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Abstract

Controlled Text Generation (CTG) aims to
produce texts that exhibit specific desired
attributes. In this study, we introduce a
pluggable CTG framework for Large Language
Models (LLMs) named Dynamic Attribute
Graphs-based controlled text generation
(DATG)1. This framework utilizes an attribute
scorer to evaluate the attributes of sentences
generated by LLMs and constructs dynamic
attribute graphs. DATG modulates the
occurrence of key attribute words and key
anti-attribute words, achieving effective
attribute control without compromising
the original capabilities of the model. We
conduct experiments across four datasets in
two tasks: toxicity mitigation and sentiment
transformation, employing five LLMs as
foundational models. Our findings highlight a
remarkable enhancement in control accuracy,
achieving a peak improvement of 19.29% over
baseline methods in the most favorable task
across four datasets. Additionally, we observe
a significant decrease in perplexity, markedly
improving text fluency.

CONTENT WARNING: This document, for
the purpose of illustrating tasks related to tox-
icity in CTG, may contain examples that are
offensive. Please read selectively.

1 Introduction

Controlled Text Generation (CTG) focuses on gen-
erating text adhering to specific conditions or at-
tributes, such as sentiment, non-toxicity(Liu et al.,
2021; Pei et al., 2023) and style(Konen et al., 2024;
Tao et al., 2024). In the realm of CTG, achiev-
ing precise control over specific attributes of the
generated content is a significant challenge. This

*Equal contribution
†Corresponding author
1Our code is available at https://github.com/

IAAR-Shanghai/DATG

Instance: The novel is a 
masterpiece / success / disappointment / disaster
of storytelling, with a complex narrative.

… masterpiece …

… success …

… disappointment ...

… disaster ....

Positive

Negative

A few word changes can shift 
the entire sentence's position 
on the sentiment dimension.

Figure 1: Illustration of the impact of key words on text
attributes within the semantic space.

must be accomplished without compromising the
generative capabilities and text quality of LLMs.

Traditionally, CTG methods have employed
small language models to influence the decoding
process of larger models(Dathathri et al., 2020;
Krause et al., 2021; Yang and Klein, 2021). Though
this approach provides a degree of control, it may
compromise the inherent quality and variability of
the output. Recent studies (Zhong et al., 2023)
highlight that an overemphasis on control can detri-
mentally affect text fluency, rendering the content
less effective. This issue underscores a critical
insight: excessive reliance on smaller language
models to steer the outputs of LLMs can diminish
the decoding capabilities inherent to LLMs. When
small-scale models assume control, they effectively
overshadow the original performance of LLMs dur-
ing the inference and decoding phase. This process
not only masks the vast capabilities of LLMs but
also relegates them to a subordinate role, essentially
transforming these sophisticated generative models
into mere “puppets” of their smaller counterparts.

In light of our exploration, we think the specific
attributes of a text are predominantly determined by
a limited number of words that bear close relation
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Figure 2: DATG unfolds in four stages: (1) Contextual Corpus Construction, using LLMs to generate text
sequences from specified prompts; (2) Attribute Classifier Scoring, employing classifiers to evaluate texts against
target attributes; (3) Dynamic Attribute Graphs Construction, forming attribute graphs based on classifier-
informed token linkages, encapsulating texts’ compliance and divergence from the target attribute in semantic space;
(4) ReGeneration with Dynamic Boundary Controlling, applying graph ranking to identify and adjust key nodes,
guiding text toward the desired attribute boundary via logits-boost and prefix-prompt strategies.

to those attributes (Zhong et al., 2023). Despite
these key words being sparse within the text, their
impact on the overall attributes is decisive. For
instance, changing the word “masterpiece” to “fail-
ure” in the sentence “The novel is a masterpiece of
storytelling, with a complex narrative.” shifts the
sentiment from positive to negative. This change
alters the entire sentence’s sentiment and meaning.
In the conceptual framework of semantic space,
these attributes can be seen as dimensions within
this space. By strategically adjusting these key
words, we can guide the text generated by LLMs to
move in the desired direction within the semantic
space, controlling its attributes without significant
alterations to the overall content (See Figure 1).

Based on these observations, we propose a plug-
gable CTG approach, Dynamic Attribute Graphs-
based controlled text generation (DATG), which
employs dynamic attribute graphs to identify key
words aligned or opposed to target attribute dimen-
sions. By modulating the occurrence of these key
words, our method precisely controls text attributes
without compromising the inherent capabilities of
LLMs. This strategy allows for targeted movement

within the semantic space.

As described in Figure 2. Our work begins with
Contextual Corpus Construction, where LLMs
generate text sequences from specific prompts.
Subsequently, Attribute Classifier Scoring as-
sesses these texts with classifiers, such as toxic-
ity or sentiment classifiers, to evaluate alignment
with the target attribute. The core of our method,
Dynamic Attribute Graphs Construction, trans-
forms the text sequences into directed weighted
graphs, informed by classifier scores. This pro-
cess leads to the creation of two distinct graphs:
a positive attribute graph, weighted by the con-
sistency scores from the classifier, and a negative
attribute graph, weighted by the complements of
these scores. The attribute graphs represent the
text’s adherence to and deviation from the target
attribute dimension within the semantic space. Dur-
ing the ReGeneration with Dynamic Boundary
Controlling process, the graph ranking algorithm
selects key nodes that propel the generated text to-
wards the upper boundary of the control attribute
dimension in the semantic space. Adjustments of
the occurrence of these key nodes, facilitated by
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logits-boost and prefix-prompt strategies, enable
the regeneration of text.

The key contributions of our study are summa-
rized as follows:

• We introduce a pluggable DATG framework
that integrates dynamic attribute graphs with
LLMs for CTG, providing a novel, flexible
approach to attribute-driven text generation.

• DATG achieves a peak improvement of
19.29% in performance over baseline meth-
ods, according to comprehensive experiments
across various datasets, and significantly en-
hances text fluency.

• We reintroduce the application of graph mod-
els in CTG tasks, offering new insights for
controlled text generation with LLMs.

2 Methodology

2.1 Problem Definition

The generative capability of LLMs is characterized
by the probability distribution over a sequence X:

P (xn|X1:n−1) = p(xn|x1, x2, . . . , xn−1), (1)

where xn represents the token currently being gen-
erated, and X1:n−1 includes the sequence of tokens
generated prior to xn. This probabilistic frame-
work allows LLMs to produce text sequences that
are diverse and coherent.

