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Abstract

Distorted science communication harms
individuals and society as it can lead to
unhealthy behavior changes and decrease trust
in scientific institutions. Given the rapidly
increasing volume of science communication
in recent years, a fine-grained understanding of
how findings from scientific publications are
reported to the general public, and methods
to detect distortions from the original work
automatically, are crucial. Prior work focused
on individual aspects of distortions or worked
with unpaired data. In this work, we make
three foundational contributions towards
addressing this problem: (1) annotating 1,600
instances of scientific findings from academic
papers paired with corresponding findings
as reported in news articles and tweets with
respect to four characteristics: causality,
certainty, generality and sensationalism; (2)
establishing baselines for automatically detect-
ing these characteristics; and (3) analyzing the
prevalence of changes in these characteristics
in both human-annotated and large-scale
unlabeled data. Our results show that scientific
findings frequently undergo subtle distortions
when reported. Tweets distort findings more
often than science news reports. Detecting
fine-grained distortions automatically poses
a challenging task. In our experiments,
fine-tuned task-specific models consistently
outperform few-shot Large Language Model
prompting.  The dataset is available at
https://www.uni-bamberg.de/en/nlproc/
resources/sciencecommdistortion/.

1 Introduction

Lay people, i.e., non-experts with limited experi-
ence or knowledge of a specific domain, rely on
effective science communication to learn about sci-
entific research. In order to make scientific infor-
mation understandable to a lay audience, science
communicators must first simplify the highly tech-
nical language of science (Salita, 2015). In do-

PAPER FINDING:Adolescents whose fathers
engaged in weight conversations were
significantly more likely to engage in dieting
and UWCB.

I certainty \l/
| causation | certainty: _+] sensational: 0.7

REPORTED FINDING: Parents, STOP talking to
your kids about their weight! They're saying
that this could cause eating disorders

sensationalism 1‘

Figure 1: Pair of scientific finding and reported finding
with fine-grained labels of distortions.

ing so, authors may knowingly or unknowingly
distort the information conveyed by the original
scientific publication to achieve specific rhetorical
goals (Ransohoff and Ransohoff, 2001; Dempster
et al., 2022; Tichenor et al., 1970; Sumner et al.,
2014; Bratton et al., 2019). For example, simpli-
fying findings for a non-expert audience requires
balancing accuracy, accessibility and comprehen-
sibility (Kuehne and Olden, 2015) which can lead
to information being omitted purposefully. At the
same time, the way that science is communicated
to the public is crucial as it influences people’s
behavior and trust in science (Kuru et al., 2021;
Fischhoff, 2012; Hart and Feldman, 2016).
Consider Fig. 1. The paper finding describes a
correlation between “weight conversations” and
“dieting and UWCB”! while clearly stating to
whom the finding applies. In the reported find-
ing those constraints are omitted, it generalizes
from “fathers” to all “parents” and ‘““adolescents”
to “kids.” Further, the reported finding states a
causal relationship between “talking to kids about
their weight” and “eating disorders.” Finally, the
reported finding expresses high certainty in the cor-
relational relationship found, while the reported

'"UWBC stands for unhealthy weight control behaviors.
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finding speculates that a causal relationship “could”
exist, thus communicating lower certainty. While
subtle, the reported finding presents a different pic-
ture than that of the original paper, highlighting the
need for a fine-grained comparison between paper
and reported findings.

Previous work has been limited to either a sub-
set of the distortions studied in this work (Yu
et al., 2019; Pei and Jurgens, 2021a; Wright and
Augenstein, 2021b) or detecting general informa-
tion change without fine-grained labels (Wright
et al., 2022). We improve on this by making three
core contributions: We collect an expert-annotated
dataset of 1,600 scientific findings paired across sci-
entific papers and their reported findings in news
media and Twitter> (C1). The data is annotated
with fine-grained distortion labels, i.e., causal claim
strength, level of certainty, level of generality and
sensationalism. Using this labeled data, we train
and analyze the performance of benchmark mod-
els on the task of fine-grained distortion detection
(C2). Finally, using the data from C1 and models
from C2, we perform a large scale analysis of the
prevalence and types of distortions present in both
our expert labeled data and a large-scale automati-
cally labeled dataset of 1,655,570 paper findings,
422,626 news findings and 356,275 tweets (C3).
We answer the following research questions:

RQ1 How are scientific findings changed when
reported to lay audiences?

RQ2 How reliably can we detect distortions auto-
matically?

For RQ1, we find that scientific findings undergo
fine-grained changes when they are reported even
when their overall content is well-aligned. This is
consistent across scientific disciplines. We find that
54 % of findings are reported with a changed causal
relation and 60 % of findings are reported with a
changed level of certainty. In 49 % of the paired
findings, the reported finding is more general than
the paper finding, and reported findings are typi-
cally more sensational compared to paper findings.
Across all change dimensions, findings reported in
tweets are more susceptible to mis-reporting com-
pared to reports in science news. With respect to
RQ2, we find that detecting fine-grained distortions
automatically poses a challenging task. In our ex-
periments, fine-tuning task-specific models consis-
tently outperform few-shot LLM prompting. Our
best models achieve macro F; scores of 0.58, 0.56,

>Twitter is now called X.

0.57 and Pearson correlation of 0.61 for predicting
causality, certainty, generalizing and sensational-
ism, respectively.

2 Related Work

Science Communication. Science communica-
tion is a relatively nascent area of exploration in
NLP. The main problems which have been worked
on relate to information change in news articles
and social media about scientific papers (Wright
et al., 2022; Wright and Augenstein, 2021b; Pei
and Jurgens, 2021a; Yu et al., 2020), understanding
discourse strategies in scientific press releases (Au-
gust et al., 2020), information loss in medical sum-
maries (Trienes et al., 2024), tasks related to scien-
tific peer review (Kuznetsov et al., 2022), tasks re-
lated to scholarly document understanding (Wright
and Augenstein, 2021a; Beltagy et al., 2019) and
scientific fact checking (Wadden et al., 2020; Mohr
et al., 2022). This work is most closely related
to those studying information change in science
communication, particularly the works of Wright
et al. (2022) on general information change and
Wright and Augenstein (2021b) and Pei and Jur-
gens (2021a) on exaggeration and certainty, respec-
tively. These works are limited in a few key aspects,
which we address. First, they are concerned with
either single, narrow aspects of information change
or overarching broad notions of change, missing
important types of distortions such as generalizing
and sensationalizing results. Additionally, the ex-
isting labeled data for exaggeration is limited in
size, and the labeled data for certainty are unpaired.
We improve on this by augmenting the matched
findings in the dataset from Wright et al. (2022)
with four specific distortions that are prevalent in
science communication: exaggerating causal claim
strength, changing the level of certainty, generaliz-
ing results, and sensationalizing results.

