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Abstract

Large Vision-Language Models (LVLMs) are
an extension of Large Language Models
(LLMs) that facilitate processing both image
and text inputs, expanding AI capabilities.
However, LVLMs struggle with object halluci-
nations due to their reliance on text cues and
learned object co-occurrence biases. While
most research quantifies these hallucinations,
mitigation strategies are still lacking. Our study
introduces a Language Contrastive Decoding
(LCD) algorithm that adjusts LVLM outputs
based on LLM distribution confidence levels,
effectively reducing object hallucinations. We
demonstrate the advantages of LCD in lead-
ing LVLMs, showing up to 4% improvement
in POPE F1 scores and up to 36% reduction
in CHAIR scores on the COCO validation set,
while also improving captioning quality scores.
Our method effectively improves LVLMs with-
out needing complex post-processing or retrain-
ing, and is easily applicable to different models.
Our findings highlight the potential of further
exploration of LVLM-specific decoding algo-
rithms for improved multimodal performance.

1 Introduction

Large Vision-Language Models (LVLMs) are a
multimodal extension of Large Language Models
(LLMs), transforming textual prompts and image
inputs into text. However, they frequently pro-
duce object hallucinations, where absent objects
are mentioned in the output (Yifan Li and Wen,
2023; Lovenia et al., 2023).

While hallucination-mitigation techniques in
LLMs are actively researched, specific strategies
for LVLMs are less developed. Current methods in-
volve model-specific adjustments, additional train-
ing, or auxiliary models for post-hoc correction,
and are often proven inefficient, costly, or limited
by training data and model biases (Wang et al.,
2023; Zhou et al., 2023; Gunjal et al., 2023; Yin

Figure 1: An illustration of LLM vs. LVLM token prob-
abilities given an image and a text prefix mid-generation.
According to the LLM, the word "dog" is much more
likely to appear next. LCD dynamically contrasts these
probabilities to mitigate language biases in LVLM out-
puts.

et al., 2023). Conversely, LVLM hallucination eval-
uation has seen progress with object hallucination
benchmarks like NOPE (Lovenia et al., 2023) and
POPE (Yifan Li and Wen, 2023), and recent works
that aim for more holistic LVLM hallucination eval-
uation such as FaithScore (Jing et al., 2023) and
HallusionBench (Guan et al., 2023).

A key reason for LVLM hallucinations is their
tendency to over-rely on linguistic information, as
was first observed by Guan et al. (2023). Based on
this insight, we propose to intervene in the LVLM
decoding phase so that model outputs are less in-
formed by language biases. Specifically, we pro-
pose to use Contrastive Decoding (Li et al., 2023a;
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O’Brien and Lewis, 2023) to alter LVLM output
probabilities with respect to the internal LLM’s
probabilities, guided by a dynamic weighting mech-
anism based on the LLM distribution’s entropy.

Our experiments show that our proposed method,
Language Contrastive Decoding (LCD), improves
hallucination scores on POPE (Yifan Li and Wen,
2023) and CHAIR (Rohrbach et al., 2018) on In-
structBLIP variants based on Vicuna and Flan-T5
(Dai et al., 2023), LLAVA 1.5 (Liu et al., 2023) and
mPLUG-Owl2 (Ye et al., 2023). We asses LCD’s
overall generation quality by reporting captioning
metrics and conducting a GPT4-V (OpenAI et al.,
2023) assisted evaluation. LCD, as a decoding
strategy, can be applied to other models without
additional training or output modifications, empha-
sizing its utility for broader LVLM use.

The contributions of this paper are thus manifold.
First, we introduce a novel decoding method tai-
lored for LVLMs to mitigate object hallucinations.
Next, we present a dynamic weighting strategy
based on entropy which is applicable in various
CD scenarios. Finally, we share our code to encour-
age further research into LVLM-specific decoding
strategies, a promising avenue for future research.

2 Motivation and Background

The integration of vision capabilities into LLMs
has led to the development of Large Vision-
Language Models, merging LLMs’ textual under-
standing with vision-text encoders. This trend to-
wards multimodal systems is exemplified in com-
mercial platforms such as GPT4-V (OpenAI et al.,
2023) and Google’s Gemini (Team et al., 2023).