In the domain of CTG, control conditions C are
integrated into the generative process to steer the
text towards exhibiting specific attributes, such as
sentiment and toxicity. This can be formulated as:

P (X|C) =

n∏

i=1

p(xi|x<i, C), (2)

where C signifies the desired attributes to be re-
flected in the generated text. The key challenge
in CTG is to integrate C into the generative pro-
cess seamlessly, maintaining the LLMs’ inherent
generative quality.

We consider the problem within the framework
of a semantic space S ⊂ Rd, where outputs of
LLMs are mapped as vectors. In this semantic
space S , our goal is to adjust dimensions associated
with control conditions C, directing the distribution
of text towards desired attributes while preserving
the integrity of other semantic dimensions. This

objective is achieved through a transformation func-
tion f , designed to delicately shift semantic vectors
without altering their inherent characteristics:

J(f) = Ex∼P (S)[s(f(x))], (3)

where J(f) evaluates the effectiveness of f in
aligning text generation with control conditions
C, and s(·) measures the semantic vector’s con-
formity to these conditions. To depict the vector
transition within S towards desired attributes, we
employ the transformation equation:

xafter = f(xbefore) = xbefore +∆x, (4)

Leveraging attribute graphs, we identify key
words that significantly influence the LLM-
generated sentences in the semantic space S , along
the control attribute dimension. By adjusting the
occurrence of just a few key words, we not only
preserve the original performance of LLMs but
also effectively steer the regenerated text towards
desired conditions. This method effectively guides
the text towards specified attributes, maintaining
semantic integrity and coherence.

2.2 Contextual Corpus Construction

Recent studies, including LIMA (Zhou et al.,
2023a) and Re-Align (Lin et al., 2024), affirm
that the foundational knowledge and capabilities
of LLMs are established predominantly during the
pre-training phase. This evidence suggests that un-
aligned base models already possess the capacity
to generate the desired texts.

Guided by the principles of the LIMA hypoth-
esis and findings from Re-Align, our approach
commences with the generation of a sentence
set, symbolized as X, using an LLM prompted
by a query that is intricately tied to the desired
context. This initial phase leverages the LLM’s
pre-trained knowledge to generate text sequences
closely aligned with the prompt’s context, reflect-
ing the inherent distribution of text in the semantic
space produced by large language models.

The set comprises individual sentences, Xj , each
generated in response to the initial prompt, repre-
sented as X = {X1, X2, . . . , Xm}. Each sentence
Xj is a sequence of tokens {x1j , x2j , . . . , xnjj},
where nj denotes the sentence’s token count. This
constructs a contextual corpus foundational for sub-
sequent manipulations.

5799



2.3 Attribute Classifier Scoring

To align generated texts with specific attributes
like toxicity or sentiment levels, we employ a pre-
trained language model enhanced with a classifi-
cation layer. This classifier is fine-tuned on data
tailored to the target attribute, enabling a condition-
specific classifier to precisely evaluate and quantify
attribute presence and intensity.

The classifier model scores each text Xi in X =
{X1, X2, . . . , Xm} as:

s(Xi) = ClassifierModel(Xi), (5)

where s(Xi), between 0 and 1, reflects how well
Xi exhibits the target attribute and assesses text
distribution along the control condition in the se-
mantic space. This scoring, a quantitative metric,
aids in evaluating attribute representation in X and
understanding text alignment with control condi-
tions.

2.4 Dynamic Attribute Graphs Construction

In the dynamic attribute graphs construction
phase, each sentence Xj in X is tokenized
into discrete tokens, forming vertex sets Vj =
{v1,j , v2,j , . . . , vnj ,j} for each sentence:

V =
m⋃

j=1

Vj , (6)

where vi,j represents a distinct token from sentence
Xj , and V is the union of all vertex sets Vj .

Directed edges within each Vj are defined by
sequentially linking tokens to reflect their order in
the sentence:

Ej = {(vi,j , vi+1,j) | vi,j , vi+1,j ∈ Vj}, (7)

The overall edge set E is then defined as the union
of all Ej , reflecting the aggregation of directed
edges from all sentences:

E =
m⋃

j=1

Ej , (8)

In the dynamic attribute graphs (G+ for posi-
tive influence and G− for negative influence), the
framework is defined to encapsulate the relation-
ships tokens have with the control attribute, rep-
resenting the semantic space boundaries shaped
by these influences. The cumulative weights for

each edge, reflecting the total influence across all
sentences, are formalized for both graphs as:

G± = (V,E,W±), (9)

where W± is the set of cumulative weights for
edges, determined by aggregating attribute classi-
fier scores, and is calculated as:

W± =



w±

ik | w±
ik =

∑

j

w±
ik,j



 , (10)

with the weights w+
ik,j = s(Xj) for G+ and

w−
ik,j = 1 − s(Xj) for G−, corresponding to the

direct and inverse classifier score influences of sen-
tence Xj on the edge from token vi to vk.

Applying a graph ranking algorithm to the dy-
namic attribute graphs, G+ and G−, identifies key
tokens that affect the text’s alignment with the tar-
get attribute. This method evaluates the impor-
tance of tokens based on their connectivity and the
weights of their connections, distinguishing tokens’
positive or negative influence on the attributes.

For G+, the graph ranking algorithm high-
lights tokens that positively influence the attribute
through W+; for G−, it identifies with negative
impacts using W−. Key tokens are identified as:

VPos = {vi ∈ V |GraphRanking(G+) > θp},
(11)

VNeg = {vi ∈ V |GraphRanking(G−) > θn},
(12)

Thresholds θp and θn are used to identify key to-
kens with a significant influence from G+ and G−,
respectively:

• Boost the occurrence of key tokens identified
in G+ during text regeneration.

• Suppress the occurrence of key tokens identi-
fied in G− during text regeneration.

By enhancing or reducing the occurrence of key
tokens, we facilitate the movement of text within
the semantic space towards the desired attribute
direction.

2.5 ReGeneration with Dynamic Boundary
Controlling

Positive and Negative Nodes in dynamic attribute
graphs inherently represent the semantic space
boundaries of LLM’s generative capabilities. These
nodes act as natural boundary anchors, directing
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the text’s semantic trajectory towards or away from
specific attributes. Activating Positive Nodes aligns
the text with desired attributes, moving it closer to
the upper boundary, while suppressing Negative
Nodes helps avoid undesired attributes, distancing
it from the lower boundary. Through logits-boost
and prefix-prompt strategies, we precisely manip-
ulate these boundaries to control the text’s seman-
tic orientation, ensuring alignment with desired
attributes or distancing from undesired ones.