Misinformation. Inaccurate reports of scientific
findings is a form of mis-information. Misinfor-
mation detection and fact-checking are established
tasks in NLP, both for the general domain and for
scientific claims (Guo et al., 2022; Vladika and
Matthes, 2023). Scientific fact-checking verifies
scientific claims against evidence sources. It is re-
lated to our task as it is compares the truthfulness
of a statement against a reference document. Tech-
nically, a reported finding constitutes a claim about
the original which connects our task to claim de-
tection and argument mining (Lawrence and Reed,
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2019; Boland et al., 2022). However, compared
to both these related tasks, this work requires a
more nuanced view of detailed characteristics of
the overarching claim.

3 Dimensions of Information Changes

We consider four dimensions found to be notable
in the science of science literature (Sumner et al.,
2014; Bratton et al., 2019; Fischhoff, 2012; Ran-
sohoff and Ransohoff, 2001) that characterize sci-
entific findings and may undergo change when re-
ported: Causality, i.e., the type of causal relation
(or its absence) described in finding; Certainty, i.e.,
the level of confidence or certainty that is expressed
wrt. a finding; Generality, i.e., the level of gener-
alization or specificity of a finding compared to its
reporting; Sensationalism, i.e., the extent to which
a finding is presented in a way to elicit an emo-
tional reaction by using urgent or exaggerated lan-
guage and descriptions. The divergence between
those dimensions in the paper and the reported find-
ings allows us to estimate how accurate a reporting
is and which properties may be distorted. More
specifically, we consider a reported finding to be
mis-reported if the label for a given characteristic
changes from the paper finding to the correspond-
ing reported finding. We build a dataset of 1,600
findings from four scientific disciplines (medicine,
psychology, biology and computer science). Find-
ings are paired between scientific paper and news
and scientific paper and tweet, giving 800 pairs
total. In an annotation conducted with crowdwork-
ers, we label each instance/pair with regards to the
change type. Annotators rate certainty and sensa-
tionalism levels, identify causality relations and
check for generalizations in both versions of the
finding. Fig. 1 shows an example.

3.1 Change Dimensions

(1) Causality describes a cause—effect relation-
ship between two things, variables, agents etc.
Correlation describes relationships where two ac-
tions relate to each other, but one is not necessar-
ily the effect or outcome of the other. (2) Cer-
tainty in science communication can be expressed
with respect to various aspects (Pei and Jurgens,
2021b). (Un)certainty exists towards specific num-
bers/quantities (‘approximately 50 %’), the extent
to which a finding applies (‘mainly observed for’)
or the probability that something applies, occurs or
is associated (‘possibly associated with’). (3) Gen-

eralizations claim something is always true, even
if it is only valid in certain instances or occasion-
ally. For example, a reporting that generalizes a
finding about diabetes type 2 in seniors to all people
with diabetes or a generalization from a specified
set of medical conditions (‘reduced risk of stroke
and diabetes’) to a general statement (‘has health
benefits’). (4) Sensational text intends to spark the
interest of a reader, make them curious or elicit
an emotional reaction. Cues for sensationalism
can be urgent, exaggerated language or conveyed
through the use of informal or colloquial language.

3.2 Dataset Construction
3.2.1 Source Data

To investigate how science communication changes
scientific findings, we require reports of findings
matched with their original counterpart. Therefore,
we build on SPICED (Wright et al., 2022) which
provides text pairs of scientific findings and asso-
ciated reports of the finding from news articles or
Twitter. Each pair is scored with an information
matching score (IMS) which indicates how similar
the content of the two texts are. It ranges from 5 —
completely the same to 1 — completely different. We
sample instances with a high information matching
score (IMS > 4) and filter out instances with a high
IMS that the SPICED dataset marks as easy cases>.
The filtering provides us with a total of 837
paired findings across four scientific disciplines:
biology (185), computer science (168), medicine
(227) and psychology (257). The reported findings
stem from science news (515) and Twitter (322).

3.2.2 Annotation Tasks

Considering the substantial differences in change
type concepts, we design the data collection as four
separate annotation tasks to enable annotators to
focus on one concept at a time.* This also allows
us to operationalize each task independently, which
is important to find the optimal annotation method
for each task without burdening the annotators with
strenuous context switches. We describe the tasks
and settings in the following.

*SPICED marks instances as easy if the reported finding is
almost identical to the paper finding.

*In a set of pilot studies, we experiment with tasking an-
notators to label all change types for an instance, instead of
focusing on one concept per study. However, inter-annotator
agreement in this setup was very low, presumably because of
the difficulty of the tasks themselves and the substantial cog-
nitive complexity it takes to understand and switch between
multiple concepts during annotation.
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Causality. Given a finding, annotators are tasked
to identify which type of causal relationship is de-
scribed. In a classification setting, annotators de-
cide between No relation stated, meaning no causal
or correlational relation is stated, Correlation, Cau-
sation and Explicitly states: no relation, meaning
the finding states the absence of a relation.
Certainty. Given a finding, annotators rate the
level of certainty with which a finding is being
described. This task uses a 4-point rating scale
ranging from Uncertain to Certain with the nu-
ances somewhat uncertain and somewhat certain
in between.

Generalization. Given a paired finding, annotators
identify which finding is more general, i.e., the
reported finding, or the paper finding. If they are
equally specific/general, annotators can label them
as expressing the same level of generality.
Sensationalism. Annotators are presented with
sets of four findings at a time. In a best-worst-
scaling setup (Kiritchenko and Mohammad, 2017),
they identify which of the four findings is the most
and least sensational.

