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Abstract
Recent advances in large language models
(LLMs) have promoted generative error correc-
tion (GER) for automatic speech recognition
(ASR), which aims to predict the ground-truth
transcription from the decoded N-best hypothe-
ses. Thanks to the strong language generation
ability of LLMs and rich information in the
N-best list, GER shows great effectiveness in
enhancing ASR results. However, it still suffers
from two limitations: 1) LLMs are unaware of
the source speech during GER, which may lead
to results that are grammatically correct but
violate the source speech content, 2) N-best hy-
potheses usually only vary in a few tokens, mak-
ing it redundant to send all of them for GER,
which could confuse LLM about which tokens
to focus on and thus lead to increased miscor-
rection. In this paper, we propose ClozeGER,
a new paradigm for ASR generative error cor-
rection. First, we introduce a multimodal LLM
(i.e., SpeechGPT) to receive source speech as
extra input to improve the fidelity of correc-
tion output. Then, we reformat GER as a cloze
test with logits calibration to remove the in-
put information redundancy and simplify GER
with clear instructions. Experiments show that
ClozeGER achieves a new breakthrough over
vanilla GER on 9 popular ASR datasets.

1 Introduction

Recent advances in large language models (LLMs)
have attracted a surge of research interest thanks
to their remarkable language generation and rea-
soning ability (OpenAI, 2022, 2023; Touvron et al.,
2023a,b), which achieve a wide range of success on
natural language processing (NLP) tasks (Brown
et al., 2020; Wei et al., 2022; Ouyang et al., 2022).
Powered by LLMs, latest work (Chen et al., 2023a)
proposes a generative error correction (Yang et al.,
2023) (GER) benchmark1 for automatic speech

*Corresponding author.
1https://github.com/Hypotheses-Paradise/Hypo2T
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Figure 1: Two limitations of generative error correc-
tion (Chen et al., 2023a). Left: violate source speech,
LLM removes the word “Think” in first two hypotheses
as it rarely appears at the beginning of a sentence and
followed by a subject according to grammar, but this
actually happens in the source speech. Right: informa-
tion redundancy in N-best hypotheses input, there is
only one difference between N-best candidates, making
it redundant to send all of them for GER, which confuses
LLM about which tokens to focus on for correction.

recognition (ASR), and they release a HyPoradise
dataset2 that contains over 332K pairs of decoded
N-best hypotheses and ground-truth transcription
in various ASR domains. It has shown great effec-
tiveness in learning the mapping from hypotheses
to transcription by parameter-efficient LLM fine-
tuning (Hu et al., 2021), which significantly en-
hances the ASR result and outperforms typical LM
rescoring methods (Mikolov et al., 2010).

However, GER paradigm is also observed to suf-
fer from two limitations. First, LLMs are unaware
of the source speech during GER process, which
could lead to results that do not match the source
speech content. For example, as shown in Fig. 1
(left), the source speech reads the word “Think” at

2https://huggingface.co/datasets/PeacefulData
/HP-v0
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the beginning and followed by “he”, which is cor-
rectly recognized by the 1-best hypothesis. Then
during the GER process, LLM removes the word
“Think”, as this structure of verb plus noun at the
beginning of a sentence is not rigorous according
to grammar. However, this is not expected as it
violates the source speech content. Second, we
observe that N-best hypotheses usually only vary
in a few tokens. For example, as shown in Fig. 1
(right), all the tokens in candidates are the same
except “enjoys”/“enjoy”/“joins”. In this case, it
would be information redundant to leverage all of
the hypotheses for predicting the ground-truth tran-
scription, which could confuse the LLMs about
which tokens to focus on for correction and thus
lead to sub-optimal GER performance.

Motivated by the above observations, we pro-
pose ClozeGER, a new paradigm for ASR gener-
ative error correction. First, we introduce a pop-
ular multimodal LLM, SpeechGPT (Zhang et al.,
2023a), to receive source speech as an extra input to
the GER paradigm. With the powerful cross-modal
ability of SpeechGPT, we can now constrain GER
to comply with the source speech while correcting
the errors in decoded hypotheses. Then, in order
to remove the input information redundancy, we
reformat it as a cloze test (i.e., a special multiple-
choice question) with logits calibration (Kumar,
2022; Wang et al., 2023), where the identical parts
across N-best hypotheses are set as the context and
the varying parts are set as blanks (each with sev-
eral options provided). With such clear instructions
for error correction, it would be easier for LLMs to
perform context reasoning and choose the right an-
swer for each blank rather than predicting the entire
sentence from redundant N-best inputs3. Finally,
we add a simple post-processing stage to correct the
errors in cloze context (i.e., identical parts across
N-best list) to further improve the correction result.

Our contributions are summarized as follows:

• We propose ClozeGER, a new paradigm based
on multimodal LLM for ASR generative error
correction, which receives both source speech
and the decoded N-best hypotheses as input
to predict the ground-truth transcription.

• We further reformat the generative error cor-
rection as a cloze test with logits calibration
to remove the information redundancy in N-

3Think if we humans are asked to do GER, which option
is easier and efficient, cloze or entire sentence prediction?

best hypotheses input and simplify the GER
paradigm with clear instructions.

• Experiment evidence shows that our proposed
ClozeGER achieves a new breakthrough over
vanilla GER on 9 popular ASR datasets.