Logits-Boost Strategy. The Logits-Boost
method influences token probabilities associated
with Positive and Negative Nodes by adjusting log-
its in the LLM’s generation algorithm. By enhanc-
ing logits for Positive Nodes and reducing those for
Negative Nodes before the softmax operation, we
achieve precise control over the model’s output:

P̃ (Xt|x<t) = softmax(zt + α · 1Pos − β · 1Neg)
(13)

Here, zt is the original logits, 1Pos and 1Neg indi-
cate Positive and Negative Nodes, and α, β control
the adjustment extent. This selective logits modi-
fication aligns the output with control conditions
without significantly affecting text fluency, as it
only dynamically adjusts the probabilities of a few
attribute-related words.

Prefix-Prompt Strategy. Alongside logits ad-
justment, we employ the Prefix-Prompt strategy to
guide LLM towards highlighting Positive Nodes
and avoiding Negative Nodes. By appending spe-
cific prefixes to prompts, like “The following pas-
sage often discusses [Positive Words] but does
not mention [Negative Words].”, we steer content
generation in line with control conditions. This ap-
proach, combined with logits modification, ensures
that generated text aligns with desired attributes
while maintaining fluency and coherence.

3 Experiments

3.1 Tasks Setup

Inspired by the CTG capabilities demonstrated
in PREADD (Pei et al., 2023), we designed our
experiments around two principal tasks, utilizing
datasets annotated for specific attributes. (1) Toxic-
ity Mitigation Task: We employ the RealToxici-
tyPrompts dataset (Gehman et al., 2020) to evalu-
ate our method’s ability to reduce toxicity in gen-
erated texts. We use two evaluation sets: Random-
Toxic and TopToxic, focusing on broad toxicity mit-
igation and critical toxicity reduction, respectively.

(2) Sentiment Transformation Task: Utilizing the
SST-5 dataset (Socher et al., 2013), we examine
our method’s effectiveness in transforming the sen-
timent of movie reviews. Evaluation sets include
NegToPos and PosToNeg for transforming negative
to positive sentiments and vice versa. More details
are provided in Appendix A.1.

3.2 Base LLMs
Our experiments utilize a range of base models
with varying sizes and originating from AI re-
search institutions: Phi-2 2.7B from Microsoft
Research (Hughes, 2023), OPT 6.7B from Meta
AI (Zhang et al., 2022), Alpaca 7B from Stanford
University (Taori et al., 2023), Falcon 7B from
Technology Innovation Institute (Almazrouei et al.,
2023), LLaMA-2 13B from Meta AI (Touvron
et al., 2023). For more details, see Appendix A.2.

3.3 Classifier Models
To measure the alignment of generated texts with
desired attributes, we employ an embedding model,
the BAAI/bge-large-en-v1.5 model (Xiao et al.,
2023), augmented with an external classifier head.
This classifier is fine-tuned on texts with specific
attributes to enhance the evaluation of text attribute
consistency.

For toxicity mitigation, the Jigsaw Toxic Com-
ment Classification Challenge dataset (cjadams
et al., 2017) was utilized to train a classifier dis-
tinguishing toxic from non-toxic content. In sen-
timent transformation, the IMDB dataset (Maas
et al., 2011) enabled the training of a sentiment
classifier to steer text generation towards the de-
sired sentiment, aligning the emotional tone with
the task. More details are provided in Appendix
A.3.

3.4 Baselines
We compare DATG against four baselines in con-
trolled text generation:

CONTINUATION: The normal continuation of
text generation without any control. INJECTION:
Injects specific prompts into the generation process
to guide the model towards the desired attribute effi-
ciently. FUDGE (Yang and Klein, 2021): Utilizes
an attribute predictor to condition text generation
on desired attributes. PREADD: Employs manip-
ulation of output logits from prompts for attribute
control. Additionally, we introduce two variations
of our approach for comparison: DATG-L: Uti-
lizes the Logits-Boost strategy for probability ad-
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Tasks ToxicRandom ToxicTop
Base LLMs Generator Relvance ↑ Perplexity ↓ Toxicity ↓ Relvance ↑ Perplexity ↓ Toxicity ↓

Alpaca 7B

CONTINUATION 0.432 32.698 0.126 0.444 36.901 0.371
INJECTION 0.431 36.360 0.140 0.443 37.088 0.359

FUDGE 0.427 61.661 0.121 0.358 368.952 0.234
PREADD 0.409 55.890 0.107 0.416 64.515 0.280
DATG-L 0.417 39.610 0.120 0.419 38.206 0.234
DATG-P 0.442 57.417 0.135 0.446 60.561 0.373

Falcon 7B

CONTINUATION 0.429 25.581 0.137 0.442 28.897 0.383
INJECTION 0.427 24.791 0.163 0.444 25.764 0.360

FUDGE 0.419 46.523 0.134 0.358 371.807 0.333
PREADD 0.410 46.769 0.123 0.414 59.370 0.334
DATG-L 0.425 28.027 0.116 0.418 28.412 0.248
DATG-P 0.442 32.992 0.161 0.454 40.568 0.447

LLaMA-2 13B

CONTINUATION 0.439 32.910 0.134 0.441 39.253 0.341
INJECTION 0.435 46.191 0.145 0.441 48.720 0.336

FUDGE 0.423 58.429 0.118 0.360 374.839 0.253
PREADD 0.415 61.478 0.107 0.424 70.290 0.271
DATG-L 0.423 41.948 0.113 0.417 42.737 0.230
DATG-P 0.451 43.020 0.134 0.450 42.863 0.385

OPT 6.7B

CONTINUATION 0.437 23.568 0.144 0.448 31.965 0.373
INJECTION 0.429 22.028 0.163 0.443 28.660 0.389

FUDGE 0.421 56.963 0.145 0.360 378.332 0.365
PREADD 0.411 41.807 0.145 0.418 59.047 0.329
DATG-L 0.417 25.003 0.124 0.425 32.342 0.250
DATG-P 0.447 34.250 0.169 0.458 36.738 0.427

Phi-2 2.7B

CONTINUATION 0.423 21.311 0.112 0.420 29.009 0.286
INJECTION 0.427 23.459 0.154 0.434 30.329 0.365

FUDGE 0.407 42.850 0.096 0.345 348.332 0.246
PREADD 0.386 31.007 0.089 0.392 37.404 0.220
DATG-L 0.400 23.119 0.095 0.403 27.879 0.193
DATG-P 0.422 38.720 0.134 0.434 43.146 0.314

Table 1: Toxicity mitigation task performance across LLMs using ToxicRandom and ToxicTop datasets, evaluating
Relevance (↑), Perplexity (↓), and Toxicity (↓). Bold indicates top performance; underline marks second-best. In
Perplexity, bold excludes CONTINUATION, expected to be most fluent.

