
Findings of the Association for Computational Linguistics: ACL 2024, pages 6272–6286
August 11-16, 2024 ©2024 Association for Computational Linguistics

Towards Robust Temporal Reasoning of Large Language Models
via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning

Qingyu Tan ∗ 1, 2 Hwee Tou Ng† 2 Lidong Bing1

1DAMO Academy, Alibaba Group
2Department of Computer Science, National University of Singapore

{qingyu.tan,l.bing}@alibaba-inc.com
{qtan6,nght}@comp.nus.edu.sg

Abstract

Knowledge in the real world is being updated
constantly. However, it is costly to frequently
update large language models (LLMs). There-
fore, it is crucial for LLMs to understand the
concept of temporal knowledge. However,
prior works on temporal question answering
(TQA) did not emphasize multi-answer and
multi-hop types of temporal reasoning. In
this paper, we propose a complex temporal
question-answering dataset Complex-TR that
focuses on multi-answer and multi-hop tempo-
ral reasoning. Besides, we also propose a novel
data augmentation strategy to improve the com-
plex temporal reasoning capability and robust-
ness of LLMs. We conducted experiments on
multiple temporal QA datasets. Experimental
results show that our method is able to improve
LLMs’ performance on temporal QA bench-
marks by significant margins1.

1 Introduction

Time is a fundamental aspect of the real world.
Much information comes with an expiry date. Re-
cent advances of large language models (LLMs)
(Wei et al., 2022; Ouyang et al., 2022; Achiam
et al., 2023) have demonstrated that LLMs can
tackle many NLP tasks in a few-shot manner. How-
ever, preliminary studies showed that one of the
key drawbacks of existing LLMs is the lack of
temporal reasoning capability (Chen et al., 2021;
Tan et al., 2023). The SituatedQA (Zhang and
Choi, 2021) dataset was first proposed to incorpo-
rate extra-linguistic contexts to QA, which include
temporal contexts and geographical contexts. Chen
et al. (2021) proposed the TimeQA dataset and
formulated temporal QA as an open-book QA task.
Liska et al. (2022) proposed the StreamingQA
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Elon Reeve Musk (/ˈiːlɒn/ EE-lon; born June 28, 1971) is a 
business magnate and investor. He is the founder, CEO and 
chief engineer of SpaceX; angel investor, CEO and product 
architect of Tesla, Inc.; owner, CTO and chairman of Twitter; 
founder of the Boring Company and X Corp.; co-founder of 
Neuralink and OpenAI; and president of the philanthropic Musk 
Foundation. …TL,DR

Musk was born in Pretoria, South Africa, and briefly attended the 
University of Pretoria before moving to Canada at age 18, 
acquiring citizenship through his Canadian-born mother. Two 
years later, he matriculated at Queen's University and 
transferred to the University of Pennsylvania, where he received 
bachelor's degrees in economics and physics. 

1971 1989 1991

（18 yrs）  （2 yrs）

Figure 1: An example of a 3-hop temporal expression
for t3. The temporal expressions are highlighted in yel-
low in the paragraph. The temporal expressions include
exact timestamps and time intervals. This example is
taken from Elon Musk’s Wikipedia page on 18 June
2023.

dataset by WMT data from 2007 to 2020. Dhingra
et al. (2022) constructed the TempLAMA dataset
by the Wikidata Knowledge Base with facts from
2010 to 2020. Tan et al. (2023) proposed a tem-
poral QA benchmark TempReason with coverage
of long durations and divided temporal reasoning
into three levels: time-time reasoning (L1), time-
event (L2) reasoning, and event-event (L3) reason-
ing. The temporal question-answering (TQA) task
is essentially answering questions with temporal
constraints, and the answers to the questions are
derived from time-dependent facts. An example
query is (s, r, ?, tr), where s is the subject, r is the
relation, tr is the reference time for this question,
and the answer denoted by ? is the object.

However, existing temporal question-answering
datasets have several common drawbacks. The first
drawback is that they fail to examine the temporal
co-occurrence phenomenon. In the real world, mul-
tiple events can happen at the same time, and tem-
poral questions can have multiple valid answers.
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For example, in Figure 1, we can see that Elon
Musk is the chief executive officer of both Tesla
and SpaceX as of June 2023. Nevertheless, all prior
benchmarks followed the SQuAD (Rajpurkar et al.,
2016) evaluation metrics, i.e., token-level F1 and
exact match (EM) score. These two metrics take
the max scores among all answers when there are
multiple answers. Such metrics overestimate the
performance of temporal QA and cannot properly
evaluate questions with multiple answers.

The second drawback of existing temporal
question-answering benchmarks is that the ques-
tions mainly focused on one-hop temporal reason-
ing, i.e., only one temporal expression is included
in the question. For example, in the question “What
team did Kobe Bryant play for in June 2010?”, the
temporal constraint refers to only one timestamp.
In this paper, we define multi-hop temporal ques-
tions as questions that contain multiple temporal
expressions. The temporal expression can be a
timestamp t or a time interval ∆t. In the real world,
temporal concepts are often expressed by multi-
ple time expressions. For example, in Figure 1,
t3 refers to the year 1991, and it can be explicitly
expressed as a numerical value (1-hop expression)
or implicitly as t1 + ∆t1 + ∆t2, as shown in the
paragraph. An example question for multi-hop tem-
poral reasoning is “When did Elon Musk move to
Canada?”. In this case, t1 is the birth date of Elon
Musk and ∆t1 is 18 years. Multi-hop temporal
expressions are common in the real world, whereas
the study of multi-hop temporal reasoning is under-
explored by prior temporal QA datasets. Note that
the “multi-hop” concept in this paper refers to tem-
poral hops (number of temporal expressions in a
question) and they are different from the graphical
hops used in QA over knowledge graphs (KGQA)
(Lin et al., 2018; Saxena et al., 2020) and tempo-
ral knowledge graphs (Bai et al., 2021; Bai et al.,
2023), where the number of graphical hops refers
to the number of triples required to answer the ques-
tion. To the best of our knowledge, we are the first
to differentiate temporal hops from KG hops for
temporal question answering.

To address the two shortcomings of the exist-
ing datasets, we created a temporal QA dataset
Complex TempReason (Complex-TR) that em-
phasizes multi-hop and multi-answer temporal rea-
soning. We follow the logical breakdown of the
TempReason dataset and focus on time-event (L2)
and event-event (L3) reasoning, since these two rea-
soning types require grounding events to the time

axis and are much more challenging than time-time
(L1) reasoning. Besides the knowledge from Wiki-
data KB and Wikipedia articles, our dataset also
includes external contexts from Google Custom
Search API2 for the open-domain QA (ODQA) set-
ting. To examine the robustness of temporal reason-
ing, we only used questions before 2020/01/01 as
training data. The examples after 2020/01/01 will
be used as unseen future questions. Moreover, for
our test set, we engaged college-educated human
annotators to verify the correctness of the QA pairs.
This human verification process ensures that our
test set is of high quality for temporal QA research.

