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Abstract

While large language models (LLMs) have
achieved state-of-the-art performance on a wide
range of medical question answering (QA)
tasks, they still face challenges with halluci-
nations and outdated knowledge. Retrieval-
augmented generation (RAG) is a promising so-
lution and has been widely adopted. However, a
RAG system can involve multiple flexible com-
ponents, and there is a lack of best practices
regarding the optimal RAG setting for various
medical purposes. To systematically evaluate
such systems, we propose the Medical Informa-
tion Retrieval-Augmented Generation Evalua-
tion (MIRAGE), a first-of-its-kind benchmark
including 7,663 questions from five medical
QA datasets. Using MIRAGE, we conducted
large-scale experiments with over 1.8 trillion
prompt tokens on 41 combinations of differ-
ent corpora, retrievers, and backbone LLMs
through the MEDRAG toolkit introduced in this
work. Overall, MEDRAG improves the accu-
racy of six different LLMs by up to 18% over
chain-of-thought prompting, elevating the per-
formance of GPT-3.5 and Mixtral to GPT-4-
level. Our results show that the combination of
various medical corpora and retrievers achieves
the best performance. In addition, we discov-
ered a log-linear scaling property and the “lost-
in-the-middle” effects in medical RAG. We be-
lieve our comprehensive evaluations can serve
as practical guidelines for implementing RAG
systems for medicine1.

1 Introduction

Large Language Models (LLMs) have revolution-
ized the way people seek information online, from
searching to directly asking chatbots for answers.
Although recent studies have shown their state-of-
the-art capabilities of question answering (QA) in

†Equal contribution.
§Co-correspondence.
1Project homepage: https://teddy-xionggz.github.

io/benchmark-medical-rag/

both general and medical domains (OpenAI et al.,
2023; Anil et al., 2023; Touvron et al., 2023b; Sing-
hal et al., 2023a; Nori et al., 2023a), LLMs often
generate plausible-sounding but factually incorrect
responses, commonly known as hallucination (Ji
et al., 2023). Also, the training corpora of LLMs
might not include the latest knowledge, such as
recent updates of clinical guidelines. These issues
can be especially dangerous in high-stakes domains
such as healthcare (Tian et al., 2024; Hersh, 2024),
and will affect the overall performance of LLMs
on domain-specific QA tasks.

By providing LLMs with relevant documents re-
trieved from up-to-date and trustworthy collections,
Retrieval-Augmented Generation (RAG) has the
potential to address the above challenges (Lewis
et al., 2020; Gao et al., 2023). RAG also improves
the transparency of LLMs by grounding their rea-
soning on the retrieved documents. As such, RAG
has already been quickly implemented in various
scientific and clinical QA systems (Lála et al., 2023;
Zakka et al., 2024). However, a complete RAG sys-
tem contains several flexible modules, such as doc-
ument collections (corpora), retrieval algorithms
(retrievers), and backbone LLMs, but the best prac-
tices for tuning these components are still unclear,
hindering their optimal adoption in medicine.

To systematically evaluate how different com-
ponents in RAG affect its performance, we first
compile an evaluation benchmark termed MI-
RAGE, representing Medical Information Retrieval-
Augmented Generation Evaluation. MIRAGE in-
cludes 7,663 questions from five commonly used
QA datasets in biomedicine. To evaluate RAG in
realistic medical settings, MIRAGE focuses on the
zero-shot ability in RAG systems where no demon-
strations are provided. We also employ a question-
only setting for the retrieval phase of RAG, as in
real-world cases where no options are given. For
a comprehensive comparison on MIRAGE, we pro-
vide MEDRAG, an easy-to-use toolkit that covers
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five corpora, four retrievers, and six LLMs includ-
ing both general and domain-specific models.

Based on the MIRAGE benchmark, we systemat-
ically evaluated different MEDRAG solutions and
studied the effects of each component on overall
performance from a multidimensional perspective.
For various LLMs, there is a 1% to 18% relative
performance increase using MEDRAG compared to
chain-of-thought prompting (Wei et al., 2022). No-
tably, with MEDRAG, GPT-3.5 and Mixtral (Jiang
et al., 2024) can achieve comparable performance
to GPT-4 (OpenAI et al., 2023) on MIRAGE. On the
corpus dimension, we found different tasks have a
preference over the retrieval corpus. While point-
of-care articles and textbooks are solely helpful for
examination questions, PubMed is a robust choice
for all MIRAGE tasks. Our results also show that a
combination of all corpora can be a more compre-
hensive choice. On the retriever dimension, BM25
(Robertson et al., 2009) and the domain-specific
MedCPT (Jin et al., 2023a) retriever display su-
perior performance on our MIRAGE benchmark.
The performance can be further enhanced by com-
bining multiple retrievers. Beyond the evaluation
results on MIRAGE, we found a log-linear scaling
relationship between model performance and the
number of retrieved snippets. We also observed a
“lost-in-the-middle” phenomenon (Liu et al., 2023)
between model performance and the position of
the ground-truth snippet. Finally, we provide sev-
eral practical recommendations based on the results
and analyses, which can guide the application and
future research of RAG in the biomedical domain.

In summary, our contributions are three-fold:

• We introduce the MIRAGE2, a first-of-its-kind
benchmark for systematically comparing dif-
ferent medical RAG systems.

• We provide MEDRAG3, a RAG toolkit for
medical QA that incorporates various domain-
specific corpora, retrievers, and LLMs.
MEDRAG significantly improves the perfor-
mance of LLMs on MIRAGE.

• We recommend a set of best practices for re-
search and deployments of medical RAG sys-
tems based on our comprehensive results and
analyses on MIRAGE with MEDRAG.

2https://github.com/Teddy-XiongGZ/MIRAGE
3https://github.com/Teddy-XiongGZ/MedRAG

2 Related Work

2.1 Retrieval-augmented Generation

Retrieval-Augmented Generation (RAG) was pro-
posed by Lewis et al. (2020) to enhance the gen-
eration performance on knowledge-intensive tasks
by integrating retrieved relevant information. RAG
not only mitigates the problem of hallucinations
as LLMs are grounded on given contexts, but can
also provide up-to-date knowledge that might not
be encoded by the LLMs. Many follow-up studies
have been carried out to improve over the vanilla
RAG (Borgeaud et al., 2022; Ram et al., 2023; Gao
et al., 2023; Jiang et al., 2023; Mialon et al., 2023).

In biomedicine, there have also been various ex-
plorations on how LLMs can improve literature
information-seeking and clinical decision-making
with RAG (Frisoni et al., 2022; Naik et al., 2022;
Jin et al., 2023b; Lála et al., 2023; Zakka et al.,
2024; Jeong et al., 2024; Wang et al., 2023b), but
their evaluations are not comprehensive. Neverthe-
less, current systematic evaluations in biomedicine
typically focus on the vanilla LLMs without RAG
(Chen et al., 2023a; Nori et al., 2023a). Our study
provides the first systematic evaluations of RAG
systems in medicine.