Task Metric CONTINUATION INJECTION FUDGE PREADD DATG-L DATG-P

ToxicRandom
Perplexity ↓ 27.21 30.57 53.29 47.39 31.54 41.28
Toxicity ↓ 0.1306 0.1530 0.1228 0.1142 0.1136 0.1466

ToxicTop
Perplexity ↓ 33.21 34.11 368.45 58.13 33.92 44.78
Toxicity ↓ 0.3508 0.3618 0.2862 0.2868 0.2310 0.3892

Table 2: Average performance metrics of five LLMs on toxicity mitigation tasks, including Perplexity (lower is
better) and Toxicity (lower is better), for the ToxicRandom and ToxicTop datasets.

Task Metric CONTINUATION INJECTION FUDGE PREADD DATG-L DATG-P

NegToPos
Perplexity ↓ 31.95 55.55 205.08 61.45 32.23 51.23
Success ↑ 0.3664 0.4076 0.3036 0.3984 0.4590 0.3346

PosToNeg
Perplexity ↓ 35.19 56.28 263.25 62.60 35.75 53.44
Success ↑ 0.2100 0.3628 0.4284 0.2824 0.3194 0.4252

Table 3: Average performance metrics of five LLMs on sentiment transformation tasks, including Perplexity (lower
is better) and Success (higher is better), for the NegToPos and PosToNeg datasets.
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justment to guide text generation towards desired
attributes. DATG-P: Applies the Prefix-Prompt
strategy for adjustment, using prefixes to steer the
generation process towards the desired attributes.
More details are provided in Appendix A.4.

3.5 Metrics

To effectively evaluate the outcomes of our tasks,
we utilize metrics as follows:

(1) Toxicity: For assessing the toxicity mitiga-
tion task, we measure the toxicity of generated
texts using the Perspective API by Jigsaw 2. (2)
Success Rate: For assessing the sentiment transfor-
mation task, success is determined by the propor-
tion of text successfully transformed to the desired
sentiment, evaluated with a RoBERTa model fine-
tuned on SST-5. (3) Perplexity: Applied to both
tasks, perplexity measures the fluency of text, using
GPT-2 large for assessment. (4) Relevance: Rele-
vance evaluates the contextual alignment between
the prompt and its completion, measured by co-
sine similarity between their embeddings. Detailed
metrics are provided in Appendix A.5.

3.6 Result Analysis

Toxicity Mitigation Analysis In our experi-
ments, the DATG-L method consistently ranks
among the top 2 across all tasks in the crucial met-
rics of toxicity and perplexity, as demonstrated in
Table 1. This performance shows a significant re-
duction in toxicity without sacrificing text fluency,
effectively validating our hypothesis.

The DATG-L approach, by adjusting the logits
distribution of a few key attribute words, minimally
impacts the overall performance during most decod-
ing moments by the large model. Its outstanding
performance on the ToxicTop dataset further con-
firms our assumption that a few attribute words play
a decisive role in determining the overall sentence
attribute, achieving the best toxicity scores across
all models. Sentences from the ToxicTop dataset
often exhibit higher toxicity due to extreme words,
and adjusting a few key words is effective in reduc-
ing toxicity. In contrast, ToxicRandom texts may
lack distinct attribute words, yet DATG-L effec-
tively mitigates toxicity. Despite DATG-P’s weaker
performance, it scores higher in relevance, likely
due to key words in prefix-prompts acting as an-
chors for generating attribute-related text. Its ad-
herence to prompts is limited by the base LLMs’

2www.perspectiveapi.com

directive-following capacity.
It is noteworthy that INJECTION performs

worse than simple CONTINUATION. This may
stem from our use of a contextual prompt: “The
following text doesn’t perpetuate negative stereo-
types, isn’t threatening or sexually explicit, and
does not contain profane language.” Such prompts
can unintentionally act as “anchors,” prompting
models to produce the very content they are in-
structed to avoid. This effect, akin to being told
not to think of a cat and then picturing one, was
similarly observed in our PREADD baseline ex-
periments where negative prompts inadvertently
prompted related content.

As shown in Table 2, DATG-L shows superior
performance across models, leading in toxicity and
perplexity on the ToxicTop dataset, with a 19.29%
improvement in toxicity over the best baseline, and
surpassing INJECTION in fluency by 41.65% over
PREADD and 90.79% over FUDGE. FUDGE’s
perplexity varies greatly, likely due to its classifier’s
direct control disrupting LLMs’ distributions at
high toxicity levels, aligning with our Air-decoding
findings that too much control diminishes text qual-
ity. DATG-L also tops toxicity mitigation perfor-
mance on ToxicRandom.

The DATG approach effectively reduces toxi-
city while preserving text fluency, validating our
hypotheses about the impact of attribute words.

Sentiment Transformation Analysis In senti-
ment transformation tasks, our DATG approach
consistently ranks in the top 2 across all tasks. How-
ever, unlike the toxicity tasks, DATG-L and DATG-
P show varying performances on the Neg2Pos
and Pos2Neg datasets, as shown in Table 5. For
Neg2Pos, DATG-L excels, achieving the best rates
in perplexity and success across all models ex-
cept for Phi-2 2.7B, where it slightly trails behind
PREADD in success rate. Notably, its perplex-
ity is even lower than the INJECTION method,
which relies on the large model’s inherent gener-
ation capabilities. This suggests that base models
may become disoriented when receiving contradic-
tory injection directives and prompts, disrupting
the natural distribution of the generated text. In
the Pos2Neg task, DATG-P ranks among the top
performers in all models, maintaining high fluency.

Across the five models, DATG-L stands out
in the Neg2Pos dataset, surpassing the best base-
line by 12.61% in success rate, while DATG-P,
although slightly below FUDGE in success rate on
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Method Process Time (s/item) Time Proportion

DATG
Contextual Corpus Construction 2.25 65.22%

Dynamic Attribute Graphs Construction 0.15 4.35%
Regeneration 1.05 30.43%

PREADD PREADD Generation 5.24 /
FUDGE FUDGE Generation 5.82 /
Original Natural Generation 1.03 /

Table 4: The average computation times for each stage of DATG using Alpaca-7B, compared with natural generation.

the Pos2Neg dataset, improves fluency by 79.70%
compared to FUDGE (See Table 3). This reinforces
the idea that direct control by smaller models over
decoding can degrade the quality of text generated
by large models, especially in sentiment transfor-
mation tasks where the prompt and generated text
undergo significant changes. FUDGE’s method
of directly controlling the large model’s decoding
disrupts the inherent distribution during decoding.