Besides the proposed dataset, we also proposed
two methods to improve the performance of tem-
poral QA. The first is Pseudo-Instruction Tuning
(PIT), a data augmentation strategy to improve the
robustness of temporal reasoning. The second is
context refinement, an effective context selection
strategy to accommodate long contexts for tempo-
ral ODQA. We conducted extensive experiments
on our dataset in various TQA settings. Besides,
we also conducted experiments on other TQA
datasets. Experimental results show that our meth-
ods achieve significant performance gains over
strong baselines, especially on the out-of-domain
years and more complex questions.

In summary, our contributions are as follows:

• We are the first to study multi-hop and multi-
answer questions for the temporal QA (TQA)
task. We also found out that prior bench-
marks for TQA adopted inappropriate eval-
uation metrics for multi-answer questions.

• We constructed a complex temporal QA
dataset Complex-TR that covers diverse types
of multi-hop temporal reasoning by distant su-
pervision and human verification. Experimen-
tal results show that all LLMs perform signifi-
cantly worse on multi-hop temporal questions.

• We propose a novel data augmentation strat-
egy to create pseudo-instruction tuning data
to improve the complex temporal reasoning
capabilities and temporal robustness of LLMs.
We also proposed an effective context refine-
ment strategy for the long-context problem in
ODQA. Extensive experimental results show
that our methods significantly improve the per-
formance over strong baselines.

2https://developers.google.com/custom-search/
v1
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Dataset Size L2 1-hop L2 M-hop L3 1-hop L3 M-hop ∆t Question % M-answer M-answer eval.

TempLAMA 50K ✓ ✗ ✗ ✗ ✗ 25.3% ✗

TimeQA 41.2K ✓ ✓ ✗ ✗ ✗ 6.3% ✗

StreamingQA 147K ✓ ✗ ✗ ✗ ✗ 25.0% ✗

SituatedQA 12.2K ✓ ✗ ✗ ✗ ✗ 4.7% ✗

TempReason 52.8K ✓ ✗ ✓ ✗ ✗ 8.6% ✗

Complex-TR (Ours) 10.8K ✓ ✓ ✓ ✓ ✓ 23.5% ✓

Table 1: Comparison between Complex-TR and prior temporal QA datasets. The % M-answer column refers to
the percentage of multi-answer questions. We can see that all prior datasets contain a considerable number of
multi-answer questions, yet none of them used appropriate evaluation metrics for multi-answer questions.

2 Our Dataset

Tan et al. (2023) first proposed to divide temporal
reasoning into three levels: time-time reasoning
(L1), time-event reasoning (L2), and event-event
reasoning (L3). In this paper, we focus on the
harder temporal reasoning types: time-event rea-
soning (L2) and event-event reasoning (L3). We
construct our dataset by the following steps:
Mining Temporal Facts in Wikidata We first ex-
tract all the knowledge triples that have tempo-
ral qualifiers (such as start_time and end_time)
in the Wikidata (Vrandečić and Krötzsch, 2014)
knowledge base (2023/03/20 dump). We then re-
format the extracted triples into temporal quintu-
ples (s, r, o, ts, te), where s is the subject, r is
the relation, o is the object, ts is the start time,
and te is the end time. We then group the quin-
tuples with the same subject together, obtaining
S = {(s, ri, oi, tsi, tei)|i ∈ 1...N}. Unlike prior
works from Wikidata (Chen et al., 2021; Tan et al.,
2023), where only one relation type is kept within
one group, we include multiple relation types in
one group, which adds more complexity to our
dataset. For each group, we identify the most com-
mon relation as its representative relation. Since
the relation distribution is highly imbalanced in
the Wikidata KB, we set a ceiling of 250 groups
for each representative relation type. In the end,
we kept 2,000 temporal quintuple groups, and on
average there are 9.2 temporal quintuples in each
group. We divide the groups into training (1,000),
development (500), and test (500) sets.
Creating Questions from Quintuples After ob-
taining the temporal quintuple groups, we create
the question-answer pairs based on manually de-
signed templates (details are shown in Appendix F).
For L2 temporal questions, a 1-hop question can be
expressed in the query (s, r, ?, tr), where tr is the
reference timestamp. We create the multi-hop L2
questions with two variations: (1) (s, r, ?, trs, tre),
where trs and tre refer to the start and end time

of the question respectively. (2) (s, r, ?, tr,∆t),
where tr is the reference time and ∆t is the tem-
poral difference between the reference time and
the query time. The model is expected to infer the
query time from ∆t and tr. As for the L3 ques-
tions, the number of temporal hops is dependent
on the event-event temporal relation. For example,
from the question “What team did Kobe Bryant
play for before the LA Lakers?”, we can imply
that the query time is the start time of Kobe Bryant
playing for the Lakers. Since only one timestamp
is implied in the question, it is a 1-hop question.
In contrast, for the question, “What awards did
Kobe Bryant win when he was playing for the LA
Lakers?”, both the start time and end time have to
be considered. Since Kobe Bryant had a 20-year
career with the Lakers, it is a multi-hop question.

In order to have a fair comparison between 1-hop
and multi-hop temporal reasoning, we also created
a small number of 1-hop questions with the same
temporal quintuples and contexts. We denote the
timestamp mentioned in the question as the refer-
ence time. For L3 questions, we denote the start
time of the reference event as the reference time.
In order to examine the robustness of temporal rea-
soning in future years, we only use the questions
with a reference time before 2020/01/01 for train-
ing, whereas the development and test sets contain
questions both before and after 2020/01/01.
Open Domain Context Retrieval Previous tempo-
ral QA datasets typically rely on a fixed knowledge
source. The TimeQA and TempReason datasets use
Wikipedia articles as context for open-book QA set-
ting. The StreamingQA dataset uses English news
articles from the WMT challenge. TimeQA is a
human-annotated dataset based on Wikipedia arti-
cles, and temporal facts not reflected in Wikipedia
are deemed as “unanswerable”. However, a single
knowledge source may not be sufficient to answer
temporal questions, as temporal facts are constantly
evolving. To address this limitation, we construct
our dataset in an open-domain QA (ODQA) fash-
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Dataset Type Example Question Answers

TempLAMA L2 1-hop In 2011, Tom Brady played for _X_. New England Patriots
TimeQA L2 M-hop Which team did Olivier Bernard play for from 2000 to 2005? Newcastle United
StreamingQA L2 1-hop Which player scored for St Mirren in November 2008? Franco Miranda
SituatedQA L2 1-hop Who made the most free throws in NBA history as of 2020? Karl Malone