2 Related Work

Large Language Models. There is recently a surge
of research interests in Transformer-based LLMs,
such as ChatGPT (OpenAI, 2022), GPT-4 (OpenAI,
2023) and LLaMA (Touvron et al., 2023a,b). Bene-
fiting from the huge model size and abundant train-
ing data, LLMs can well understand the linguistic
structures and semantic meanings behind textual
data, which shows remarkable performance on a
wide range of NLP tasks (Brown et al., 2020; Wei
et al., 2022; Ouyang et al., 2022). More recently,
researchers have started to explore the potential of
LLMs on multimodal tasks by incorporating other
modalities into LLMs (Liu et al., 2023; Li et al.,
2023; Chen et al., 2023b; Zhang et al., 2023b,c;
Gao et al., 2023; Fathullah et al., 2023). Among
them, SpeechGPT (Zhang et al., 2023a) is one of
the most popular multimodal LLMs that represent
speech and text using a unified tokenizer, which
enables us to add source speech into the original
N-best hypotheses input of the GER paradigm.
LM Rescoring and ASR Generative Error Cor-
rection. LM rescoring has been widely used in
ASR decoding to rerank the N-best hypotheses and
yield better 1-best recognition result (Arisoy et al.,
2015; Shin et al., 2019; Mikolov et al., 2010). Fur-
thermore, to make full use of all candidatures, re-
cent works employ the entire N-best list for error
correction (Leng et al., 2021; Ma et al., 2023). Pow-
ered by LLMs, latest work proposes a generative
error correction (GER) benchmark (Chen et al.,
2023a) to predict the ground-truth transcription
from ASR N-best hypotheses and achieves remark-
able performance. This work serves as an extension
of GER to resolve the existing limitations.
Cloze Test with LLMs. As a special format of
multiple-choice questions (MCQ), the cloze test
provides a context with some blanks, where each
blank is provided with several options for selec-
tion. Recently, cloze test and MCQ are widely
adopted in LLM-centric scenarios (Chiang et al.,
2023; Zheng et al., 2023b), as well as numerous
LM benchmarks including MMLU (Hendrycks
et al., 2020), AGIEval (Zhong et al., 2023), and C-
Eval (Huang et al., 2023). However, recent works
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Figure 2: Frameworks of (a) vanilla GER that employs N-best hypotheses to predict ground-truth transcription, (b)
GER with source speech as extra input to improve the fidelity of correction output, (c) our ClozeGER that reformats
GER as a cloze test with logits calibration, followed by a post-processing stage to further correct the cloze context.

observe that LLMs-based cloze test is vulnerable
to option position changes due to their inherent
“selection bias” (Kumar, 2022; Wang et al., 2023;
Pezeshkpour and Hruschka, 2023). In this work,
we reformat the GER paradigm as a cloze test for
simplification, as well as introduce a logits calibra-
tion method to remove the existing selection bias
and make LLM a robust cloze solver.

3 Methodology

In this section, we present our proposed ClozeGER
paradigm in detail. We first introduce the prelimi-
nary knowledge of GER in §3.1, and then we inves-
tigate to introduce source speech to GER paradigm
with multimodal LLM (§3.2). Finally, we present
the new task format of ClozeGER in §3.3.

3.1 Preliminary: Generative Error Correction

We follow the original generative error correction
benchmark (Chen et al., 2023a) as shown in Fig. 2
(a). Given an input speech X , the pre-trained ASR
model first transcribe it into N -best hypotheses
YN = {Y1, Y2, · · · , YN} by beam search decod-
ing. The goal of GER is to learn a hypotheses-to-
transcription (H2T) mapping MH2T that predicts
the transcription Y based on N -best list YN :

Y = MH2T(YN ), (1)

Given the ground-truth transcription Y ∗, we can
finetune the LLM to learn MH2T in an auto-
regressive manner, where the cross-entropy loss

LH2T is formulated as:

LH2T =

T∑

t=1

− logPθ(y
∗
t |y∗t−1, · · · , y∗1,YN ),

(2)
where y∗t is the t-th token of Y ∗, and θ denotes the
learnable parameters in LLM (i.e., LoRA).

3.2 GER with Source Speech
In order to prevent GER from violating the content
of source speech, we incorporate it as an extra input
into LLM to improve output fidelity as shown in
Fig. 2 (b). So that Eq.(1) should be rewritten as:

Y = MH2T(YN , X), (3)

where the N-best hypotheses and source speech are
concatenated using the following instructions:

"Below is a speech and its candidate transcrip-
tions from a speech recognition system. Please lis-
ten to the speech and revise the candidate transcrip-
tions to generate better final recognition results.
### Speech:{speech units}. ### Candidates:{N-
best hypotheses}. ### Response: "

To jointly process text and speech, we leverage
the popular multimodal LLM, SpeechGPT4 (Zhang
et al., 2023a), to replace the LLaMA in original
GER benchmark. Notably, SpeechGPT is devel-
oped by discretizing speech into 1,000 HuBERT
units and adding them to LLaMA-7b5 tokenizer,
and it then finetunes LLaMA-7b to learn cross-
modality mapping. With such multimodal ability,
we can enable GER to comply with source speech.