Thus, in sentiment transformation tasks, our
DATG methods effectively control sentiment while
preserving text fluency, demonstrating their capa-
bility to balance successful attribute transformation
with maintaining the quality of the generated text.

DATG-L vs. DATG-P DATG-L and DATG-P
demonstrate varied adaptability depending on the
type of base LLMs and the nature of the tasks.

Model Type Adaptability: DATG-L is ideal
for white-box or grey-box environments, allow-
ing modifications to model internals like output
logits for direct control over attribute generation.
It suits settings needing deep integration with the
model’s functions. Conversely, DATG-P is suited
for black-box scenarios, using prompt engineer-
ing to influence outputs without accessing internal
mechanisms, making it versatile for various LLMs
permitting only external interactions.

Task Type Suitability: The effectiveness of
DATG-L and DATG-P also varies with the task
objectives, particularly in relation to the LLMs’
“mainstream generation style.” This style refers to
the default content generation tendency of LLMs,
which is shaped by the most prevalent language
patterns in their training data. Typically, LLMs
are predisposed to generate non-toxic and positive
content due to the predominance of such data in
their training corpus. For tasks like toxicity miti-
gation or transforming negative sentiments to pos-
itive (NegtoPos), where the objectives align with
the LLMs’ mainstream generation style, DATG-L

performs better. It fine-tunes the text attributes by
subtly adjusting the generation probabilities of un-
wanted vocabulary, enhancing the alignment with
desired attributes without drastic deviation from the
model’s natural output tendencies. Conversely, for
tasks that require a significant deviation from the
LLMs’ mainstream style, such as converting pos-
itive to negative sentiments (PostoNeg), DATG-P
is more effective. By embedding specific negative
sentiment words within prompts, this method sets
a new directional bias in the generation process.
This “anchoring” of key words in the prompt ex-
plicitly guides the LLM away from its default posi-
tive generation tendency, facilitating the production
of content that meets the task’s unique objectives.

Generation Speed Analysis As Figures 3 and 4
demonstrate, DATG-L and DATG-P significantly
outperform PREADD and FUDGE by 32.67% and
40.02%, respectively. This underscores the effi-
ciency of our methods, even with the inclusion of
steps for generating contextually relevant corpora.

Figure 3: Generation speed of toxicity task measured in
seconds per item (s/item) on 2x Nvidia A100 GPUs.

Using Alpaca-7B as an example, the average
computation times for each stage of DATG, along
with natural generation, are presented in Table
4. The minimal time required for Dynamic At-
tribute Graphs Construction and the primary com-
putational load on Contextual Corpus Construction
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highlight potential areas for speed enhancement
through pre-constructing large attribute graphs.

For example, in toxicity tasks, we can prede-
fine common issues such as gender discrimination,
child abuse, and animal abuse. For each toxicity
type, we can pre-construct contextually relevant
corpora and attribute graphs. Upon receiving a
specific prompt, we search the pre-constructed at-
tribute graph for a related subgraph, perform graph
ranking, and extract key attribute words.

This strategy could accelerate the generation pro-
cess, potentially matching the speed of natural gen-
eration based on the computation times listed.

4 Related Work

4.1 Retrain

Retraining approaches in Controlled Text Gener-
ation integrate control mechanisms into model ar-
chitectures, often requiring additional data or con-
straints. Models like CTRL (Keskar et al., 2019),
POINTER (Zhang et al., 2020), Mention Flags
(Wang et al., 2021), and DIRECTOR (Arora et al.,
2022) demonstrate various levels of control from
global themes to specific lexical choices. However,
these methods are computationally intensive and
constrained by the availability of annotated data,
posing challenges alongside the rise of LLMs.

4.2 Fine-tuning

Fine-tuning has emerged as an effective strategy
to adapt PLMs to specific tasks in CTG. Minimal
parameter optimization approaches, such as Prefix-
Tuning (Li and Liang, 2021) and DART (Nan et al.,
2021), enhance efficiency. Techniques like Con-
trastive Prefixes (Qian et al., 2022) and DisCup
(Zhang and Song, 2022) improve generation qual-
ity and control. Prompt-based methods, includ-
ing AutoPrompt (Shin et al., 2020) and p-Tuning
(Lester et al., 2021), leverage the PLMs’ latent
knowledge without substantial changes. Advances
in instruction-based models, such as FLAN (Wei
et al., 2022) and InstructCTG (Zhou et al., 2023b),
have made significant strides in zero-shot learning
performance.

4.3 Decoding

During decoding, CTG has significantly advanced
with auxiliary models and classifiers guiding LLMs.
Techniques such as Plug and Play Language Mod-
els (PPLM) (Dathathri et al., 2020), FUDGE (Yang
and Klein, 2021), CAIF (Sitdikov et al., 2022), and

CriticControl (Kim et al., 2023) utilize classifiers
for directing generation. These classifiers modu-
late text direction and style, interfacing with LLMs.
However, this approach may slow decoding due to
sentence attribute evaluations.

Concurrently, Class-Conditioned Language
Models (CCLMs) and Prefix-Conditioned Lan-
guage Models (PCLMs) offer alternatives. Meth-
ods like DExperts (Liu et al., 2021), GeDi (Krause
et al., 2021), CounterGeDi (Saha et al., 2022),
and Air-Decoding (Zhong et al., 2023) leverage
CCLMs or PCLMs for guidance.

In addition to methods that use classifiers for as-
sistance, methods such as Self-Debiasing (Schick
et al., 2021), Self-Detoxifying (Leong et al., 2023),
PREADD, and RAIN (Li et al., 2024) exploit the
inherent strengths of LLMs for nuanced control.
Additionally, Goodtriever (Pozzobon et al., 2023)
uses retrieval-augmented models for toxicity con-
trol. However, external model guidance may com-
promise text quality, especially under restrictive
conditions, leading to attribute collapse (Zhong
et al., 2023).

5 Conclusion

In this paper, we present Dynamic Attribute
Graphs-based controlled text generation (DATG),
a flexible and pluggable framework that seamlessly
integrates graph models with LLMs to refine CTG.
DATG’s plug-and-play nature facilitates easy adap-
tation with existing LLMs, allowing for the targeted
steering of text attributes while maintaining high
linguistic integrity.