3.2.3 Annotation Environment

We use POTATO (Pei et al., 2022) as our annotation
environment and recruit crowdworkers using PRO-
LIFIC.’ To ensure subject expertise, participants
must have at least an undergraduate degree in the
respective scientific field or a closely related sub-
ject (refer to Appendix A.1 for details.) For the
change types causality, certainty, and generaliza-
tion, every annotator works on 12 instances. For
sensationalism, participants work on 10 instances,
i.e., quad-tuples.® We provide a detailed descrip-
tion of the annotation setup in Appendix A.1 and
screenshots in the supplementary material’.

3.2.4 Label Aggregation

For causality, certainty and generalization, we ag-
gregate the final labels using MACE (Hovy et al.,
2013), a Bayesian model which learns a distribu-
tion over labels that takes into account annotator
competence. To obtain real-valued scores from
best-worst annotation, we calculate the percentage
of times an instance was chosen as most sensational

5https://www. prolific.com/

®Quad-tuples contain a mixture of paper findings and re-
ported findings. To avoid biasing the annotators, we do not
make it transparent to annotators which source the individual
finding originated from.

"The supplementary material and dataset is available at
https://www.uni-bamberg.de/en/nlproc/resources/
sciencecommdistortion/

minus the percentage of times the term was chosen
as least sensational (Kiritchenko and Mohammad,
2017). The score ranges between —1 and 1.

3.3 Analysis
3.3.1 Evaluation Metrics

We evaluate the results of the annotation studies
using the following metrics: Average pairwise inter-
annotator F; (iaFy), i.e., treating one annotator’s
labels as gold annotations and consider the other an-
notator’s labels as predictions (Hripcsak and Roth-
schild, 2005); average pairwise Cohen’s x; aver-
age® pairwise Spearman’s correlation p; split-half
reliably to evaluate best-worst scaling tasks (Kir-
itchenko and Mohammad, 2017) for which all an-
notations for an instance are split into half. For
each set, the best-worst scaling score is calculated
independently. We report the correlation (Spear-

man and Pearson) between the sets of scores’.

3.3.2 Agreement

We report agreement metrics for all tasks in Table 1.
For causality, we observe an inter-annotator F; of
0.38. The average pairwise x agreement is 0.21
indicating fair agreement (McHugh, 2012). For
certainty, the average correlation (p) between the
certainty ratings is 0.44. In the generalization task,
we observe an inter-annotator F; of 0.42 and a
x of 0.20. We report split-half reliability for the
sensationalism task and observe an average p of
0.44 indicating a positive correlation between the
sets of scores.

While we acknowledge that the agreement
scores are in parts relatively low, it is crucial to
point out that this does not necessarily indicate
low annotation quality (Plank, 2022; Reidsma and
Carletta, 2008; Sandri et al., 2023). We presume
that the scores reflect the difficulty of the tasks as
judging scientific findings is not trivial and sensa-
tionalism and certainty are to a certain extend sub-
jective. Note that is in line with agreement scores
reported for similar tasks such as classifying writ-
ing strategies for science communication (August
et al., 2020), identifying certainty vs. doubt (Rubin,
2007) and in general, for partially subjective and
non-propositional tasks which are known to exhibit
stronger label variation as a result of annotators’

8We average correlations by transforming each correlation
coefficient using Fisher’s Z, calculating the average of the
transformed values, and back-transforming the value.

"We use the best-worst-scaling scripts available at https:
//saifmohammad.com/WebPages/BestWorst.html
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causality certainty general.  sensation.

disc. iaF; k

iaF1 K p iaF1 K p r

bio 40 22 37 22 48 43 24 48 48
cs .36 .20 31 15 42 41 17 47 48
med 38 .23 36 .19 48 44 23 41 44
psy .36 20 37 22 38 40 .16 .38 .39

avg. .38 21 35 20 44 42 20 44 45

Table 1: Inter-annotator F; (iaF;), average pairwise Co-
hen’s «, Spearman’s correlation (p) across tasks and
disciplines. For sensationalism, p and r are the correla-
tions from the split-half reliability evaluation.

individual backgrounds (Biester et al., 2022; Sap
et al., 2022). Therefore, we consider these findings
from the annotation study, i.e., the dataset along
with the agreement scores, a research outcome. We
provide the individual annotations along with the
aggregated labels to enable further research regard-
ing annotator differences.

3.3.3 Results: How are scientific findings
changed when they are reported to lay
audiences? (RQ1)

We want to understand if and how scientific find-
ings are distorted when they are reported to lay
audiences. To this end, we compare for each paired
finding how the label for a particular dimension
(causality, certainty, generalization, sensational-
ism) changes going from the paper finding to the
reported finding. Fig. 2 visualizes the results. Fig-
ures 2 (a) and 2 (b) present distortions in Sankey
diagrams, with the left side of each chart depicting
the label for the paper finding and the right side
depicts the label for the reported finding. Each la-
bel is represented by a set of strands going from
left to right. Figure 2 (c) plots the distribution of
labels for generalization in a bar plot. For each
label we plot the number of instances separated by
communication outlet. Fig. 2 (d) visualizes the
sensationalism scores for the paper finding and the
scores for the reported findings (tweets and science
news) in a density plot.

Fig. 2 (a) shows changes in causality. Within
each relation type (causation, correlation etc.) for
the paper findings, we see that the strongest Sankey
strand typically leads to its same-label-counterpart
on the right side (e.g., Correlation to Correla-
tion). However, while these strands tend to be the
strongest, the sum of the other strands originating
from each group, is equally substantial. In fact,
overall only 45.5 % of paired findings convey the

same relation in the paper and reported finding.

Fig. 2 (b) shows changes in certainty. Overall
we observe that both paper and reported findings
typically describe the finding with relative certainty.
The most frequent distortion is turning a somewhat
certain paper finding to a certain reported finding.
In general, we observe that transitions to neigh-
boring labels on the certainty scale are typically
more frequent than changes to certainty levels fur-
ther away on the scale. Collapsing the somewhat
(un)certain findings, we find that 15 % of paper
findings labeled as certain are reported in an uncer-
tain manner, while 13 % of paper findings labeled
as uncertain are reported in a certain manner.

We visualize changes in generality in Fig. 2 (c).
Overall we observe that in the majority of cases
reported findings are more general compared to the
paper findings. This means findings typically start
out being specific and become more general in the
reporting. The opposite occurs less frequently.

