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Abstract

The eXtreme Multi-label Classification (XMC)
aims to accurately assign a large number of la-
bels to instances, presenting challenges in learn-
ing, managing, and predicting across a vast
and rapidly growing set of labels. Traditional
XMC methods, such as one-vs-all and tree-
based methods struggle with the increasing set
of labels due to their static label assumptions,
while embedding-based methods face difficul-
ties with complex mapping relationships due
to their late-interaction paradigm. In this pa-
per, we propose a large language model (LLM)
powered agent framework for extreme multi-
label classification – XMC-AGENT, which can
effectively learn, manage and predict an ex-
tremely large and dynamically increasing set
of labels. Specifically, XMC-AGENT models
the extreme multi-label classification task as a
dynamic navigation problem, employing a scal-
able hierarchical label index to effectively man-
age the unified label space. Additionally, we
design two algorithms to enhance the dynamic
navigation capabilities of XMC-AGENT: a self-
construction algorithm for building the scalable
hierarchical index, and an iterative feedback
learning algorithm for adjusting the agent to
specific tasks. Experiments demonstrate that
XMC-AGENT achieves the state-of-the-art per-
formance on three datasets.

1 Introduction

The eXtreme Multi-label Classification (XMC) task
aims to classify instances to relevant labels from an
extremely large label candidate space (Bhatia et al.,
2015; Bengio et al., 2019; Prabhu et al., 2018).
XMC is a widely used technique in many real-
world applications, such as assigning appropriate
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Figure 1: An example of search engine auto-completion
is provided, illustrating the two distinct settings of XMC,
which differ in whether the label set is fixed. When a
user types headsets, standard XMC usually gives
predictions from a fixed label set; whereas incremental
XMC can dynamically adapt to newly added labels.

tags to products in e-commerce platforms (Medini
et al., 2019; Chang et al., 2021), recommending of
interest in recommendation systems (McAuley and
Leskovec, 2013), and facilitating search queries
auto-completion in search engines (Agrawal et al.,
2013; Yadav et al., 2021).

Unfortunately, due to the extensive and dynamic
growth of the label candidates, XMC is a very chal-
lenging task. In real-world XMC problems, the
number of potential labels often ranges from tens
of thousands to millions (Song et al., 2020). Such
a large output space poses significant challenges
for modeling, learning, and computing the map-
ping from instances to large-scale labels, i.e., the
scalability problem. For instance, it is difficult to
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directly learn the mapping from headsets (in-
stance) in Figure 1 to xbox and glasses (labels),
and computing all instance-label pairs will result in
a high computation cost. Furthermore, the label set
in real-world XMC scenarios is often dynamically
changing and rapidly growing. The evolving labels
further raise the challenge of efficient integration
of new labels without the necessity for extensive
retraining.

Current eXtreme Multi-Label Classification
methods are mainly tree-based (Khandagale et al.,
2019; Majzoubi and Choromanska, 2020; Zhang
et al., 2021; Yu et al., 2022; Kharbanda et al., 2022)
and embedding-based approaches (Gupta et al.,
2021; Dahiya et al., 2021; Mittal et al., 2021a;
Xu et al., 2023; Gupta et al., 2023; Chien et al.,
2023). Tree-based approaches organize the labels
as a fixed and static label tree, classify instances
from root to leaf nodes and gradually narrow down
the label candidates. These approaches, while ad-
dressing the challenge posed by large-scale label
sets, struggle with dynamically growing label sets
due to the utilization of prefixed, static label indices.
Embedding-based approaches, on the other hand,
predict labels by mapping labels and instances into
the same vector space and selecting labels based
on their vector similarities. However, due to the
lack of fine-grained interaction between instances
and labels, issues arise when dealing with complex
mapping relationships. Moreover, to effectively
integrate new labels, a process of re-training or con-
tinual training is necessary. However, the extensive
label space and large volumes of data make retrain-
ing resource-intensive, and continuous learning can
result in severe catastrophic forgetting, degrading
previously acquired label knowledge.

In this paper, we propose an agent-based frame-
work for extreme multi-label classification – XMC-
AGENT, which can effectively learn, manage, and
predict the extremely large and dynamically in-
creasing set of labels by leveraging LLMs-powered
agents. Specifically, XMC-AGENT models the
extreme multi-label classification task as a dy-
namic navigation problem (i.e., the model searches
through the label space to locate the labels corre-
sponding to the instance), and employs a scalable
hierarchical label index to effectively manage the
extensive label space via transforming them into
a tree-like label index. In this way XMC-AGENT

can uniformly manage both existing labels and fu-
ture labels and seamlessly integrate future labels

by inserting them at suitable positions in the tree
as they emerge, leveraging their connections and
associations with existing labels, thereby avoiding
disruption of existing structures and the need for
extensive retraining. By leveraging the capabilities
of LLMs for dynamic navigation within a struc-
tured label space, XMC-AGENT offers a novel and
effective solution for addressing the scalability and
adaptability challenges of XMC.