Our framework demonstrates notable successes
in critical CTG tasks such as toxicity mitigation
and sentiment transformation, as evidenced by sub-
stantial enhancements in control accuracy and the
preservation of text fluency. The use of dynamic
attribute graphs in DATG enables precise manipu-
lation of attribute-related words, striking a delicate
balance between controlled content generation and
the naturalness of language.

The efficacy of DATG attests to the potential of
graph models as vital components in the develop-
ment of adaptable and effective CTG systems. This
work not only showcases the capabilities of DATG
but also sets the stage for future explorations into
its applicability across a broader range of attributes,
model scales, and complex language tasks, rein-
forcing the framework’s flexible and plug-and-play
characteristics.
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Ethical Considerations

It is important to note that the algorithm designed
in this study is involved in distinguishing between
toxic and non-toxic comments, where toxic com-
ments may encompass hate speech, racial discrimi-
nation, sexual harassment, and other harmful texts.
Our model is trained with the sole purpose of ad-
vancing the field of Natural Language Processing
(NLP) towards a healthier and toxicity-free direc-
tion.

Limitations

This work presents two main limitations. Firstly,
the preprocessing required, including the genera-
tion of contextually relevant corpora, can be time-
consuming, which may impact the efficiency of
time-sensitive applications. Secondly, the effec-
tiveness of DATG heavily relies on the generative
capabilities of the underlying models; insufficiently
diverse or relevant content generation may reduce
control over the desired attributes.

To address these issues, future work will aim
to reduce preprocessing time and enhance the ro-
bustness of the framework against the variability of
model outputs. One potential direction for improv-
ing speed involves pre-generating large attribute
graphs of the corpus. Searching for key nodes
within semantically related subgraphs could expe-
dite this process.
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A Experiment Details

This section outlines our experimental methodol-
ogy to evaluate the effectiveness of the DATG
method in steering text generation towards specific
attributes. Our investigation concentrates on two
tasks: (1) Toxicity Mitigation and (2) Sentiment
Transformation.

A.1 Tasks
Toxicity Mitigation Task: Leveraging the Re-
alToxicityPrompts dataset (Gehman et al., 2020),
which includes over 100,000 prompts with toxicity
scores, this task crafts two evaluation sets: Ran-
domToxic, 1,000 prompts sampled to broadly test
toxicity mitigation, and TopToxic, the 1,000 most
toxic prompts to focus on critical toxicity reduction.
The aim is to minimize prompt mismatch while
reducing generated text toxicity, aligning outputs
with initial non-toxic intents.

Sentiment Transformation Task: Utilizing the
SST-5 dataset (Socher et al., 2013), which contains
movie reviews across a sentiment spectrum from
1 to 5, this task prepares two sets for evaluation:
NegToPos, 1,000 negative reviews (scores 1 and 2)
for testing transformation to positive sentiment, and
PosToNeg, 1,000 positive reviews (scores 4 and 5)
for conversion to negative sentiment. The goal is to
generate text that effectively shifts sentiment in the
opposite direction of the initial prompt, ensuring
textual coherence and relevance.

These tasks are selected to showcase the DATG
method’s effectiveness in accurately guiding text
generation towards desired attributes, reflecting its
potential to enhance the quality and applicability
of generated content. We have obtained all datasets
used through official sources, and the datasets are
used in a manner consistent with their intended use.

A.2 Base LLMs
Our experiments utilize a diverse array of base
LLMs, each developed by leading AI research in-
stitutions. The lineup includes Phi-2 2.7B by Mi-
crosoft Research, emphasizing compactness and
efficiency; LLaMA-2 13B by Meta AI, optimized
for dialogue and conversational contexts; Falcon
7B by Technology Innovation Institute, focusing
on broad language understanding; OPT 6.7B also
by Meta AI, known for its open-source accessi-
bility; and Alpaca 7B by Stanford University, de-
signed for instruction-following tasks. These mod-
els range from 2.7 billion to 13 billion parame-

ters, providing a solid foundation for evaluating the
DATG method’s effectiveness. We have obtained
all models used through official sources, and the
models are used in a manner consistent with their
intended use.

To ensure consistency across experiments, we
employ the following generation configurations for
all models:

• max_new_tokens: 32,

• do_sample: True,

• top_k: 200,

• top_p: 0.9,

• temperature: 0.7.

These settings are designed to balance creativity
and coherence in generated text, enabling nuanced
control over the output while facilitating the ex-
ploration of the DATG method’s capabilities in
steering text generation.

A.3 Classifier Models

To improve the precision and control in text gener-
ation tasks, we integrate classifier models with our
foundational generative models. At the core of our
classification setup is the BAAI/bge-large-en-v1.5
model, chosen for its nuanced understanding of lan-
guage and awareness of context. This model acts
as the base for our task-specific classifier heads,
which we fine-tune to meet the specific needs of
each task.We have obtained all datasets and models
used through official sources, and the datasets and
models are used in a manner consistent with their
intended use.

A.3.1 Toxicity Mitigation Classifier

For toxicity mitigation, we employ the Jigsaw
Toxic Comment Classification Challenge dataset
(cjadams et al., 2017), which includes a broad ar-
ray of comments annotated for varying levels of
toxicity. This dataset enables us to train a classi-
fier that efficiently distinguishes between toxic and
non-toxic content. We create a balanced dataset of
42,768 training samples to even out the distribution
between toxic and non-toxic labels. This classi-
fier reaches an accuracy of 93.39%, facilitating the
generation of safer and more respectful dialogues.
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Tasks NegToPos PosToNeg
Models Generator Relvance ↑ Perplexity ↓ Success ↑ Relvance ↑ Perplexity ↓ Success ↑

Alpaca 7B

CONTINUATION 0.500 37.580 0.364 0.502 39.887 0.203
INJECTION 0.532 55.891 0.454 0.538 63.483 0.396

FUDGE 0.392 208.181 0.318 0.397 271.179 0.429
PREADD 0.465 73.021 0.395 0.457 77.644 0.286
DATG-L 0.447 37.295 0.467 0.453 46.061 0.332
DATG-P 0.508 72.195 0.309 0.506 75.275 0.426

Falcon 7B

CONTINUATION 0.498 31.599 0.357 0.498 33.714 0.206
INJECTION 0.502 36.852 0.477 0.516 34.296 0.328

FUDGE 0.397 193.347 0.347 0.403 271.234 0.410
PREADD 0.492 64.122 0.390 0.477 65.083 0.256
DATG-L 0.462 30.749 0.478 0.449 36.175 0.327
DATG-P 0.513 48.349 0.414 0.514 47.280 0.328

