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Abstract

Crafting an appealing heading is crucial for
attracting readers and marketing work or prod-
ucts. A popular way is to summarize the main
idea with a refined description and a memo-
rable acronym. However, there lacks a sys-
tematic study and a formal benchmark includ-
ing datasets and metrics. Motivated by this
absence, we introduce (LOGOGRAM),
a novel benchmark comprising 6,653 paper
abstracts with corresponding descriptions and
acronyms. To measure the quality of heading
generation, we propose a set of evaluation met-
rics from three aspects: summarization, neol-
ogy, and algorithm. Additionally, we explore
three strategies for heading generation (gen-
eration ordering, tokenization of acronyms,
and framework design) under various preva-
lent learning paradigms (supervised fine-tuning,
in-context learning with Large Language Mod-
els (LLMs), and reinforcement learning) on our
benchmark. Our experimental results indicate
the difficulty in identifying a practice that ex-
cels across all summarization, neologistic, and
algorithmic aspects.

1 Introduction

Heading design has various applications in
news recommendation (Cai et al., 2023),
academia (Zhang and Tetreault, 2019), adver-
tising (Yang et al., 2023), and search engine
optimization (SEO) (Tsuruoka et al., 2005).
Regarding academia, a well-crafted paper heading
should accurately encapsulate the paper’s main
idea while also being memorable and appealing. A
typical approach is to concatenate the following
two components as the heading (Tsuruoka et al.,
2005): (i) Description — the main body of the
heading that summarizes the paper’s main idea;
(ii) Acronym — an appealing and memorable
word or word-like string whose letters are usually

*Equal contribution

Language model pretraining has led to many key hyperparameters and training
data size.......

Abstract

RoBERTa

Acronym

Robustly Optimized BERT Pretraining ApproachA

Description

Summarization constraint: Description summarizes the main idea. 

Neologistic constraint: RoBERTa looks like a word and is memorable.

Algorithmic constraint: RoBERTa consists of characters from its description.

Figure 1: An example of a paper heading consisting of
a description and an acronym.

constructed from the description (Appelman,
2020). 1 For the example shown in Figure 1,
the description part in the heading, namely “A
Robustly optimized BERT pretraining approach”,
precisely summarizes the main idea from the
work (Liu et al., 2019) that it provides a more
robust BERT (Devlin et al., 2019) pretraining
approach. The acronym “RoBERTa” forms
itself from the underlined letters shown in the
description. Additionally, it is memorable because
it resembles a word and is the name of a character
from the television series Sesame Street.

Despite growing interest in heading generation,
there is still a lack of systematic studies and bench-
marks on this topic. Addressing this, we propose
a fun generation task predicting the description
and acronym of the heading given the abstract of
a paper as its main idea. This task is challeng-
ing as it requires a harmonious blend of multiple
constraints: (i) Summarization constraint — the
predicted description should be a precise summary
of the abstract; (ii) Neologistic constraint — the
predicted acronym should look like a word and be
memorable; (iii) Algorithmic constraint — The
letters in the acronym should be taken sequentially
from the words in the description. It is clear from
Figure 1 that this constraint is satisfied with the

1We have updated the definition of "acronym" not to
require initial letters, noting that researchers, like in the
RoBERTa example, often deviate from tradition.
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Aspect (our work) Acronym Generation Controllable Text Genera-
tion

Dual Text Generation

Objectives Generating engaging headings con-
sisting of acronyms and descriptions.

Generating acronyms for input
text.

Generating text that meets spe-
cific constraints.

Generating two texts with dual
dependency.

Problem
definitions

{D ⇄ A} = f(X,M) A = f(X) where X is
the input, A is the expected
acronym.

Y = f(X,M) where X is
the input while M is the set of
controlled elements.

{
Y = f(X)

X = f−1(Y )
where X

and Y are two dual outputs.

Challenges (i) Balancing multiple constraints:
summarization, neologistic, and algo-
rithmic; (ii) There are limited tech-
niques for neologistic, and algorith-
mic requirements.

(i) Involving creative word
form, combining words or
parts of words in novel ways;
(ii) Grammatically correct and
pronounceable; (iii) Accu-
rately reflecting the meaning
of the original phrase.

(i) Adhering to controlled ele-
ments while maintaining text
quality and diversity; (ii) Un-
derstanding the semantics of
the controlled elements and
translating them into appropri-
ate linguistic features.

(i) Ensuring dual dependency;
(ii) Capturing the intricate re-
lationships between two differ-
ent types of text; (iii) Maintain-
ing consistency and coherence
across dual outputs.

Evaluation
metrics

Summarization, neologistic, and algo-
rithmic aspects.

Creativity, relevance, and im-
pact metrics.

Evaluated based on control ad-
herence and text quality.

Evaluated based on accuracy
and coherence between dual
texts.

Applications Academic (Zhang and Tetreault,
2019), news recommendation (Cai
et al., 2023), SEO (Tsuruoka et al.,
2005), etc (App. A).

Search engine optimiza-
tion (SEO) (Tsuruoka et al.,
2005)

Attribute-based genera-
tion (Saha et al., 2022),
debiasing (Dinan et al., 2020),
data to text (Ribeiro et al.,
2021), etc.

Machine translation (forward
and backward) (He et al.,
2016), Question and answer
generation (Tang et al., 2017),
etc.

Unique con-
tributions of

highlights the interplay of summarization requirements, neologistic creativity, and algorithmic precision. Its standout contributions
lie in its challenges of novel neologistic and algorithmic demands. The three requirements make it particularly suited for applications
where branding, marketing impact, and search engine optimization.

Table 1: Comparison of related text generation tasks.

acronym “RoBERTa” and its description. Our pro-
posed constraints align well with existing standards
of academic heading design (Tsuruoka et al., 2005;
Appelman, 2020).

The heading generation task is different from
the text generation tasks in the literature. Unlike
dual text generation tasks (Xia et al., 2016; Tang
et al., 2017) that focus on generating two outputs
with a dual relationship, our heading generation
task requires a nuanced form of dual dependency
between the acronym and the description at the
algorithmic level. Besides, this task differs from
controllable text generation (Dinan et al., 2020;
Saha et al., 2022) as it requires two mutually depen-
dent outputs, i.e., the description and the acronym.
Additionally, the neologistic and algorithmic con-
straints have never been considered in previous
controllable generation tasks.

To support our heading generation task, we first
establish a pioneering benchmark called .
The dataset consists of the abstracts and
headings of 6,653 papers published in academic
venues featured in the ACL Anthology. We exclu-
sively collect papers whose headings include both
descriptions and acronyms.

Then, we measure the quality of the generated
descriptions and acronyms by evaluating their com-
pliance with the summarization, neologistic, and
algorithmic constraints: (i) We first evaluate de-
scriptions using the existing summarization met-

rics like ROUGE (Lin, 2004), BERTScore (Zhang
et al., 2020a), etc; (ii) We measure the extent of
the resemblance of a generated acronym to real
words by using our newly proposed neologistic
metrics, i.e., WordLikeness and WordOverlap; (iii)
Our newly introduced algorithmic metric, LCSRa-
tio, measures the consistency between the sequence
of letters in an acronym and the sequence of letters
in its corresponding description.

To explore the best practice for heading gen-
eration, we propose and empirically study vari-
ous strategies (generation ordering, tokenization
of acronym, and framework design) across sum-
marization, neologistic, and algorithmic dimen-
sions. We test these strategies within learning
paradigms including supervised fine-tuning, rein-
forcement learning, and in-context learning with
LLMs. Experimental results from various strate-
gies and learning paradigms indicate the difficulty
in identifying a practice that optimally balances
the summarization, neologistic, and algorithmic
requirements. Our contributions are three-fold:

• To support the task of generating a heading
consisting of an acronym and a description,
we contribute a valuable benchmark .
It poses unique summarization, neologistic,
and algorithmic challenges. The benchmark
can be accessed via https://github.com/
cui-shaobo/logogram.
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• Apart from the existing summarization met-
rics, we propose new metrics regarding both
neologistic and algorithmic aspects. These
various types of metrics enable a comprehen-
sive evaluation of heading generation.

• To explore the best practice for heading gener-
ation, we propose and empirically study strate-
gies including generation ordering, tokeniza-
tion of acronyms, and framework design, un-
der learning paradigms covering supervised
fine-tuning, reinforcement learning, and in-
context learning with LLMs.

Organization of This Paper. We begin by defin-
ing the task and outlining the core research ques-
tions of in § 2. This is followed by a de-
tailed description of dataset construction and its
statistics in § 3. In § 4, we introduce the auto-
matic evaluation metrics tailored for this novel task,
which integrates aspects of summarization, neol-
ogy, and algorithm constraints, along with justifi-
cation evidence for these metrics. We then present
an empirical analysis of various strategies across
different learning paradigms in § 5. The paper con-
cludes with a review of related work in § 6 and
final remarks in § 7.

2 Task of

In this section, we first formally define our task in
§ 2.1 and compare it with existing relevant tasks
in § 2.2. Then, we propose three focused research
questions that motivate our work in § 2.3.

2.1 Task Definition
As depicted in Figure 1, our goal is to generate an
engaging paper heading in the fashion of a descrip-
tion prepended with an acronym, given the paper’s
main idea, i.e., the abstract. This task has three
inherent constraints:

• Summarization Constraint: The description
should summarize well the paper’s main idea.

• Neologistic Constraint: The acronym forms a
memorable word/pseudo-word.

• Algorithmic Constraint: The acronym catches
letters from the description in the correct or-
der.