2.2 Biomedical Question Answering

Biomedical or medical question answering (QA)
is a widely studied task since various information
needs are expressed by natural language questions
in biomedicine (Zweigenbaum, 2003; Athenikos
and Han, 2010; Jin et al., 2022). While BERT-
based (Devlin et al., 2019) models used to be the
state-of-the-art methods of medical QA (Abacha
et al., 2019; Lee et al., 2020; Soni and Roberts,
2020; Gu et al., 2021; Yasunaga et al., 2022), they
are outperformed by LLMs with large margins
(Singhal et al., 2023b; Chen et al., 2023b; Nori
et al., 2023b). Due to their knowledge-intensive
nature, QA datasets are commonly used to evaluate
the biomedical capabilities of both general LLMs
(Nori et al., 2023a,b) and domain-specific LLMs
(Luo et al., 2022; Chen et al., 2023b; Wu et al.,
2023; Singhal et al., 2023a,b). Following these
studies, we also use medical QA datasets to test if a
RAG system can retrieve and leverage relevant con-
texts. Unlike prior efforts, our evaluation employs
both RAG and question-only retrieval settings, a
more realistic evaluation for medical QA.

6234

https://github.com/Teddy-XiongGZ/MIRAGE
https://github.com/Teddy-XiongGZ/MedRAG


3 The MIRAGE Benchmark

3.1 Evaluation Settings

The main objective of this work is to evaluate RAG
systems in a setting that reflects real-world medi-
cal information needs as much as possible while
being practically scalable. As such, our MIRAGE

benchmark adopts four key evaluation settings:

Zero-Shot Learning (ZSL). As real-world medi-
cal questions are often posed without similar exem-
plars available, in our benchmark, the RAG systems
should be evaluated in a zero-shot setting where
in-context few-shot learning is not permitted.

Multi-Choice Evaluation (MCE). Evaluating
medical QA systems using multi-choice questions
is a widely adopted method that can be practically
implemented for large-scale evaluation (Nori et al.,
2023a,b; Singhal et al., 2023a; Liévin et al., 2022;
Lála et al., 2023). To be consistent with existing
research, we also use a multi-choice setting in our
benchmark to compare different systems.

Retrieval-Augmented Generation (RAG). The
medical questions used in MIRAGE are knowledge-
intensive, which are difficult to answer without ex-
ternal knowledge. Moreover, due to the problem of
hallucination, letting LLMs be reasoning engines
instead of knowledge databases could be a better
practice in medicine (Truhn et al., 2023). Thus,
RAG is needed to collect external information for
accurate and reliable answer generation.

Question-Only Retrieval (QOR). To align with
real-world cases of medical QA, answer options
should not be provided as input during retrieval.
This is a more realistic setting for evaluating RAG
systems. While Liévin et al. (2022) and Lála et al.
(2023) evaluated LLMs with RAG on medical QA,
options were used for retrieval in their work, which
is not a realistic setting. To the best of our knowl-
edge, we are the first to propose and employ this
setting for medical QA evaluation.

Study ZSL MCE RAG QOR

Nori et al. (2023a) ✓ ✓
Singhal et al. (2023a) ✓ ✓
Liévin et al. (2022) ✓ ✓ ✓
Lála et al. (2023) ✓ ✓ ✓
MIRAGE (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison of related work for using the dif-
ferent evaluation settings adopted in MIRAGE.

Table 1 lists related work on the evaluation set-
tings. Only MIRAGE adopts all four considerations.

3.2 Component Datasets

PubMedQA*

BioASQ-Y/N

    MMLU-Med 

  MedQA-US 

MedMCQA 

Which of the following best
describes ... ?

Axonal transport is:

A / B / C / D

5 Datasets 7,663 Questions 2-4 Choices

A 72-year-old man comes to
the physicians ... ?

Is anorectal endosonography
valuable ... ?

Is medical hydrology the
same as Spa ...?

A / B / C / D

A / B / C / D

Yes / No /
Maybe

Yes / No

Figure 1: Composition of the MIRAGE benchmark.

As shown in Figure 1, MIRAGE contains five
commonly used datasets for medical QA for the
evaluation of RAG systems (Hendrycks et al., 2020;
Jin et al., 2021; Pal et al., 2022; Jin et al., 2019;
Tsatsaronis et al., 2015), including three medical
examination QA datasets (MMLU-Med, MedQA-
US, MedMCQA) and two biomedical research
QA datasets (PubMedQA*, BioASQ-Y/N). Specif-
ically, we only include multi-choice questions that
are related to biomedicine and exclude all ground-
truth supporting contexts for the questions. For ex-
ample, we remove the contexts of PubMedQA and
only use the questions, resulting in PubMedQA*.
More details are described in the appendix. Table
2 presents the statistics of the datasets in MIRAGE.

Dataset Size #O. Avg. L Source

MMLU-Med 1,089 4 63 Examination
MedQA-US 1,273 4 177 Examination
MedMCQA 4,183 4 26 Examination
PubMedQA* 500 3 24 Literature
BioASQ-Y/N 618 2 17 Literature

Table 2: Statistics of MIRAGE tasks. #O.: numbers of
options; Avg. L: average token counts in each question.

As the tasks in MIRAGE are all composed of
multi-choice questions, we evaluate a given RAG
system by testing its performance in predicting the
correct answer choices. For each specific task, we
compute the accuracy of model predictions as the
evaluation metric, as well as the standard deviation
for the proportion of correctly answered questions,
reflecting the error bound of the results. Across
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all five tasks in MIRAGE, an average score of the
accuracies will be measured to show how a given
system performs on medical QA in general.

4 The MEDRAG Toolkit

Retrievers Copora

LLMs
BM25

SPECTER

Contriever

MedCPT

PubMed

Textbooks

StatPearls

Wikipedia

GPT-4

Mixtral

GPT-3.5

Llama-2

MEDITRON

PMC-LLaMAQuestion Answer

Indexing

MedCorp

Retrieval
Generation

Figure 2: Component overview of the MEDRAG toolkit.

To comprehensively evaluate how different RAG
systems perform on our MIRAGE benchmark, we
propose MEDRAG, a toolkit with systematic imple-
mentations of RAG for medical QA. As shown in
Figure 2, MEDRAG consists of three major compo-
nents: Corpora, Retrievers, and LLMs, which are
briefly introduced in this section. More details of
each component can be found in the appendix.

Corpus #Doc. #Snippets Avg. L Domain

PubMed 23.9M 23.9M 296 Biomed.
StatPearls 9.3k 301.2k 119 Clinics
Textbooks 18 125.8k 182 Medicine
Wikipedia 6.5M 29.9M 162 General
MedCorp 30.4M 54.2M 221 Mixed

Table 3: Statistics of corpora in MEDRAG. #Doc.: num-
bers of raw documents; #Snippets: numbers of snippets
(chunks); Avg. L: average length of snippets.