LLaMA-2 13B

CONTINUATION 0.499 37.759 0.384 0.510 41.397 0.188
INJECTION 0.566 83.866 0.283 0.556 79.626 0.356

FUDGE 0.394 219.241 0.291 0.406 256.506 0.420
PREADD 0.453 76.535 0.416 0.469 75.418 0.238
DATG-L 0.456 39.382 0.464 0.451 44.563 0.305
DATG-P 0.508 60.189 0.365 0.505 66.427 0.418

OPT 6.7B

CONTINUATION 0.510 23.954 0.333 0.513 25.480 0.269
INJECTION 0.556 36.380 0.417 0.548 41.175 0.372

FUDGE 0.411 198.180 0.247 0.415 250.288 0.460
PREADD 0.490 54.107 0.317 0.480 50.183 0.331
DATG-L 0.472 26.634 0.428 0.459 25.487 0.357
DATG-P 0.525 33.768 0.295 0.501 34.080 0.490

Phi-2 2.7B

CONTINUATION 0.472 28.844 0.394 0.467 35.489 0.184
INJECTION 0.513 64.785 0.407 0.510 62.835 0.362

FUDGE 0.398 206.452 0.315 0.392 267.039 0.423
PREADD 0.437 39.458 0.474 0.433 44.667 0.301
DATG-L 0.455 27.103 0.458 0.434 26.469 0.276
DATG-P 0.467 41.663 0.290 0.472 44.139 0.464

Table 5: Sentiment transformation (NegToPos and PosToNeg) performance across LLMs, evaluating Relevance (↑),
Perplexity (↓), and Success Rate (↑). Bold indicates top performance; underline marks second-best. In Perplexity,
bold excludes CONTINUATION, expected to be most fluent.

A.3.2 Sentiment Transformation Classifier
For sentiment transformation, we utilize the IMDB
dataset (Maas et al., 2011), comprised of movie re-
views annotated with binary sentiment scores. This
rich dataset allows us to train a sentiment classifier
that effectively directs text generation toward either
positive or negative sentiments, ensuring the gen-
erated text aligns well with the intended emotional
tone. We prepare a balanced training dataset of
50,000 samples to maintain equal representation of
both sentiment polarities. The sentiment classifier
achieves an accuracy of 95.90%.

We fine-tune the classifiers with the following
hyperparameters, identical across both tasks:

• Epochs: 20

• Batch Size: 32

• Learning Rate: 1× 10−5

• Training Set Size Ratio: 90%

Fine-tuning these classifiers with carefully cho-
sen hyperparameters and balanced datasets plays
a crucial role in the DATG method’s success. It
enables precise guidance of text generation towards
desired attributes, ensuring both high accuracy and
relevance.

A.4 Baselines

In assessing the DATG method, we benchmark
against two key baselines in controlled text genera-
tion:
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Method Alpaca 7B Falcon 7B LLaMA-2 13B OPT 6.7B Phi-2 2.7B

Toxicity Mitigation

CONTINUATION 1.05 1.33 1.57 1.04 1.10
INJECTION 1.03 1.36 1.64 1.08 1.09

PREADD 5.24 5.49 9.10 6.20 2.81
FUDGE 5.82 6.24 6.47 5.85 5.94
DATG-P 3.45 3.85 5.65 3.93 2.44
DATG-L 3.43 3.80 5.51 3.81 2.45

Sentiment Transformation

CONTINUATION 1.07 1.33 1.58 1.22 1.17
INJECTION 1.05 1.35 1.60 1.03 1.07

PREADD 5.33 5.77 9.34 6.35 2.84
FUDGE 6.49 6.43 7.01 6.59 6.74
DATG-P 3.61 3.97 6.02 3.99 2.41
DATG-L 3.59 4.01 5.90 3.95 2.45

Table 6: This table presents the average generation speed of various methods across different LLMs, measured
in seconds per item (s/item). Lower values indicate faster generation speeds, highlighting the efficiency of each
method in processing text.

FUDGE conditions text generation on attributes
by adjusting LLMs’ output probabilities with an
attribute classifier’s scores. We select the top k =
100 tokens, adjusting logits with intensity α =
0.5, achieving nuanced control for attributes like
formality and sentiment.

PREADD manipulates output logits from
prompts for direct attribute control, contrasting
logits between prefixed and original prompts. With
α = 1.0, it modulates control strength, effec-
tively mitigating toxicity with the prompt “The
following text perpetuates negative stereotypes,
is threatening or sexually explicit, and does not
contain profane language.” and transforming
sentiment with “The following text exhibits a very
positive/negative sentiment and/or opinion.”

Moreover, we explore prompt injection tech-
niques as an additional baseline, aligning with the
PREADD’s experimental setup. This approach in-
corporates specific prompts into the generation pro-
cess to efficiently direct the model’s output toward
the desired attribute.

CONTINUATION generates text without any
attribute-specific conditioning, serving as a base-
line to evaluate the effect of explicit attribute con-
trol.

INJECTION uses the same prompts as
PREADD, but directly integrates them into the
generation process for attribute alignment. For
toxicity mitigation, the prompt is “The following
text doesn’t perpetuate negative stereotypes,
isn’t threatening or sexually explicit, and does
not contain profane language.” For sentiment
transformation, the prompt is “The following text

exhibits a very positive/negative sentiment and/or
opinion.” This method aims to influence the
model’s output more naturally by embedding the
desired attribute direction within the prompt itself.

In addition to the baseline methods, our DATG
approach introduces different strategies in the con-
text corpus construction and dynamic attribute
graph phases. During the initial stage, DATG freely
generates 30 sentences to build a contextually rich
corpus. After constructing two dynamic attribute
graphs (positive and negative), we simplify the
threshold determination process by selecting 10
nodes from each graph for adjustment.

DATG-L DATG-L employs a Logits-Boost strat-
egy, where the adjustment intensities for boosting
positive nodes and avoiding negative nodes are set
at α = 4.0 and β = 6.0, respectively. This method
ensures a targeted manipulation of logits to enhance
or mitigate specific attributes within the generated
text, providing a refined control over the text gen-
eration process.

DATG-P Similarly, DATG-P applies the Prefix-
Prompt strategy for adjustment, using prefixes to
steer the generation process towards the desired
attributes. The Prefix-Prompt is “The following
passage often discusses [Positive Words] but does
not mention [Negative Words].”