Mathematically, our task is defined as

{D ⇄ A} = f(X,M) (1)

where D and A means the description and the
acronym in the heading. M is the set of constraints
covering summarization, neologistic, and algorith-
mic requirements. The ⇄ symbol in {D ⇄ A}
means that D and A are mutually dependent: A
forms itself from characters in D and A in return
guides the word choice during the generation of D.
This task demands a sophisticated blend of human
skills, including summarization capability, algorith-
mic planning, and creativity in neology. Besides,
the interconnected nature between the acronym and
the description increases this task’s intricacy.

2.2 Comparison with Other Generation Tasks

As delineated in Table 1, the distinctiveness of
in the landscape of text generation is ev-

ident when compared to related works. In ad-
dition to the distinctness of problem definition,

distinguishes itself from related works in
three aspects:

• Exclusive Challenges: Unlike conventional
acronym generation which only expects cre-
ative words, controllable text generation
which requires adhering to controlled ele-
ments, and dual text generation that asks
for dual dependency, uniquely inte-
grates the challenges of summarization accu-
racy for descriptions, neologistic creativity for
acronyms, and algorithmic correctness for de-
pendency between descriptions and acronyms.

• Demand for Novel Evaluation Metrics: Ne-
ologistic and algorithmic requirements of

bring exclusively demand for evalu-
ation metrics for these two aspects, which is
unseen in previous text generation tasks.

• Unique Empowering Application: the spe-
cialty of uniquely empowers multiple
applications like branding, researching, and
search engine optimization.

2.3 Three Core Research Questions

Our paper is centered on three key research ques-
tions (RQs) based on our task:

• RQ I: Considering the unique requirements
of heading generation involving both descrip-
tions and acronyms, what steps are essential
in constructing a dataset that adequately sup-
ports this task?
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• RQ II: Given the multifaceted nature of head-
ing generation, encompassing summarization,
neology, and algorithm, what innovative met-
rics can be developed to effectively evaluate
outcomes in these aspects?

• RQ III: Exploring the spectrum of strategies
and learning paradigms, which approaches of-
fer promising results for heading generation,
particularly in balancing summarization, neol-
ogy, and algorithmic challenges?

We answer RQ I by showing how we construct
a supportive dataset for heading generation in § 3.
Then we present our well-designed metrics to an-
swer RQ II in § 4. Finally, we apply different
strategies under supervised fine-tuning, reinforce-
ment learning, and in-context learning with LLMs
to gauge their effectiveness across the summariza-
tion, neologistic, and algorithmic aspects in § 5.

3 Dataset of

In this section, we detail the dataset construction
process (§ 3.1) and the dataset’s statistics (§ 3.2).

3.1 Dataset Construction

Step III: Apply filtering
rules to clean the dataset

Year: 2017, 2022, etc. 
Venue: ACL, EMNLP,
NAACL, etc.
Abstract: ......
Heading: ......

Step I: Collection of papers Step II: Keep papers whose
headings contain acronyms

Abstract

Step IV: Replace acronyms
in abstracts with masks

VenueYear  Acronym DescriptionHeading

Figure 2: Pipeline of collection and refinement of
dataset.

Dataset Construction. The construction of
outlined in Figure 2 involves a four-step

process. (i) We crawl the ACL Anthology with
89,047 papers published up to 2023 as our founda-
tional dataset; (ii) The collected dataset was then
refined by excluding headings without colons, fol-
lowed by segmenting each heading at the first colon
to separate the acronym from the description; (iii)
We further applied a set of tailored filtering rules
to eliminate anomalous and low-quality samples;
(iv) Acronyms in the abstracts were replaced with
a mask to prevent acronym leakage. All processing
steps are detailed in App. B.

Dataset Profile. Our final refined dataset
comprises 6,653 papers from 1989 to 2023 span-
ning 37 well-recognized venues. The refinement
steps and the reliable source ensure the high quality
of our collected samples. The dataset is partitioned
into training, validation, and test sets with 5,000,
653, and 1,000 papers, respectively. It includes the
following metadata: (i) Venue: the conference or
journal where the paper was published; (ii) Year:
the acceptance year of the paper; (iii) Abstract: the
paper’s abstract; (iv) Heading: the paper’s head-
ing; (v) Acronym: the acronym extracted from the
paper’s heading; (vi) Description: the description
extracted from the paper’s heading. The abstract
serves as input, representing the paper’s main idea,
for language models to predict the corresponding
acronym and description.

3.2 Dataset Statistics

1952-1963

1964-1973

1974-1983

1984-1993

1994-2003

2004-2013

2014-2023

Decade
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Figure 4: Publication counts across decades. The left y-
axis (in green, log-scaled) displays the counts of all ACL
Anthology published papers and the counts of papers in

format. The ratio of papers to the total
amount of papers is shown in the right y-axis, which is
in blue and the linear scale.

w.r.t. Text Length. We plot the distributions of
the number of tokens of acronyms, descriptions,
and abstracts, along with the number of characters
of acronyms in Figure 3. We observe that they are
close to normal distributions, indicating that our
distributions are symmetric and not skewed. The
non-skewed distributions avoid the adverse effects
of outliers on model performance, demonstrating
the good quality of our dataset.

w.r.t. Publication Counts Across Decades. The
counts of all published articles and papers that meet
our task requirements (the heading consisting of
an acronym and a description) over decades are
displayed on the left y-axis of Figure 4 (in green).
Though the quantity of published articles is expand-
ing, the number of publications whose titles consist
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Figure 3: The distributions of acronym token length, acronym character length, description token length, and
abstract token length of data samples in . These curves are plotted with the technique of kernel density
estimation (Parzen, 1962), which represents the data using a continuous probability density curve.

of acronyms and descriptions is rising far more
quickly. The right y-axis (in blue) of Figure 4 dis-
plays the ratio of eligible papers to the total amount
of publications over decades. The rising tendency
of proportion indicates that more authors are cre-
ating more appealing headings by using acronyms
and descriptions simultaneously.

4 Automatic Evaluation of

In this section, we propose automatic evaluation
metrics in § 4.1 and discuss their justification ev-
idence in § 4.2. We elaborate on these metrics in
detail in App. C.

4.1 Automatic Metrics
Summarization Metrics for Descriptions. To
assess if the generated descriptions adequately sum-
marize the abstracts under summarization require-
ments, we compare them against the ground truth
descriptions, using automatic metrics including
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE-L (Lin, 2004),
CIDEr (Vedantam et al., 2015)), and BERT-
Score (Zhang et al., 2020b).

Neologistic Metrics for Acronyms. To measure
the resemblance of the generated acronyms to real
words, we propose two new metrics: WordLike-
ness (WL) and WordOverlap (WO).
WordLikeness (WL). We define WordLike-
ness (WL) as follows:

WL = 1− tokenize_num(A)− 1

|A | (2)

where A is for the generated lowercase acronym,
tokenize_num(∗) returns the number of tokenized
subwords, and | ∗ | denotes the string length of
∗. Our inspiration comes from Byte Pair En-
coding (BPE) (Sennrich et al., 2016), which seg-
ments words or sequences into most frequently

occurring subword units, akin to morphemes (the
smallest grammatical units in a language). To
mimic real words, we advocate for segmenting an
acronym into longer subword units that resemble
morphemes rather than decomposing it into indi-
vidual letters, thereby minimizing the number of to-
kens. A high WL value signifies that this acronym
consists of morphemes and resembles real words.
WordOverlap (WO). Our assertion is that an
acronym meeting the criteria for a newly coined
term should exhibit notable resemblances with pre-
existing vocabulary. Thus, we define WordOver-
lap (WO) as the maximum overlapping similarity
between an acronym and any of the existing com-
mon words:

WO = max
w∈D

2 · |LCS(A,w)|
|A|+ |w| (3)

where D is a set of collected lowercase com-
mon words, detailed in App. C.1. LCS(∗, ∗)
represents the Longest Common Subsequence
(LCS) (Hirschberg, 1977) between two strings. A
high WO value shows that the generated acronym
overlaps largely with at least one familiar word.

Algorithmic Metric for Acronyms and De-
scriptions. To assess how much the generated
acronym accurately retains the letter sequence
from the description in the correct order, we also
propose LCSRatio (LR). LCSRatio leverages the
Longest Common Subsequence (LCS) to quantify
how closely the acronym reflects the sequence of
letters found in its corresponding description. A
longer LCS means the acronym and the description
share a larger portion of its consisting letters. The
LR metric is calculated as follows:

LR =
|LCS(A,D)|

|A| (4)

where LCS(∗, ∗) references the LCS definition pro-
vided in Equation (3), and D represents the gen-
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erated description in lowercase. A high LR value
implies that the acronym successfully encapsulates
its description’s letters in the correct order. Further
implementation details can be found in App. C.2.

Summarization Metrics for Acronym. Our pro-
posed metrics WL, WO, and LR align well with our
neologistic and algorithmic aspects of generated
acronyms and descriptions, but they don’t offer
ground truth comparison. Therefore, we also com-
pare the generated acronyms with the ground truth
acronyms using C-BLEU (from n = 1 to 4) (Pa-
pineni et al., 2002) and C-ROUGE-L (Lin, 2004),
which are detailed in App. C.3.

4.2 Justification of Metrics

Since WL, WO, and LR don’t offer ground truth
comparisons, it is intuitive to justify that these met-
rics are correlated to the quality of headings. We
first demonstrate that the gold-standard examples
achieve high value in these metrics. Furthermore,
we compare WL, WO, and LR values for different
manually created acronyms of varying quality. We
show that the three metrics are valid for evaluating
the neologistic and algorithmic constraints.

Density Estimation of Different Metrics Over
. Figure 5 shows the distributions of

WordLikeness (WL), WordOverlap (WO), and LC-
SRatio (LR) in . We observe that these
three kernel density estimation curves exhibit a pro-
nounced right skew, with values densely clustered
near 1 and becoming increasingly sparse as they ap-
proach 0. Given that our dataset comprises research
works from prestigious venues, the data samples
are generally of high quality. The right-skew den-
sity estimation curves in turn justify our proposed
metrics’ appropriateness in evaluating our task.