Large Vision-Language Models combine
LLMs and vision-text encoders to generate text
from textual prompts and visual inputs. An LVLM
generally comprises three main components: a
vision-text encoder like CLIP (Radford et al.,
2021), an LLM such as LLAMA (Touvron et al.,
2023) or Flan-T5 (Chung et al., 2022), and
a cross-modal alignment module linking the
vision-text encoder output with the LLM.

Initially, LVLMs were fine-tuned for specific
tasks (Li et al., 2022; Wang et al., 2022). However,
advancements in LLMs have led to a shift towards
general-purpose, instruction-tuned LVLMs. These
models are designed to handle a wide range of tasks
based on instructions, making them more versatile.
Despite these advancements, LVLMs grapple with
hallucinations of different types.

LVLMs Hallucinations and their Mitigation
Hallucinations in LVLMs, particularly object hallu-
cinations where nonexistent entities are mentioned,
are often attributed to LVLMs’ reliance on spuri-
ous correlations and language biases, as demon-
strated by Li et al. (2023b) and Zhou et al. (2023).
Moreover, Guan et al. (2023) highlight LVLMs’
tendency to prioritize language over visual data,
leading to hallucinations.

Mitigation strategies proposed by Gunjal et al.
(2023) and Wang et al. (2023) involve further
model training with augmented datasets or reward
models. Zhou et al. (2023); Yin et al. (2023) de-
veloped auxiliary models to correct outputs post-
generation. These solutions often require dataset-
specific work or additional model training, poten-
tially leading to overfitting or new biases, and are
not easily transferable across LVLMs.

In a concurrent work, Leng et al. (2023) de-
velop an LVLM-specific decoding algorithm for
mitigating hallucinations, using a noisy copy of
the input image as a contrastive input. While their
approach uses visual noise to guide the decoding
process, LCD leverages the language modality to
mitigate hallucinations. These approaches are or-
thogonal and can potentially be combined into a
unified Language-Visual contrastive decoding al-
gorithm, a direction we leave for future work. 1

3 Language Contrastive Decoding (LCD)

Before presenting LCD, we briefly introduce the es-
sentials of decoding in LVLMs 3.1, followed by our
formal proposal 3.2 and research hypothesis 3.3.

3.1 Decoding Techniques and Contrastive
Decoding: Essential Preliminaries

Decoding in auto-regressive generative models is
the stage that transforms an input representation
into a sequence of output tokens. In LVLMs, this
process involves a model M , an image I , a tex-
tual prompt X , and a particular timestamp t during
generation. It can be described as a series of se-
lections from the model’s probability distribution,
producing a token sequence T , as formalized in
eq. (1).

Tt ∼ P (·|I,X, T<t;M) (1)

Greedy decoding, selecting the most probable
token at each step (or the top k tokens in a beam

1Favero et al. (2024) propose a method with a high
resemblance to ours, however, our work predates theirs.
https://openreview.net/forum?id=aReb-02mhR
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search with beam size k), is the simplest approach.
However, high likelihood sequences do not nec-
essarily align with human preferences, leading to
the “likelihood trap” (Zhang et al., 2021). This has
led to the use of sampling-based methods, such as
top-k sampling, nucleus sampling (Holtzman et al.,
2020), and locally typical sampling (Meister et al.,
2023), which either truncate the set of candidate to-
kens or adjust the model’s distribution, e.g. through
temperature scaling.

Contrastive Decoding (CD) has been introduced
for LLMs as a method to penalize the outputs of an
expert model with those from a less powerful model
(Li et al., 2023a). CD can be applied to any two
probability distributions with the same support and
has been adapted as a sampling strategy, improving
various text generation tasks (O’Brien and Lewis,
2023; Chuang et al., 2023; Sennrich et al., 2024).
CD uses both truncation and reshaping of probabil-
ity distributions. The truncation phase ("adaptive
plausibility") is described by eq. (2), where α is
a hyper-parameter, V and Vt′ are the original and
truncated token vocabularies at time t, and P is the
conditional distribution on the prefix T<t.