4https://huggingface.co/fnlp/SpeechGPT-7B-cm
5https://huggingface.co/yahma/llama-7b-hf
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3.3 ClozeGER

3.3.1 Cloze Format
Since N-best hypotheses usually only vary in a few
tokens, it would be information redundant to send
all of them for GER, which could confuse the LLM
about which tokens to focus on and thus lead to
increased miscorrection. To this end, we simplify
the GER paradigm as a cloze test as shown in Fig. 2
(c). Specifically, we set the identical parts across
N-best hypotheses as the context and the varying
parts as blanks, where each blank is provided with
several options. In addition, we also insert a null
token ‘<NULL>’ to align the N-best candidates.
We design an instruction-following cloze template:

"Below is a speech and its candidate transcrip-
tions from a speech recognition system. The candi-
dates are formatted as a cloze test, where the blanks
to fill are indicated by ‘[Blank1]’, ‘[Blank2]’, etc.
Each blank is provided with several options in-
dicated by ID letters ‘A’, ‘B’, ‘C’, etc., where

‘<NULL>’ denotes the null token. To generate
a better final recognition result, please listen to
the speech and write an answer choice for each
blank. ### Speech:{speech units}. ### Cloze
test: [Blank1] he [Blank2] need it. ### Options:
[Blank1]: A. Think; B. <NULL>. [Blank2]: A.
rarely; B. really; C. rally. ### Answer choices: "

With such clear instructions for error correction,
it would be easier for LLM to perform context rea-
soning and choose the right answer for each blank
than to predict the entire sentence from redundant
N-best inputs. In addition, the strong speech under-
standing ability of SpeechGPT enables ClozeGER
to refer to source speech to make better choices.

3.3.2 Logits Calibration with Prior Estimate
Despite the promising performance, most recent
works find that LLMs-based cloze test is vulnera-
ble to option position changes due to their inherent
“selection bias” (Kumar, 2022; Wang et al., 2023;
Pezeshkpour and Hruschka, 2023; He et al., 2023).
Similarly, in our experiments, we have observed
a strong “selection bias” towards option ‘A’, espe-
cially in the cases where ClozeGER makes mis-
takes. One reason is that most ground-truth options
are ‘A’ in the training data6 as the 1-best hypoth-
esis usually enjoys the best quality. As a result,
during inference when LLM find it hard to decide
the answer choice, it tends to select ‘A’ that can
at least guarantee no performance drop, i.e., op-

6Ablation study on debiased training is in Table 4.

tion ‘A’ comes from 1-best hypothesis (baseline).
Inspired by prior works on permutation-based de-
biasing (Wang et al., 2023; Zheng et al., 2023b,a),
we propose a logits calibration approach with prior
estimation to alleviate this bias during inference.

Formally, we denote the question context as c,
the n option IDs (e.g., A/B/C) for one blank as
d, and the default option contents (i.e., follow the
order of N-best hypotheses) as x. Take the second
blank in Fig. 2 (c) as an example, we have c =
“[Blank1] he [Blank2] need it”, d = [A, B, C], n =
3, x = [rarely, really, rally]. The concatenation of
default option IDs and contents is denoted as o.

Then, we use I to denote a permutation of
{1, 2, · · · , n}, and I to denote the set of all possi-
ble Is. For better formulation, we denote oI as the
concatenation of option IDs and I-permuted option
contents, and rI(i) denotes the position of ID i in
I . Take the above example to illustrate, assume
I = [2, 3, 1], then oI = {A: really, B : rally, C :
rarely} and rI(1) = 3, rI(2) = 1, rI(3) = 2. In
order to alleviate the selection bias of LLMs to-
wards the option IDs, we have to first formulate it
mathematically. One feasible solution (Wang et al.,
2023; Zheng et al., 2023b) is to enumerate all per-
mutations of the option contents and average their
output distributions for debiasing:

Preal(xi|c, o) =
1

|I|
∑

I∈I
Pllm(drI(i)|c, oI), (4)

where i ∈ {1, 2, · · · , n}, and Preal(xi|c, o) denotes
the debiased (i.e., real) probability of i-th option
content in x. After such enumeration of all possible
permutations of option contents, the “selection bias”
towards option IDs could be well resolved.

Furthermore, considering calculating full per-
mutations is prohibitively expensive (×n! costs),
we leverage the cyclic permutation as an alter-
native, i.e., I = {(i, i + 1, · · · , n, 1, 2, · · · , i −
1)}ni=1. Take the previous example, we have I =
{(1, 2, 3), (2, 3, 1), (3, 1, 2)}. It reduces the com-
putational cost from ×n! to ×n and guarantees one
pairing between each option ID and content. How-
ever, the inference cost of ×n is still much too high
especially in practical scenarios.

Inspired by recent work on MCQ debias-
ing (Zheng et al., 2023a), it is a promising idea
to disentangle the distribution bias of option IDs
from the original predictions from LLMs. The in-
sight behind is that the option ID itself is inherently
unrelated to the option contents, the option orders,
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and the context. Therefore, the LLM predicted
distribution over di can be disentangled as a prior
distribution of the option ID di and the debiased
(i.e., real) distribution of option content of di:

Pllm(di|c, o) ∝ Pprior(di|c)Preal(xi|c, o), (5)

where we omit I as only the default order of op-
tions needs to be considered during formal infer-
ence. The prior distribution Pprior(di|c) indicates
the LLM’s selection bias towards option ID di, and
the debiased distribution Preal(xi|c, o) indicates the
LLM’s real confidence of option content xi.