0.0 0.2 0.4 0.6 0.8 1.0
Metric score

0.0
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LCSRatio
WordLikeness
WordOverlap

Figure 5: The kernel density estimation curves (Parzen,
1962) of WordLikeness (WL), WordOverlap (WO), and
LCSRatio (LR) values of samples in . The val-
ues of WL, WO, and LR all range from 0 to 1.

Joint Distribution in Cubic Space. Figure 6 fur-
ther displays the joint distribution of WL, WO, and
LR within a cubic space, revealing a significant
concentration of data points around the (1, 1, 1) co-
ordinate. This indicates that a substantial portion of
examples in simultaneously exhibit high
values across all three metrics. Such alignment
with the ground truth data underscores the valid-
ity of these metrics as measures of quality. If the
quality of the generated descriptions and acronyms
can be on par with the ground truth, then the corre-
sponding metrics should all be high.

LCSRatio 00.20.40.60.81.0
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Figure 6: Joint kernel density estimation within a cubic
space for . Axes x, y, and z represent the val-
ues of LCSRatio, WordLikeness, and WordCoverage,
respectively, each ranging from 0 to 1. Color intensity
indicates density levels, with lighter shades denoting
higher densities.

Performance of Metrics on Manually Created
Examples. We provide several manually created
examples, as opposed to the real ones from the
dataset, and further clarify how LCSRatio, Word-
Likeness, and WordOverlap metrics are applied.
Table 2 compares the WL, WO, and LR values for
various acronyms derived from the same descrip-
tion. The acronym “SVD” has low scores across
all metrics, as it fails to meet the neologistic and
algorithmic requirements. “Sugar” exhibits rela-
tively high WL and WO values, due to its resem-
blance as a word. However, its LR value is low
because its constituent letters and the description
are not in the same alphabetical order. Conversely,
“SMfATe” demonstrates a superior LR value, re-
flecting its derivation from the initial letters of the
description. However, the WL and WO values are
low because it is not similar to any recognizable
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word. “SMARTies” scores highly across all met-
rics, benefiting from its resemblance to the term
“smartie”–connoting intelligence–and its associa-
tion with the name of a confectionery brand, in
addition to its formulation from the letters in the
description. From the above examples, we elabo-
rate that the WL, WO, and LR metrics are justified
indicators for the neologistic and algorithmic as-
pects.

Acronym WL WO LR

SVD 0.33 0.80 0.67
Sugar 1.00 1.00 0.60
SMfATe 0.50 0.80 1.00
SMARTies 0.88 0.88 1.00

Description Sentiment Models for Ara-
bic Target entities

Table 2: Comparison of WL, WO, and LR values by an
example acronym. The higher the better.

5 Empirical Study on

This section addresses RQ III, which focuses on
assessing the effectiveness of various strategies and
learning paradigms when applied to language mod-
els. We specifically examine their performance
on summarization, neologistic capabilities, and al-
gorithmic dimensions. We first introduce several
potential strategies in § 5.1. Following this, in
§ 5.2, we demonstrate the usage of these strategies
across different learning paradigms. Finally, we
thoroughly assess the effectiveness of the strategies
and learning paradigms across the summarization,
neologistic, and algorithmic performance in 5.3.

5.1 Possible Strategies
Generation Ordering. The rationale behind this
strategy is the importance of text generation order
for autoregressive models, where the content gen-
erated later depends on what is generated first. The
decision diverges on whether to first generate the
description and followed by the acronym ( ) or to
generate the acronym and then the description ( ).

Tokenization of Acronyms. Since the letter from
acronym is derived from letters in the description,
adjacent characters in acronyms might not consti-
tute a token found in the dictionary. Thus, beyond
the standard tokenization method that processes
the entire acronym ( ), we explore the potential
benefit of tokenizing each separated letter of the
acronym ( ). This approach is considered as it may

enhance language models’ understanding that an
acronym is composed of individual letters from the
description.

Framework Design. Since our task involves the
generation of descriptions and acronyms, a natural
divergence is whether to use a onestop approach —
employing a single language model that generates
these two outputs separated by a delimiter in a
onestop fashion ( ) — or generating one before
the other type of output with two language models
in a sequential pipeline fashion ( ).

5.2 Learning Paradigms

Supervised Fine-Tuning (SFT). SFT is the most
straightforward learning paradigm. Concretely, we
fine-tune a pre-trained language model using var-
ious strategies with supervised data. The model
receives an abstract text as input and produces a
description and an acronym as outputs. We inves-
tigate the three abovementioned strategies under
the SFT learning paradigm: Generation Order, To-
kenization, and Framework Design. Specifically,
we fine-tune generative pre-trained language mod-
els T5 (Raffel et al., 2020), and conduct a set of
comparative studies to explore the effectiveness of
different strategies ( vs. , vs. , and vs. ).
Details about our experiment setup and fine-tuning
baselines are in App. D.

Reinforcement Learning (RL). Building upon
the foundation of the SFT paradigm, we extend
our exploration to the RL paradigm, which aims
to improve the quality of the generated outputs
through a reward-based mechanism.

Specifically, we choose the Proximal Policy Op-
timization (PPO) algorithm (Ziegler et al., 2019) to
implement the RL paradigm. This process initiates
with a baseline policy πSFT

ϕ from the SFT model
and progresses to a refined policy πRL

ϕ which aims
to enhance the overall quality r of the output, mea-
sured by a geometric mean of WL, WO, and LR
scores. Meanwhile, the optimized model maintains
proximity to the original SFT model. The enhance-
ment is guided by optimizing the reward function
rtotal, defined as

rtotal = r − ηKL(πRL
ϕ , πSFT

ϕ ) (5)

where KL denotes the Kullback–Leibler divergence
and η is a coefficient regulating the strength of the
KL penalty. We elaborate on the details in App. E.
We evaluate all strategies with the exception of
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Figure 7: A comparative analysis of different strategies and learning paradigms. The axes labeled Sum-A and Sum-D
quantify the average performance metrics for acronym and description summarization, respectively. The axis of
Algorithm displays the LR value while the Neology axis reflects the average value of WL and WO. Subfigure (a)
shows the relative change of each strategy ( , , and ) over the baseline ( ) under Supervised
Fine-tuning (SFT), Reinforcement Learning (RL), and In-Context Learning with LLMs (ICL). Subfigure (b) zooms
in on the performance variation within the same strategy ( ) across learning paradigms. It highlights the
improvement or decline compared to the SFT baseline, which is bolded blue with a 0% change.

framework design ( vs. and vs. ). This
exception is made due to the relatively unexplored
territory of feedback mechanisms within Reinforce-
ment Learning (RL) for pipeline language models.

In-Context Learning with LLMs (ICL). Apart
from SFT with massive training data, we also
adopt LLMs (OpenAI et al., 2023) with advanced
few-shot prompting techniques (Wei et al., 2022).
Specifically, we test the one-shot performance of
gpt-4-1106-preview version of GPT-4 (OpenAI
et al., 2023) on the heading generation task. De-
tailed setup is in App. F.

5.3 Experiment Results
Comparison of Different Generation Strategies.
Figure 7a illustrates the radar plot for compar-
ing various strategies across different learning
paradigms, evaluated from three dimensions: sum-
marization, neologistic, and algorithmic perfor-
mance. Key takeaways are:

• Certain strategies under different paradigms
show similar performance in specific aspects.

• Overall, strategies demonstrate inconsistency
across different learning paradigms, with pat-
terns varying significantly.

• Strategies in SFT and RL exhibit similar pat-
terns, differing greatly from those in ICL.

• Not a single strategy excels across all aspects
within each learning paradigm, challenging
the identification of an optimal strategy.

Table 6 and App. G.1 further detail the performance
of various strategies in each learning paradigm.

Comparison of Different Learning Paradigms.
We further compare the performance of different
learning paradigms employing the same strategy (

) depicted in Figure 7b. SFT and RL yield
comparable results, with RL slightly outperform-
ing in neologistic and algorithmic aspects. Con-
versely, ICL performs significantly worse than both
SFT and RL. This subpar performance is partic-
ularly due to the novelty of the task for LLMs
and the fact that LLMs are not optimized for the

dataset. Table 6 in App. G.1 displays de-
tailed performance.

Case Study. Table 3 presents a case study com-
paring various strategies under different learning
paradigms, revealing that the ground truth descrip-
tion and acronym meet the requirements for sum-
marization, neology, and algorithmic constraints
effectively. However, while most strategies adeptly
address the summarization requirement across
learning paradigms, they often struggle to meet the
neologistic with algorithmic constraints simultane-
ously. Specifically, the ground-truth description,
“Discriminator Cooperative Unlikelihood Prompt-
tuning for Controllable Text Generation” accu-
rately summarizes the abstract and the main idea
of the paper (Zhang and Song, 2022) which inves-
tigates controllable text generation. Moreover, the
ground-truth acronym, “DisCup”, meets the neolo-
gistic (like the variant form of the real word “cup”
and beginning with a common prefix of “dis”) and
algorithmic criteria (letters all come from the de-
scription). On the other hand, generated acronyms
fail to satisfy the neologistic constraint (“ATROPT”
and “AtticCLM”), the algorithmic constraint (“Ad-
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vProbe”), or both constraints (“PCTG”).