The density plots in Fig. 2 (d) show the distri-
bution of sensationalism scores across paper and
reported findings. Reported findings are separated
by communication outlet (science news, tweets).
The score on the x-axis ranges from -1 (least sen-
sational) to 1 (most sensational). We see that the
majority of findings have a sensationalism score
around 0. Notably, the distribution of the reported
finding scores is offset more toward +1, indicating
that the reportings are typically more sensational
compared to the paper findings.

Changes across communication outlets. We want
to understand if the communication outlet (sci-
ence news, Twitter) impacts the types of distortions
we observe. For this, we identify four distortions
which are potentially most harmful for the news
consumer. Critical distortions are:
causT Increase in causal claim strength: Correla-
tion or Explicitly States: no relation in paper
finding to Causation in reported finding.
gent Increase in generality: the reported finding
being more general than the paper finding.
cert? Increase in certainty.
sensT Increase in sensationalism scores from paper
to reported finding > 1sd.

Table 2 shows the percentage of finding pairs
affected by critical distortions across the two com-
munication outlets, i.e., Twitter and science news.
For the categories Increase in causal claim strength
(caust) and Increase in certainty cert?, there are no
major differences between science news and tweets.
For Increase in generality (genT) however, reports
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(a) Causality.

Buipuyy Jodedq
Buipuly pspodey

No relation mentioned
Expl. states: no relation
Correlation

Causation

Buipuyy Jodedq

(b) Certainty.

lUncertain

Somewhat uncertain

Somewhat certain
B certain

(c) Which finding is
more general?

(d) Sensationalism.

1.5
science news
tweets
1.0
0.5
0 2 23 52 00 -1 0 1
££ % E’ o5 Sensationalism score
QE » Qs — Paper finding
& . . . Tweets

- .= Science news

Figure 2: Sankey diagrams visualize changes in causality and certainty going from the paper finding to the reported
finding. The bar plot shows the distribution of generalization labels. The density plot visualizes the difference in
sensationalism scores across reporting source.

type news tweets | bio cs med  psy
caust 142 124 | 119 185 141 109
certt 330 329 | 319 435 201 304
gent 425 674 | 535 429 502 588
gen] 285 165 | 232 304 256 187
senst 306 506 | 438 399 401 498

Table 2: Percentage of finding pairs affected by critical
distortions across communication outlets (science news,
tweets) and scientific disciplines (biology, computer
science, medicine, psychology).

in tweets are distorted substantially more frequently
than reported findings in science news. Similarly,
findings reported in tweets more frequently sen-
sationalize paper findings compared to reported
findings from sciences news.

Changes across scientific disciplines. We inves-
tigate if the changes we observe are different wrt.
the scientific discipline (biology, computer science,
medicine, psychology) that the finding originates
from. We report the percentage of finding pairs af-
fected by critical distortions across the disciplines
in Table 2. Overall, we observe a similar level of
distortions across the disciplines biology, medicine
and psychology. Findings from computer science
show slightly different distortions: while they show
increases in causal claim strength and increases in
certainty more frequently compared to the other
disciplines, the findings are generalized less often
and they are less affected by increases in sensation-
alism compared to other disciplines.
Co-occurrence of changes. We analyze the co-
occurrence of critical distortion labels to under-

caus? gent sens?® cert?
5 400
§ - 113 55 58 38
v 350
-
- 55 196 146 300
(o))

250

@ 200
§ - 58 196 124 I
n -150
< - 100
t- 38 146 124 276
o

-50

Figure 3: Co-occurrence matrix of critical distortions.
Diagonals represent the number of paired findings af-
fected by a particular distortion. All other counts repre-
sent distortion co-occurrences.

stand potential connections between them. For ev-
ery paired finding, each critical change is a binary
variable that is True when the pair is affected by the
change, and False if not. We plot the co-occurrence
of these variables in Fig. 3. The distortions which
co-occur most frequently are generalizations and
increased sensationalism (196 instances). This is
intuitive as findings may be sensationalist, because
they convey broad or generalized claims. Simi-
larly, increased certainty frequently co-occurs with
generalization (146 instances) as well as increases
sensationalism (124). Findings that convey strong
claims with heightened certainty may be perceived
as sensational and vice versa.

4 Experiments

In RQ2, we investigate how reliably we can detect
information changes automatically. For all model-
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ing experiments, we collapse the causality labels
Expl. states: no relation and No relation men-
tioned into the Unclear relation instances, and the
certainty labels Somewhat uncertain into the Uncer-
tain instances. We experiment with two modeling
approaches which we describe in the following.

4.1 Setup
4.1.1 Task-specific Models

To establish baselines for automatically predicting
fine-grained distortions of scientific findings, we
fine-tune task-specific models for each distortion
type. We model causality, certainty and general-
ization as classification tasks and predicting sensa-
tionalism scores as a regression. All models obtain
as input a finding and learn to predict the distortion
label. For generalization the input is a paired find-
ing. For each task, we train a classifier/regressor
on top of a transformer base model.
Experimental setting. We experiment with two
base models (RoBERTa-base'? and SciBERT!!) to
understand if domain-specific pretraining data is
beneficial for our tasks. For details on model train-
ing refer to Appendix A.2.1. We train all models
using a 80/20 train-test split of the dataset.
Evaluation. We evaluate the model performance
using the task-specific evaluation metrics, i.e.,
macro F; and Pearson’s r (see Sec. 3.3.1).

4.1.2 Few-shot Prompting

With the recent paradigm shift to in-context learn-
ing using instruction-tuned large language models
(LLMs), we investigate the extent to which an LLM
predicts, i.e., generates the correct change type la-
bel when prompted with the same instructions as
human annotators.