For corpora used in MEDRAG, we collect raw
data from four different sources, including the com-
monly used PubMed4 for all biomedical abstracts,
StatPearls5 for clinical decision support, medical
Textbooks (Jin et al., 2021) for domain-specific
knowledge, and Wikipedia for general knowledge.
To the best of our knowledge, this is the first work
that evaluates new corpora like StatPearls. We also
provide a MedCorp corpus by combining all four
corpora, facilitating cross-source retrieval. Each
corpus is chunked into short snippets. Statistics of
used corpora are shown in Table 3.

4https://pubmed.ncbi.nlm.nih.gov/
5https://www.statpearls.com/

Retriever Type Size Metric Domain

BM25 Lexical – BM25 General
Contriever Semantic 110M IP General
SPECTER Semantic 110M L2 Scientific
MedCPT Semantic 109M IP Biomed.

Table 4: Statistics of Retrievers in MEDRAG, where IP
stands for inner product and L2 stands for L2 norm.

For the retrieval algorithms, while many gen-
eral and domain-specific retrievers have been pro-
posed (Remy et al., 2022; Ostendorff et al., 2022;
Karpukhin et al., 2020; Xiong et al., 2020), we only
select some representative ones in MEDRAG due
to limited resources, including a lexical retriever
(BM25, Robertson et al., 2009), a general-domain
semantic retriever (Contriever, Izacard et al., 2022),
a scientific-domain retriever (SPECTER, Cohan
et al., 2020), and a biomedical-domain retriever
(MedCPT, Jin et al., 2023a). Their statistics are
presented in Table 4. In our experiments, 32 snip-
pets are retrieved by default. Additionally, we uti-
lize Reciprocal Rank Fusion (RRF, Cormack et al.,
2009) to combine results from different retrievers,
including RRF-2 (fusion of BM25 and MedCPT),
and RRF-4 (fusion of all four retrievers).

LLM Size Context Open Domain

GPT-4 N/A 32,768 No General
GPT-3.5 N/A 16,384 No General
Mixtral 8×7B 32,768 Yes General
Llama-2 70B 4,096 Yes General
MEDITRON 70B 4,096 Yes Biomed.
PMC-LLaMA 13B 2,048 Yes Biomed.

Table 5: Statistics of LLMs used in MEDRAG. Context:
context length of the LLM; Open: Open-source.

Similarly, although various LLMs have emerged
in recent years (Singhal et al., 2023a,b; Taylor et al.,
2022; Luo et al., 2022; Yang et al., 2022), we select
several frequently used ones in MEDRAG, includ-
ing the commercial GPT-3.5 and GPT-4 (OpenAI
et al., 2023), the open-source Mixtral (Jiang et al.,
2024) and Llama-2 (Touvron et al., 2023b), and
the biomedical domain-specific MEDITRON (Chen
et al., 2023b) and PMC-LLaMA (Wu et al., 2023).
Statistics of the used LLMs are in Table 5. For
all LLMs, we concatenate and prepend retrieved
snippets to the input, and perform chain-of-thought
(CoT) prompting (Wei et al., 2022) in MEDRAG

to fully leverage the reasoning capability of the
models. Temperatures are set to 0 for deterministic
outputs. CoT without RAG is used as the baseline.
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LLM Method
MIRAGE Benchmark Dataset

Avg.MMLU-Med MedQA-US MedMCQA PubMedQA* BioASQ-Y/N

GPT-4
(-32k-0613)

CoT 89.44 ± 0.93 83.97 ± 1.03 69.88 ± 0.71 39.60 ± 2.19 84.30 ± 1.46 73.44
MEDRAG 87.24 ± 1.01 82.80 ± 1.06 66.65 ± 0.73 70.60 ± 2.04 92.56 ± 1.06 79.97

GPT-3.5
(-16k-0613)

CoT 72.91 ± 1.35 65.04 ± 1.34 55.25 ± 0.77 36.00 ± 2.15 74.27 ± 1.76 60.69
MEDRAG 75.48 ± 1.30 66.61 ± 1.32 58.04 ± 0.76 67.40 ± 2.10 90.29 ± 1.19 71.57

Mixtral
(8×7B)

CoT 74.01 ± 1.33 64.10 ± 1.34 56.28 ± 0.77 35.20 ± 2.14 77.51 ± 1.68 61.42
MEDRAG 75.85 ± 1.30 60.02 ± 1.37 56.42 ± 0.77 67.60 ± 2.09 87.54 ± 1.33 69.48

Llama-2
(70B)

CoT 57.39 ± 1.50 47.84 ± 1.40 42.60 ± 0.76 42.20 ± 2.21 61.17 ± 1.96 50.24
MEDRAG 54.55 ± 1.51 44.93 ± 1.39 43.08 ± 0.77 50.40 ± 2.24 73.95 ± 1.77 53.38

MEDITRON
(70B)

CoT 64.92 ± 1.45 51.69 ± 1.40 46.74 ± 0.77 53.40 ± 2.23 68.45 ± 1.87 57.04
MEDRAG 65.38 ± 1.44 49.57 ± 1.40 52.67 ± 0.77 56.40 ± 2.22 76.86 ± 1.70 60.18

PMC-LLaMA
(13B)

CoT 52.16 ± 1.51 44.38 ± 1.39 46.55 ± 0.77 55.80 ± 2.22 63.11 ± 1.94 52.40
MEDRAG 52.53 ± 1.51 42.58 ± 1.39 48.29 ± 0.77 56.00 ± 2.22 65.21 ± 1.92 52.92

Table 6: Benchmark results of different backbone LLMs on MIRAGE. All numbers are accuracy in percentages.

5 Results

We systematically evaluate MEDRAG on our MI-
RAGE benchmark, which provides us with a multi-
dimensional analysis of different components in
RAG for medicine6. Section 5.1 presents the results
for different LLMs, and Section 5.2 includes the
results of different corpora and retrievers. Based on
the results, we provide practical recommendations
for RAG implementations in Section 6.4.

5.1 Comparison of Backbone LLMs

We first benchmark various LLMs on MIRAGE

under both the CoT and the MEDRAG settings. For
different LLMs, we use the same MedCorp corpus
and the RRF-4 retriever and prepend 32 retrieved
snippets for RAG. Results are shown in Table 6.

Under the CoT setting, GPT-4 significantly out-
performs other competitors, with an average score
of 73.44% on MIRAGE. While the best average
score of other backbone LLMs can only achieve
about 61% (GPT-3.5 and Mixtral) in the CoT set-
ting, their performance can be significantly im-
proved to around 70% with MEDRAG, which is
comparable to GPT-4 (CoT). These results sug-
gest the great potential of RAG as a way to en-
hance the zero-shot capability of LLMs to answer
medical questions, which can be a more efficient
choice than performing larger-scale pre-training.
On all five tasks in MIRAGE, Mixtral shows an
accuracy of 61.42% on average in the CoT set-
ting, which slightly surpasses the performance of
GPT-3.5. However, Mixtral is still outperformed

6Leaderboard: https://teddy-xionggz.github.io/
MIRAGE/

by GPT-3.5 with MEDRAG by 3.0%, indicating
the advantage of GPT-3.5 in following MEDRAG

instructions.