Strategies Descriptions Acronyms

Supervised Fine-Tuning Paradigm

Attribute Knowledge-Attribute-Discriminator for
Text Generation

AtticCLM

Prompt Learning with Attribute Knowledge P-CTG
attribute-discriminator for Text Generation PromptCTG
Frozen Language Model Control with Attribute
Knowledge

AdvProbe

In-Context Learning Paradigm

Enhancing Controlled Text Generation in Casual Lan-
guage Models through Attribute-Discriminator Opti-
mized Prompt Learning

ATROPT

Attribute-Controlled Text Generation via
Discriminator-Optimized Prompts in Frozen
Casual Language Models

ACT-
Prompt

Enhanced Attribute-Controlled Text Generation with
Discriminator-Optimized Prompts

EACTG

Enhanced Attribute-Controllable Text Generation
with Discriminator-Optimized Control-Prompts in
Large Casual Language Models

DisCoGen

Reinforcement Learning Paradigm

Controlled Attribute Knowledge for Attribute Con-
trolled Text Generation

AttCraft

Prompt Learning with Attributes P-CTG
attribute-discriminator for Text Generation PromptCTG
N/A N/A

Ground Truth Discriminator Cooperative Unlikelihood Prompt-
tuning for Controllable Text Generation

DisCup

Table 3: A case study for generating a heading that con-
sists of an acronym and a description given the abstract
of (Zhang and Song, 2022).

6 Related Work

Acronym Construction. The generation of
acronyms involves creating memorable and com-
municative phrases. Tsuruoka et al. (2005) pro-
posed a generative approach for acronym construc-
tion, wherein the acronym generation is formalized
as a sequence labeling problem like part-of-speech
tagging, and they adopt conventional Markov mod-
eling methods for the acronym generation. Appel-
man (2020) focuses on the importance of acronyms
in news headlines and defines acronyms as word-
like strings from letters in the headlines. Li et al.
(2022) presented a method for acronym extraction
from definition text using a prompt-based sequence
generation approach. Existing tasks in acronym
construction do not address the simultaneous gen-
eration of both acronyms and their descriptions.
We introduce to pioneer the field of jointly
generating acronyms and descriptions.

Controllable Text Generation. Controllable
Text Generation (CTG) (Zhang et al., 2022) is the
process of producing text that meets specific crite-
ria. Research in this area, leveraging Pre-trained
Language Models (PLMs) for CTG, can gener-
ally be categorized into three distinct methodolo-
gies. The first approach is to fine-tune the PLM

with supervised data (Nan et al., 2021; Zhang and
Song, 2022), which demands many supervised
data samples. The second one is to re-train the
PLM from scratch, which is very costly. Typi-
cal examples include CTRL (Keskar et al., 2019),
POINTER (Zhang et al., 2020c), etc. The third
approach (Holtzman et al., 2020; Scialom et al.,
2022) is to re-rank the generated outputs in a post-
processing manner based on the criterion of the
controllable task.

Dual Text Generation. Dual Text Generation
(DTG) involves the simultaneous creation of two
interdependent text outputs. This field concentrates
on generating parallel text formats, such as trans-
lation and simultaneous summarization. Xia et al.
(2016) pioneered the concept of duality in machine
translation by connecting both backward and for-
ward translation processes, showing the potential
for enhancing translation accuracy and coherence
through DTG approaches. Rashid et al. (2019) pro-
posed Bilingual-GAN, a bilingual generative ad-
versarial network (GAN) architecture, to tackle the
dual text generation task. Bao et al. (2022) further
explored this problem by developing Latent-GLAT,
a latent variable model that uses discrete latent vari-
ables to capture word categorical information.

7 Conclusions

In this paper, we introduce a novel task that aims at
generating headings that comprise both descrip-
tions and acronyms, supported by a dedicated
dataset, , and tailored evaluation metrics.
This task poses challenges in summarization, ne-
ologistic, and algorithmic aspects. Furthermore,
we propose different generation strategies, includ-
ing generation ordering, tokenization of acronyms,
and framework design, and assess their effective-
ness across learning paradigms such as supervised
fine-tuning, reinforcement learning, and in-context
learning with LLMs. Our findings highlight the
complexities involved in striking an optimal bal-
ance between summarization, neologism, and al-
gorithmic constraints, demonstrating the intricate
nature of this task.
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Limitations

Despite the value of the contributed task, the sup-
portive dataset, the evaluation metrics, and the in-
troduced strategies, some limitations require spe-
cial attention. Firstly, the scope of the dataset is
relatively limited, mainly to academic heading gen-
eration, though our task can be applied to various
scenarios. It is a very tricky balance between con-
tributing a comprehensive dataset and not violating
any copyright usage policies. Secondly, though the
currently proposed metrics meet our task’s require-
ments quite well, some other possible evaluation
aspects could also be considered, such as engage-
ment and clarity. We encourage more investigation
on the evaluation of heading generation from differ-
ent perspectives. In summary, we acknowledge the
limitations of our work. However, our work sheds
light on a novel promising generation topic and
contributes its supportive dataset and evaluation
metrics.

Ethical Considerations

The dataset we collect is under the MIT License for
research objectives. The licenses of packages that
we use are listed in Table 5. All models (App. D
and E) and the LLMs’ API we invoke (App. F)
are revealed to the public. Another ethical con-
cern requiring special attention is the potential for
language models to generate acronyms with nega-
tive connotations, such as “HARD” or “MEAN”.
Users should be particularly careful when design-
ing acronyms to avoid negative connotations.
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A Applications of Heading Generation

In this section, we explore the various applications
of heading generation.

Branding and Marketing. An engaging slogan
plays a crucial role in the marketing and advertising
of commercial companies. It helps to craft appeal-
ing headings for product descriptions and promo-
tion policies to attract customers’ interest (Abdi
and Irandoust, 2013; Dass et al., 2023). Addition-
ally, it assists in creating catchy and memorable
brand names that enhance market recognition.

Academia and Research. To attract a broader
audience to research papers, it is essential to con-
struct compelling titles (Mishra et al., 2021). Be-
sides, for complex scientific terms or project topics,
the emergence of acronyms makes the work more
memorable and easier to refer to. It also facilitates
the understanding of the research.

Search Engine Optimization. An algorithm-
friendly acronym is beneficial for content to be
retrieved by search engines (Tsuruoka et al., 2005;
Li et al., 2022; Chen et al., 2023). Our work can not
only generate a description that is accessible to hu-
man readers but also to create an algorithm-friendly
acronym for search engines.

B Details of Construction

The construction process of the dataset, as out-
lined in the main text, involves several critical
steps. These steps, detailed from App. B.1 through
to App. B.4, correspond sequentially to steps (i)
through (iv) as discussed in § 3.1.

B.1 Crawling Process

All samples are collected from the root page of
ACL Anthology 2. We iterate all conferences listed
in the root page of ACL Anthology. For each con-
ference, we first fetch the content of the main page.
Then, we parse the HTML content using Beautiful
Soup 3 to obtain papers’ webpage links. With the
link, we iterate through all papers to extract details
like headings and abstracts.

2Based on the claim of ACL, materials prior to 2016
are under the license of Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 International License (CC
BY-NC-SA 3.0 DEED). Materials after 2016 are under the
license of Creative Commons Attribution 4.0 International
License (CC BY 4.0 DEED).

3https://www.crummy.com/software/
BeautifulSoup/bs4/doc/

However, for quite a large portion of papers,
there are blanks for papers’ abstracts. To overcome
this knotty cases, we downloaded the pdf files of
these papers that miss abstracts and extract the
abstract from these PDF files using PyMuPDF 4.
We suppose that the abstract is the content between
the section of Abstract and Introduction.

B.2 Extraction of Acronyms and Descriptions

When crawling from ACL anthology, we also ex-
tract acronyms A and descriptions D from head-
ings in the crawled dataset. We first discard exam-
ples whose heading does not have an acronym or
a description. We achieve this by applying a for-
matting pattern <A>:<D> to match each heading
in the data. If the data does not have any colon,
we drop it. Otherwise, we split on the first colon
and regard the acronym as strings before the colon,
and the description as strings after the colon. This
process resulted in 38,784 headings with pairs of
an acronym and a description.

B.3 Removing Low Quality Data

After keeping those examples with acronyms, we
clean our data and filter out anomalies by applying
a set of tailored filtering rules as follows:

1. Basic Cleaning:

(a) Replace all newline characters with
spaces, and all "-\n" with an empty
string. We do that because PDF files
have actual line breaks at the end of ev-
ery line in the PDF.

(b) Strip whitespace from all string columns.
(c) Drop duplicates and rows with missing

values or empty string.

2. Special Processing for Acronyms:

(a) Replace underscores with spaces in the
Acronym column.

(b) Remove rows where the Acronym col-
umn contains more than one word.

(c) Remove rows where the Acronym col-
umn contains characters other than let-
ters and hyphens.

3. Special Processing for Abstracts:

(a) Replace the first "Abstract" string with
an empty string in the Abstract column,

4https://pymupdf.readthedocs.io/
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since many crawled abstracts start with
this string.

(b) Remove strings after the last period in
the Abstract column.

(c) Remove non-English abstracts with the
langdetect (Danilák, 2023) package.

4. Outlier Removal:

(a) Get distributions of lengths in acronyms
(char-level), descriptions (token-level)5,
and abstracts (token-level).

(b) Remove outliers that are more than 3
standard deviations away from the mean.

To summarize, we employ some basic text clean-
ing and make sure that 1) the acronym is a single
English word and 2) the abstract is in English and
ends with a period. After the cleaning, 6,653 exam-
ples are left.

B.4 Preventing Acronym Leakage
There is still one issue in our cleaned data that
the abstract will reveal the acronym in its texts.
The language therefore can easily cheat and simply
copy the acronym in the abstract, instead of deriv-
ing from the description or abstract. To avoid that,
we mask acronyms with the abstract and replace
all matched ones with <MASKED_ACRONYM>.

For the description, we don’t mask them men-
tioned in the abstract. We think hiding the de-
scription is unnecessary because it is very common
for researchers to use a part of the abstract as the
description part of the heading. Besides, if the
abstract contains the description, the description
serves the purpose of the paper, and removing it
will reduce the clarity of the abstract. Therefore,
we allow language models to copy words from the
abstract as the description.