TempReason L2 1-hop Where was Barack Obama educated in Apr 1981? Columbia University
L3 1-hop Who was the chair of Swedish People’s Party of Finland after Lars Erik Taxell? Jan-Magnus Jansson

Complex-TR (Ours)

L2 M-hop Who were the chairs of FC Barcelona from March 1984 to March 2003? Josep Lluís Núñez and Enric Reyna
L2 M-hop Where was Lynne Bowker educated 15 years before June 2005? University of Ottawa
L3 M-hop Which employer did Barack Obama work for 2 years after he/she studied at Occidental College? Business International Corporation
L3 M-hop Who were the owners of Chelsea F.C. when Thomas Tuchel was the headcoach? Roman Abramovich and Todd Boehly

Table 2: Example questions of prior temporal QA datasets and our Complex-TR dataset.

ion. For the context used in the ODQA setting, we
first include the Wikipedia article on the question
subject. We then use the Google Custom Search
API with this question as the search query to re-
trieve the top 10 results. The searched web pages
will be scraped by Trafilatura (Barbaresi, 2021),
a state-of-the-art text extraction tool for NLP re-
search. Due to the anti-scraping mechanism of
certain websites, we cannot extract the contexts
from all the retrieved web pages. On average, we
have 6.7 articles for each question and the average
total context length is 93K words. The long con-
text from multiple sources introduces additional
challenges for the temporal QA task.
Human Verification To ensure that our dataset
is of high quality and aligned with the retrieved
contexts, we engaged college-educated human an-
notators to verify the correctness of the QA pairs
and retrieved contexts. The annotators are given
a temporal QA pair and its corresponding articles,
and they are asked to read through the articles and
judge whether the QA pair is correct or not. Due to
cost limitations, we randomly sample 500 QA pairs
from the test set for human verification. Among the
500 QA pairs, 100 of them are annotated by two
annotators to measure the inter-annotator agree-
ment. The Fleiss Kappa coefficient of this sub-
set is 0.71, which implies a substantial agreement
level. The conflicts are resolved by a third anno-
tator. The hourly pay of the annotators is above
22 USD, which is significantly higher than the lo-
cal minimum wage. In the end, 329 QA pairs are
deemed as correctly reflected in the contexts, we
then used these 329 QA pairs as our gold test set
in the experiments. We name our dataset Complex-
TempReason (Complex-TR). Our detailed dataset
statistics are shown in Table 3. The“Pseudo” col-
umn refers to the pseudo-data that we generated in
Section 3.1. Besides, we also compare our ques-
tions and reasoning types with prior temporal QA
datasets in Table 1. We can see that none of the
prior datasets included L3 multi-hop temporal rea-

soning, or questions with time interval ∆t. Besides,
all prior temporal QA datasets contain a consider-
able number of questions with multiple answers,
yet none of them adopted any evaluation metrics
for multi-answer questions. We provide a more
detailed question comparison of our dataset and
prior works in Table 2.

Pseudo Training Dev Test (Gold)

Time Coverage 1021-2040 1529-2019 1254-2023 1659-2023
L2 1-hop 11,389 1,109 670 72
L2 M-hop 13,919 2,407 1,487 106
L3 1-hop 15,205 1,236 690 71
L3 M-hop 10,938 1,759 1,146 80
#Total 51,451 6,511 3,993 329
Avg. Facts 10.8 9.0 10.0 8.6
Avg. Contexts - 6.6 6.8 6.7
Avg. Word Len. - 92K 99K 94K

Table 3: Statistics of our dataset. Note that we do not
include questions after December 2019 in our training
set. The Avg. Word Len. row refers to the average
number of words in all contexts for the ODQA setting.

3 Methodology

In this paper, we also propose two strategies
to improve the robustness and the capabilities
of LLMs for temporal reasoning, which are
Pseudo-Instruction Tuning and Context Refine-
ment. Pseudo-Instruction Tuning uses pseudo data
to alleviate the data scarcity and data imbalance
problems of temporal QA, which can improve
LLMs’ temporal reasoning capability and robust-
ness. The improved reasoning capability also has a
positive impact in the ODQA setting. On the other
hand, Context Refinement is used to address the
long context problem in the ODQA setting. In this
setting, the total context can reach over 100K to-
kens, which makes it infeasible to feed the context
to existing QA models. The Fusion-in-Decoder
(FiD; Izacard and Grave, 2021) model was pro-
posed for the QA task to process long contexts. It
breaks a long context into multiple smaller para-
graphs to avoid the quadratic computation of self-
attention. However, even FiD can only process up
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to 10K tokens, which is still insufficient for ODQA.
As such, we use sentence embedding models to re-
fine the paragraphs and only keep the most relevant
paragraphs to the question for our QA models. We
will introduce each strategy in detail in the follow-
ing subsections.

3.1 Pseudo-Instruction Tuning
One of the main challenges of temporal QA is that
the labeled data are typically concentrated on recent
years, and some datasets (Liska et al., 2022; Dhin-
gra et al., 2022) only contain data from 2000-2020.
The data imbalance is caused by data distribution
in the Wikidata knowledge base. As a result, LLMs
trained by such data tend to be biased towards re-
cent years (Tan et al., 2023). To overcome this
challenge, we aim to create artificial data with an
emphasis on low-frequency time periods.
Pseudo-Data Generation Data augmentation has
proven to be effective in many NLP tasks (Zhou
et al., 2021; Ding et al., 2020; Cao et al., 2023).
For TQA, we have the training group S of subject
s as:

S = {(s, ri, oi, tsi, tei)|i ∈ 1...N} (1)

We then shift S by ∆t for every fact within that
group, obtaining:

Sp = {(s, ri, oi, tsi +∆t, tei +∆t)|i ∈ 1...N} (2)

where −100 ≤ ∆t ≤ +20 is a random temporal
shift with a maximum of 20 years going forward
and a maximum of 100 years going backward, and
Sp is the shifted pseudo-group. Since shifting tem-
poral facts introduces temporally augmented facts,
we replace all the subjects and objects with fictional
entities to avoid conflicts. We used ChatGPT to
generate multiple types of fictional entities, such as
person names and sports teams. This process can
be repeated multiple times. In this way, we can cre-
ate large amounts of artificial temporal quintuples.
We then follow the question templates in Section
2 to generate question-answer pairs using fictional
facts, and hence generate temporal reasoning data
without human annotation. Examples of fictional
entities and fictional temporal facts are shown in
Appendix G.
Temporal Resampling To accommodate data im-
balance in the Wikidata KB, especially for future
years, we resample the generated pseudo-data by
time intervals. Specifically, we divide time into 20-
year intervals from 1900 to 2020, and then count

all the examples in our training dataset within each
time interval, obtaining {ni|i ∈ 1..k}. Examples
before 1900 will be treated as one group, so there
are 7 counts in total and k = 7. Note that our
training data does not contain any questions after
December 31, 2019. Hence, examples after De-
cember 31, 2019 in the development and test sets
will be used to simulate future data. We calculate
probabilities for resampling by:

Pi = 1− ni

max({ni|i ∈ 1..k}) (3)

We then sample the generated questions with prob-
ability Pi. For pseudo-data after 2019, we set the
sampling probability to be 1. In this way, we will
be able to de-bias the temporal distribution in the
Wikidata KB and let the models focus on improv-
ing the performance on low-frequency years.
Training for PIT After we obtained the resampled
pseudo-data, we followed the instruction templates
for QA tasks from FLAN (Wei et al., 2022) to
fine-tune the LLMs. We name this process Pseudo-
Instruction Tuning (PIT). The final size and statis-
tics of PIT are shown in the “Pseudo” column in
Table 3. The instruction-tuned LLMs will then be
used to fine-tune on the task-specific data. We be-
lieve that improving temporal reasoning capability
can have a positive impact on downstream tasks
such as ODQA.

3.2 Context Refinement
In the ODQA setting, the contexts are from multi-
ple sources. We first denote our context set as C,
and follow the pre-processing protocol of FiD to
split all the articles into 100-word paragraphs:

C = {p1, p2, p3, ..., pm} (4)

where pi refers to a paragraph in the context set.
We then encode the temporal question q and the
paragraphs by a sentence embedding model f and
then calculate their cosine similarity:

zi = Cos(f(q), f(pi)) (5)

zi is used as a relevance score to re-rank all the
paragraphs. Due to computation constraints, we
only use the top k paragraphs as the contexts for
the FiD model. In this way, we can refine the extra-
long context to an acceptable level. We examined
multiple sentence embedding models and chose
bge-base-en-v1.5 (Xiao et al., 2023) as our sen-
tence encoder f . It is an advanced embedding
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model on the MTEB (Muennighoff et al., 2023)
benchmark and works best in our experiments We
show the ablation studies of different re-rankers in
Appendix C.

4 Experiments

4.1 Experimental Setup

In this paper, we focus on two temporal QA settings.
The first is open-domain QA (ODQA), where the
models are provided with multiple retrieved articles
as context. The second is the ReasonQA setting
proposed by Tan et al. (2023), where all the relevant
structured knowledge quintuples to answer a ques-
tion are provided as context. This is because we
aim to study the reasoning aspect of temporal QA.
We elaborate on the problem settings in Appendix
B in greater detail.

Baselines (1) FLAN-T5-XL (Wei et al., 2022)
This model is an instruction-tuned encoder-decoder
model with 3B parameters. It achieves re-
spectable few-shot performance on the MMLU
benchmark. (2) GPT-3.5 (Ouyang et al., 2022)
We used gpt3.5-turbo as our baseline. (3) GPT-
4 (Achiam et al., 2023) This model is the most
advanced LLM in the market. It achieves strong
zero-shot performance on many NLP tasks. Since
the model is constantly being updated, we used the
gpt4-0613 model for consistent evaluation. We
evaluate the one-shot performance of the first three
LLMs. (4) T5-SFT (Raffel et al., 2020) This model
is the supervised fine-tuned model with our labeled
training data. We used the T5 models as our back-
bone model. We conducted experiments on T5-
base (T5-B) and T5-large (T5-L). In the ODQA
setting, we truncate the context to 1,024 tokens
due to GPU memory constraint. (5) T5-PIT-SFT
This model is first instruction-tuned by pseudo data
and then further fine-tuned with labeled data. (6)
FiD is the supervised fine-tuned baseline for FiD.
It uses T5 as its backbone model and splits a long
context into smaller paragraphs. Hence, the maxi-
mum context window of FiD is significantly larger
than T5 under the same memory constraint. (7)
FiD-PIT combines T5-PIT initialization with FiD
training strategy. (8) FiD-PIT-Refined is the FiD-
PIT model with context refinement described in
Section 3.2. For SFT models, we report the aver-
age result of three random runs.

4.2 Evaluation Metrics
As mentioned in Section 1, all of the prior TQA
benchmarks followed SQuAD (Rajpurkar et al.,
2016). However, the metrics in SQuAD are com-
puted by using the maximum scores with all ref-
erences, which significantly overestimate the per-
formance for multi-answer questions. Therefore,
we adopted two stricter metrics for our experi-
ments. The first metric is set-level accuracy (Set
Acc.; Zhong et al., 2023). This metric will only
return correct if the prediction set is identical to the
ground truth set. The second additional metric is
answer-level F1 (Ans. F1; Amouyal et al., 2022).
Unlike token-level F1 in SQuAD, Ans. F1 counts
true positives only when there is an exact match in
the answer set. Besides, if the prediction contains
extra answers, it will also be penalized. The upper
bound of these two metrics is the EM score. We
also further analyze the four metrics in Section 5.2.

Single-hop Multi-hop
Set Acc. Ans. F1 Set Acc. Ans. F1

FLAN-T5-XL 61.5 64.1 35.5 49.7
GPT-3.5 28.0 45.3 31.2 51.8
GPT-4 67.1 80.2 51.6 65.4

T5-base

SFT 80.4 83.3 59.1 65.1
PIT-SFT (Ours) 91.6 93.8 78.0 82.4

T5-large

SFT 86.0 88.1 71.0 76.4
PIT-SFT (Ours) 95.1 95.6 85.0 89.5

Table 4: ReasonQA experimental results (in %) that
compare single-hop and multi-hop temporal reasoning.
The context used in this setting is structured facts in KB.

4.3 Experimental Results
In Table 4, we can see that multi-hop temporal
reasoning is much more challenging compared to
single-hop reasoning, and most tested models have
lower performance on multi-hop temporal reason-
ing. This shows that multi-hop temporal reasoning
is a common weakness for current LLMs. The
GPT-4 model can achieve relatively good results
for the answer F1 metric, whereas its set accuracy
scores are still significantly below our supervised
models. This indicates that GPT-4 can find valid
answers under time constraints, but it cannot find
all correct answers when multiple answers are pre-
sented. We provided the example errors by GPT-4
in Appendix E.