Our results also demonstrate that domain-
specific LLMs can exhibit advantages in certain
cases. For example, in the CoT setting for Pub-
MedQA*, MEDITRON and PMC-LLaMA present
significantly higher accuracies than all other mod-
els, including GPT-4 (+34.8% & +40.9%). Addi-
tionally, MEDITRON shows a better performance
in both CoT (+13.5%) and MEDRAG (+12.7%)
than its base Llama-2 model. The comparison of
Llama-2 (MEDRAG) and MEDITRON (CoT) re-
flects the differences between RAG (+6.3%) and
supervised fine-tuning (SFT, +13.5%) in improving
the performance of LLMs on medical QA. While
SFT is better at fusing medical knowledge into
LLMs, RAG remains a more flexible and cost-
efficient way to improve medical QA. For ques-
tions in PubMedQA* and BioASQ-Y/N where
the closely related literature can be found from
PubMed, MEDRAG greatly improves the ability of
Llama-2 to answer medical questions (+19.4% &
+20.9%), leading to a comparable or even better per-
formance than MEDITRON (CoT). However, for ex-
amination questions in MIRAGE that are carefully
designed to differentiate between medical students,
MEDRAG does not always improve over SFT since
the helpful snippets might be difficult to retrieve.
The performance gap between these two types of
questions suggests that there is still much room for
improvement.
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Corpus Retriever
MIRAGE Benchmark Dataset

AverageMMLU-Med MedQA-US MedMCQA PubMedQA* BioASQ-Y/N

None None 72.91 ± 1.35 65.04 ± 1.34 55.25 ± 0.77 36.00 ± 2.15 74.27 ± 1.76 60.69

PubMed
(23.9M)

BM25 72.27 ± 1.36 63.71 ± 1.35 55.49 ± 0.77 66.20 ± 2.12 88.51 ± 1.28 69.23
Contriever 71.72 ± 1.36 63.94 ± 1.35 54.29 ± 0.77 65.60 ± 2.12 85.44 ± 1.42 68.20
SPECTER 73.19 ± 1.34 65.20 ± 1.34 53.12 ± 0.77 54.80 ± 2.23 75.73 ± 1.72 64.41
MedCPT 73.09 ± 1.34 66.69 ± 1.32 54.94 ± 0.77 66.40 ± 2.11 85.76 ± 1.41 69.38
RRF-2 75.57 ± 1.30 64.34 ± 1.34 55.34 ± 0.77 69.00 ± 2.07 87.06 ± 1.35 70.26
RRF-4 73.37 ± 1.34 64.73 ± 1.34 54.75 ± 0.77 67.20 ± 2.10 88.51 ± 1.28 69.71

StatPearls
(301.2k)

BM25 71.63 ± 1.37 65.67 ± 1.33 54.89 ± 0.77 27.60 ± 2.00 60.36 ± 1.97 56.03
Contriever 73.28 ± 1.34 67.48 ± 1.31 54.24 ± 0.77 28.80 ± 2.03 58.41 ± 1.98 56.44
SPECTER 73.74 ± 1.33 64.73 ± 1.34 52.83 ± 0.77 23.20 ± 1.89 57.77 ± 1.99 54.45
MedCPT 72.82 ± 1.35 64.89 ± 1.34 54.17 ± 0.77 27.60 ± 2.00 60.68 ± 1.96 56.03
RRF-2 72.64 ± 1.35 65.67 ± 1.33 54.63 ± 0.77 30.00 ± 2.05 61.17 ± 1.96 56.82
RRF-4 73.83 ± 1.33 65.12 ± 1.34 53.81 ± 0.77 30.60 ± 2.06 59.71 ± 1.97 56.61

Textbooks
(125.8k)

BM25 74.66 ± 1.32 66.54 ± 1.32 54.05 ± 0.77 30.20 ± 2.05 60.03 ± 1.97 57.10
Contriever 74.10 ± 1.33 67.16 ± 1.32 54.53 ± 0.77 26.60 ± 1.98 60.19 ± 1.97 56.52
SPECTER 72.82 ± 1.35 67.40 ± 1.31 53.29 ± 0.77 25.60 ± 1.95 55.50 ± 2.00 54.92
MedCPT 74.93 ± 1.31 66.22 ± 1.33 54.41 ± 0.77 29.20 ± 2.03 61.33 ± 1.96 57.22
RRF-2 76.68 ± 1.28 65.91 ± 1.33 54.79 ± 0.77 31.00 ± 2.07 59.39 ± 1.98 57.55
RRF-4 75.76 ± 1.30 66.06 ± 1.33 55.56 ± 0.77 30.40 ± 2.06 60.68 ± 1.96 57.69

Wikipedia
(29.9M)

BM25 73.37 ± 1.34 63.47 ± 1.35 54.10 ± 0.77 26.40 ± 1.97 71.36 ± 1.82 57.74
Contriever 74.10 ± 1.33 65.99 ± 1.33 54.03 ± 0.77 26.40 ± 1.97 69.90 ± 1.85 58.08
SPECTER 72.18 ± 1.36 63.63 ± 1.35 52.71 ± 0.77 22.20 ± 1.86 66.83 ± 1.89 55.51
MedCPT 71.99 ± 1.36 65.12 ± 1.34 55.15 ± 0.77 29.00 ± 2.03 73.46 ± 1.78 58.95
RRF-2 74.20 ± 1.33 64.57 ± 1.34 54.72 ± 0.77 31.00 ± 2.07 76.21 ± 1.71 60.14
RRF-4 73.19 ± 1.34 64.96 ± 1.34 54.53 ± 0.77 31.00 ± 2.07 72.01 ± 1.81 59.14

MedCorp
(65.3M)

BM25 73.65 ± 1.34 65.91 ± 1.33 56.78 ± 0.77 66.20 ± 2.12 87.70 ± 1.32 70.05
Contriever 75.48 ± 1.30 64.10 ± 1.34 56.11 ± 0.77 62.40 ± 2.17 84.95 ± 1.44 68.61
SPECTER 74.38 ± 1.32 65.44 ± 1.33 54.41 ± 0.77 55.80 ± 2.22 73.14 ± 1.78 64.63
MedCPT 74.75 ± 1.32 67.40 ± 1.31 55.85 ± 0.77 66.40 ± 2.11 85.92 ± 1.40 70.06
RRF-2 73.74 ± 1.33 67.24 ± 1.32 56.08 ± 0.77 67.80 ± 2.09 88.19 ± 1.30 70.61
RRF-4 75.48 ± 1.30 66.61 ± 1.32 58.04 ± 0.76 67.40 ± 2.10 90.29 ± 1.19 71.57

Table 7: Accuracy (%) of GPT-3.5 (MEDRAG) with different corpora and retrievers on MIRAGE. Red and green
denote performance decreases and increases compared to CoT (first row). The shade reflects the relative change.

5.2 Comparison of Corpora and Retrievers

We also compare how different corpora and retriev-
ers affect the MIRAGE performance with MEDRAG.
Based on the results in Table 6, we conduct the fol-
lowing experiments with GPT-3.5 as it benefits the
most from MEDRAG (+17.9%).