C Details of Automatic Metrics

C.1 Neologistic Evaluation Metrics
WordLikeness (WL). The code below shows the
detailed implementation of WL:

1 def calculate_wordlikeness(self, acronym):
2 if acronym == "":
3 return 0
4 else:
5 acronym = acronym.lower()
6 return 1 - \
7 (len(self._tokenizer.tokenize([
8 e for e in

self.tokenizer.tokenize(acronym) if
e != ' '

↪→
↪→

5We use the T5 tokenizer from Huggingface.

9 ]))-1) / len(acronym)

We utilize the T5 Tokenizer as our tokenizer.
Since the tokens contain meaningless underlined
dash symbols ’ ’, we need to remove them when
counting the number of tokens of the acronym. All
of the acronyms are lowercase in WL and the same
is true for the other metrics mentioned later.

WordOverlap (WO). We implement the WO
metric in the code below:

1 import difflib
2
3 def calculate_wordoverlap(self, acronym):
4 acronym = acronym.lower()
5 return max(difflib.SequenceMatcher(None, acronym,

word).ratio() for word in self._dictionary)↪→

We employ the Python difflib library and use
the class SequenceMatcher to compare pairs of se-
quences of any type. The ratio() method returns
a measure of the sequences’ similarity:

similarity =
2 · |LCS(s1, s2)|

|s1|+ |s2|
(6)

where LCS(∗, ∗) represents the Longest Common
Subsequence (LCS) (Hirschberg, 1977) between
two sequences. s1 and s2 are two lowercase strings.
| ∗ | denotes the length of a string.

In the WO metric, we measure the sequences’
similarity between the acronym and every com-
mon English word in a predefined dictionary. To
collect common English words, we source from
the corpora eng_news_2020_1M 6 in Leipzig Cor-
pora (Goldhahn et al., 2012) under CC BY-NC
4.0, including words and their frequencies. We
then drop out empty strings and non-English words.
After that, we lowercase all words and merge all
duplicate words and their counts. Finally, we re-
move all NLTK stopwords 7 from the dictionary
and keep the top 10% frequent words, resulting in
21,610 words in our final dictionary.

C.2 Algorithmic Evaluation Metrics
LCSRatio (LR). The LR metric measures how
well the generated acronym catches the letters from
the description in the right sequence. Specifically,
we use dynamic programming to derive the LCS
between the acronym and the description and quan-
tify the proportion of the acronym in the LCS. We
implement the LR metric by the following code:

6https://wortschatz.uni-leipzig.de/en/
download/English#eng_news_2020

7https://www.nltk.org/search.html?q=stopwords
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1 def calculate_lcsratio(self, acronym, description):
2 if acronym == "" or description == "":
3 return 0
4 else:
5 acronym = acronym.lower()
6 description = description.lower()
7 lcs = self._lcs(acronym, description)
8 return len(lcs) / len(acronym)

C.3 Other Acronym Evaluation Metrics
C-BLEU. C-BLEU is a weighted geometric
mean of all the modified n-gram character-level
precisions, multiplied by the brevity penalty.

C-BLEU = BP · exp
(

N∑

n=1

wn log pn

)
, (7)

where wn is the weight for character-level n-gram.
BP is the brevity penalty term

BP =

{
1

exp (1− len(S)/len(C))
, (8)

where C and S are the generated acronym and the
reference, respectively. pn is the modified n-gram
precision that is calculated as

pn =

∑
n-gram∈C

Countclip(n-gram)

∑
n-gram∈C

Count(n-gram)
(9)

where C is the reference acronym and
Count(n-gram) is the number of this letter-
level n-gram in C. For the clip term in the
numerator of Equation (9) Countclip(n-gram) =
min(Count,Max_Ref_Count). In other words,
each character-level gram should not exceed the
largest count observed in any single reference for
that character-level gram, i.e., MAX_Ref_Count.
C-ROUGE-L. C-ROUGE-L is based on the
longest common substring (LCS) between the gen-
erated acronym and reference. A longer shared
sequence indicates more similarity between two
words.





RLCS = LCS(C,S)
len(S)

PLCS = LCS(C,S)
len(C)

FLCS = (1+β2)RLCSPLCS

R+β2PLCS

(10)

where C and S are the generated acronym and the
reference, respectively.

C.4 Implementation of ROUGE-L and
C-ROUGE-L Metrics

We employed the HuggingFace’s evaluate library
to implement the ROUGE metrics, as detailed in

Table 5. Our reports use the "rougeL" value for
scoring. The parameters are set to default with
use_aggregator=True and use_stemmer=False,
which means that we return aggregate scores and do
not employ the Porter stemmer for suffix stripping.
This implementation serves as a wrapper around
Google Research’s reimplementation of ROUGE 8,
which differs slightly from the original Perl script
implementation. The original version splits text at
\n for processing multiple sentences, while our ap-
proach does not recognize the \n symbol. However,
as our task focuses on heading generation without
producing the \n symbol, both implementations
function equivalently in our context.

D Supervised Fine-Tuning

D.1 Training Details

We finetune T5-base models (Raffel et al.,
2020) (220M parameters) for all fine-tuning strate-
gies. For the pipeline strategy, we train two sep-
arate T5 models for the two steps. All models
are under the same training configuration. Specif-
ically, we optimize each model on four NVIDIA
TITAN Xp GPUs in parallel with a batch size of 8
per device. We fine-tune these models for 5 epochs
and use Huggingface Adafactor (Shazeer and Stern,
2018), the default optimizer for the T5-base model
with a default learning rate of 1e-3. We set the
max_length to 512 and the max_decode_step to
64. The configurations of inference remain the
same as fine-tuning.

D.2 Input and Output Format for Each
Strategy

The input format for each strategy is shown in Ta-
ble 4. There are a few points that need to be clari-
fied: (i) we use the colon symbol (:) as the separator
for the acronym and the description. If the model
fails to generate a colon symbol during inference,
we treat the entire output as the description and
the acronym becomes an empty string. All empty
acronyms have zero values for all metrics related
to the acronym evaluation; (ii) to implement the
char-level tokenization, we insert spaces into every
two adjacent letters of the acronym. We ensure
the tokenizer will split the acronym into letters in-
stead of subtokens. During inference, we split the
acronym by spaces and join the letters together;
(iii) we have two models for the pipeline strategy

8https://github.com/google-research/
google-research/tree/master/rouge
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and thus two formats; (iv) we prepend a prefix to
every piece of information to indicate its meaning
to follow the T5 fashion.

E Reinforcement Learning

E.1 PPO Algorithm

The Proximal Policy Optimization (PPO) algorithm
is a reinforcement learning approach that could be
used to fine-tune language models towards human
preferences (Ziegler et al., 2019). It starts with an
original policy πSFT

ϕ and evolves to a new policy
πRL
ϕ .
To quantify how close the output is to the human

requirements, we measure with a reward model
r(x, y), where x is the model input and y is the
output. In our task, r(x, y) is the geometric av-
erage of the WL, WO, and LR values (defined in
§ 4.1) of the acronym from the output y. An ex-
tra term is introduced into r(x, y), which serves
as a penalty based on the Kullback-Leibler (KL)
divergence between the learned RL policy πRL

ϕ and
initial supervised model πSFT

ϕ (Zheng et al., 2023).
The total reward is calculated as follows:

rtotal = r(x, y)− ηKL(πRL
ϕ (y|x), πSFT

ϕ (y|x)),
(11)

where η is the KL coefficient and controls the
strength of the KL penalty. The total reward not
only fosters the language model to generate better
acronyms that increase r(x, y), but also prevents
the model from deviating drastically from the orig-
inal model.

Additionally, the PPO algorithm employs a clip-
ping mechanism in the policy objective function to
limit policy updates, ensuring they don’t diverge
too far from the old policy, thus maintaining train-
ing stability. The value function in PPO, a criti-
cal component, estimates the expected return of a
state, guiding the policy towards more rewarding
states. This combination of reward optimization,
clipping, and value estimation, allows PPO to fine-
tune language models effectively while balancing
between exploration and exploitation. The details
of the PPO algorithm can be found in (Zheng et al.,
2023).

E.2 Training Details

We use the Huggingface Transformer Reinforce-
ment Learning (TRL) library for the implementa-
tion of the PPO Trainer. The PPO models originate

from the SFT models trained with different strate-
gies ( , , ). Therefore, the
input format is the same as SFT, shown in Table 4.
We do not consider because the feedback
mechanism in RL for pipelined language models is
still unexplored. The reward value is the geometric
average of the values of WL, WO, and LR. We fur-
ther fine-tune our model with PPO for 1 epoch with
a batch size of 8 per GPU device, the same device
as the supervised fine-tuning. For each batch, we
sample with a minibatch size of 2 per GPU device
and train 100 mini epochs for the PPO update. We
utilize the Adam optimizer (Kingma and Ba, 2017)
with a learning rate of 1.41e-7. We use the Adap-
tive KL controller (Ziegler et al., 2019) and tune the
KL coefficient η from 0.002 to 0.001. We set the
threshold of PPO ratios to 10 to skip mini-batches
with high PPO ratios that can cause loss spikes. All
other hyperparameters follow the default settings
in the TRL Trainer.

F In-Context Learning

We implement four methods for the in-context
learning paradigm.

• Prompts for : For this method, we
first generate the description and then the
acronym via a single prompt to the LLM.
The prompt we provide is as shown in Fig-
ure 8. The prompt consists of a detailed
instruction explaining what the task is, a

1-shot demonstration as an example, and a
query for acquiring outputs.

• Prompts for : The prompt is almost
the same as , but since we switch the
generation ordering, we modify the instruc-
tion and the demonstration part so that the
acronym comes first then the description. The
prompt for this method is given in Figure 9.