The experimental results of open-domain QA
are shown in Table 5. The ODQA setting is a much
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Single-Hop Multi-hop
Set Acc. Ans. F1 Set Acc. Ans. F1

FLAN-T5-XL 30.1 31.5 14.5 20.3
GPT-3.5 17.5 26.3 9.7 23.0
GPT-4 19.6 35.1 14.0 37.2

T5-base

SFT 33.6 35.6 17.7 26.6
PIT-SFT (Ours) 39.9 40.8 22.6 30.1
FiD 33.6 35.6 17.7 26.0
FiD-PIT (Ours) 39.2 40.1 23.1 30.2
+Refine (Ours) 42.7 44.3 24.7 31.2

T5-large

SFT 35.0 35.7 23.1 32.1
PIT-SFT (Ours) 39.2 40.1 25.3 32.8
FiD 46.2 46.6 27.4 37.3
FiD-PIT (Ours) 46.9 47.8 29.0 37.5
+Refine (Ours) 49.0 49.7 31.2 39.1

Table 5: ODQA experimental results (in %). The con-
texts used in this setting are multiple web articles.

harder QA setting. We can see that all models
perform significantly worse than in the ReasonQA
setting. Nevertheless, our PIT-SFT and FiD-PIT
models still outperform their corresponding base-
lines (SFT and FiD) significantly. This experimen-
tal result verified our assumption that improving
temporal reasoning capability can also improve the
downstream performance of ODQA. We also show
the experimental results of PIT on the TimeQA
dataset in Appendix D. We find that PIT also has a
positive impact on TimeQA, which demonstrates
the generalizability of PIT.

Since our dataset contains multiple articles for
ODQA, the total context length can easily exceed
FiD’s limit. However, with our proposed context
refinement strategy, we can further improve our
best model FiD-PIT (large) by 2.1% in set accuracy
for single-hop questions and 2.2% in set accuracy
for multi-hop questions

In-domain Future Overall
Set Acc.

FLAN-T5-XL 46.5 54.5 46.8
GPT-3.5 30.2 18.2 28.0
GPT-4 58.2 63.6 58.4
T5-B 69.2 45.5 68.4
T5-B-PIT 84.9 54.5 83.9
T5-L 78.0 63.6 77.5
T5-L-PIT 89.3 90.9 89.4

Table 6: Analysis of the ReasonQA performance for the
in-domain years (before 2020/01/01) and out-of-domain
future years. The numbers reported in this table are the
Set Acc. scores.

5 Analysis

5.1 Robustness of Temporal Reasoning
In this section, we analyze temporal reasoning per-
formance by time periods. In an ideal scenario,
temporal reasoning capability should generalize
to unseen time periods. In Table 6, we show the
experimental results for the in-domain and the out-
of-domain (OOD) subsets. We treat the questions
after 2020/01/01 as OOD (future examples). We
believe that this is a valid assumption because our
training data do not contain such questions and
our backbone model T5 was released in October
2019. From Table 6, we can see that FLAN-T5-XL
and GPT-4 have higher performance on the future
subset. This could be because these two models
are fine-tuned on data after 2020. For the super-
vised models, we can see that T5-B, T5-B-PIT,
and T5-L all suffered from severe performance
degradation on the future subset, whereas T5-L-
PIT can achieve similar performance on in-domain
years and future years. This implies that achiev-
ing robust temporal reasoning not only requires
de-biased pseudo-data but also a good capability of
the base language model.

Single-Answer
Set Acc. Ans. F1 EM Tok. F1

FLAN-T5-XL 59.5 59.5 59.9 70.7
GPT3.5 29.0 48.5 53.7 62.7
GPT-4 60.6 71.2 73.8 79.0
T5-B 71.8 72.1 72.2 78.0
T5-B-PIT 86.5 87.0 86.5 89.0
T5-L 79.9 81.2 80.7 84.4
T5-L-PIT 90.7 91.8 91.5 93.9

Multi-Answer
Set Acc. Ans. F1 EM Tok. F1

FLAN-T5-XL 0.0 43.1 65.7 81.7
GPT3.5 32.9 50.8 62.9 75.2
GPT-4 50.0 74.2 91.4 92.7
T5-B 55.7 76.5 87.1 91.5
T5-B-PIT 74.3 88.6 94.3 96.2
T5-L 68.6 82.4 90.0 94.1
T5-L-PIT 84.3 93.5 98.6 99.8

Table 7: Experimental comparison between the perfor-
mances on single-answer questions and multi-answer
questions of selected models. The experiments are con-
ducted on the Complex-TR dataset in the ReasonQA
setting.

5.2 Analysis of Multi-Answer Questions
The ability to understand co-occurring events is a
crucial aspect of temporal reasoning. In this sec-
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tion, we analyze the reasoning performance on
single-answer and multi-answer questions. We
report their experimental results separately in Ta-
ble 7. Besides the set-level accuracy (Set Acc.) and
answer-level F1 (Ans. F1) reported in the main ex-
periments, we also include exact match (EM) and
token-level F1 (Tok. F1). The EM and Tok. F1
scores are adopted by all prior temporal QA bench-
marks. Both metrics take the maximum scores
with all possible answers. In the multi-answer sce-
nario, EM and Tok. F1 are generally much higher
than Set Acc. and Ans. F1. Tok. F1 scores for
multi-answer questions are even higher than those
of single-answer questions. This indicates that EM
and Tok. F1 can significantly overestimate the per-
formance of multi-answer questions. Therefore, it
is better for temporal QA benchmarks to adopt Set
Acc. and Ans. F1 for evaluation.

6 Related Work

Temporal Information Extraction Early studies
of temporal research in NLP focused on study-
ing temporal relations of short-term events. The
TimeBank (Pustejovsky et al., 2003) dataset was
first proposed as a benchmark for the temporal
information extraction (TIE) task. It is a human-
annotated dataset with annotated events, temporal
expressions, and temporal relations (such as before,
after, and contains). The TempEval challenges
(Verhagen et al., 2007; Verhagen et al., 2010; Uz-
Zaman et al., 2013) were later proposed for the TIE
task. The schema of TempEval is similar to that of
TimeBank. Cassidy et al. (2014) found that prior
TIE datasets were not exhaustively annotated and
introduced a dense annotation schema for event
ordering. They also released the Timebank-Dense
dataset, which is a more complete version of Time-
Bank. Han et al. (2019) proposed an end-to-end
framework to jointly extract events and temporal
relations. However, TIE research focused on study-
ing the order of short-term events within a specific
context. On the other hand, the focus of our paper
is studying temporal reasoning with factual ground-
ing on the global time axis.
Temporal Question Answering Since time is a
fundamental aspect in real-life applications, numer-
ous efforts have been made to study the temporal
reasoning problem in question answering (QA).
The first line of work in this field worked on QA
over temporal knowledge graphs (TKGs). The
TempQuestions (Zhen et al., 2018) dataset was in-

troduced to extend the KGQA task to TKGs. Jia
et al. (2021) introduced the TimeQuestions dataset
as an extension of TempQuestions. The CronQues-
tions (Saxena et al., 2021) dataset is a large-scale
QA dataset over TKG with more complex ques-
tions. Shang et al. (2022) proposed a temporal
contrastive learning approach to improve the time-
sensitivity for the TKGQA task. However, the
TKGQA task is not the focus of our paper, and
it requires models to rank all the nodes (including
entities and timestamps) for each question. That is,
the TKGQA task assumes that all nodes are known
to the model, whereas our focus is on performing
temporal reasoning over raw natural language text.