Inspired by recent work (Zheng et al., 2023a), we
calculate the averaged prior distribution P̂prior(di)
on validation set Dv to estimate Pprior(di|c). In par-
ticular, we perform cyclic permutation Ic for each
sample in Dv and send all of them for inference,
and then we average their output distributions to
obtain the prior distribution of option ID di:

P̂prior(di) =
1

|Dv|
∑

{c,o}∈Dv

Pprior(di|c),

Pprior(di|c) = sm

(
1

|I|
∑

I∈I
logPllm(di|c, oI)

)
,

(6)
where “sm” denotes softmax operation. With the
estimated prior distribution, we can perform logits
calibration during the inference stage:

P̂real(xi|c, o) ∝ Pllm(di|c, o)/P̂prior(di), (7)

In case of the small size of Dv, this logits calibra-
tion method would be efficient during inference.

3.3.3 Post-processing
After cloze test with logits calibration, many ASR
errors captured by the blanks (i.e., varying tokens
between N-best hypotheses) are corrected, but what
about those remaining in the question context? For
example, as shown in Fig. 2 (c), the ASR model
fails to recognize the word “needs”, where all N-
best hypotheses produce “need”. In this case, we
need a simple post-processing stage to further cor-
rect them, with the following instructions:

"Below is a speech and its candidate transcrip-
tion from a speech recognition system. Please lis-
ten to the speech and correct the candidate tran-
scription. ### Speech:{speech units}. ### Candi-
date:{cloze result}. ### Response: "

Similar to GER, here we also use SpeechGPT
with LoRA finetuning for post-processing. This
stage is necessary especially when ASR model does
not perform well on current speech domains.

4 Experiments

4.1 Setup

Dataset. We utilize the HyPoradise (HP) dataset
from the original GER benchmark (Chen et al.,
2023a) for our experiments, which contains over
332K hypotheses-transcription pairs collected from
multiple mainstream ASR corpora. Specifically,
each transcription is paired with 5-best hypothe-
ses transcribed from Whisper-Large model (Rad-
ford et al., 2023) with beam search decoding. In
this work, we select 9 popular ASR corpora from
HyPoradise to evaluate the proposed ClozeGER,
including WSJ (Paul and Baker, 1992), Common-
Voice (Ardila et al., 2019), TED-LIUM3 (Hernan-
dez et al., 2018), SwitchBoard (Godfrey et al.,
1992), LibriSpeech (Panayotov et al., 2015),
CHiME-4 (Vincent et al., 2016), LRS2 (Chung
et al., 2017), ATIS (Hemphill et al., 1990), and
CORAAL (Kendall and Farrington, 2021). Since
HyPoradise provides 5-best hypotheses for each
sample, we follow it to set 5 options for each cloze
blank. More statistical details are in Appendix A.

Models. As introduced before, we use SpeechGPT
as the LLM in our main experiments, and later on
we also try LLaMA-2-7b7 (Touvron et al., 2023b)
to verify the effectiveness of ClozeGER paradigm
in case of no source speech input. For efficient
LLM finetuning, we employ the popular low-rank
adapter (LoRA) tuning strategy (Hu et al., 2021),
where the rank r is set to 8 and the LoRA is added
in the query, key, value, and output layers in each
Transformer block (Vaswani et al., 2017). As a
result, the number of trainable parameters is only
8.39 M, accounting for only 0.12% of the LLM.

Training and Inference. During finetuning, we
employ Adam optimizer (Kingma and Ba, 2014)
with a learning rate set to 2e−4 and warmup steps
set to 100. The number of training epochs is set
to 5, the batch size is set to 256. The maximum
input sequence length is set to 1024. For inference,
we adopt top-k and top-p sampling strategies at
the same time, where k = 40 and p = 0.75. The
temperature is set to 0.1, and beam size is set to 4.

4.2 Main Results

Table 1 presents the WER results of ClozeGER
with SpeechGPT and LoRA tuning. First, we can
observe that vanilla GER achieves significant im-

7https://huggingface.co/meta-llama/Llama-2-7
b-hf
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Test Set Baseline
w/o Source Speech w/ Source Speech Oracle

GER (2023a) GER ClozeGER (ours) + Calibration + Post-processing onb ocp

WSJ 4.2 2.9−31.0% 2.7−35.7% 3.8−9.5% 3.3−21.4% 2.4−42.9% 2.7 1.0
CommonVoice 14.4 11.4−20.8% 10.1−29.9% 13.7−4.9% 12.4−13.9% 8.5−41.0% 10.5 7.5
TED-LIUM3 6.8 5.8−14.7% 5.4−20.6% 6.1−10.3% 5.1−25.0% 4.8−29.4% 4.4 1.6
SwitchBoard 16.4 14.8−9.8% 14.3−12.8% 15.8−3.7% 15.0−8.5% 13.3−18.9% 13.3 4.6
LibriSpeech 2.7 2.7−0.0% 2.6−3.7% 2.7−0.0% 2.5−7.4% 2.5−7.4% 1.9 1.1
CHiME-4 9.4 7.4−21.3% 7.9−16.0% 8.7−7.4% 7.6−19.1% 7.1−24.5% 5.9 2.7
LRS2 12.3 10.7−13.0% 9.5−22.8% 10.7−13.0% 9.3−24.3% 7.6−38.2% 7.5 2.8
ATIS 7.3 2.9−60.3% 2.4−67.1% 7.1−2.7% 6.5−11.0% 2.1−71.2% 4.1 1.0
CORAAL 29.2 27.9−4.5% 27.6−5.5% 29.1−0.3% 28.1−3.8% 26.7−8.6% 27.9 10.9

Table 1: WER (%) results of ClozeGER with SpeechGPT and LoRA. “+ Calibration” denotes adding logits
calibration on ClozeGER to remove the selection bias, and “+ Post-processing” denotes further adding the post-
processing stage to correct the context. onb denotes the N-best oracle that refers to word error rate (WER) of the
“best candidate” in the N-best list, and ocp denotes the compositional oracle that is the best achievable WER using
all the tokens in N-best hypotheses. They indicate the upper-bounds of LM rescoring and GER (with occurred
tokens), respectively. The subscript percentage denotes the relative WER reduction over ASR baseline.