• Prompts for : For this strategy, sim-
ilarly, we choose to generate the description
and acronym via a single prompt. The dif-
ference is that we explicitly request that the
abbreviation be in the character by charac-
ter. The prompt we provide is as shown in
Figure 10. The prompt consists of a detailed
instruction , a 1-shot demonstration , and a
query for prompting outputs.

• Prompts for : Unlike the one-stop
strategy, the pipeline one prompts the LLM
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Strategies Input Output

Supervised Fine-Tuning.
Abstract: Language model pretraining has led to many key hyperparameters
and training data size... Title & Abbreviation:

A Robustly Optimized BERT Pretraining Approach: RoBERTa

Abstract: Language model pretraining has led to many key hyperparameters
and training data size... Abbreviation & Title:

RoBERTa: A Robustly Optimized BERT Pretraining Approach

Abstract: Language model pretraining has led to many key hyperparameters
and training data size... Title & Abbreviation:

A Robustly Optimized BERT Pretraining Approach: R o B E R T a

1st Abstract: Language model pretraining has led to many key hyperparameters
and training data size... Title:

A Robustly Optimized BERT Pretraining Approach

2nd Abstract: Language model pretraining has led to many key hyperparameters and
training data size... Title: A Robustly Optimized BERT Pretraining Approach
Abbreviation:

RoBERTa

Reinforcement Learning
Abstract: Language model pretraining has led to many key hyperparameters
and training data size... Title & Abbreviation:

A Robustly Optimized BERT Pretraining Approach: RoBERTa

Abstract: Language model pretraining has led to many key hyperparameters
and training data size... Abbreviation & Title:

RoBERTa: A Robustly Optimized BERT Pretraining Approach

Abstract: Language model pretraining has led to many key hyperparameters
and training data size... Title & Abbreviation:

A Robustly Optimized BERT Pretraining Approach: R o B E R T a

Table 4: The input and output format for each strategy under the Supervised Fine-Tuning and Reinforcement
Learning paradigms. means that first generate the description and then the acronym autoregressively. means
first generate the acronym and then the description in an autoregressive way. means to tokenize the acronym into
subwords while means to tokenize it character-by-character. means generate the description and the acronym
in a one-stop approach. adapts a pipeline approach wherein the model first generates a description and then uses
the generated description and the input to further generate the acronym with another model. Note that the pipeline
strategy ( ) involves two models, and the subscript 1st and 2nd represents the first and second step for the pipeline.

Artifacts Citation Link License
Datasets

ACL Anthology N/A https://aclanthology.org/
CC BY-NC-SA 3.0 License (prior to 2016)
CC BY 4.0 License (in or after 2016)

Leipzig Corpora (Goldhahn et al., 2012) https://wortschatz.uni-leipzig.de CC BY-NC 4.0 License
Packages

PyTorch (Paszke et al., 2019) https://pytorch.org/ BSD-3 License
transformers (Wolf et al., 2020) https://huggingface.co/docs/transformers/index Apache License 2.0
Accelerate (Gugger et al., 2022) https://huggingface.co/docs/accelerate/index Apache License 2.0
nltk (Bird and Loper, 2004) https://www.nltk.org/ Apache License 2.0
numpy (Harris et al., 2020) https://numpy.org/ BSD License
matplotlib (Hunter, 2007) https://matplotlib.org/ BSD compatible License
rouge (Lin, 2004) https://github.com/huggingface/evaluate Apache License 2.0
BERTScore (Zhang et al., 2020a) https://pypi.org/project/bert-score/ MIT License
BeautifulSoup (Richardson, 2017) https://beautiful-soup-4.readthedocs.io/en/latest/ MIT License
PyMuPDF (Richardson, 2017) https://pymupdf.readthedocs.io/en/latest/ Open-source AGPL
TRL (von Werra et al., 2020) http://hf.co/docs/trl Apache License 2.0
langdetect (Danilák, 2023) https://pypi.org/project/langdetect/ Apache License 2.0
OpenAI API N/A https://platform.openai.com/docs/api-reference MIT License

Table 5: Details of the artifacts we use, including datasets and major packages. The dataset we constructed and the
software we provided are under the MIT License. N/A means not applicable.
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twice with different inputs. The first one pro-
duces the description by prompting with the
abstract, shown in Figure 11. Then, the sec-
ond one generates the acronym by providing
prompts including the description from the
first LLM and the abstract. One prompt ex-
ample is displayed in Figure 12. The prompts
also follow the instruction - demonstration -
query structure.

For all methods, we use gpt-4-1106-preview
as the base model for LLM prompting. We have
set the temperature to 0.7 and max_tokens to
30, while the other parameters follow the default
settings of the OpenAI ChatCompletion model.

G Detailed Experimental Results

G.1 Detailed Results
We list the detailed experimental results in Table 6.
Specifically, we present the value of the evaluation
metrics. means that first generate descriptions
and then acronyms in an autoregressive way.
means first generate acronyms and then descrip-
tions in an autoregressive way. means to tok-
enize the acronym with standard tokenizers like
T5Tokenizer or BERTTokenizer or BertTokenizer
while means to tokenize it character-by-character.

adapts a pipeline approach that first generates a
description and then uses the generated description
and the input abstract to further generate acronym.

means generate description and acronym in a
one-stop approach. Figure 7 is the visualization of
the results in Table 6. From the results, we have
four key observations:

• Strategies like generation ordering, tokeniza-
tion, and framework design have a nuanced
impact, with some showing potential for spe-
cific improvements but not universally enhanc-
ing all aspects of performance. This suggests
that optimization of these strategies is highly
context-dependent.

• Certain strategies exhibit commonalities
across different learning paradigms in spe-
cific aspects. For instance, the first-acronym-
then-description ( ) strategy decreases
summarization performance for descriptions
(Sum-D), the letter-level tokenization strat-
egy ( ) improves algorithmic metrics,
and the pipeline strategy ( ) negatively
impacts the summarization aspects (Sum-A
and Sum-D), while enhancing neology.

• Overall, strategies demonstrate inconsistency
across different learning paradigms, with
patterns varying significantly. ,
for example, enhances summarization for
acronyms (Sum-A) and algorithmic aspects
in SFT and ICL but has negligible effects on
RL. It diminishes neologistic performance in
RL but enhances it in SFT and ICL. Similar
patterns are observed for summarization and
neologistic aspects with , and the algo-
rithmic aspect with .

• Strategies in SFT and RL exhibit similar pat-
terns, differing substantially from those in
ICL. Except for , which slightly varies
in acronym summarization and algorithmic
aspects, the patterns of other strategies remain
consistent in SFT and RL. The explanation
may be that RL models is originated from
the SFT model (T5-base) with further train-
ing, while ICL uses a different model (GPT-4)
with no explicit training on our dataset.

• No single strategy excels across all aspects
within each learning paradigm, challenging
the identification of an optimal strategy. Al-
most all strategies, except for under
ICL, reduce performance in description sum-
marization. Although under ICL ben-
efits the description summarization aspect, it
concurrently weakens acronym summariza-
tion performance.

G.2 More Case Study

More cases generated by the involved methods are
listed in Table 7. First, the ground truth description
and acronym satisfy the summarization, neology,
and algorithm requirements well. The description,
“Unified Cognitive Signal ReconstructioN bridg-
ing cognitive signals and human language”, accu-
rately summarizes the abstract of the paper (Xi
et al., 2023) that investigates cognitive signals and
human language. “A Prosody and POS English
Lexicon for Language Engineering” encapsulates
the main idea of studying prosody and POS from
the paper (Brierley and Atwell, 2008). Besides,
“UniCoRN” is exactly a common word, and “Pro-
POSEL” resembles a word, which means the are
satisfying in the neologistic aspect. Furthermore,
the acronyms’ letters all come from descriptions,
meeting the algorithmic requirements well.
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Aspect Summarization for Description Neology Algorithm Summarization for Acronym
Metrics BLEU-4 METEOR ROUGE-L CIDEr BERT-Score WL WO LR C-BLEU-4 C-ROUGE-L

Strategies Generation of descriptions: D. Generation of acronyms: A.
Supervised Fine-Tuning Paradigm

13.47 Baseline 21.29 Baseline 40.60 Baseline 1.50 Baseline 66.95 Baseline 67.73 Baseline 78.18 Baseline 43.92 Baseline 14.91 Baseline 43.27 Baseline

12.82 (-4.83%) 20.66 (-2.96%) 40.37 (-0.57%) 1.48 (-1.33%) 66.75 (-0.30%) 66.81 (-1.36%) 77.82 (-0.46%) 44.78 (+1.96%) 15.33 (+2.82%) 43.52 (+0.58%)

13.13 (-2.52%) 20.93 (-1.69%) 40.32 (-0.69%) 1.49 (-0.67%) 66.75 (-0.30%) 68.25 (+0.77%) 75.91 (-2.90%) 46.35 (+5.53%) 14.96 (+0.34%) 46.83 (+8.23%)

12.76 (-5.27%) 20.18 (-5.21%) 38.95 (-4.06%) 1.46 (-2.67%) 66.06 (-1.33%) 69.70 (+2.91%) 80.88 (+3.45%) 44.39 (+1.07%) 12.99 (-12.88%) 41.92 (-3.12%)

In-Context Learning Paradigm
8.84 Baseline 21.36 Baseline 29.37 Baseline 1.10 Baseline 63.88 Baseline 63.83 Baseline 73.81 Baseline 39.71 Baseline 12.12 Baseline 40.36 Baseline

8.10 (-8.37%) 16.53 (-22.61%) 24.62 (-16.17%) 0.92 (-16.36%) 57.33 (-10.25%) 69.81 (+9.37%) 78.65 (+6.56%) 45.94 (+15.69%) 14.50 (+21.95%) 45.87 (+13.65%)