The temporal QA task for LLMs was derived
from conventional QA. Even though there is a sub-
set of time-related questions in popular QA datasets
such as SQuAD (Rajpurkar et al., 2016), the ques-
tions are usually asking for a temporal expression
present in the context without temporal reasoning.
The MC-TACO (Zhou et al., 2019) dataset was later
proposed to study temporal commonsense reason-
ing. However, MC-TACO did not study the evolv-
ing aspect of temporal reasoning, which is crucial
for LLMs’ continual learning. SituatedQA (Zhang
and Choi, 2021) first introduced extra-linguistic
context to conventional QA, and it contains evolv-
ing temporal questions. Chen et al. (2021) pro-
posed the TimeQA dataset with Wikipedia arti-
cles and the Wikidata knowledge base. The Tem-
pLAMA (Dhingra et al., 2022) dataset was later
constructed similarly, but it focused on the close-
book QA setting. Kasai et al. (2023) proposed a
real-time QA benchmark that updates questions
weekly. Tan et al. (2023) systematically tackled the
TQA problem by breaking down temporal reason-
ing into three levels. However, even though most of
the previously proposed datasets contain questions
with multiple answers, none of them studied multi-
answer and multi-hop temporal reasoning. The
concept of “multi-hop” is commonly used in QA to
describe complex questions. The term “multi-hop”
has different meanings in different contexts. Yang
et al. (2018) used the term to describe questions
that can only be answered by multiple paragraphs.
In the prior works of KGQA (Lin et al., 2018; Sax-
ena et al., 2020), “multi-hop” describes questions
that can only be answered by multiple knowledge
triples. Since our paper focuses on temporal reason-
ing, we use “multi-hop” to describe questions that
contain multiple temporal expressions. A temporal
expression can be a specific timestamp or a time
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interval.

7 Conclusions

In this paper, we studied the under-explored multi-
hop temporal reasoning problem in temporal QA.
We proposed a novel dataset Complex-TR that cov-
ers multi-hop temporal reasoning. Besides, we
found out that all prior temporal reasoning bench-
marks used inappropriate evaluation metrics (exact
match and token F1) for this task. In addition, we
proposed Pseudo-Instruction Tuning to enhance
the robustness of temporal reasoning and Context
Refinement to alleviate the long-context problem
in ODQA. Extensive experimental results showed
that our methods are significantly better than strong
baseline methods.

8 Limitations

Since our dataset is constructed from the Wikidata
knowledge base, it may retain some errors present
in the Wikidata KB. That is, the training and valida-
tion sets of our dataset may contain factual errors.
However, we ensured the high quality of our gold
test set by a rigorous human verification process.
The other limitation, for the experiments on Open-
domain QA, we leveraged the Wikipedia page and
the retrieved results from Google Custom Search
API on 2023/12/10. The retrieval results may be
different as the internet evolves. Our experimental
results are also dependent on the retrieval perfor-
mance of Google Custom Search API. Neverthe-
less, it is by far the best-performing retrieval tool
for the ODQA task as shown in other QA works
(Kasai et al., 2023; Zhao et al., 2023).

9 Ethics Statement

We created our Complex TempReason (Complex-
TR) dataset from the Wikidata knowledge base.
Wikidata is open-source and under the Creative
Commons CC0 License3 and Wikipedia articles
are under the Creative Commons AttributionShare-
Alike 3.0 License4 (CC BY-SA). Therefore, these
data can be re-engineered to construct the Complex-
TR dataset. Besides, we also engaged college-
educated human annotators to verify our test data.
We offer the annotators competitive compensation
with more than 22 USD in hourly pay, which is

3https://www.wikidata.org/wiki/Wikidata:
Licensing

4https://en.wikipedia.org/wiki/Wikipedia:
Copyrights

significantly higher than the local minimum wage.
We also open-source our data and code under the
CC BY-SA license. Complex-TR is meant for aca-
demic research of LLMs’ temporal robustness and
reasoning capabilities. However, the retrieved con-
tent from Wikipedia and Google Custom Search
may contain inappropriate language. Besides, our
data augmentation method is based on fictional
entities generated by the free version of the Chat-
GPT5 model. Some of the fictional entities may
overlap with real entity names or people’s names
by coincidence. The generated entities are purely
used to improve the temporal reasoning and ro-
bustness of LLMs. The authors of this paper hold
neutral views toward the generated entities and the
contents retrieved from Google Custom Search.
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A Implementation Details

For the fine-tuning experiments, we used NVIDIA-
V100 GPUs. The experiments on T5-L were con-
ducted on 1 40GB-A100 GPU and experiments on
T5-B were conducted on 1 12GB-Titan X GPU.
For the FLAN-T5-XL experiments, inference was
conducted on 1 40GB-A100 GPU. For the T5-B
experiments, the number of training epochs for PIT
was 10 and for SFT 15. For T5-L experiments, the
number of training epochs was 10 for both PIT and
SFT. For the implementation of the FiD model, we

followed the GitHub repository of ATLAS6 (Izac-
ard et al., 2023). This is because this implementa-
tion is compatible with later transformer versions
and includes many memory-saving functions, such
as gradient checkpointing, which suits our com-
putation budget. We use the top 100 (k = 100)
paragraphs for the FiD experiments. The learning
rate was set to 1e-5 for all fine-tuning experiments.
For the questions with multiple answers, we join
all the answers by a special connector “and”. The
predicted string of the models is also split by this
connector. For the prompting experiments on GPT-
3.5 and GPT-4, we used the OpenAI API. The
estimated total cost for reproducing all our experi-
ments is 120 USD.

B Problem Settings

In this section, we elaborate on the two problem
settings in detail. In Table 8, we show an exam-
ple of a ReasonQA context. The example is about
the politician Layla Moran and all related temporal
knowledge of Layla Moran is provided as context.
In this scenario, a human is able to perform tem-
poral reasoning easily by searching for answers
based on the time constraints in the questions. This
capability should not be affected by the change
of time points. However, in Table 6, we see that
LLMs have large performance variations over the
years. The results on future years are generally
worse than average. However, constantly updating
LLMs with new data can be costly and susceptible
to catastrophic forgetting. Therefore, it is crucial to
adapt LLMs to unseen temporal expressions, e.g.,
future year tokens.

On the other hand, the context we used for the
ODQA setting is the Wikipedia article on the sub-
ject. In a more general open-domain QA setting,
models can leverage off-the-shelf retrieval modules
to extract more relevant contexts from all over the
web. However, the focus of our work is to study
the temporal reasoning capability and robustness of
LLMs on the temporal QA task. Hence, we leave
the open-domain QA setting for future research.