Vt′ = {v ∈ V : P (v|T<t) ≥ αmax
w

P (w|T<t)}
(2)

Finally, the formula for CD, as suggested by
O’Brien and Lewis (2023), given here generally for
two conditional distributions P and P ′ on variable
x with the same support, conditioned on a prefix
sequence X is presented in eq. (3).

CDt(x,X, P, P ′) =
{
(1 + β) logP (x|X)− β logP ′(x|X), if x ∈ V t′

−∞, otherwise
(3)

β is a fixed weight hyper-parameter. Our pro-
posed method, detailed shortly, alters CD by in-
troducing an entropy-based dynamic weighting
scheme.

3.2 Proposed Method
Our intuition, based on previous findings by (Guan
et al., 2023; Rohrbach et al., 2018; Yifan Li and
Wen, 2023), is that an LVLM can be "misled" by
its constituent LLM during the generation process.

Consider for example an LVLM that is describ-
ing an image (see illustration 1). Mid-generation,
given the text "An image of a man walking his," it
may predict "dog" due to language biases, even if
it is a bear that is actually shown. A ‘plain’ LLM,

without seeing the image, reinforces these biases
by highly rating “dog”. Our method builds on this
insight to guide an LVLM towards more accurate
predictions using Contrastive Decoding.

Our method operates as follows: At each genera-
tion step t, for each token x, we first determine the
next-token probabilities from the LVLM, PLV LM ,
based on the current token sequence T<t, text X ,
and image I . We then obtain a second distribution,
PLLM , by inputting all data except the image into
the LLM. The LLM’s conditional entropy HLLM

informs the dynamic weight as per eq.(4). We then
adjust token x’s logits using the LCD formula in
eq. (5).

βt =
β

HLLM (x|X,T<t)
(4)

LCDt(x, T<t, I, PLV LM , PLLM ) =

(1 + βt) logPLV LM (x|I,X, T<t)

− βt logPLLM (x|X,T<t)
(5)

In our experiments, we generate text completions
by sampling from the next token probabilities,
which are obtained by applying the softmax func-
tion to the logits produced by the LCD algorithm.

3.3 Research Hypothesis

Our hypothesis is that contrasting LVLM outputs
with LLM outputs conditioned only on the textual
data, can mitigate language biases, therefore reduc-
ing hallucinations in LVLMs.

4 Experiments and Results

We set out to assess the effect of LCD on object
hallucinations in LVLM outputs against popular de-
coding settings. Additionally, we verify that LCD
does not degrade output quality. To this end, we
asses LCD on the POPE benchmark (Yifan Li and
Wen, 2023), and on an image detailed-description
task where we report hallucination and captioning
metrics and conduct a GPT4-V assisted evaluation.

Polling-based Object-Probing Evaluation
POPE consists of object-presence binary questions
on 500 COCO dataset images (Lin et al., 2015),
with questions equally divided between present and
absent objects. Absent objects are chosen based
on three criteria: random, popular (common in
COCO), and adversarial (commonly co-occurring
with present objects). POPE’s drawback is its
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Model Method METEOR↑ WMD↑ ROUGE_L↑ Acc↑ Det↑ CHAIRs↓ CHAIRi↓
InstructBLIPF Baseline .157 .367 .161 4.92 4.02 .662 .146

LCD .159 .370 .168 5.4 4.01 .566 .131
InstructBLIPV Baseline .178 .423 .291 3.7 3.51 .274 .126

LCD .199 .48 .38 4.59 3.83 .174 .107
LLAVA 1.5 Baseline .163 .357 .169 4.77 4.56 .672 .182

LCD .171 .352 .181 5.39 4.54 .610 .161
mPLUG-Owl2 Baseline .162 .357 .163 4.68 4.7 .660 .19

LCD .177 .372 .184 5.11 4.69 .614 .145
Table 1: Image Description results. F and V stand for the Flan-T5 and Vicuna. Acc and Det are mean GPT4-V
scores for Accuracy and Detailedness. METEOR, WMD and ROUGEL are popular captioning metrics (Kusner
et al., 2015; Banerjee and Lavie, 2005; Lin, 2004). ↑ means ‘higher is better’. ↓ means ‘lower is better’.

one-word response structure, which limits the
influence of decoding strategies and does not
evaluate open-ended generation capabilities.