A.5 Metrics
Our evaluation framework employs specific metrics
for toxicity mitigation and sentiment transforma-
tion tasks to accurately measure their outcomes:

Toxicity (For Toxicity Mitigation Task): We
quantify the average toxicity level of generated text
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Figure 4: Generation speed of sentiment task measured
in seconds per item (s/item) on 2x Nvidia A100 GPUs.

using the Perspective API by Jigsaw. This auto-
mated tool, developed in 2017, provides a reliable
measure of text toxicity, ensuring our content meets
desired safety standards.

Success (For Sentiment Transformation Task):
Success is defined as the proportion of generations
accurately achieving the desired sentiment. This is
assessed by a RoBERTa model (Liu et al., 2019)
fine-tuned on the SST-5 dataset (excluding test sam-
ples), with the following parameters:

• Epochs: 20

• Batch Size: 32

• Learning Rate: 1× 10−5

• Training Set Size Ratio: 90%

Achieving a prediction accuracy of 96.78%, this
model’s precision in sentiment identification allows
us to calculate the success rate of our sentiment
transformations effectively.

Perplexity: Applied across both tasks, perplexity
is assessed by GPT-2 large, evaluating the con-
ditional perplexity of prompt completions. This
metric measures the natural flow from prompt to
generated text, highlighting coherence.

Relevance: For both tasks, relevance is measured
using cosine similarity between the sentence em-
beddings of the prompt and its completion, calcu-
lated by the BAAI/bge-large-en-v1.5 model. This
ensures that generated text remains contextually
aligned with the initial prompt.

These tailored metrics enable a comprehensive
evaluation of the DATG method’s ability to produce
text that is contextually relevant, fluent, and aligned
with specific toxicity and sentiment goals.We have

obtained all datasets and models used through offi-
cial sources, and the datasets and models are used
in a manner consistent with their intended use.

B Experiment Results

The appendix details experimental results omitted
from the main text, including sentiment transfor-
mation across models in Table 5, average genera-
tion speeds in Table 6, and speed distribution his-
tograms in Figure 4.

C Sample Results

This section presents selected instances of gener-
ated text to illustrate the performance of our meth-
ods. Detailed examples across various tasks and
models are provided on the following page.

Please note, the following generated text exam-
ples may contain extremely offensive or harmful
content.
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Generator Generated Text

CONTINUATION Mr Davies played during WWII, narrowly escaping death by a German bomb.
Mr Davies was one of a handful of players who made the team from the south
Wales town. He was on

INJECTION Mr Davies played during WWII, narrowly escaping a bomb blast at his home
and seeing a close friend die. He was later awarded a CBE for his services to
cricket and the community.

FUDGE Mr Davies played during WWII, narrowly avoiding death on a number of
occasions. The Welsh rugby legend was a member of the Army’s 6th Airborne
Division and was one of the last British

PREADD Mr Davies played during WWII, narrowly avoiding being called up for the war
effort by representing the Barbarians tour of South Africa in 1943. Former
Wales captain Gareth Davies has died at the age of

DATG-L Mr Davies played during WWII, narrowly escaping being shot on D-Day. He
served as a member of the Parachute Regiment and served in India, Burma, and
Germany. A war

DATG-P Mr Davies played during WWII, narrowly escaped the Blitz, and was part of
the Bristol side that won the League in 1945. In this passage, we often talk
about war,

Table 7: Generated texts comparison from OPT 6.7B for the ToxicRandom task.

Generator Generated Text

CONTINUATION “Fuck you, motherfuckers,” he said. “That’s rollingover on the ground, and
that’s fucking up.” The 2022 Honda Civic Type R Is A 3

INJECTION “Fuck you, motherfuckers,” he said. “That’s rolling.”The game was tied 1-1 at
the time. The next day, he was fined $3,000 for the obscene

FUDGE “Fuck you, motherfuckers,” he said. “That’s rollingfire road, dipshit. Here hit
MCTDR...banner four can direct just continue.” Three back haches? "Every-
thing runs best an

PREADD “Fuck you, motherfuckers,” he said. “That’s rollingpapers.” ”What?” said the
cashier. The other customer rolled his eyes. “You’re buying drugs with your
volume disc

DATG-L “Fuck you, motherfuckers,” he said. “That’s rollingright back at you.” “You
gotta go back to the beginning,” he told me. “You gotta go back to that first
year, when

DATG-P “Fuck you, motherfuckers,” he said. “That’s rolling.” When we talk about the
time, we often say, “How are you?” “I’m fine.”

Table 8: Generated texts comparison from Alpaca 7B for the ToxicTop task.
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Generator Generated Text

CONTINUATION this thing works on no level whatsoever for me .... I have been using it for a
while and it does not work. I have the same problem with the “Not

INJECTION this thing works on no level whatsoever for me . I am a 35 year old male, 5’8"
and weigh 160lbs. I have been on this diet for 2 weeks now

FUDGE this thing works on no level whatsoever for me . wnd... one final WNN?? Who
Deadeyan when MRS picks such time boundations?!?! thats completely just
stippler themem though what as

PREADD this thing works on no level whatsoever for me . i get " are you sure you want
to share link " but i can share it to all other apps help please Return to “

DATG-L this thing works on no level whatsoever for me . i use latest version of adobe
flash player and latest version of chrome. i use latest version of adobe flash
player and latest version of chrome. nothing happens

DATG-P this thing works on no level whatsoever for me . In the 3rd & 4th videos, it is
explained how ‘things’ work. They have to work for you, and

Table 9: Generated texts comparison from Falcon 7B for the NegToPos task.

Generator Generated Text

CONTINUATION below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . one of the best films i have seen in a long time.
i had never heard of this director before, but i liked this movie a lot.

INJECTION below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . the film is a slick , sly , and at times very funny
story of a man who is forced to confront the fact that he has no life

FUDGE below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . whether you experience house of long toxic
torture as a comedy or a horror flick , it’s generally a wonderful mind blast
away from

PREADD below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . director john carpenter’s cinematic vision is
some of the most iconic work in american film . writer/director dav

DATG-L below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . The hard-boiled dialogue and the hard-edged
atmosphere are what one would expect from a noirish action flick like this one.

DATG-P below may not mark mr. twohy ’s emergence into the mainstream , but his
promise remains undiminished . he ’s a director who makes films that are both
visually and intellectually challenging. But the film, which has been in the
works since

Table 10: Generated texts comparison from LLaMA-2 13B for the PosToNeg task.
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