Test Set Baseline
w/o Source Speech Oracle

GER (2023a) ClozeGER (ours) + Calibration + Post-processing onb ocp

WSJ 4.2 2.8−33.3% 3.7−11.9% 3.3−21.4% 2.5−40.5% 2.7 1.0
CommonVoice 14.4 10.8−25.0% 13.1−9.0% 12.4−13.9% 8.6−40.3% 10.5 7.5
TED-LIUM3 6.8 5.3−22.1% 6.0−11.8% 5.0−26.5% 4.7−30.9% 4.4 1.6
SwitchBoard 16.4 14.6−11.0% 15.6−4.9% 14.5−11.6% 12.9−21.3% 13.3 4.6
LibriSpeech 2.7 2.7−0.0% 2.6−3.7% 2.4−11.1% 2.4−11.1% 1.9 1.1
CHiME-4 9.4 7.3−22.3% 7.9−16.0% 7.2−23.4% 7.0−25.5% 5.9 2.7
LRS2 12.3 10.5−14.6% 10.5−14.6% 9.0−26.8% 7.4−39.8% 7.5 2.8
ATIS 7.3 2.4−67.1% 6.3−13.7% 5.8−20.5% 2.1−71.2% 4.1 1.0
CORAAL 29.2 27.4−6.2% 29.1−0.3% 27.9−4.5% 26.8−8.2% 27.9 10.9

Table 2: WER (%) results of ClozeGER with LLaMA-2-7b and LoRA. This study investigates the performance of
our ClozeGER in case of no source speech input. onb and ocp follow the same definitions as those in Table 1.

provements over Whisper ASR baseline, and in-
troducing source speech as extra input further en-
hances the performance. In comparison, our pro-
posed ClozeGER also improves the baseline but
underperforms the GER approach. There are two
reasons, the cloze test suffers from selection bias
and cannot yield satisfactory results, and on the
other hand, there are many errors exist in the cloze
context due to imperfect N-best list quality (i.e.,
Whisper is a general ASR model and may not per-
form well in every specific domain). To this end,
we first propose a logits calibration approach to
alleviate the selection bias, which results in con-
siderable WER reductions. Furthermore, we add a
post-processing stage to correct the errors in cloze
context, which moves one step forward and outper-
forms the GER approach with source speech input,
where some results even surpass the N-best oracle.

Table 2 reports the WER results of ClozeGER
using LLaMA-2 as a backbone in case of no source
speech as input, where we observe similar gains of
performance of the proposed ClozeGER over GER
baseline. It demonstrates the general effectiveness

of ClozeGER paradigm, as well as the proposed
logits calibration and post-processing techniques.

4.3 Ablation Study and Analysis

Why we need logits calibration?
We note that ClozeGER only produces limited im-
provement and even underperforms the GER base-
line, where one key reason is the “selection bias”
towards option IDs. Take the WSJ dataset as an
example, we visualize the distribution of predicted
option IDs in Fig. 3, where over 80% of predic-
tions fall on option ‘A’. This phenomenon can be
explained by the imbalanced training label distri-
bution8 and its resulted “selection bias” as shown
in Table 3. As a result, the proposed ClozeGER
yields poor predicting accuracy on options ‘B’ to
‘E’, which limits its final WER performance.

How does logits calibration work?
To alleviate this limitation, we propose to estimate
a prior distribution to represent the selection bias

8Because top-1 hypothesis enjoys the best quality and is
most likely to be the ground-truth choice.
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Label Dist. / Prior (%) A B C D E

WSJ 75.51 / 95.68 10.27 / 2.92 6.84 / 0.63 4.16 / 0.42 3.22 / 0.35
CommonVoice 80.32 / 95.94 8.33 / 2.54 5.47 / 0.59 3.34 / 0.57 2.54 / 0.36
TED-LIUM3 75.22 / 98.13 10.34 / 1.63 6.89 / 0.17 4.30 / 0.03 3.25 / 0.04
SwitchBoard 77.93 / 96.70 9.18 / 2.78 6.07 / 0.30 3.85 / 0.09 2.98 / 0.13
LibriSpeech 73.80 / 98.08 11.51 / 1.50 7.63 / 0.28 4.01 / 0.08 3.05 / 0.06
CHiME-4 77.56 / 84.17 8.83 / 9.13 6.89 / 4.54 3.98 / 1.33 2.73 / 0.83
LRS2 77.21 / 95.85 9.81 / 3.63 6.58 / 0.31 3.54 / 0.15 2.86 / 0.07
ATIS 78.43 / 82.78 10.08 / 8.67 5.63 / 4.27 3.08 / 2.28 2.78 / 2.00
CORAAL 77.58 / 83.08 8.85 / 7.86 6.21 / 3.78 3.95 / 2.73 3.40 / 2.54

Table 3: Training label distribution (%) and the estimated prior distribution (%) over 5 option IDs (i.e., ‘A’, ‘B’, ‘C’,
‘D’, and ‘E’) of different datasets. The training label distribution refers to the proportions of each option ID in the
labels of cloze training data, and the estimated prior distribution is illustrated in Eq.(6) as P̂prior(di).