Image Detailed-Descriptions To complement
POPE, we introduce a long-form text generation
task called "Image Detailed-Descriptions," inspired
by findings from Zhou et al. (2023) that more ex-
tensive context increases the likelihood of hallu-
cinations. In this task, the input consists of an
image from the COCO dataset and a text prompt
requesting a detailed description of the image. The
expected output is a long-form, detailed textual de-
scription of the given image, typically containing
multiple sentences. The prompts used in this task
are detailed in appendix A.1. By using the same
COCO images as POPE, we maintain consistency
in the visual domain while exploring LCD’s effec-
tiveness in a more challenging setting where the
model is required to generate longer, more descrip-
tive outputs.

Baselines and Metrics For POPE, we use sam-
pling as the baseline and report F1 scores.2 For
the detailed-descriptions task, we use as a baseline
the popular nucleus sampling algorithm3 and re-
port CHAIR metrics (Rohrbach et al., 2018). To
assess description quality, we use captioning met-
rics against COCO’s gold captions, which serve as
an approximation considering length differences.
Additionally, following Yin et al. (2023), we use
GPT4-V to evaluate the descriptions for Detailed-
ness and Accuracy (see details in Appendix A.1).

Models We conduct our experiments with lead-
ing LVLMs: two versions of the InstructBLIP
model (with Flan-T5 and Vicuna LLMs), LLAVA

2Complete POPE results are in the appendix, table 4
3We find that nucleus-sampling gives better results than

vanilla sampling (see table 3 in the appendix for ablations).

1.5 and mPLUG-Owl2. The complete experimental
details, such as exact model variants and generation
hyper-parameters, are given in the Appendix.

5 Results and Discussion

For the POPE task, which evaluates object halluci-
nations using binary questions, LCD improves F1
scores across 11 out of 12 configurations compared
to the baseline (Table 2). This suggests that LCD
is effective in reducing object hallucinations in the
POPE setting. It is worth noting that the POPE set-
ting is highly constrained for decoding algorithms,
as it consists of binary yes/no questions, and typ-
ically involves only a single decoding step. This
limits the potential impact of decoding strategies
on the model’s performance in this specific task.

In the detailed-description task, which involves
generating detailed descriptions of images, LCD
significantly reduces hallucinations at both sen-
tence and instance levels across all four models
tested (Table 1). However, it is important to note
that despite the improvements, the CHAIR scores,
which measure hallucination rates (lower is bet-
ter), remain relatively high. This indicates that ob-
ject hallucinations are still prevalent in long-form
LVLM outputs, even with the application of LCD.4

We observe that LCD is particularly effective in
improving the performance of InstructBLIP mod-
els (InstructBLIPF and InstructBLIPV). We hy-
pothesize that this may be due to the fact that
the LLMs in these models are frozen during train-
ing, which results in a stronger language bias that
LCD can effectively mitigate. When evaluating the
overall generation quality using captioning metrics
(METEOR, WMD, and ROUGEL), LCD outper-
forms the baseline in all cases except one (WMD in

4Examples of generated descriptions are found in Ap-
pendix A.2
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POPE Model Baseline F1 LCD F1
Random 83.95 87.55
Popular InstructBLIPV 82.80 84.34
Adversarial 80.25 81.64
Random 84.05 84.27
Popular InstructBLIPF 80.74 82.81
Adversarial 78.87 80.69
Random 84.17 83.76
Popular LLAVA 1.5 83.10 83.47
Adversarial 81.34 81.62
Random 86.96 87.51
Popular mPLUG-Owl2 82.88 84.93
Adversarial 82.93 83.91

Table 2: POPE results for different models and methods.

LLAVA 1.5, where the reduction is approximately
1%). This indicates that LCD not only reduces
hallucinations but also maintains or improves the
overall quality of the generated descriptions.

