliance on models like GPT 3.5, which
have been extensively trained on English data,
thereby diminishing their proficiency with
other languages.

4. Dependence on Instruction-Following
LLMs: The system’s execution component
depends on Large Language Models (LLMs)
that are specifically designed to adhere to
instructions. We have identified discrepancies
in performance among LLMs tailored
for instruction-based tasks versus those
developed for conversational purposes. This
limitation confines our system to using only a
narrow selection of LLMs that demonstrate
the ability to follow instructions accurately.

Ethical Considerations

DataTune could make it easier for the general pub-
lic to build custom language models. The broaden-
ing of open-ended technology induces ethical con-
cerns, similar to the issues with open-source deep-
fake libraries described by Widder et al. (2022).
While DataTune has potential for misuse, this is
likely no greater than the potential harms presented
by the underlying open-source large language mod-
els. By making it easier to build task-specific lan-
guage models, we hope that these risks are bal-
anced by the benefits of making NLP models acces-
sible to those outside the NLP community or those
without the resources to manually collect labeled
data. We aim to be transparent in our documenta-
tion about the potential limitations of the system.

The platform is particularly valuable for individ-
uals outside the NLP community who can benefit
from using NLP models in their work but lack the
specialized knowledge to develop these tools inde-
pendently. The decision to open-source DataTune
invites community contributions, emphasizing a
collaborative approach to improve and expand the
tool’s capabilities. This strategy not only enhances
the system’s utility but also aligns with a broader
goal of increasing the accessibility of NLP innova-
tions and fostering a more inclusive technological
environment.
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A Prompt Appendix

A.1 Reranking Prompt

Your objective is to choose the most relevant dataset for a given a task (and few examples of the
task). For each dataset, you will be provided with the dataset description, and tags related to the
dataset. Please return the most relevant dataset, e.g., squad
The following is the task
{{instruction}}
and these are some examples of the same:
{{examples}}
There are {{num}} datasets available for this task.
{{datasets}}
The name of the most relevant dataset for this task is:

where each dataset in {{datasets}} is defined as:

{counter}{{dataset_name}}:Description-{{dataset_description}}.
This dataset has the following tags:
{{tags}}

A.2 Schema Selection Prompt

Your objective is to carefully analyze the task and the dataset mentioned, and decide whether the
columns are relevant input, relevant output, irrelevant for the given task, or if it is ambiguous.
There should be at most one output column. It is possible to have no relevant columns, in which
case return the input and output column as empty lists. Answer in a json format, with the following
keys: input, output, irrelevant, ambiguous.
{{INCONTEXT_EXAMPLES}}
After seeing these examples with the required columns, please provide the relevant columns for
this context:

You are tasked with the following process. {{instruction}} For this task, you will use
the {{dataset_name}} dataset from HuggingFace. Dataset Description: {{dataset_description}}
A sample data instance from this is as follows. {{sample_row}}.
This dataset has the following columns: {{dataset_columns}}
Required Columns :
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A.3 Planning Module Prompt

You are a Planning Agent. You create a plan to transform data samples from their existing format
into the required format for a given task.
————————————————-
Here are some examples for your reference.
{{in_context_examples}}
————————————————
Now do the following task:
Task Description: {{task_description}}
Task Examples: example
Here are samples from a potentially relevant dataset for the task above. Notice how the format
below is not as required by the task above.
Dataset Samples: {{dataset_row}}
Carefully analyze the ‘Task Description‘ and the ‘Task Examples‘. Propose a higher-level plan to
convert data from the Dataset Sample to data in the required format task examples. Your plan
should be a list of sequential steps that can be taken to perform the data transformation. You don’t
need to use all columns, as the dataset may not be fully relevant. Keep steps as simple, explicit and
concise as possible. Each step in the plan may take any of the following actions: 1. Generate new
columns as required by the task, and save them
2. Expand on a particular column to make it something more relevant to the task and save it
3. Combine multiple columns from the dataset
4. Choose columns that will form "input"
5. After the input field is created, carefully analyze it to choose/generate the output field
6. Ignore a data sample because it is not all relevant and return null for them.

Return only the plan.

A.4 Execution Module Prompt

You are a Data Transforming Agent. Your job is to transform data from a given format to
the required format. Following are the detailed instructions for the same: 1. Read the ‘Task
Description‘.
2. An example of the input and output looks like for the task is shown in ‘Task Examples‘
3. The sample to be transformed is in ‘Data Sample‘.
4. Read the data transformation plan carefully that will help you convert the ‘Data Sample‘ into
the required format. This should be relevant and intune to the ‘Task Description‘
5. Perform the plan step by step and explain your thinking.
6. End your response with the transformed sample as a JSON response with exactly 2 fields:
"input" and "output".
————————————————-
Here are some examples for your reference. {{incontext_examples}}
————————————————
Now do the following task:
Task Description: {{task_description}}
Task Examples: {{sample}}
{{plan}}
Dataset Sample: {{dataset_row}}
Think step by step through the plan to convert the above ‘Dataset Sample‘ and show your working.
End your response as a JSON with exactly two fields: "input", and "output" Response:
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A.5 Task Expansion Prompt

Carefully analyse the task description and examples of the task, and explain the task to give a
clearer description. Do not explain each example, but rather capture the general trends. Also place
special focus on the format of the input/output examples.
————————————————-

Task Description: {task description}
Task Examples: {examples}

A.6 Difficulty estimation prompt: Code Line Descriptions example

We are building a dataset for automatically describing code
(in words). Evaluate and rate the difficulty and complexity
of describing the following code lines. You should give an
overall score on a scale of 1 to 5,
where a higher score indicates higher difficulty.
You must just give a score without any other reasons.
Here’s the grading scale:
1: Very easy. Anyone who understands the
programming language could describe this almost instantly
2: Easy. Anyone who understands the programming
language could describe this with a bit of thought
3. Neutral. Most non-expert people who understand
the programming language would be able to describe this,
but it might take time for them to understand the code
4. Hard. It would require at least a minute
for a non-expert person who understand the
programming lanugage to understand and describe this code.
5. Very hard. Most non-experts would make a mistake
when trying to describe this code in a fixed timeframe.
Professional programmers would have an easier time.

Your answer shoud be a single number, 1 through 5,
with nothing else in your response.

{Incontext examples with code and difficulty}

{Input Code}

B Cost Estimation

In our pipeline, we utilize GPT-4 for most of the processes, but for the execution module, we switch to
GPT-3.5-turbo. This is because the execution module requires a single API call per data sample, while the
rest of the pipeline handles fewer than 20-30 requests. For a dataset with 3000 rows, the cost amounts
to approximately $9 per task. Practitioners can further reduce costs by opting for more affordable LLM
APIs, such as Claude 3 “Haiku,” using locally-hosted LLMs like Mistral 7B, or combining LLM queries
to transform multiple examples in a single call.
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