Figure 3: Distribution and cloze accuracy of five options
with logits calibration on WSJ dataset. “Dist.” denotes
the distribution of five options in the predictions, “Acc.”
denotes the predicting accuracy of each ground-truth
option, and “w/ Calib.” denotes with logits calibration.

and then remove it from the output logits during in-
ference stage to conduct calibration. As illustrated
by the orange bars and yellow lines in Fig. 3, our
proposed calibration approach mitigates the imbal-
ance of predicted options and effectively improves
their cloze accuracy. As a result, the overall cloze
accuracy is significantly improved on various ASR
datasets in Table 4, which thus produces better
WER performance in the final. More visualization
on other datasets is in the Appendix Fig. 5.

Why not do calibration during training stage?
One may raise concerns about why we conduct
the calibration during inference instead of training
stage, where simply shuffling the options seems
able to mitigate the selection bias. To this end,
we present an ablation study in Table 5 to explore
calibration in different stages, where we observe
that shuffled training can indeed achieve some im-
provement over ClozeGER but still lag behind the
proposed logits calibration approach. When further

Test Set
ClozeGER ClozeGER w/ Calib.

Acc (%) WER (%) Acc (%) WER(%)

WSJ 84.7 3.8 92.6 3.3
CommonVoice 82.6 13.7 91.5 12.4
TED-LIUM3 76.0 6.1 91.3 5.1
SwitchBoard 78.7 15.8 86.8 15.0
LibriSpeech 80.3 2.7 95.3 2.5
CHiME-4 74.4 8.7 87.5 7.6
LRS2 83.9 10.7 91.7 9.3
ATIS 78.9 7.1 84.5 6.5
CORAAL 78.9 29.1 87.3 28.1

Table 4: Effect of the logits calibration approach in
proposed ClozeGER framework, in terms of the cloze
test accuracy and final WER performance.

adding the post-processing stage, our calibration
also produces better performance, indicating that it
is more beneficial to remove selection bias during
the inference stage rather than training stage.

This observation may suggest that within our
specific framework, the model’s acquisition of se-
lection bias during training is somehow advanta-
geous, as the strategy of arbitrarily selecting ‘A’
would at worst regress to the baseline (top-1 hy-
pothesis) without deterioration. As a result, the
task difficulty of ClozeGER is naturally reduced,
because it can rely on the heuristic of selecting ‘A’
when feeling uncertain and hard to make the choice.
Thereafter, the logits calibration during inference
removes such bias by diversifying some of the ‘A’
choices to other options to improve the accuracy.

Why we need post-processing?
Table 6 further investigates the role of the post-
processing stage in ClozeGER paradigm. We ob-
serve that such post-processing is necessary to fur-
ther correct the errors in cloze context, which re-
sults in promising gains of performance. On the
other hand, this phenomenon also reflects the sub-
optimal quality of N-best hypotheses, according to
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Test Set Baseline GER ClozeGER
Train stage Infer stage Oracle

+ Shuf. + Post. + Calib. + Post. onb ocp

WSJ 4.2 2.7 3.8 3.5 2.7 3.3 2.4−42.9% 2.7 1.0
CommonVoice 14.4 10.1 13.7 12.9 9.2 12.4 8.5−41.0% 10.5 7.5
TED-LIUM3 6.8 5.4 6.1 5.7 5.1 5.1 4.8−29.4% 4.4 1.6
SwitchBoard 16.4 14.3 15.8 15.3 13.8 15.0 13.3−18.9% 13.3 4.6
LibriSpeech 2.7 2.6 2.7 2.6 2.5 2.5 2.5−7.4% 1.9 1.1
CHiME-4 9.4 7.9 8.7 8.0 7.3 7.6 7.1−24.5% 5.9 2.7
LRS2 12.3 9.5 10.7 9.8 7.9 9.3 7.6−38.2% 7.5 2.8
ATIS 7.3 2.4 7.1 6.9 2.4 6.5 2.1−71.2% 4.1 1.0
CORAAL 29.2 27.6 29.1 28.4 27.2 28.1 26.7−8.6% 27.9 10.9

Table 5: Effect of calibration during different stages, i.e., training and inference. “+ Shuf.” denotes shuffling the
option contents during training stage (keep the order of option IDs as “A, B, C, D, E”), “+ Calib.” denotes using
logits calibration during inference stage, “+ Post.” denotes adding pre-processing on top of shuffling or calibration.