Furthermore, in the GPT4-V assisted evaluation,
which assesses the accuracy and detailedness of
the generated descriptions, LCD improves the ac-
curacy scores across all models. Interestingly, the
detailedness scores remain similar to the baseline,
suggesting that LCD reduces hallucinations with-
out increasing the granularity of the descriptions.

6 Conclusion

In this paper we present Language Contrastive De-
coding, a novel method to reduce hallucinations
in LVLMs. By dynamically adjusting output prob-
abilities using the LVLM’s internal LLM, LCD
significantly improves hallucination metrics across
different LVLM architectures, enhancing the qual-
ity and reliability of generated content without ne-
cessitating retraining or auxiliary models and post-
processing. This work highlights the potential of
specialized decoding strategies in enhancing mul-
timodal AI models and lays the groundwork for
further exploration into more sophisticated LVLM
decoding methods.

7 Limitations

Firstly, while LCD shows promise in reducing hal-
lucinations, it only targets hallucinations caused
by language biases, but hallucinations can arise
from other sources. For instance, previous work
has shown that some hallucinations are caused by
poor visual understanding (Guan et al., 2023). We
believe LCD can be used as a platform to craft
LVLM-specific decoding algorithms that would
mitigate hallucinations stemming from different

factors, and leave this pursuit for future work.
Secondly, our evaluation method primarily ad-

dresses object hallucinations, which are only one
form of hallucination that LVLMs may exhibit. Pre-
liminary results signal that LCD mitigates more
complex manifestations of language-induced hal-
lucinations as assessed by recent benchmarks such
as FAITHSCORE (Jing et al., 2023) and Hallu-
sionBench (Guan et al., 2023), but further work is
required to establish this.

Moreover, LCD relies on current LVLM archi-
tectures that combine an LLM and a text-vision
encoder, and requires access to an LLM that emits
output probabilities on the same set of tokens as
the LVLM. It is possible that the future generation
of multimodal AI systems will have a different ar-
chitecture that will make LCD obsolete. Addition-
ally, LCD requires an LLM forward pass for each
LVLM decoding step. The added latency could be
mitigated with efficient inference techniques, and
also by using a smaller LLM as the contrasting
model. The effectiveness of LCD in this scenario
is left for future work.

Finally, there are ethical considerations related
to the mitigation of hallucinations in LVLMs. As
these models become more reliable, it is crucial to
continue evaluating the potential impacts of their
use, ensuring they do not perpetuate or exacerbate
biases present in their training data. LCD indeed
mitigates some biases, but it is important to keep in
mind that it might amplify other biases, unknown
to us. Responsible deployment of these models
requires ongoing vigilance and a commitment to
transparency and fairness.
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A Appendix

A.1 Detailed Experimental Setup
For POPE and the descriptions experiment, we use the following LCD parameters β = 3.0, α = 0.1.
We set the temperature to 0.5 in POPE and 1.0 in the descriptions experiment. We limit the descriptions
length to 250 tokens in all models we tested. We don’t tune any of these parameters. The prompt we use
for the descriptions experiment is "Describe this image in detail:". The models we use have the following
Huggingface identifiers:

• Salesforce/instructblip-vicuna-7b

• Salesforce/instructblip-flan-t5-xl

• llava-hf/llava-1.5-7b-hf

• MAGAer13/mplug-owl2-llama2-7b

GPT4-V Assisted Evaluation We follow the evaluation protocol given in Yin et al. (2023), where an
image and two descriptions are given to the model, formatted with the prompt in figure 2. The model
outputs scores in two dimensions: Accuracy and Detailedness. We use the gpt-4-vision-preview model on
February 2024.

Figure 2: Prompt used to evaluate descriptions with GPT4-V, taken from Yin et al. (2023)
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A.2 COCO Detailed Descriptions Examples
The descriptions in this section were generated by the LLAVA 1.5 model.