9.47 (+7.13%) 22.45 (+5.10%) 31.43 (+7.01%) 1.21 (+10.00%) 65.04 (+1.82%) 61.42 (-3.78%) 83.16 (+12.67%) 47.35 (+19.24%) 4.82 (-60.23%) 33.39 (-17.27%)

8.29 (-6.22%) 21.21 (-0.70%) 31.06 (+5.75%) 0.98 (-10.91%) 63.43 (-0.70%) 66.34 (+3.93%) 74.39 (+0.79%) 37.43 (-5.74%) 7.49 (-38.20%) 39.11 (-3.10%)

Reinforcement Learning Paradigm
13.34 Baseline 21.16 Baseline 40.72 Baseline 1.51 Baseline 66.84 Baseline 68.38 Baseline 79.07 Baseline 44.66 Baseline 15.23 Baseline 43.28 Baseline

12.27 (-8.02%) 20.39 (-3.64%) 40.06 (-1.62%) 1.44 (-4.64%) 66.57 (-0.40%) 67.17 (-1.77%) 78.11 (-1.21%) 44.52 (-0.31%) 14.99 (-1.58%) 43.26 (-0.05%)

12.75 (-4.42%) 20.64 (-2.46%) 39.86 (-2.11%) 1.46 (-3.31%) 66.58 (-0.39%) 68.34 (-0.06%) 76.43 (-3.34%) 46.79 (+4.77%) 14.85 (-2.50%) 46.96 (+8.50%)

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 6: Experimental results of different strategies in learning paradigms including supervised fine-tuning,
reinforcement learning, and in-context learning. The increase(+)/decrease(-) ratio aside from the value is the
improvement/deterioration of the model over the baseline . N/A means not applicable.

On the other hand, the generated acronyms
and descriptions are not satisfactory. Most strate-
gies handle well the summarization aspect across
learning paradigms, as their generated descrip-
tions include the key concepts related to “cogni-
tive signal” (the first example) or “prosody” and
“POS” (the second example). However, there’s an
evident discrepancy in balancing neologistic with
algorithmic aspects. For example, “UCBD” and
“UCS-BD” (the first example), or “ProSPL” and
“IPPE” achieve algorithmic accuracy with their de-
scriptions, but fall short of the neologistic perfor-
mance, as they do not resemble real words. Con-
versely, “BLASER” (the second example) stands
as a genuine word, yet it falls short of fulfilling
algorithmic criteria. Other strategies fail to meet
either criterion satisfactorily.
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Strategies Descriptions Acronyms

Supervised Fine-Tuning Paradigm

Unifying Cognitive Signal Representation for Brain Decoding UniCSE
the Unified Cognitive Signal ReconstructioN for Brain Decoding fMRI2Text
The Unified Cognitive Signal ReconstructioN for Brain Decoding UCBD
The Unified Cognitive Signal ReconstructioN for Brain Decoding CoS-MeR

In-Context Learning Paradigm

fMRI2text N/A (Fail to
generate)

Unified Cognitive Signal ReconstructioN for Open-Vocabulary Brain Decoding UCS-BD
fMRI2text UCSR
A Unified Approach for Open-Vocabulary Decoding of Cognitive Signals into Text UniCogniD

Reinforcement Learning Paradigm

Unifying Cognitive Signal Representation for Brain Decoding UniCSE
the Unified Cognitive Signal ReconstructioN for Brain Decoding fMRI2Text
The Unified Cognitive Signal ReconstructioN for Brain Decoding UCBD
N/A N/A

Ground Truth Unified Cognitive Signal ReconstructioN bridging cognitive signals and human language UniCoRN
Supervised Fine-Tuning Paradigm

Prosody and PoS for Language Engineering ProSPL
Prosody and PoS Annotated Lexicon for Language Engineering BLCULex
Prosody and PoS - English Lexicon for Language Engineering ProSpeech
Prosodic and PoS an English Lexicon for Language Engineering BLASER

In-Context Learning Paradigm

Integrating Prosody and Part-of-Speech Annotations in the Enhanced English Lexicon for
Language Engineering

ProSPEL

ProPoSLEX ProPoSLEX
Integrated Prosody and Part-of-Speech English Lexicon for Enhanced Language Engineering IPPE
Integrating Prosody and Part-of-Speech for Enhanced English Lexicon in Language Engi-
neering Applications

ProSPEL

Reinforcement Learning Paradigm

Prosody and PoS for Language Engineering ProSPL
Prosody and PoS Annotated Lexicon for Language Engineering BLCULex
Prosody and PoS - English Lexicon for Language Engineering ProSpeech
N/A N/A

Ground Truth A Prosody and POS English Lexicon for Language Engineering ProPOSEL

Table 7: Case studies of the acronyms and descriptions generated by various strategies within the learning paradigms
of supervised fine-tuning, reinforcement learning, and in-context learning. The examples are from (Xi et al., 2023;
Brierley and Atwell, 2008).
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Given an abstract of a paper, generate a title and an abbreviation for it. The title should capture
the main idea of the paper. The abbreviation works as a shorthand name for the title. The
abbreviation is usually composed of characters from the title. The abbreviation should look like
a real word and be easy to remember.

Instruction

One example is as follows:
Abstract: With the ever-growing size of pretrained models (PMs), fine-tuning them has become
more expensive and resource-hungry. As a remedy, low-rank adapters (LoRA) keep the main
pretrained weights of the model frozen and just introduce some learnable truncated SVD modules
(so-called LoRA blocks) to the model. While LoRA blocks are parameter-efficient, they suffer
from two major problems: first, the size of these blocks is fixed and cannot be modified after
training (for example, if we need to change the rank of LoRA blocks, then we need to re-train
them from scratch); second, optimizing their rank requires an exhaustive search and effort. In
this work, we introduce a dynamic low-rank adaptation (<MASKED_ACRONYM>) technique
to address these two problems together. Our <MASKED_ACRONYM> method trains LoRA
blocks for a range of ranks instead of a single rank by sorting the representation learned by the
adapter module at different ranks during training. We evaluate our solution on different natural
language understanding (GLUE benchmark) and language generation tasks (E2E, DART and
WebNLG) using different pretrained models such as RoBERTa and GPT with different sizes.
Our results show that we can train dynamic search-free models with <MASKED_ACRONYM>
at least 4 to 7 times (depending to the task) faster than LoRA without significantly compromising
performance. Moreover, our models can perform consistently well on a much larger range of
ranks compared to LoRA.
Title: Parameter-Efficient Tuning of Pre-trained Models using Dynamic Search-Free Low-Rank
Adaptation | Abbreviation: DyLoRA

Demonstration

Given the following abstract, generated a title and an abbreviation for it. The title and abbrevia-
tion are separated by |.
Abstract: Prompt learning with immensely large Casual Language Models (CLMs) has been
shown promising for attribute-controllable text generation (CTG). However, vanilla prompt
tuning tends to imitate training corpus characteristics beyond the control attributes, resulting
in a poor generalization ability. Moreover, it is less able to capture the relationship between
different attributes, further limiting the control performance. In this paper, we propose a new
CTG approach, namely <MASKED_ACRONYM>, which incorporates the attribute knowledge
of discriminator to optimize the control prompts, steering a frozen CLM to produce attribute-
specific texts. Specifically, the frozen CLM model, capable of producing multitudinous texts, is
first used to generate the next-token candidates based on the context, so as to ensure the diversity
of tokens to be predicted. Then, we leverage an attribute-discriminator to select desiredundesired
tokens from those candidates, providing the inter-attribute knowledge. Finally, we bridge the
above two traits by an unlikelihood objective for prompt-tuning. Extensive experimental results
show that <MASKED_ACRONYM> can achieve a new state-of-the-art control performance
while maintaining an efficient and high-quality text generation, only relying on around 10 virtual
tokens.

Query

Figure 8: Prompts for in the in-context learning paradigm.

6170



Given an abstract of a paper, generate an abbreviation and a title for it. The abbreviation works
as a shorthand name for the title. The title should capture the main idea of the paper. The
abbreviation is usually composed of characters from the title. The abbreviation should look like
a real word and be easy to remember.

Instruction

One example is as follows:
Abstract: With the ever-growing size of pretrained models (PMs), fine-tuning them has become
more expensive and resource-hungry. As a remedy, low-rank adapters (LoRA) keep the main
pretrained weights of the model frozen and just introduce some learnable truncated SVD modules
(so-called LoRA blocks) to the model. While LoRA blocks are parameter-efficient, they suffer
from two major problems: first, the size of these blocks is fixed and cannot be modified after
training (for example, if we need to change the rank of LoRA blocks, then we need to re-train
them from scratch); second, optimizing their rank requires an exhaustive search and effort. In
this work, we introduce a dynamic low-rank adaptation (<MASKED_ACRONYM>) technique
to address these two problems together. Our <MASKED_ACRONYM> method trains LoRA
blocks for a range of ranks instead of a single rank by sorting the representation learned by the
adapter module at different ranks during training. We evaluate our solution on different natural
language understanding (GLUE benchmark) and language generation tasks (E2E, DART and
WebNLG) using different pretrained models such as RoBERTa and GPT with different sizes.
Our results show that we can train dynamic search-free models with <MASKED_ACRONYM>
at least 4 to 7 times (depending to the task) faster than LoRA without significantly compromising
performance. Moreover, our models can perform consistently well on a much larger range of
ranks compared to LoRA.
Abbreviation: DyLoRA | Title: Parameter-Efficient Tuning of Pre-trained Models using Dynamic
Search-Free Low-Rank Adaptation

Demonstration

Given the following abstract, generated an abbreviation and a title for it. The abbreviation and
the title are separated by |.
Abstract: Prompt learning with immensely large Casual Language Models (CLMs) has been
shown promising for attribute-controllable text generation (CTG). However, vanilla prompt
tuning tends to imitate training corpus characteristics beyond the control attributes, resulting
in a poor generalization ability. Moreover, it is less able to capture the relationship between
different attributes, further limiting the control performance. In this paper, we propose a new
CTG approach, namely <MASKED_ACRONYM>, which incorporates the attribute knowledge
of discriminator to optimize the control prompts, steering a frozen CLM to produce attribute-
specific texts. Specifically, the frozen CLM model, capable of producing multitudinous texts, is
first used to generate the next-token candidates based on the context, so as to ensure the diversity
of tokens to be predicted. Then, we leverage an attribute-discriminator to select desiredundesired
tokens from those candidates, providing the inter-attribute knowledge. Finally, we bridge the
above two traits by an unlikelihood objective for prompt-tuning. Extensive experimental results
show that <MASKED_ACRONYM> can achieve a new state-of-the-art control performance
while maintaining an efficient and high-quality text generation, only relying on around 10 virtual
tokens.