Test Set Baseline
GER ClozeGER w/ Calib. Oracle

Original + Post-processing Original + Post-processing onb ocp

WSJ 4.2 2.7−35.7% 2.6−38.1% 3.3−21.4% 2.4−42.9% 2.7 1.0
CommonVoice 14.4 10.1−29.9% 9.6−33.3% 12.4−13.9% 8.5−41.0% 10.5 7.5
TED-LIUM3 6.8 5.4−20.6% 5.2−23.5% 5.1−25.0% 4.8−29.4% 4.4 1.6
SwitchBoard 16.4 14.3−12.8% 14.0−14.6% 15.0−8.5% 13.3−18.9% 13.3 4.6
LibriSpeech 2.7 2.6−3.7% 2.6−3.7% 2.5−7.4% 2.5−7.4% 1.9 1.1
CHiME-4 9.4 7.9−16.0% 7.8−17.0% 7.6−19.1% 7.1−24.5% 5.9 2.7
LRS2 12.3 9.5−22.8% 9.0−26.8% 9.3−24.3% 7.6−38.2% 7.5 2.8
ATIS 7.3 2.4−67.1% 2.3−68.5% 6.5−11.0% 2.1−71.2% 4.1 1.0
CORAAL 29.2 27.6−5.5% 27.3−6.5% 28.1−3.8% 26.7−8.6% 27.9 10.9

Table 6: Effect of the post-processing stage on GER and our proposed ClozeGER frameworks (with SpeechGPT as
LLM). “Calib.” denotes the logits calibration approach. onb and ocp follow the same definitions as those in Table 1.

the errors in cloze context (see Fig. 2 (c)), as Whis-
per is a general ASR model that may not generalize
well to some specific domains like accents.

The role of ClozeGER and post-processing.
One may raise concerns on whether the effec-
tiveness of our approach is all attributed to post-
processing. To this end, we add it onto the GER
baseline, which also shows some improvement
but still underperforms our ClozeGER, indicating
that our proposed ClozeGER paradigm and log-
its calibration raises the upper-bound performance
of GER by correcting errors in a targeted manner.
Based on that, the post-processing aims to further
correct the errors in cloze context that cannot be
resolved by the cloze-test paradigm.

Case study.
We illustrate a case study in Fig. 2 to interpret the
motivation of our approach. First, we introduce
source speech as extra input to improve output fi-
delity, i.e., avoid removing the word “Think”. Sec-
ond, we reformat GER as a cloze test to reduce the

task difficulty with clear instructions, i.e., explicitly
prompt the LLM to select a word from [“rarely”,
“really”, “rally”], which results in an effective cor-
rection. Finally, we note that there still exist some
errors in the cloze context, e.g., “need”, which can-
not be corrected by the cloze-test paradigm. To this
end, we design a post-processing stage to further
remove them and improve the final output.

5 Conclusion

In this paper, we propose ClozeGER, a new
paradigm for ASR generative error correction.
First, we introduce a multimodal LLM (i.e.,
SpeechGPT) to receive source speech as extra input
to improve the fidelity of correction output. Then,
we reformat GER as a cloze test with logits calibra-
tion to remove the input information redundancy
and simplify GER with clear instructions. Experi-
mental evidence shows that ClozeGER achieves a
new breakthrough over vanilla GER on 9 popular
ASR datasets. Further analysis verifies the effec-
tiveness of different modules in our framework.

673



Limitations

This work introduces an extra input of source
speech to improve the output fidelity, which
achieves some improvements but is somewhat lim-
ited since we only employ a new prompt for LLMs
to exploit the source speech. In future, we may
investigate more advanced multimodal prompting
techniques for it and also combine them with our
proposed cloze-test paradigm for further improve-
ments. In addition, we believe it should also be
beneficial to further investigate the reasons for the
sub-optimal performance of cloze-test paradigm, as
well as integrate the calibration and post-processing
stages as an end-to-end pipeline in future work.
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A HyPoradise Dataset Details

A.1 Hypotheses Generation
We employ the HyPoradise (HP) dataset9 from orig-
inal GER benchmark (Chen et al., 2023a), which
contains over 332K pairs of N-best hypotheses and
ground-truth transcription. The hypotheses are gen-
erated using Whisper-Large (Radford et al., 2023)

9https://huggingface.co/datasets/PeacefulData
/HP-v0

beam search decoding, where the beam size is set
to 50. After removing repetitive utterances, the
top-5 hypotheses with the highest probabilities are
selected as the final N-best list. The HyPoradise
dataset is built by carrying out this decoding strat-
egy on multiple popular ASR datasets as introduced
in §A.2. As a result, the detailed statistics of HyPo-
radise dataset is illustrated in Table 7.

A.2 ASR Corpora Selection
For ASR corpora selection, we follow original
benchmark (Chen et al., 2023a) to cover common
ASR scenarios, e.g., noise and accents. Conse-
quently, the following corpora with evident domain
characteristics are collected to build the HP dataset.
WSJ (Paul and Baker, 1992): The Wall Street Jour-
nal (WSJ) is a widely-used benchmark for speech
recognition. It includes read speech from speak-
ers in a controlled environment, with a focus on
business news and financial data. The train-si284
split (37,514 samples) is utilized to generate HP
training set. The dev93 (503 samples) and eval92
(333 samples) splits are combined to build test set.
CommonVoice (Ardila et al., 2019): Common-
Voice 5.1 is a publicly available dataset for auto-
matic speech recognition. It contains speech record-
ings from diverse speakers in over 60 languages. To
generate HP dataset, they randomly select 51,758
samples from its train-en split with various accent
labels, including African, Australian, Indian, and
Singaporean. Then, it is separated into two parts to
build training (with 49,758 samples) and test (with
2,000 samples) sets respectively.
TED-LIUM3 (Hernandez et al., 2018): TED-
LIUM3 is a speech dataset recorded from TED
talks. It contains a diverse range of background
noise, speaker accents, and speech topics. Consid-
ering its large size, they randomly select 50,000
samples from its train split for HP dataset genera-
tion, which is then separated into training (47,500
samples) and test (2,500 samples) sets.
SwitchBoard (Godfrey et al., 1992): The Switch-
Board corpus is a telephone speech dataset col-
lected from conversations. It focuses on North
American English and involves over 2,400 conver-
sations from around 200 speakers. They randomly
select 36,539 samples from its train split to gener-
ate HP training set, as well as 2,000 samples from
the eval2000 split to generate HP test set.
LibriSpeech (Panayotov et al., 2015): LibriSpeech
is a public corpus of read speech from audiobooks,
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Domain
Training Set # Pairs Length Test Set # Pairs Length