Evaluation. To calculate performance metrics, we
need to extract the label from the LLM’s output. To
this end, we assume the first mention of any label
from the task-specific label space that is closest to
the answer cue in the question to be the prediction.
We evaluate'? the model performance using the
task-specific evaluation metrics (see Sec. 3.3.1).
Experimental setting. @We experiment with
three open, instruction-tuned LLMs for the few-

Ohttps://huggingface.co/roberta-base

"https://huggingface.co/allenai/scibert_
scivocab_uncased

2For sensationalism, we report correlations for the full
dataset as opposed to only for the test portion. We mimic
the best-worst-scaling setup from annotation and obtain the
sensationalism score from the identical set of quad-tuples to
allow for direct result comparison.

shot prompting, varying in model size and ar-
chitecture: LLaMa-2 13B!3 (Touvron et al.,
2023), Mistral 7B'# (Jiang et al., 2023) and Mix-
tral 8x7B' (Jiang et al., 2024). As prompts, we
use the same task description and examples that we
used to instruct the human annotators. We provide
our prompt template in Fig. 5.

4.2 Results: How reliably can we detect
distortions automatically? (RQ2)

Table 3 shows the results. Across all tasks, we
observe that fine-tuned models exceed the perfor-
mance of the few-shot prompting setup. For causal-
ity, the fine-tuned SciBERT achieves a macro F;
of 0.54. o4 (avg. across 5 seeds, subscript de-
notes standard dev.), while the best results from
prompting (LLaMa) achieves an F; of 0.46. Sim-
ilarly, for certainty, SciBERT achieves an avg.
F; of 0.53. g2, while all LLMs struggle to make
meaningful predictions. For generalization, the
avg. performance of the fine-tuned SciBERT is
at 0.471.04 F1. For sensationalism, fine-tuning
RoBERTa obtains the best results (r =.614 ¢2).
Notably, it is the only task in which the few-shot
approach obtains comparable results. Sensation-
alism is also the only task for which the general
domain model (RoBERTa) outperforms SciBERT.
We presume that this is because detecting sensa-
tionalism is not strictly tied to scientific language,
while the other tasks benefit from more specialized
knowledge.

Overall, our results show that predicting fine-
grained information changes is a very challenging
task. Task-specific models produce more reliable
results, while few-shot prompting performs poorly,
even with large state of the art models. LLMs do
not appear to be able to leverage the same instruc-
tions as humans, indicating that additional prompt
engineering or fine-tuning may be required to ob-
tain stronger results.

We introspect the confusion matrices and resid-
ual plot for the test predictions to identify potential
error sources. Overall, we find no prevalent error
patterns. For causality, we observe a slight ten-
dency for instances expressing Causation being
incorrectly classified as Correlation (18 out of 93

Bhttps://huggingface.co/meta-1lama/
Llama-2-13b-chat-hf

Yhttps://huggingface.co/mistralai/
Mistral-7B-Instruct-vo.1

15https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-ve.1
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model causality certainty generalization sensational.
cau corr uncl mF; | ¢ s.c unc mF; | same rf pf mF |r
LLaMa-2 52 42 43 46 04 49 37 3 37 .04 26 22 24
Mistral7B 47 43 25 .38 5 05 34 3 .04 62 32 33 .10
MiXtral8x7B .49 .38 23 4 42 .02 23 22 32 47 10 3 57
RoBERTa 56 .62 59 57401 | 67 48 51 59+.04 32 .69 42 40406 | 6lt.02
SciBERT 58 .57 60 54404 | 70 50 50 53402 32 72 49 47104 | ST+o0s

Table 3: Performance for predicting distortion labels of a finding. We report per class F; scores, macro F; and
correlation coefficients (r, where applicable). For few-shot prompting, we use LlaMa2-chat-hf-13B, Mistral 7B and
Mixtral8x7B. For fine-tuning, we use RoBERTa-base and SciBERT. For fine-tuning experiments, we report per
class results of the best performing model; mF; scores denote avg. across 5 runs, including standard deviation.

instances). This happens slightly more frequently
than such instances being confused with an Unclear
relation (14 out of 93). For the certainty task, we
see a slight tendency of the model to overestimate
the level of certainty, i.e., to incorrectly classify
Certain instances as Somewhat certain (40 out of
111). This is slightly more prevalent than the clas-
sifier confusing Somewhat certain instances with
Uncertain instances (34 out of 111). We provide
the plots in Appendix A.2.3.

5 Understanding Distorted Science
Communication at Large

To gauge critical information changes more
broadly, we use a large scale set of paper findings,
news findings, and tweets and analyze the preva-
lence of distortions in science communication at
large.

Data. The initial dataset is collected by pairing
scientific papers from the S20RC dataset (Lo et al.,
2020) with news articles and tweets using Altmet-
ric'®, an aggregator of mentions of scientific papers
online. We automatically identify the result descrip-
tions and select for each news and tweet finding the
paper finding with the highest information match-
ing score (Wright et al., 2022) above 4. Sec. A.3.1
describes the filtering process in detail. This gives
us a set of 35,150 findings paired between papers
and news and 72,032 findings paired between pa-
pers and tweets.

Using the best performing models from Sec.4,
we estimate critical distortions wrt. causality, cer-
tainty and sensationalism.'” Our goal is to under-
stand which type of reports —news vs. tweets— are
more susceptible to mis-reporting.

1(’https ://www.altmetric.com/
"We exclude generalization from this analysis because of
the varied classification performance across target classes.

A — Paper F
------ Tweets
—:— Science news

2.0 /

15

Density

0.5

0.0 Tt e
-0.5 0.0 0.5 1.0
Sensationalism score

Figure 4: Density plot visualizing distribution of sensa-
tionalism scores across 1,655,570 paper findings (paper
F), 422,626 science news, and 356,275 tweet findings.
Differences in the degree of sensationalism across dif-
ferent findings sources are statistically significant (see
Fig. 12 in Appendix A.3).

Results. Overall, we find that science communi-
cation on Twitter is more frequently affected by
mis-reporting. Tweets show pronounced critical
changes in causality (Fig. 10b, Appendix A.3),
while the vast majority of findings reported in sci-
ence news accurately report the causal relation
from the original finding (Fig. 10a, Appendix A.3).
Science communicators on Twitter frequently over-
state findings’ certainty. Fig. 11 in Appendix A.3
shows changes in certainty levels. Notably, the vast
majority of findings reported in tweets exhibit an
increased level of certainty. This effect is less pro-
nounced in the findings reported in science news.
Most notably, reported scientific findings are pre-
sented with heightened levels in sensationalism,
both in tweets and science news. The density plot
visualizing sensationalism scores in Fig. 4 shows a
large shift of towards increased sensationalism for
reported findings compared to their counterparts in
the original papers.