Query

Figure 9: Prompts for in the in-context learning paradigm.

6171



Given an abstract of a paper, generate a title and an abbreviation for it. The title should capture
the main idea of the paper. The abbreviation works as a shorthand name for the title. The
abbreviation is usually composed of characters from the title. The abbreviation should look like
a real word and be easy to remember. Besides, the abbreviation should be given character by
character.

Instruction

One example is as follows:
Abstract: With the ever-growing size of pretrained models (PMs), fine-tuning them has become
more expensive and resource-hungry. As a remedy, low-rank adapters (LoRA) keep the main
pretrained weights of the model frozen and just introduce some learnable truncated SVD modules
(so-called LoRA blocks) to the model. While LoRA blocks are parameter-efficient, they suffer
from two major problems: first, the size of these blocks is fixed and cannot be modified after
training (for example, if we need to change the rank of LoRA blocks, then we need to re-train
them from scratch); second, optimizing their rank requires an exhaustive search and effort. In
this work, we introduce a dynamic low-rank adaptation (<MASKED_ACRONYM>) technique
to address these two problems together. Our <MASKED_ACRONYM> method trains LoRA
blocks for a range of ranks instead of a single rank by sorting the representation learned by the
adapter module at different ranks during training. We evaluate our solution on different natural
language understanding (GLUE benchmark) and language generation tasks (E2E, DART and
WebNLG) using different pretrained models such as RoBERTa and GPT with different sizes.
Our results show that we can train dynamic search-free models with <MASKED_ACRONYM>
at least 4 to 7 times (depending to the task) faster than LoRA without significantly compromising
performance. Moreover, our models can perform consistently well on a much larger range of
ranks compared to LoRA.
Title: Parameter-Efficient Tuning of Pre-trained Models using Dynamic Search-Free Low-Rank
Adaptation | Abbreviation: D y L o R A

Demonstration

Given the following abstract, generated a title and an abbreviation for it. The abbreviation should
be given character by character. The title and abbreviation are separated by |.
Abstract: Prompt learning with immensely large Casual Language Models (CLMs) has been
shown promising for attribute-controllable text generation (CTG). However, vanilla prompt
tuning tends to imitate training corpus characteristics beyond the control attributes, resulting
in a poor generalization ability. Moreover, it is less able to capture the relationship between
different attributes, further limiting the control performance. In this paper, we propose a new
CTG approach, namely <MASKED_ACRONYM>, which incorporates the attribute knowledge
of discriminator to optimize the control prompts, steering a frozen CLM to produce attribute-
specific texts. Specifically, the frozen CLM model, capable of producing multitudinous texts, is
first used to generate the next-token candidates based on the context, so as to ensure the diversity
of tokens to be predicted. Then, we leverage an attribute-discriminator to select desiredundesired
tokens from those candidates, providing the inter-attribute knowledge. Finally, we bridge the
above two traits by an unlikelihood objective for prompt-tuning. Extensive experimental results
show that <MASKED_ACRONYM> can achieve a new state-of-the-art control performance
while maintaining an efficient and high-quality text generation, only relying on around 10 virtual
tokens.

Query

Figure 10: Prompts for in the in-context learning paradigm.
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Given an abstract of a paper, generate a title for it. The title should capture the main idea of the
paper.

Instruction

One example is as follows:
Abstract: With the ever-growing size of pretrained models (PMs), fine-tuning them has become
more expensive and resource-hungry. As a remedy, low-rank adapters (LoRA) keep the main
pretrained weights of the model frozen and just introduce some learnable truncated SVD modules
(so-called LoRA blocks) to the model. While LoRA blocks are parameter-efficient, they suffer
from two major problems: first, the size of these blocks is fixed and cannot be modified after
training (for example, if we need to change the rank of LoRA blocks, then we need to re-train
them from scratch); second, optimizing their rank requires an exhaustive search and effort. In
this work, we introduce a dynamic low-rank adaptation (<MASKED_ACRONYM>) technique
to address these two problems together. Our <MASKED_ACRONYM> method trains LoRA
blocks for a range of ranks instead of a single rank by sorting the representation learned by the
adapter module at different ranks during training. We evaluate our solution on different natural
language understanding (GLUE benchmark) and language generation tasks (E2E, DART and
WebNLG) using different pretrained models such as RoBERTa and GPT with different sizes.
Our results show that we can train dynamic search-free models with <MASKED_ACRONYM>
at least 4 to 7 times (depending to the task) faster than LoRA without significantly compromising
performance. Moreover, our models can perform consistently well on a much larger range of
ranks compared to LoRA.
Title: Parameter-Efficient Tuning of Pre-trained Models using Dynamic Search-Free Low-Rank
Adaptation

Demonstration

Given the following abstract, generated a title for it.
Abstract: Prompt learning with immensely large Casual Language Models (CLMs) has been
shown promising for attribute-controllable text generation (CTG). However, vanilla prompt
tuning tends to imitate training corpus characteristics beyond the control attributes, resulting
in a poor generalization ability. Moreover, it is less able to capture the relationship between
different attributes, further limiting the control performance. In this paper, we propose a new
CTG approach, namely <MASKED_ACRONYM>, which incorporates the attribute knowledge
of discriminator to optimize the control prompts, steering a frozen CLM to produce attribute-
specific texts. Specifically, the frozen CLM model, capable of producing multitudinous texts, is
first used to generate the next-token candidates based on the context, so as to ensure the diversity
of tokens to be predicted. Then, we leverage an attribute-discriminator to select desiredundesired
tokens from those candidates, providing the inter-attribute knowledge. Finally, we bridge the
above two traits by an unlikelihood objective for prompt-tuning. Extensive experimental results
show that <MASKED_ACRONYM> can achieve a new state-of-the-art control performance
while maintaining an efficient and high-quality text generation, only relying on around 10 virtual
tokens.

Query

Figure 11: Prompts for generating descriptions in in the in-context learning setting.
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Given an abstract of a paper and its title, generate an abbreviation for it. The abbreviation works
as a shorthand name for the title. The abbreviation is usually composed of characters from the
title. The abbreviation should look like a real word and be easy to remember.

Instruction

One example is as follows:
Abstract: With the ever-growing size of pretrained models (PMs), fine-tuning them has become
more expensive and resource-hungry. As a remedy, low-rank adapters (LoRA) keep the main
pretrained weights of the model frozen and just introduce some learnable truncated SVD modules
(so-called LoRA blocks) to the model. While LoRA blocks are parameter-efficient, they suffer
from two major problems: first, the size of these blocks is fixed and cannot be modified after
training (for example, if we need to change the rank of LoRA blocks, then we need to re-train
them from scratch); second, optimizing their rank requires an exhaustive search and effort. In
this work, we introduce a dynamic low-rank adaptation (<MASKED_ACRONYM>) technique
to address these two problems together. Our <MASKED_ACRONYM> method trains LoRA
blocks for a range of ranks instead of a single rank by sorting the representation learned by the
adapter module at different ranks during training. We evaluate our solution on different natural
language understanding (GLUE benchmark) and language generation tasks (E2E, DART and
WebNLG) using different pretrained models such as RoBERTa and GPT with different sizes.
Our results show that we can train dynamic search-free models with <MASKED_ACRONYM>
at least 4 to 7 times (depending to the task) faster than LoRA without significantly compromising
performance. Moreover, our models can perform consistently well on a much larger range of
ranks compared to LoRA.
Title: Parameter-Efficient Tuning of Pre-trained Models using Dynamic Search-Free Low-Rank
Adaptation
Abbreviation: DyLoRA

Demonstration

Given the following abstract and its title, generate an abbreviation for the abstract.
Abstract: Prompt learning with immensely large Casual Language Models (CLMs) has been
shown promising for attribute-controllable text generation (CTG). However, vanilla prompt
tuning tends to imitate training corpus characteristics beyond the control attributes, resulting
in a poor generalization ability. Moreover, it is less able to capture the relationship between
different attributes, further limiting the control performance. In this paper, we propose a new
CTG approach, namely <MASKED_ACRONYM>, which incorporates the attribute knowledge
of discriminator to optimize the control prompts, steering a frozen CLM to produce attribute-
specific texts. Specifically, the frozen CLM model, capable of producing multitudinous texts, is
first used to generate the next-token candidates based on the context, so as to ensure the diversity
of tokens to be predicted. Then, we leverage an attribute-discriminator to select desiredundesired
tokens from those candidates, providing the inter-attribute knowledge. Finally, we bridge the
above two traits by an unlikelihood objective for prompt-tuning. Extensive experimental results
show that <MASKED_ACRONYM> can achieve a new state-of-the-art control performance
while maintaining an efficient and high-quality text generation, only relying on around 10 virtual
tokens.
Title: Discriminator Cooperative Unlikelihood Prompt-tuning for Controllable Text Generation

Query

Figure 12: Prompts for generating acronyms in in the in-context learning setting.
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