As shown in Table 7, the performance of one
RAG system is strongly related to the corpus it se-
lects. MEDRAG with Textbooks achieves the high-
est accuracy on MMLU-Med (76.68%) and the one
with StatPearls performs the best on MedQA-US
(67.48%). However, these two corpora provide
little assistance in answering questions from Pub-
MedQA* and BioASQ-Y/N, which almost solely
benefit from the PubMed corpus. This is expected
due to the design of these two datasets. Overall,
PubMed is the only corpus that provides improve-
ment for all MIRAGE tasks, probably due to its
large scale and domain-specificity. Therefore, se-

lecting a suitable corpus for the task should be the
first key step in RAG for medicine. While choos-
ing task-specific corpora may require expert knowl-
edge, we find MedCorp, a simple combination of
all corpora, that performs robustly across various
tasks, to be a satisfactory solution. As for the four
tasks mentioned above, MEDRAG can always find
useful snippets from the MedCorp corpus. Even
on MedMCQA, where MEDRAG does not benefit
from any single corpus, MedCorp still improves
almost all retrievers (-1.5% ∼ +5.0%).

The selection of retrievers is another flexibil-
ity in MEDRAG that affects overall performance,
which decides whether relevant information can be
found from corpora. Table 7 shows the variable
performance of different retrievers, which can be
explained by the data and strategy differences in
their training. For example, MedCPT is a biomedi-
cal retriever that has been trained on PubMed user
logs. Thus, compared with other retrievers, it has
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Figure 3: MEDRAG accuracy with different numbers of retrieved snippets. Red dotted lines denote CoT performance.

a better performance when PubMed is used as the
corpus in MEDRAG (+0.2% ∼ +7.7%). Similarly,
with Wikipedia as part of the training data, Con-
triever shows better performance than other retriev-
ers in tasks with the Wikipedia corpus, especially
on MMLU-Med and MedQA-US. Moreover, dur-
ing the training of SPECTER, the retriever is tuned
to regularize pairwise article distances rather than
query-to-article distances. As such, it has an infe-
rior average performance to other individual retriev-
ers (-7.8% ∼ -6.8%) on MedCorp as its training
setting mismatches the cases in medical QA.

Table 7 also shows that the fusion of retrieval
results with RRF effectively improves the perfor-
mance on MIRAGE. Using MedCorp, MEDRAG

with RRF-4 have a 1.4% to 10.7% increase in the
average performance compared to individual re-
trievers. However, the fusion of more retrievers
may not always lead to a better performance. For
example, on Wikipedia where SPECTER has a
poor performance across all tasks, RRF-2 shows
a better average performance than RRF-4 on MI-
RAGE (+1.7%). Specifically, for tasks like BioASQ-
Y/N where both Contriever and SPECTER perform
poorly, RRF-2 can significantly improve the perfor-
mance of MEDRAG, which is better than RRF-4
(+5.8%) and all other individual retrievers (+3.7%
∼ +14.0%). In contrast, on MedQA-US where
Contriever achieves the best score (65.99%), RRF-
2 underperforms RRF-4 (-0.6%). On the MedCorp
corpus where MEDRAG can benefit from all retriev-
ers, RRF-4 brings a larger improvement than RRF-
2, with a state-of-the-art average score of 71.57%
on our MIRAGE benchmark.

6 Discussions

6.1 Performance Scaling

We explore how the performance of MEDRAG

scales with the increase in the number of snippets
used for medical QA. To study the scaling proper-
ties, we use GPT-3.5 as the backbone LLM, RRF-4

as the retriever, and MedCorp as the corpus.
Figure 3 shows the scaling curves of MEDRAG

on each task in MIRAGE with different numbers
of snippets k ∈ {1, 2, 4, ..., 64}. On MMLU-Med,
MedQA-US, and MedMCQA, we see roughly log-
linear curves in the scaling plots for k ≤ 32. The
results show that when k is small (k ≤ 8 in this
case), MEDRAG cannot provide enough useful in-
formation, which even hinders the LLM from using
its inherent knowledge to derive the correct answer.
In general, the RAG performance improves as k in-
creases, indicating the existence of helpful knowl-
edge from the retrieved snippets. However, the
RAG performance can drop when k is too large
and the signal-noise-ratio begins to decrease.

Compared with the three examination tasks, Pub-
MedQA* and BioASQ-Y/N can be relatively eas-
ier for MEDRAG since the ground-truth supporting
information can be found in PubMed. Figure 3 re-
veals that MEDRAG can achieve high accuracy on
PubMedQA* with just k = 1, and its performance
drops with the increase of k as more irrelevant snip-
pets are entered, which corresponds to the fact that
79.6% ground-truth snippets are successfully iden-
tified as the top-1 related context by the retrieval
system. MEDRAG also shows a dramatic increase
in accuracy on BioASQ-Y/N when k = 1, whose
performance continues to grow as k gets larger.

6.2 Position of Ground-truth Snippet

Liu et al. (2023) found the RAG performance is
lowest when the relevant information is placed in
the middle, a phenomenon known as “lost-in-the-
middle”. In our MIRAGE benchmark, PubMedQA*
and BioASQ-Y/N are the tasks that have ground-
truth labels of the supporting snippets for each ques-
tion. Here we use PubMed as the corpus, and take
GPT-3.5 and RRF-4 as the LLM and retriever, re-
spectively. For each dataset, we group the positions
of ground-truth snippets into several bins, on which
we evaluate how accurate MEDRAG is in answer-
ing questions whose ground-truth snippets are in
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Figure 4: The relations between QA accuracy and the
position of the ground-truth snippet in the LLM context.

corresponding bins. For PubMedQA*, we only
show the results of the first 18 positions, since no
ground-truth snippets have been placed after it.

Figure 4 shows the changes in model accuracy
corresponding to different parts of context loca-
tions. From the figure, we can see a clear U-shaped
decreasing-then-increasing pattern in the accuracy
change concerning the position of ground-truth
snippets, which sheds light on the arrangement of
snippets for medical RAG in future research.

6.3 Proportion in the MedCorp Corpus
We also examine the proportion of different sources
in the retrieved snippets from MedCorp, and ex-
plore how this proportion changes across differ-
ent tasks. Figure 5 displays the proportions of
four different sources in MedCorp and the actu-
ally retrieved sources in the top 64 retrieved snip-
pets for each task in MIRAGE. It can be observed
from the figure that, in general, the proportion of
Wikipedia drops in the retrieved snippets for medi-
cal questions, which is expected as many snippets
in Wikipedia are not related to biomedicine.

Comparing the distributions for different tasks,
there is a task-specific preference pattern. Med-
ical examination tasks (MMLU-Med, MedQA-
US, and MedMCQA) tend to have a larger pro-
portion of retrieved snippets from Textbooks and
StatPearls. PubMedQA* and BioASQ-Y/N with
research-related questions have more relevant snip-
pets from PubMed. The Textbooks corpus has
a larger proportion in MedQA-US than in other
datasets, which can be explained the fact that this
corpus is composed of frequently used textbooks
for the US medical licensing examination.