Analysis. To validate the robustness of these re-
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sults, we annotate 108 instances of the unlabeled
data for the properties of causality and certainty.
Sec. A.3.3 provides details on the annotation. Eval-
uating the predicted distortions against the human
labels, we find that the results in this setting are ro-
bust (macroF; of .65 and .59 causal distortions and
certainty) and on par with the classifiers’ perfor-
mance on the original test set. Notably, given the
relatively high precision for predicting the “certain’
class (0.75) and the volume of reported findings
which are predicted as such, these results provide
further evidence that reports frequently overstate
findings’ certainty (Fig. 11). For sensationalism we
validate the results by analyzing if the difference
in distributions that we observe in Fig. 4 is in fact
significant. We see a large statistically significant
effect (Fig. 12), indicating that different sources are
potentially perceived as more or less sensational.

>

6 Conclusion

Given both the societal impact and growing vol-
ume of scientific information online, it is crucial to
understand how this information is presented to the
public. In this work, we lay a foundation for per-
forming large scale analysis and automatic detec-
tion of several types of distortions in the reporting
of scientific findings. We contribute the first dataset
of multiple fine-grained distortions in science com-
munication, allowing us to study how scientific
findings are changed when they are reported to lay
audiences. We show both that findings frequently
undergo subtle distortions when reported, and that
detecting these distortions automatically poses a
challenging problem. We find that fine-tuning cus-
tom models consistently outperforms LLM prompt-
ing, presumably because the models are not able to
effectively leverage the annotation instructions and
examples we provide as prompts. Using our best
baseline models, we study the prevalence of distor-
tions in science communication at large, observing
that scientific findings are potentially frequently
subject to distortions in terms of causality, level of
certainty, and how sensationally they are presented.
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Limitations

While we extend existing work regarding the di-
mensions of distortions we study, this set may be
further extended in the future. We focus on types of
distortions which we consider to be applicable for a
large set of disciplines, but there may be discipline-
specific properties of misreporting that are out of
scope of our current set of labels. Further, we focus
on reports and scientific findings in English. Fu-
ture work should extend this to other languages to
understand the impact of the source language on
the change types and their verbalization.

Our annotation study shows that the properties
we are investigating are highly complex and to a
certain extent subjective as indicated by the mixed
agreement scores. We argue that the concepts them-
selves are well defined, however, we hypothesize
that the mixed inter-coder agreement is a result of
the fact that concepts such as sensationalism and
generalization are challenging to identify on the
textual level, especially for the scientific domain.
We account for this for example by choosing a
best-worst-scaling setup for labeling sensational-
ism, however, this does not (and should not) fully
remove the subjective nature of the task. Sensation-
alism for example can be encoded in a variety of
linguistic cues, but it is also connected to certain
topics: someone might perceive a finding about
Covid vaccines to be more sensationalist as op-
posed to a different treatment, because it is more
frequently the topic of recent discussion. This may
lead to variance in the labels without one of them
necessarily being incorrect. Further analysis and
modeling of the factors that constitute the percep-
tion of each of these properties should be the focus
of future work.

With respect to our few-shot prompting exper-
iments, we do not explore elaborate prompt engi-
neering as the current work constitutes a baseline to
explore in-context learning for our task. In the fu-
ture, we aim to experiment with different prompts,
and models and methods to extract labels from the
generated output of the model as this is potentially
error-prone. Further, we currently model each dis-
tortion type separately, however, to a certain degree
the properties we investigate are related to each
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other which a joint model may be able to leverage.
We see this as an opportunity for future work.

For the large-scale analysis in Sec. 5, the results
have to be contextualized with the performance of
the models we use to automatically label the dataset.
Our analyses validate that those findings are robust
and serve as a starting point for large-scale analyses,
showing that distortions are prevalent in science
communication at large. However, future work is
needed to determine their full extent with further
developed models.

Ethical Considerations

Inaccurate science reporting is a form of mis-
information, our work can therefore contribute to
detecting and counter-acting false information on-
line. This being said, while creating the resource to
better understand this very task, annotators may be
exposed to false information. We educate annota-
tors about this possibility before they start the task.
They can stop working on the task at any time.
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A Appendix

A.1 Annotation
A.1.1 Setting

Participant filtering. To qualify for our study,
participants have to have an undergrad degree in
one of the following subjects: Computer Science:
Computer Science, Computing (IT), Mathemat-
ics, Science; Biology & Medicine: Biochemistry
(Molecular and Cellular), Biological Sciences, Bi-
ology, Biomedical Sciences, Chemistry, Health and
Medicine, Medicine; Psychology: Psychology. Us-
ing Prolific’s ‘Balanced sample’ option, we rely on
the platform to distribute the study evenly to male
and female participants. Participants are required
to be fluent in English.

Payment. All studies are designed to take approx.
13 minutes. Annotators are payed £1.95 per study.
This amounts to £9 per hour which PROLIFIC rec-
ommends as a fair compensation.

Number of annotations. For the change types
causality, certainty, and generalization, we col-
lect 3 sets of annotations for every instance. For
sensationalism, we generate 1.5N quad-tuples, N
being the total number of findings to be labeled,
and collect 2 sets of annotations for the resulting
quad-tuples.
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A.1.2 Tasks

Table 4 provides an overview of the annotation
tasks.
Causality Annotators are provided the following
task description and examples: “Identify what type
of causal relationship is described in a finding.
Causality describes a cause-effect relationship be-
tween two things, variables, agents etc. A (directly)
causes outcome B. Correlation describes relation-
ships where two actions relate to each other, but one
is not necessarily the effect or outcome of the other.
Cues for causality are: cause, direct connection, re-
sult in, lead to, trigger, produce, increase, decrease.
Cues for correlation: associated with, association,
connection, correlated with, linked to. When in
doubt or not clearly stated as a causal relation, it’s
usually a correlation. Let’s go over some examples:
FINDING 1: Low vitamin D levels cause tiredness.
FINDING 2: Exposure to traffic noise at the office
increases stress levels. — Both examples describe
a causal relationship: The cause A (low vitamin
D, traffic noise) causes outcome B (tiredness, in-
creased stress level). Compared to that, this one
describes a correlation: FINDING 3: Low Vitamin
D levels are associated with tiredness. FINDING 4:
Stress levels are higher in offices exposed to traffic
noise. — Both examples describe a correlation. In
both sentences the variables are related or associ-
ated to each other, but there it is unclear if one is
the direct cause of the other. Sometimes no relation
is stated: FINDING 5: We find evidence of biases
across the majority of languages. — This finding
presents a summary in which no causal relation or
correlation is stated."