COCO Image 461331
Nucleus Sampling: The image features a white counter area with various appliances and a sign. On top of the counter, there is a microwave positioned alongside a
toaster oven. Below the toaster oven is a sign with suggestions to keep people safe while using the kitchen. Several appliances are present, including two cups, one
being closer to the foreground, and the other near the edge of the counter. A sink is located near the lower left corner, and a spoon can be seen towards the right side
of the counter. There are two ovens, with one situated towards the right side, and the other near the center of the counter. Lastly, a bottle is visible in the background,
at the far left edge.
LCD: The image showcases a kitchen setting featuring a microwave sitting on top of a shelf. Below the microwave, a toaster oven is placed in close proximity.
There are also a couple of toaster ovens situated further back in the scene. A note is posted on the shelf, offering suggestions to keep everyone safe by covering
one’s experience while using the appliances, cleaning up after themselves, and not turning on the microwaves with no one around. The scene reflects a cooperative
environment for kitchen users.

COCO Image 378873
Nucleus Sampling: The image features an outdoor market with a variety of fruits and vegetables for sale. Two people can be seen in the scene, likely browsing the
options and making their selections. The produce consists of several bunches of ripe red tomatoes, and smaller, freshly picked green peppers. There is also a larger
selection of yellow bell peppers available in various sizes. In addition to the vegetables, there is a bottle visible near the top left corner. Overall, the market offers an
array of fresh, colorful, and healthy products for customers to choose from.
LCD: The image showcases an outdoor produce market filled with an abundant selection of fruits and vegetables. Numerous tomatoes can be found throughout the
market, in various locations and sizes. Peppers are another prominent feature at this market, with multiple bunches spread across different parts of the display. A
person is visible near the top left of the scene, likely browsing through the market offerings or engaging with the sellers. Overall, it’s a lively marketplace filled with
fresh and healthy options.
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COCO Image 498100
Nucleus Sampling: The image displays a room filled with numerous decorative items. A prominent green ceramic vase stands out, with a colorful art deco sculpture
depicting a woman laying on it. There are also two smaller vases in the scene – one in the upper right corner and the other closer to the center of the room. The room
is adorned with a variety of objects, including a clock on the wall, a collection of books scattered in the background, and a chair positioned in the middle. This
visually rich space showcases a diverse assortment of vases, sculptures, and other home decor items.
LCD: The image showcases an assortment of vases on display, featuring a variety of colors and sizes. Among these, there is a large green vase as the focal point of
the scene. Inside this large green vase, a statue of a woman can be seen lying on the side of the vase. Another green vase is located towards the right side of the scene.
Additionally, a smaller green vase is found close to the center. Two other smaller vases can also be spotted within the collection. The diverse display of vases creates
an engaging and artistic atmosphere for visitors to enjoy.

COCO Image 312406
Nucleus Sampling: The image features a tray of cake covered with foil and a plastic container with coconut powder, all placed on a counter. There are several sliced
chocolate cakes, some of which are stacked. Additionally, a pair of tongs is resting beside the cakes, ready to be used for serving. A bowl with a spoon in it is also
situated on the table, accompanied by a banana and a spoon nearby. The overall arrangement looks like a setting for a delicious dessert.
LCD: The image features a dining table with various items arranged on it. A banana can be seen prominently, occupying a large portion of the left side of the table.
Along with the banana, there’s a can of powdered cocoa placed towards the top-middle area of the table. Additionally, two bowls are present on the table – one
occupying the middle-right part and another covering a smaller section on the right side. There is also a spoon situated on the right side of the table, ready for use in
enjoying the snack or dessert.
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COCO Image 379404
Nucleus Sampling: The image displays a delicious meal consisting of chicken, broccoli, and a banana. The plate is large and fills most of the frame, with various
items on the plate. The chicken is located at the bottom-right side of the plate, while the broccoli pieces are scattered throughout the plate. Additionally, there is a
banana on the plate that is placed towards the top left corner. In the background, a bottle can be seen, likely containing a drink that complements the meal.
LCD: The image features a white plate topped with various foods. On the plate, there’s a banana positioned towards the left, accompanied by some meat, likely fish
sticks. Alongside the main items, a glass of skim milk is present, adding to the nutritious meal. There is also a sandwich, possibly a piece of bread, contributing to the
diverse meal displayed on the plate.