6.4 Practical Recommendations
In this section, we discuss the practical indications
and recommendations based on our evaluation re-
sults of different MEDRAG settings on MIRAGE.

Figure 5: The overall corpus composition of MedCorp
and the actually retrieved proportion in different tasks.

Corpus selection. Results in Table 7 indicate that
PubMed and the MedCorp corpus are the only cor-
pora with which MEDRAG can outperform CoT
on all tasks in MIRAGE. As a large-scale cor-
pus, PubMed serves as a suitable document col-
lection for various kinds of medical questions. If
resources permit, the MedCorp corpus could be a
more comprehensive and reliable choice: Nearly
all MEDRAG settings using the MedCorp Corpus
show improved performance (green-coded cells)
compared to the CoT prompting baseline. In gen-
eral, single corpora other than PubMed are not
recommended for medical QA due to their limited
volumes of medical knowledge, but they can also
be beneficial in specific tasks such as question an-
swering for medical examinations.

Retriever selection. Among the four individual
retrievers used in MEDRAG, MedCPT is the most
reliable one which constantly outperforms other
candidates with a higher average score on MI-
RAGE. BM25 is a strong retriever as well, which is
also supported by other evaluations (Thakur et al.,
2021). The fusion of retrievers can provide robust
performance but must be utilized with caution for
the retrievers included. As for the PubMed corpus
recommended above, a RRF-2 retriever that com-
bines the results from BM25 and MedCPT can be
a good selection, since they perform better than
the other two with snippets from PubMed. For the
MedCorp corpus, both RRF-2 and RRF-4 can be
reliable choices, as the corpus can benefit all four
individual retrievers in MEDRAG.

LLM selection. Currently, GPT-4 is the best
model with about 80% accuracy on MIRAGE. How-
ever, it is much more expensive than other back-
bone LLMs. GPT-3.5 can be a more cost-efficient
choice than GPT-4, which shows great capabili-
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ties of following MEDRAG instructions. For high-
stakes scenarios such as medical diagnoses where
patient privacy should be a key concern, the best
open-source Mixtral model, which can be deployed
locally and run offline, could be a viable option.

7 Conclusion

To evaluate RAG systems in medicine, we intro-
duced the MIRAGE benchmark and the MEDRAG

toolkit. Based on our comprehensive evaluations,
we presented many novel observations and prac-
tical recommendations to guide the research and
real-world deployments of medical RAG systems.

Limitations

While our study provides systematic evaluations
and practical recommendations for medical RAG
systems, there are several limitations that need to
be acknowledged. First, there have been novel
developments in the architecture of RAG (e.g.,
active RAG, Jiang et al., 2023). However, we
mainly evaluate the vanilla RAG architecture where
the retrieved documents are directly prepended in
the LLM context because this is the most widely
implemented architecture. Evaluating new RAG
system designs remains an important direction to
explore. Second, while the coverage of corpora,
retrievers, and LLMs in MEDRAG is reasonably
comprehensive, there are other potentially use-
ful resources that can also be incorporated into
MEDRAG in future work, such as the full-text arti-
cles from PubMed Central (PMC)7 and Frequently
Asked Questions (FAQs) from trustworthy sources
(Ben Abacha and Demner-Fushman, 2019). Third,
we only evaluate the retrieval component for Pub-
MedQA* and BioASQ-Y/N since the other three
examination datasets lack labels of ground-truth
supporting documents. Further research should
also evaluate whether the retrieved snippets are
actually helpful for the examination datasets, and
explore the use of cross-encoder re-rankers to im-
prove the retrieval performance for relevant infor-
mation. Fourth, while QA is the most commonly
used task for evaluating biomedical LLMs, there
are also other knowledge-intensive tasks that might
benefit from MEDRAG, such as claim verification
(Wadden et al., 2020; Liu et al., 2024). Following
most other studies, we use the format of multi-
choice questions for large-scale and automatic eval-
uation of medical QA. Although we restrict the

7https://www.ncbi.nlm.nih.gov/pmc/

retrieval phase to having no access to the choices,
LLMs still need to use them as input for the final
prediction. The rationales generated by MEDRAG

remain to be evaluated as well. As the goal of this
study is to systematically benchmark the most com-
monly used medical RAG settings, we leave the
potential solutions of the above-mentioned limita-
tions to future work.

Acknowledgements

Guangzhi Xiong and Aidong Zhang are supported
by NIH grant 1R01LM014012 and NSF grant
2333740. Qiao Jin and Zhiyong Lu are supported
by the NIH Intramural Research Program, National
Library of Medicine.

References
Asma Ben Abacha, Chaitanya Shivade, and Dina

Demner-Fushman. 2019. Overview of the mediqa
2019 shared task on textual inference, question en-
tailment and question answering. In Proceedings of
the 18th BioNLP Workshop and Shared Task, pages
370–379.

Waleed Ammar, Dirk Groeneveld, Chandra Bhagavat-
ula, Iz Beltagy, Miles Crawford, Doug Downey, Ja-
son Dunkelberger, Ahmed Elgohary, Sergey Feld-
man, Vu Ha, et al. 2018. Construction of the liter-
ature graph in semantic scholar. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Industry
Papers), pages 84–91.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Sofia J Athenikos and Hyoil Han. 2010. Biomedical
question answering: A survey. Computer methods
and programs in biomedicine, 99(1):1–24.

Asma Ben Abacha and Dina Demner-Fushman. 2019. A
question-entailment approach to question answering.
BMC bioinformatics, 20(1):1–23.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Qingyu Chen, Jingcheng Du, Yan Hu, Vipina Kuttichi
Keloth, Xueqing Peng, Kalpana Raja, Rui Zhang,
Zhiyong Lu, and Hua Xu. 2023a. Large language

6241

https://www.ncbi.nlm.nih.gov/pmc/


models in biomedical natural language processing:
benchmarks, baselines, and recommendations. arXiv
preprint arXiv:2305.16326.

Zeming Chen, Alejandro Hernández Cano, Angelika
Romanou, Antoine Bonnet, Kyle Matoba, Francesco
Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf,
Amirkeivan Mohtashami, et al. 2023b. Meditron-
70b: Scaling medical pretraining for large language
models. arXiv preprint arXiv:2311.16079.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug
Downey, and Daniel S Weld. 2020. Specter:
Document-level representation learning using
citation-informed transformers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2270–2282.