The labels are defined as follows; they fol-
low Sumner et al. (2014) and annotators see them
as label descriptions in the annotation environment:

* No mention of a relation: No mention of a
relation of any kind. E.g., if the finding is a
summary such as We find evidence of biases
across all languages

* Correlation: The paper finding describes a
correlation between two elements. E.g., Vi-
tamin D levels are associated with extensive
tiredness

e Causation: The paper finding describes a
causal relation between two elements. E.g.,
Low vitamin D levels cause extensive tired-
ness or Tiredness might be caused by lack of
vitamin D.

* Explicitly states: no relation: The finding ex-
plicitly states that there is no relation between
the two elements. E.g., We find no evidence
that vitamin D levels are associated with tired-
ness.

Certainty Annotators are provided the following
task description and examples: “Rate the level of
certainty that the author uses to describe a finding.
Certainty means having complete confidence in
something without any doubts. Uncertainty is the
opposite: it refers to a state of doubt, lack of con-
fidence, or absence of complete knowledge about
something. Both can be expressed with respect
to various aspects. Look out for: (un)certainty to-
wards specific numbers/quantities: They found that
approximately 50% of participants. . . , the extent
to which a given finding applies: The effect was
mainly observed for teenagers.), the probability
that something applies, occurs or is associated: pos-
sibly associated with, hedging words: seem, tend,
appear to be, may, potentially, suggest, perhaps.
Let’s go over some examples: FINDING 1: Now
there is clear evidence that sunscreen prevents skin
damage. — The description of the finding is very
certain. No hedges or other indicators of uncer-
tainty. Compared to that, this one is slightly less
certain: FINDING 2: New study shows that sun-
screen can prevent skin damage. — The descrip-
tion of the finding is pretty certain. The use of can
indicates that the finding is limited in some way,
but overall the finding is presented to be mostly
certain. Let’s look at some examples that express
uncertainty: FINDING 3: New study suggests that
sunscreen could prevent skin damage. — The find-
ing is described to be pretty uncertain. The use
of could and suggests are indicators that the find-
ings are preliminary or very limited with regards
to how impactful they may be. Let’s go all the
way to an uncertain finding: FINDING 4: Study
presents potential indicators that sunscreen might
have positive effects in preventing skin damage. —
The finding is described to be very uncertain. It
is stated that the results are indicators instead of
a definite explanation. The use of the word might
emphasizes the uncertainty of the finding."
Annotators are provided the following label de-
scriptions in the annotation environment:

* Uncertain: E.g., ’Sunscreen might prevent
skin cancer.” or ’Overconsumption of sugar
may have negative effects on health.’, ’Further
research is necessary to understand. ..’
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setup
task

label space

Causality

Certainty

Generalization

Sensationalism

classification

In the finding, what type
of causal relationship is
described?

Causation, Correlation,
Expl. states: no relation,
No relation mentioned
MACE

rating scale

How do you rate the
level of certainty used to
describe the finding?
Certain, Somewhat cer-
tain, Somewhat uncer-
tain, Uncertain

MACE

comp. classification
Which finding is more
general?

Reported Finding, Paper
Finding, Same level of
generality

MACE

best-worst-scaling
Which of the findings
is the least/most sensa-
tional?

Most sensational, Least
sensational

count-based BWS-score

aggregation

Table 4: Overview of annotation tasks, annotation setup, label and aggregation strategies. MACE: Hovy et al.
(2013), BWS-score (Kiritchenko and Mohammad, 2017): real-valued score obtained from the best-worst scaling.

* Somewhat uncertain: E.g., ’Sunscreen could
prevent skin cancer.” or ’Overconsumption of
sugar can cause diabetes.’, *The functionality
possibly depends on. ..’

* Somewhat certain: E.g., ’Sunscreen can pre-
vent skin cancer.” or *The analysis suggests
that papers with short titles receive more cita-
tions’

* Certain: E.g., ’Sunscreen prevents skin can-
cer’ or 'Papers with shorter titles get more
citations’, ’...meaning that this treatment

should be used. ..’

Generalization Annotators are provided the fol-
lowing task description and examples: “Identify
if Finding A generalizes the results from Finding
B. Generalizations claim something is always true,
even if something is only valid in certain instances
or occasionally. Let’s go over an example: Read
Finding A. FINDING A: Parent conversations with
children about their weight connected to disordered
eating Compare that to Finding B: FINDING B:
Disordered eating was more prevalent in children
whose fathers engaged in weight conversations. —
Finding B specifies that it is conversation with fa-
thers which were investigated. Finding A general-
izes the statement from fathers to all parents. In
the study, you are tasked to decide which of the
findings is more general: Here, the correct solution
is Finding A. Let’s look at another example: FIND-
ING A: Magnesium potentially has many health
benefits. FINDING B: Increasing dietary magne-
sium intake is associated with a reduced risk of
stroke and heart failure. — Here, Finding B spec-
ifies they researched dietary magnesium and the
medical conditions that are affected. Finding A
is more general, the correct solution is therefore
Finding A. Both findings can be on the same level
of generality: FINDING A: Dietary magnesium

potentially has health benefits. FINDING B: We
show that dietary magnesium had a positive influ-
ence on the participants’ overall health. The correct
solution is They are at the same level of generality."
Annotators are provided the following label de-
scriptions in the annotation environment:

* Finding A: E.g., Finding A discusses a general
finding about diabetes, while the report dis-
cusses the finding for a specific demographic
only. Or generalizing from a specified set of
medical conditions (‘reduced risk of stroke,
heart failure, diabetes’) to a general statement
(‘has health benefits’).

* Finding B: E.g., Finding B generalizes a find-
ing about diabetes type 2 in seniors to all peo-
ple with diabetes. Or generalizing from a spec-
ified set of medical conditions (‘reduced risk
of stroke, heart failure, diabetes’) to a general
statement (‘has health benefits’).