COCO Image 125524
Nucleus Sampling: The image features a bright red fire hydrant prominently placed on the side of the street. The fire hydrant is situated close to a bus stop and
appears to be unused. A large white bus is positioned behind the fire hydrant on the other side of the street. A car is also visible in the background, slightly to the
right. In addition, there are two people in the scene, both located at the far right side. One of them is holding a cell phone, possibly capturing the moment or checking
their phone.
LCD: In the scene, a red fire hydrant is situated next to the street, capturing attention due to its striking color. A bus is driving down the road nearby, positioned
closer to the background of the image. There are several people dispersed along the street. Some of them can be seen closer to the middle and right side of the scene,
while others are scattered across the entire street, possibly going about their day or waiting to board the bus.
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A.3 Detailed Experimental Results

Model Method METEOR↑ WMD↑ ROUGE_L↑ CHAIRs↓ CHAIRi↓
InstructBLIPF Baseline 0.151 0.361 0.156 0.666 0.174

BaselineN 0.157 0.367 0.161 0.662 0.146
LCD−dw 0.159 0.364 0.163 0.594 0.133
LCD 0.163 0.370 0.168 0.566 0.131

InstructBLIPV Baseline 0.171 0.408 0.274 0.308 0.138
BaselineN 0.178 0.423 0.291 0.274 0.126
LCD−dw 0.202 0.474 0.366 0.23 0.116
LCD 0.199 0.48 0.38 0.174 0.107

LLAVA 1.5 Baseline 0.160 0.353 0.167 0.632 0.183
BaselineN 0.163 0.357 0.169 0.672 0.182
LCD−dw 0.169 0.352 0.179 0.624 0.157
LCD 0.171 0.352 0.181 0.610 0.161

Table 3: Image Description ablations. -dw is an LCD variant without dynamic weighting, with β = 0.5. BaselineN
is using nucleus sampling with p = 0.95, Baseline is vanilla sampling.

POPE method model accuracy precision recall f1 yes_ratio

random Baseline InstructBLIP Vicuna 84.90% 89.57% 79.00% 83.95% 44.10%
random LCD InstructBLIP Vicuna 87.53% 87.43% 87.67% 87.55% 50.13%
popular Baseline InstructBLIP Vicuna 83.30% 85.35% 80.40% 82.80% 47.10%
popular LCD InstructBLIP Vicuna 83.73% 81.31% 87.60% 84.34% 53.87%
adversarial Baseline InstructBLIP Vicuna 80.23% 80.17% 80.33% 80.25% 50.10%
adversarial LCD InstructBLIP Vicuna 80.27% 76.33% 87.73% 81.64% 57.47%
random Baseline InstructBLIP FlanT5 85.63% 94.43% 75.73% 84.05% 40.10%
random LCD InstructBLIP FlanT5 86.03% 96.47% 74.80% 84.27% 38.77%
popular Baseline InstructBLIP FlanT5 82.07% 87.17% 75.20% 80.74% 43.13%
popular LCD InstructBLIP FlanT5 84.43% 92.44% 75.00% 82.81% 40.57%
adversarial Baseline InstructBLIP FlanT5 79.83% 82.83% 75.27% 78.87% 45.43%
adversarial LCD InstructBLIP FlanT5 82.03% 87.22% 75.07% 80.69% 43.03%
random Baseline LLAVA 1.5 85.87% 95.67% 75.13% 84.17% 39.27%
random LCD LLAVA 1.5 85.73% 97.18% 73.60% 83.76% 37.87%
popular Baseline LLAVA 1.5 84.80% 93.57% 74.73% 83.10% 39.93%
popular LCD LLAVA 1.5 85.40% 96.17% 73.73% 83.47% 38.33%
adversarial Baseline LLAVA 1.5 82.77% 88.67% 75.13% 81.34% 42.37%
adversarial LCD LLAVA 1.5 83.33% 90.98% 74.00% 81.62% 40.67%

Table 4: Complete POPE results.
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