Gordon V Cormack, Charles LA Clarke, and Stefan
Buettcher. 2009. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In
Proceedings of the 32nd international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 758–759.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexander R Fabbri, Wojciech Kryściński, Bryan Mc-
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Appendix

A Details of MIRAGE Datasets

The selection of datasets in a crucial step for con-
structing our MIRAGE benchmark. Our study re-
quires large-scale experiments to comprehensively
evaluate various RAG settings in medicine. While
open-ended questions, as compared to multi-choice
questions, offer a closer simulation of real-world
settings, their evaluation presents significant chal-
lenges. On the one hand, manual evaluation is often
considered the gold standard but is prohibitively
expensive. On the other hand, although automatic
metrics are scalable, they do not correlate well
with human judgments (Guan et al., 2021; Wang
et al., 2023a; Fabbri et al., 2021), further complicat-
ing the evaluation. As such, studies that evaluate
open-ended QA in medicine are typically limited
in scale, using only hundreds of questions (for ex-
ample, Singhal et al. (2023a); Zakka et al. (2024)).
In addition to the evaluation issue, another practi-
cal reason for not including such questions is the
lack of commonly used open-ended QA datasets
for LLM evaluation in medicine.

Therefore, we adopted a multiple-choice format
as it is suitable for scalable evaluation of medical
knowledge. This format allows us to assess the
medical knowledge of RAG systems directly in an
objective manner without introducing additional
information, which is commonly used to evaluate
the ability of LLMs to solve medical tasks (Sing-
hal et al., 2023a,b; Nori et al., 2023b,a; Liévin
et al., 2022). Despite focusing on multi-choice
questions, our methodology is designed to mirror
real-world applications as closely as possible. By
adopting question-only retrieval, we simulate sce-
narios where answer options are not available for
retrieval, thus requiring the system to rely solely on
its comprehension of the medical questions. More-
over, our use of a zero-shot learning setting further
ensures that our medical RAG system evaluation
reflects real-world constraints that no training or
demonstration data are provided for user queries.

Here are the descriptions of the five datasets used
in MIRAGE.

MMLU-Med. Massive Multitask Language Un-
derstanding (MMLU)8 is a benchmark for the eval-
uation of the multitask learning capability of lan-
guage models. The benchmark contains a variety
of 57 different tasks (Hendrycks et al., 2020). To

8https://github.com/hendrycks/test

measure the performance of medical RAG systems,
we select a subset of six tasks that are related to
biomedicine following (Singhal et al., 2023a), in-
cluding anatomy, clinical knowledge, professional
medicine, human genetics, college medicine, and
college biology. The subset is collectively denoted
as MMLU-Med. Only the test set of each task is
used in our benchmark, which contains 1089 ques-
tions in total.

MedQA-US. MedQA9 (Jin et al., 2021) is a
multi-choice QA dataset collected from profes-
sional medical board exams. Specifically, we focus
on the English part, which includes real-world ques-
tions from the US Medical Licensing Examination
(MedQA-US). The 1273 four-option test questions
are included in our MIRAGE benchmark.

MedMCQA. MedMCQA10 (Pal et al., 2022)
contains 194k multi-choice questions collected
from Indian medical entrance exams. The ques-
tions cover a wide range of 2.4k healthcare topics
and 21 medical subjects. Since the ground truth of
its test set is not provided, the dev set of the origi-
nal MedMCQA is chosen for MIRAGE, including
4183 medical questions.

PubMedQA*. PubMedQA11 (Jin et al., 2019) is
a biomedical research QA dataset. It has 1k manu-
ally annotated questions constructed from PubMed
abstracts. Different from the datasets above, Pub-
MedQA also provides a relevant context for each
question to evaluate the reasoning ability of lan-
guage models. To test the capability of RAG sys-
tems to find related documents and answer the
question accordingly, we build PubMedQA* by re-
moving given contexts in the 500 expert-annotated
test samples of PubMedQA following (Lála et al.,
2023). The possible answer to a PubMedQA* ques-
tion can be yes/no/maybe, reflecting the authentic-
ity of the question statement based on scientific lit-
erature. As the relevant knowledge of questions in
PubMedQA* can often be covered by a small num-
ber of PubMed articles, it simplifies the retrieval of
sufficient information and makes PubMedQA* a
less challenging dataset compared with other tasks,
However, PubMedQA* functions as a basic and
indispensable evaluation task to test if the given
RAG system works in relatively simple cases.

9https://github.com/jind11/MedQA
10https://medmcqa.github.io/
11https://pubmedqa.github.io/
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BioASQ-Y/N. BioASQ12 (Tsatsaronis et al.,
2015; Krithara et al., 2023) is an annual compe-
tition for biomedical QA, which includes both the
information retrieval track (Task A) and machine
reading comprehension track (Task B). To lever-
age the resources of BioASQ for our medical RAG
benchmark, we select the Yes/No questions in the
ground truth test set of Task B from the most recent
five years (2019-2023), including 618 questions
in total. In the original task, questions are con-
structed based on biomedical literature, and the
ground truth snippets are provided as a basis for
machine reading comprehension. Similar to Pub-
MedQA*, BioASQ-Y/N is also a modified version
on which RAG systems are supposed to answer
the questions without the ground-truth snippet pro-
vided.

B Detailed Descriptions of MEDRAG

B.1 Document Collections

PubMed. PubMed13 is the most widely used lit-
erature resource (Lu, 2011; Jin et al., 2024), con-
taining over 36 million biomedical articles. Many
relevant studies solely use PubMed as the retrieval
corpus (Frisoni et al., 2022; Naik et al., 2022). For
MEDRAG, we use a PubMed subset of 23.9 million
articles with valid titles and abstracts.

StatPearls. StatPearls14 is a point-of-the-care
clinical decision support tool similar to UpTo-
Date15. We use the 9,330 publicly available Stat-
Pearl articles through NCBI Bookshelf16 to con-
struct the StatPearls corpus. We chunked StatPearls
according to the hierarchical structure, treating
each paragraph in an article as a snippet and splic-
ing all the relevant hierarchical headings as the
corresponding title. To the best of our knowledge,
our work presents the first evaluation of StatPearls
in the biomedical NLP community.

Textbooks. Textbooks17 (Jin et al., 2021) is
a collection of 18 widely used medical text-
books, which are important references for stu-
dents taking the United States Medical Li-
censing Examination (USLME). In MEDRAG,
the textbooks are processed as chunks with

12http://bioasq.org/
13https://pubmed.ncbi.nlm.nih.gov/
14https://www.statpearls.com/
15https://www.uptodate.com/
16https://www.ncbi.nlm.nih.gov/books/NBK430685/
17https://github.com/jind11/MedQA

no more than 1000 characters. We used
the RecursiveCharacterTextSplitter from
LangChain18 to perform the chunking.

Wikipedia. As a large-scale open-source ency-
clopedia, Wikipedia is frequently used as a corpus
in information retrieval tasks (Thakur et al., 2021).
We select Wikipedia as one of the corpora to see
if the general domain database can be used to im-
prove the ability of medical QA. We downloaded
the processed Wikipedia data from HuggingFace19

and also chunked the text with LangChain.

B.2 Retrieval Systems

BM25. BM25 (Robertson et al., 2009) is a com-
monly used baseline retriever which use bag-of-
words and TF-IDF to perform lexical retrieval. In
MEDRAG, BM25 is implemented with Pyserini
(Lin et al., 2021)20 using the default hyperparame-
ters to index snippets from all corpora.