C Ablation Studies

C.1 Pseudo-Instruction Tuning

In Table 10, we show the ablation studies of pseudo-
instruction tuning (PIT-SFT models). We exam-
ine the two components of PIT in the ReasonQA

6https://github.com/facebookresearch/atlas
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ReasonQA Context Reason
Type

Example Question Answers

Layla Moran held the position of Member of the 57th Parliament
of the United Kingdom from June 2017 to November 2019.

L2 1-Hop Where was Layla Moran educated in
November 2005?

Brunel University

Layla Moran studied at UCL Institute of Education from Septem-
ber 2007 to September 2008.

L2 M-Hop Where was Layla Moran educated
from May 2003 to July 2006

Imperial College London,
Brunel University

Layla Moran held the position of Member of the 58th Parliament
of the United Kingdom from December 2019 to May 2023.

L2 M-Hop Where was Layla Moran educated 6
years and 2 months after May 2002?

UCL Institute of Educa-
tion

Layla Moran studied at Brunel University from September 2005
to March 2007.

L3 1-Hop Where was Layla Moran educated be-
fore she studied at Brunel University?

Imperial College London

Layla Moran studied at Imperial College London from Septem-
ber 2000 to August 2003.

L3 M-Hop Where was Layla Moran educated 4
years and 11 months after he/she stud-
ied at Imperial College London

UCL Institute of Educa-
tion

Table 8: An example of a ReasonQA context, where the subject is Layla Moran. All information in the ReasonQA
Context column is provided to the model along with the question. For the ODQA experiments in our paper, the
context will be changed to the Wikipedia article of the subject and the web-retrieved articles based on the question.

Single Hop Multi-hop Overall
Set Acc. Ans. F1 Set Acc. Ans. F1 Set Acc. Ans. F1

Baseline 46.9 47.8 29.0 37.5 36.8 42.1
Contriever 45.5 46.7 26.9 35.4 35.0 40.3
Contriever-MSMARCO 47.6 48.7 30.7 39.4 38.0 43.4
GTE 50.4 51.1 29.0 36.3 38.3 42.7
BGE 49.0 49.7 31.2 39.1 38.9 43.7

Table 9: Comparison of sentence embedding models for context refinement. The baseline model refers to the
FiD-PIT model with the T5-large encoder and simply takes the top 100 passages as context.

L2 1-Hop L2 M-Hop L3 1-Hop L3 M-Hop
Set Acc. Set Acc. Set Acc. Set Acc.

T5-B-PIT-SFT 87.0 71.9 90.5 69.1
-Resampling 85.1 69.7 88.7 66.7
-Fictional 83.9 68.6 87.9 65.5

T5-L-PIT-SFT 91.3 72.7 91.1 71.9
-Resampling 89.8 71.1 89.3 69.8
-Fictional 88.7 69.8 87.7 68.4

Table 10: Ablation studies of our T5-B-PIT-SFT
and T5-L-PIT-SFT models on the validation set of
Complex-TR in the ReasonQA setting.

setting. The first is temporal resampling, and the
second is the usage of fictional names. We created
two other pseudo-instruction training sets of the
same size and examined the final PIT-SFT perfor-
mance. From Table 10, we can see that removing
temporal resampling leads to 2.2 set accuracy drop
for L2 M-hop questions and 2.4 for L3 M-hop ques-
tions (for the T5-B model). This shows that for the
same amount of data, emphasizing the data of low-
frequency years leads to better performance. On the
other hand, if we use real-world data with shifted
temporal information, the performance drop is sig-
nificant. For the T5-B-PIT-SFT model, changing
the fictional names to real-world data can lead to
3.3 and 3.6 set accuracy drop for L2 and L3 multi-
hop questions. This performance drop could have

resulted from the lack of entity diversity from the
temporally-shifted data.

C.2 Comparison of Context Refinement
Models

Since the context length of our ODQA experiment
exceeds the limit of most LLMs, the context re-
finement process is highly important for the perfor-
mance of ODQA. In this section, we show the per-
formances of different sentence embedding mod-
els for the ODQA setting. We experimented with
several popular sentence embedding models for
information retrieval and leading open-source mod-
els on the Massive Text Embedding Benchmark
(MTEB, Muennighoff et al., 2023).

The models include: (1) Contriever (Izacard
et al., 2022) This model is a popular embedding
model trained on contrastive learning in an unsuper-
vised manner. (2) Contriever-MSMARCO (Izac-
ard et al., 2022) This model is the contriever model
further fine-tuned on the massive MS MARCO (Ba-
jaj et al., 2016) dataset, which drastically improved
the information retrieval performance of contriever.
(3) GTE The General Text Embedding model was
trained by multi-stage contrastive learning and
demonstrated strong performance in various sen-
tence embedding tasks, such as MNLI. (4) BGE
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(Xiao et al., 2023) This model is short for BAAI
General Embedding. It includes a family of sen-
tence embedding models. It demonstrates strong
performance on the MTEB leaderboard and we
used bge-base-en-v1.5 as our context refinement
model.

In Table 9, we show the ODQA experiments
of the FiD-PIT-Large model with different embed-
ding models as the re-rankers. Interestingly, we can
see that the embedding models affect single-hop
and multi-hop performance differently. Contriever-
MSMARCO and BGE show a more positive im-
pact on the multi-hop questions whereas GTE has
the best performance for single-hop temporal ques-
tions. In terms of overall performance, BGE is the
best among all the sentence embedding models.

Set Acc. Ans. F1 EM Tok. F1
T5-B-FiD† - - 10.3 19.7

T5-B 32.9 34.9 37.3 46.8
T5-B-PIT 34.2 36.4 39.0 48.4
T5-B-FiD 39.4 41.7 44.3 53.2
T5-B-FiD-PIT 41.1 43.3 46.0 54.7
T5-L-FiD 45.1 47.6 50.5 59.8
T5-L-FiD-PIT 47.3 49.8 52.7 61.0

Table 11: Experiments on fine-tuning on TimeQA-Hard.
We follow the default OBQA setting of their paper. Re-
sults with † are taken from Chen et al. (2021).

D TimeQA Experiments

In this section, we evaluate the PIT strategy on
prior temporal QA datasets. We used T5-B-PIT as
initialization, and then fine-tuned on the relevant
task datasets for the experiments in this section. In
Table 11, we show the experimental results of PIT
on TimeQA (Chen et al., 2021). We only conducted
experiments on the Hard subset since the temporal
reasoning involved in the Easy subset is too simple.
Fusion-in-Decoder (FiD) (Izacard and Grave, 2021)
was used as the baseline method for TimeQA. Our
re-implemented FiD baseline achieved significantly
higher results compared to the results of Chen et al.
(2021). We can see that PIT is able to improve the
performance of both conventional T5-SFT and the
more advanced FiD model. This result indicates
that the improved temporal reasoning capability
of PIT can be transferred to the downstream open-
book QA setting, and confirms the generalizability
of the PIT method.