Source Category

WSJ Business News train-si284 37,514 17.5 dev93 & eval92 836 16.9
CommonVoice Speaker Accents train-accent 49,758 10.5 test-accent 2,000 10.5
TED-LIUM3 TED Talks train 47,500 12.6 test 2,500 12.6
SwitchBoard Telephone train 36,539 11.8 eval2000 2,000 11.8
LibriSpeech Audiobooks train-960 88,200 33.7 test-clean 2,620 20.1

CHiME4 Background Noise tr05-real-noisy 9,600 17.0 test-real 1,320 16.4
LRS2 BBC Television train 42,940 7.6 test 2,259 7.6
ATIS Airline Info. train 3,964 12.4 test 809 11.3

CORAAL Interview train 1,728 24.2 test 100 24.0

Total train 317,743 18.1 test 14,444 13.4

Table 7: HyPoradise dataset statistics in terms of different ASR domains (i.e., including speech and text domains),
the number of hypotheses-transcription pairs, and the average utterance length of each dataset.

Figure 4: WER (%) results of utilizing different num-
bers of validation samples for prior estimation. The min-
imum required amount to obtain the best performance
is highlighted in the star mark.

including 1,000 hours of labeled speech data from
diverse speakers, genders, and accents. To generate
HP training data, they exclude some simple utter-
ances from its train-960 split that yield 0% WER,
which results in 88,200 training samples. The test-
clean split (2,620 samples) is used for HP test data.

CHiME-4 (Vincent et al., 2016): CHiME-4 is a
dataset for far-field noisy speech recognition. It in-
cludes real and simulated noisy recordings in four
noisy environments, i.e., bus, cafe, pedestrian area,
and street junction. Its tr05-real-noisy (9,600 sam-
ples) and test-real (1,320 samples) splits are used
to generate HP training and test data, respectively.

LRS2 (Chung et al., 2017): Lip Reading Sentences
2 (LRS2) is a large-scale publicly available audio-
visual dataset, consisting of 224 hours of video
clips from BBC programs. They randomly select
42,940 samples from its train split as training set,
and the rest of 2,259 samples are used for test set.

Figure 5: Distribution and cloze accuracy of five options
with and without logits calibration on TED-LIUM 3
dataset. The remarks follow that in Fig. 3.

ATIS (Hemphill et al., 1990): Airline Travel In-
formation System (ATIS) is a dataset comprising
spoken queries for air travel information, including
flight times, prices, and availability. It contains
4,773 utterances recorded from over 500 speakers,
which are separated into two parts to build training
(3,964 samples) and test (809 samples) sets.

CORAAL (Kendall and Farrington, 2021): The
Corpus of Regional African American Language
(CORAAL) is the first public corpus of AAL
speech data. It contains audio recordings along
with the time-aligned orthographic transcriptions
from over 150 sociolinguistic interviews. To gener-
ate HyPoradise dataset, they select 1,728 samples
as training set and 100 samples as test set.

A.3 Validation Set Selection

As mentioned in §3.3.2, our logits calibration
method requires a validation set to calculate the
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prior distribution P̂prior(di). To this end, we re-
serve a small portion of training samples to build
the validation set. To save the computation cost and
time, we randomly select 100 samples from each
ASR corpus in Table 7 for prior estimation (Wu
et al., 2021). Relevant ablation study is illustrated
in Fig. 4, where we observe that around 100 val-
idation samples are sufficient to estimate a reli-
able prior distribution for logits calibration on most
datasets.

B Examples of Cloze test

Table 8 presents several examples of cloze test built
from CHiME-4 test-real set, where each example
contains the context and several options.
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Table 8: Examples of cloze test built from CHiME-4 test-real set.

Example ID F06_443C0212_CAF

Cloze Context yesterday is losers included [Blank1]

Options

[Blank1]:
A. automobiles
B. all of you
C. automobile
D. all the ideas
E. automakers

Answer A

Example ID F06_446C0204_BUS

Cloze Context the consensus was that a new piece of paper is not required [Blank1] one u s [Blank2]

Options

[Blank1]:
A. except
B. said
C. to be sent
D. to set
E. to send
[Blank2]:
A. dollar
B. diplomat
C. dollar
D. standard
E. tip to them

Answer B B

Example ID M05_440C020W_STR

Cloze Context durable goods [Blank1] frequently are highly volatile from month to month

Options

[Blank1]:
A. and goods
B. <NULL>
C. and fluids
D. and foods
E. or goods

Answer A

Example ID M05_443C020R_STR

Cloze Context
as part of the marketing plan the company will begin airing television commercials
during [Blank1] on election night next tuesday

Options

[Blank1]:
A. the prime time
B. the fine time
C. prime time
D. fine time
E. primetime

Answer C
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