Contriever. Contriever21 (Izacard et al., 2022)
is a dense retriever pre-trained on Wikipedia and
CCNet (Wenzek et al., 2020) with contrastive learn-
ing. It is shown to be competitive with BM25 on
retrieval tasks in the general domain (Thakur et al.,
2021).

SPECTER. SPECTER22 (Cohan et al., 2020) is
a document-level scientific dense retriever which
was pre-trained on the Semantic Scholar corpus
(Ammar et al., 2018) to encode similar documents
with close embeddings.

MedCPT. MedCPT (Jin et al., 2023a) is a
biomedical embedding model that is contrastively
pre-trained by 255 million user clicks from
PubMed search logs (Fiorini et al., 2018). It
achieved state-of-the-art performance on several
biomedical IR tasks. We use the MedCPT Query
Encoder23 and Article Encoder24 to encode the
questions and corpus snippets, respectively.

RRF. Cormack et al. (2009) proposed to merge
results from different retrievers with Reciprocal
Rank Fusion (RRF), which effectively fuses the

18https://www.langchain.com/
19https://huggingface.co/datasets/wikipedia
20https://github.com/castorini/pyserini
21https://huggingface.co/facebook/contriever
22https://huggingface.co/allenai/specter
23https://huggingface.co/ncbi/

MedCPT-Query-Encoder
24https://huggingface.co/ncbi/

MedCPT-Article-Encoder
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information from different sources by selecting
shared predictions. In MEDRAG, we provide two
versions of RRF systems, RRF-2 and RRF-4. RRF-
2 is the fusion of results from BM25 and MedCPT,
which appear to be the optimal lexical and dense
retrievers in our experiments. RRF-4 is a more
comprehensive system which fuses the information
from all individual retrievers used.

B.3 Backbone LLMs

GPT-3.5 & GPT-4. GPT-3.5 and GPT-4 (Ope-
nAI et al., 2023) are two popular commercial
LLMs developed by OpenAI, which have already
shown great capabilities in answering medical ques-
tions (Nori et al., 2023b; Liévin et al., 2022). In
MEDRAG, we use the specific version of GPT-
3.5-turbo-16k-0613 and GPT-4-32k-0613 accessed
through Microsoft Azure OpenAI Services25.

Mixtral. In MEDRAG, we use Mixtral-7×8B26,
which is an open-source sparse mixture of expert
models. Compared with existing open-source mod-
els, Mixtral-7×8B can achieve both good task per-
formance and fast inference speed (Jiang et al.,
2024).

Llama-2. Llama-2 (Touvron et al., 2023b) is a
series of open-source models that are pre-trained
on large-scale data and fine-tuned with human in-
structions. In MEDRAG, we use Llama-2-70B27,
which is the largest model in the Llama-2 series.

MEDITRON. MEDITRON (Chen et al., 2023b) is
a series of biomedical LLMs that are built based on
Llama-2 and fine-tuned on open-source biomedical
literature. Its 70B28 version model is contained in
MEDRAG.

PMC-LLaMA. PMC-LLaMA (Wu et al., 2023)
is fine-tuned based on LLaMA (Touvron et al.,
2023a) using PubMed Central (PMC) papers. Its
largest version, PMC-LLaMA-13B29, is included
in MEDRAG.

C Prompt Templates

Here are the prompt templates used in our experi-
ments. Figures 6 and 7 show the template for all

25https://oai.azure.com/
26https://huggingface.co/mistralai/

Mixtral-8x7B-Instruct-v0.1
27https://huggingface.co/meta-llama/

Llama-2-70b-chat-hf
28https://huggingface.co/epfl-llm/meditron-70b
29https://huggingface.co/axiong/PMC_LLaMA_13B

LLMs except MEDITRON. Since the officially re-
leased checkpoint of MEDITRON30 is only the pre-
trained version without any instruction tuning, it
cannot follow the given system prompt well. There-
fore, we provide a pseudo one-shot demonstration
in the prompt for MEDITRON, where the demon-
stration does not contain any information of real
examples. The templates for MEDITRON are pro-
vided in Figures 8 and 9.

30https://huggingface.co/epfl-llm/meditron-70b
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Prompt template for medical QA with CoT

You are a helpful medical expert, and your task is to answer a multi-choice medical question. Please
first think step-by-step and then choose the answer from the provided options. Organize your output in
a json formatted as Dict{“step_by_step_thinking”: Str(explanation), “answer_choice”: Str{A/B/C/...}}.
Your responses will be used for research purposes only, so please have a definite answer.

Here is the question:
{{question}}

Here are the potential choices:
{{options}}

Please think step-by-step and generate your output in json:

Figure 6: Template used to generate prompts for medical QA with CoT.

Prompt template for medical QA with MEDRAG

You are a helpful medical expert, and your task is to answer a multi-choice medical question using
the relevant documents. Please first think step-by-step and then choose the answer from the provided
options. Organize your output in a json formatted as Dict{"step_by_step_thinking": Str(explanation),
"answer_choice": Str{A/B/C/...}}. Your responses will be used for research purposes only, so please
have a definite answer.

Here are the relevant documents:
{{context}}

Here is the question:
{{question}}

Here are the potential choices:
{{options}}

Please think step-by-step and generate your output in json:

Figure 7: Template used to generate prompts for medical QA with MEDRAG.
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Prompt template for medical QA with CoT on MEDITRON

You are a helpful medical expert, and your task is to answer a multi-choice medical question. Please
first think step-by-step and then choose the answer from the provided options. Organize your output in
a json formatted as Dict{“step_by_step_thinking”: Str(explanation), “answer_choice”: Str{A/B/C/...}}.
Your responses will be used for research purposes only, so please have a definite answer.

### User: Here is the question:
...

Here are the potential choices:
A. ...
B. ...
C. ...
D. ...
X. ...

Please think step-by-step and generate your output in json.

### Assistant:
{“step_by_step_thinking”: ..., “answer_choice”: “X”}

### User:
Here is the question:
{{question}}

Here are the potential choices:
{{options}}

Please think step-by-step and generate your output in json.

### Assistant:

Figure 8: Template used to generate prompts for medical QA with CoT on MEDITRON.
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Prompt template for medical QA with MEDRAG on MEDITRON

You are a helpful medical expert, and your task is to answer a multi-choice medical question using
the relevant documents. Please first think step-by-step and then choose the answer from the provided
options. Organize your output in a json formatted as Dict{"step_by_step_thinking": Str(explanation),
"answer_choice": Str{A/B/C/...}}. Your responses will be used for research purposes only, so please
have a definite answer.

Here are the relevant documents:
{{context}}

### User:
Here is the question:
...

Here are the potential choices:
A. ...
B. ...
C. ...
D. ...
X. ...

Please think step-by-step and generate your output in json.

### Assistant:
{“step_by_step_thinking”: ..., “answer_choice”: “X”}

### User:
Here is the question:
{{question}}

Here are the potential choices:
{{options}}

Please think step-by-step and generate your output in json.

### Assistant:

Figure 9: Template used to generate prompts for medical QA with MEDRAG on MEDITRON.
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