* They are at the same level of generality: Find-
ing B accurately reports the Finding A with
regards to generality.

Sensationalism Annotators are provided the fol-
lowing task description and examples: ‘“Rate how
sensational the language of a finding is. Sensa-
tional text intends to spark the interest of a reader,
make them curious or elicit an emotional reaction.
Cues for sensationalism could be: dramatic, ur-
gent, exaggerated language: life-changing, unpar-
alleled performance, revolutionary, transformative,
miracle treatment or use informal or colloquial
language: amps up the efficiency, They ran some
solid experiments to back this up. Let’s go over an
example: FINDING A: Looks like vitamin D in-
take influences stress levels: New study by @user-
name. FINDING B: Urban Green Spaces and Men-
tal Health: A Positive Correlation Revealed. FIND-
ING C: Exciting new research suggests that upping
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your daily step count could be a simple solution
to alleviate insomnia. FINDING D: We observe
improved plant growth through positive human en-
ergy in our controlled study setup. Read all find-
ings carefully. Some of the text contain sensational
or entertaining language like revealed, exciting,
or simple solution. Based on that you determine
which finding uses the most sensational language
and which one the least: Here, Finding D is the
LEAST sensational. FINDING C is the MOST
sensational.”

Annotators are provided the following label de-
scriptions in the annotation environment:

* A: Finding A is the least sensational.
* B: Finding B is the least sensational.
* C: Finding C is the least sensational.
* D: Finding D is the least sensational.
and
* A: Finding A is the most sensational.
* B: Finding B is the most sensational.
* C: Finding C is the most sensational.
* D: Finding D is the most sensational.

A.2 Experiments
A.2.1 Experimental setting

Fine-tuning task-specific models. We train all
models using a Nvidia Titan-RTX GPU. We train
for 5 epochs with a learning rate of 2e-5, a batch
size of 8, 200 warmup steps, a weight decay of
0.01. We use the Adamw optimizer.

Few-shot prompting. For each input prompt, we
generate the output sequence by using top k sam-
pling with k=10. We set the maximum number
of generated tokens to 200. We use a NVIDIA
Tesla V100 GPU to generate the responses with
the LLaMa model. Generating the responses for
the full dataset takes approx. 7 hours. For the
Mistral7B model, generating all responses takes
approx. 5 hours on an Nvidia GeForce RTX A6000
GPU. For Mixtral8x7B, generation takes approx.
20 hours split across 5 Nvidia GeForce RTX A6000
GPUs. We wrap each prompt with [INST][/INST]
tags to mimic the chat format from pre-training and
include a system prompt that instructs the model to
‘act’ like a reliable annotator.

You are a reliable annotator in an annotation study. You
studied {SCIENTIFIC DISCIPLINE}

{TASK DESCRIPTION}

{TASK EXAMPLES }

Now consider the following finding:

{FINDING, FINDING PAIR, QUAD-TUPLE} {QUESTION}
What is the correct solution? Choose one option. Do not
repeat the findings.

Figure 5: Prompt template. We provide the instantiated
prompts along with the LLM-specific system prompts
and markup in the supplementary material.

Unclear

Correlation relation
f '

Causation
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32
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Unclear
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Predicted labels

Figure 6: Confusion matrix of SciBERT test set predic-
tions for causality.

A.2.2 Prompts

Fig. 5 shows our prompt template. For the BWS-
prompts, we follow Bagdon et al. (2024) who ex-
periment with automatically generating training
data using best-worst-scaling. We provide the task-
specific prompts in the supplementary material.

A.2.3 Error Analysis

Figures 6, 7, 8 and 9 visualize the confusion matri-
ces and residual values for the test set predictions
of the best classification/regression models, i.e.,
SciBERT for causality, certainty and generalization
and RoBERTa for sensationalism.
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Figure 7: Confusion matrix of SciBERT test set predic-
tions for certainty.
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Figure 8: Confusion matrix of SciBERT test set predic-
tions for generalization.
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Figure 9: Residual plot for ROBERTa test set estimates
for sensationalism score.

A.3 Additional Analyses
A.3.1 Filtering Process

The initial dataset is collected by pairing scien-
tific papers from the S20RC dataset (Lo et al.,
2020) with news articles and tweets using Altmet-
ric, an aggregator of mentions of scientific papers
online.'® The scientific papers and news articles
are initially parsed to predict which sentences cor-
respond to either a result or conclusion using a
RoBERTa model (Liu et al., 2019)'? trained on
200K paper abstracts from PubMed that are self-
labeled with paper section categories (Canese and
Weis, 2013). We then pass all pairs of conclusion
and result sentences from papers with conclusion
and result sentences from news articles and tweets
through the model from ? to measure the similarity
of the pair of findings, and select for each news
and tweet finding the paper finding with the highest
IMS above 4.

Bhttps://www.altmetric.com/
¥ roberta-base

No
rel.

No No r’:lo
rel. rel. |

Corr
Corr

Cau Cau Cau

(a) Science news (b) Tweets

Figure 10: Changes in causality across paired findings
from science news (35,150) and tweets (72,032).

u_cert u_cert
u_cert Y. s cert

sCert s cert

(a) Science news (b) Tweets

Figure 11: Changes in certainty across paired findings
from science news (35,150) and tweets (72,032).

A.3.2 Distortions in Large Scale Data

Visualizations of changes in causality (Fig. 10) and
certainty (Fig. 11) across paired findings from sci-
ence news (35,150) and tweets (72,032) as Sankey
diagrams.

A.3.3 Validating the Results from the
Large-scale Analysis

For annotating the subset of the unlabeled data, we
sample 108 instances across all four scientific dis-
ciplines and collect three sets of labels for each
instance. One set is annotated by one of the au-
thors, the other two sets are obtained from inde-
pendent annotators who we provide with the same
annotation instructions that we used to instruct the
crowdworkers.
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Figure 12: Plot of regression coefficients accompany-
ing Fig. 4 for predicting sensationalism score based on
findings source (Paper, News, or Tweet). We see a large
statistically significant effect, indicating that different
sources are potentially perceived as more or less sensa-
tional.
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