Example 1
Error Cause: Misunderstanding of temporal overlap.
Question: Which employer did Hans Kramers work for in Septem-
ber 1931?
Context: Hans Kramers worked for:
Leiden University from January 1934 to January 1952.
Utrecht University from January 1926 to January 1934.
Delft University of Technology from January 1931 to January
1952.
......
GPT-4’s Prediction: Delft University of Technology and Leiden
University
Ground Truth: Delft University of Technology and Utrecht
University

Example 2
Error Cause: Misunderstanding of temporal containment.
Question: Which employer did Elon Musk work for 3 years and 6
months before he/she was living in Boca Chica (Texas)?
Context: Elon Musk worked for:
OpenAI from December 2015 to January 2019.
SpaceX from June 2002 to Oct 2023.
Neuralink from July 2016 to Oct 2023.
The Boring Company from December 2016 to Oct 2023.
Tesla Inc. from April 2004 to Oct 2023.
......
Elon Musk lived in:
Boca Chica (Texas) from June 2021 to Oct 2023.
......
GPT-4’s Prediction: The Boring Company and Neuralink
Ground Truth: The Boring Company and Neuralink and Ope-
nAI and Tesla Inc. and SpaceX.

Figure 2: Examples of GPT-4’s erroneous temporal
reasoning in the ReasonQA setting.

E Error Analysis

In this section, we aim to analyze some mistakes by
LLMs in temporal reasoning. We mainly investi-
gate the errors made by GPT-4, because this model
has demonstrated excellent performance on various
professional and academic benchmarks. We find
that GPT-4 still makes mistakes in temporal rea-
soning. In Figure 2, we can see that in Sept. 1931,
Hans Kramers was working for both Delft Univer-
sity of Technology and Utrecht University (January
1926 – January 1934). GPT-4 did a good job of
finding the answer Delft University of Technology,
but it failed to find the other answer Utrecht Uni-
versity and instead gave the wrong answer Leiden
University. This shows that in the multi-answer
scenario, GPT-4 can find a good answer but strug-
gles to find all answers. This can also be seen from
Table 7, where GPT-4 has a significantly higher
answer-F1 score and a much lower set accuracy
score for multi-answer questions.

For the second example in Figure 2, we need to
first find the starting time of Elon Musk living in
Boca Chica (June 2021) and perform time deduc-
tion with respect to that time point. The inferred
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Property Type Template

P54 member of sports team L2 M-hop Which team did subject play for from t1 to t2?

P39 position held L2 M-hop Which position did subject hold ∆t before t1

P108 employer L3 M-hop Which employer did subject work for ∆t after he/she studied
at object?

P102 member of political party L2 1-hop Which political party did subject belong to in t1?

P286 head coach L2 M-hop Who was the head coach of subject from t1 to t2?

P69 educated at L3 M-hop Where was subject educated when he/she was living in object?

P488 chairperson L2 M-hop Who was the chair of subject ∆t before t1?

P6 head of government L2 M-hop Who was the head of subject from t1 to t2?

P35 head of state L3 1-hop Who was the head of state of subject after object’s term of
head of state?

P127 owned by L3 M-hop Who was the owner of subject when object was the chair?

P26 spouse L3 M-hop Which team did subject play for when he/she was married to
object

P166 award received L3 M-hop Which award did subject receive when he/she was working for
object?

P937 work location L3 M-hop Where did subject work when he/she was married to object

P551 residence L2 1-Hop What was the residence of subject in t1

Table 12: Example templates for Wikidata properties for our Complex-TR dataset.

time of interest is December 2017. GPT-4 was only
able to determine that Elon Musk worked for the
Boring Company and Neurallink, perhaps because
these starting times are closer to December 2017.
On a longer time horizon, Musk has been working
for Tesla and SpaceX since the early 2000s, but
the model failed to include these companies in its
answers.

F Question Templates

In this section, we show examples of our templates
to create the Complex-TR dataset. We used 14
temporally related properties in the Wikidata KB.
An example template for each property is shown in
Table 12.

G Examples of Fictional Entities

In Table 13, we show some example fictional enti-
ties that we used to construct the pseudo-data for
PIT. We also show an actual group of fictional data
in Table 14.

H Annotation Interface

To enhance the accessibility and clarity of the hu-
man verification process, we hosted a user-friendly
interface on Heroku7. Our interface was built on a
popular open-source data annotation Github repos-
itory named doccano8 (Nakayama et al., 2018). A
screenshot of the annotation interface is given in
Figure 3.

7https://www.heroku.com
8https://github.com/doccano/doccano
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Types Number Examples

countries 100 Unatin, Lislands Ofnited, Dencuslandsand, Djisvalwan, New Saintco Moazer, Nuazbe

companies 240 BrightBoost, AzureAlly, VitalVisionary, LuminaryLogic, NightOwl, AquaAdventures

teams 152 Polar Bears, Ice Warriors, Ice Breakers, Polar Storm, Arctic Foxes, Blizzard, Snow Leopards

towns 126 Fluoriteville, Galenaville, Heliodorhill, Iolitetown, Jadebrook, Kyaniteville, Labradoritehill

people 3,000 Angelina Romito, Matthew Thompson, Clifford Jump, Barbara Martinez, Martin Dudley, Joseph Parker,
Harry Hatch, Richard Driskell, Catherine Scianna

schools 224 Yellowwood College, Azura University, Bluebell College, Cactus University, Daybreak College

awards 86 Masterful Memoirist Medal, Stellar Science Fiction Story Award

Table 13: Examples of fictional entities used for pseudo-instruction tuning (PIT). The fictional names are obtained
by conversation with the free version of ChatGPT.

ReasonQA Context Type Example Question Answers

Mary Bartlebaugh studied at Quartz College from May 1872 to
May 1874.

L3 M-hop Which employers did Mary Bartle-
baugh work for when he/she was study-
ing at Yam University?

Synergy Dynamics

Mary Bartlebaugh worked for Synergy Dynamics from May
1869 to May 1872.

L2 M-hop Which employer did work for Mary
Bartlebaugh from Oct 1888 to June
1897

Solaris Solutions

Mary Bartlebaugh studied at Yam University from May 1867 to
May 1871.

L3 M-hop Where was Mary Bartlebaugh edu-
cated when he/she was working for
Synergy Dynamics?

Yam University

Mary Bartlebaugh worked for Solaris Solutions from May 1887
to May 1899.

L2 1-hop Where was Mary Bartlebaugh edu-
cated at in June 1873?

Quartz College

Table 14: A pseudo-data example, where the subject is a fictional name, Mary Bartlebaugh.

Figure 3: Annotation interface for the human verification process. Annotators are only asked to give True or False
labels to the QA pairs and their contexts.
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