Given the XMC-AGENT framework, we pro-
pose a self-construction algorithm for scalable hi-
erarchical label building and a self-correction al-
gorithm for the general navigational capabilities of
LLMs. Specifically, the self-construction algorithm
autonomously transforms the large label set into
a structured hierarchical index by adopting a self-
questioning strategy, i.e., the XMC-AGENT de-
termines comparison relations between labels and
recursively merges these relations to build the struc-
tured label index. In this way, the self-construction
algorithm enables the seamless integration of newly
emerged labels. Furthermore, we propose a self-
correction algorithm, which dynamically obtains
feedback signals from previous incorrect naviga-
tion trajectories and iteratively adjusts its naviga-
tion capability on specific tasks.

Generally, our main contributions are:

• We propose an LLM-powered agent frame-
work named XMC-AGENT. By modeling
the XMC problem as a navigation task within
the label space, XMC-AGENT can naturally
handle the incremental XMC problem and
achieve state-of-the-art performance on three
standard datasets.

• We design a scalable hierarchical label
index construction algorithm named self-
construction. By discovering the associative
relationships between labels, self-construction
enables the seamless integration of newly
emerged labels into an existing label index.

• We design an iterative feedback learning algo-
rithm named self-correction, which leverages
the navigation trajectory as feedback to effec-
tively align general navigation capability with
specific classification scenarios.

2 Methodology

Let X and Y represent the sets of input instances
and labels respectively, and { Y0,Y1, · · · ,Yk} rep-
resent the acquired labels at different time. For
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Figure 2: Illustrations of our proposed LLM-powered agent framework. a) Modeling the extreme multi-label
classification task as a dynamic navigation problem, and utilizing a two-stage navigation strategy to seek optimal
results over a semantic hierarchical label index1. b) Employing a self-construction algorithm to build a scalable
hierarchical label index by adopting a self-questioning strategy. c) Employing a self-correction algorithm to enhance
the general navigational capabilities by iteratively learning feedback signals from previous navigation trajectories.

simplicity, we consider a two-stage incremental
setting in this paper, which means Y = Y0 ∪ Y1.

We bring XMC-AGENT to confront the chal-
lenges encountered in addressing the incremen-
tal XMC, which is achieved by: (1) Constructing
a scalable hierarchical label index using LLMs.
(2) Employing iterative feedback learning to effec-
tively adjust LLMs with specific tasks.

2.1 Extreme Multi-label Classification as
Dynamic Navigation

The essence of multi-label classification lies in
searching for multiple relevant labels from the label
space, which leads to increased difficulty in directly
solving the problem (i.e., one-vs-all approaches)
with the increase of the set of labels. Consider-
ing this, we propose XMC-AGENT to simplify the
problem by incorporating the interrelationships be-
tween labels to construct a label index I, which
consists of a specialized center c along with mul-
tiple sub-indices, denoted as I ≡ (c, {Ii}), and
employing an LLM-powered agent to navigate over
the index for the optimal results. The main idea of
dynamic navigation is illustrated in Figure 2.a.

Specifically, we employ a two-stage navigation
strategy to seek the optimal results over the hierar-
chical index. In the first stage, a breadth-first search

1Tags with superscript ⋄ represent the actual labels, while
the others represent centers generated during the construction.

is employed to generate a shortlist via the compari-
son of the instances and centers in the index. The
breadth-first search stops when traversing the entire
index or reaching a certain number of terminal in-
dex (i.e., reaching Dance and Music in Figure 2.
b). The shortlist is composed of the union of all la-
bels from the reached terminal index (i.e., [ Latin
Dance, Samba, Rock, Guitar, Pop ]). In the
second stage, XMC-AGENT selects labels relevant
to the instance from the shortlist and outputs them
based on the relevance (i.e., XMC-AGENT assign
Latin Dance and Pop to the instance, and re-
gard the former as more relevant).

2.2 Scalable Hierarchical Index Building via
Self-construction

To adapt the navigation strategy (comparison
among the instance and centers), we adopt a
compare-based (Schultz and Joachims, 2003;
Haghiri et al., 2017; Emamjomeh-Zadeh and
Kempe, 2018; Ghoshdastidar et al., 2019) index
building approach; instead of using explicit similar-
ity computations to form a hierarchical label index.
Specifically, we utilize LLMs to determine compar-
ison relations between labels and recursively merge
these relations to build the structured label index.
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Algorithm 1 Hierarchical Label Indexing of self-
construction
Input: Label partition p = (c,Y), Task description T
Output: Hierarchical label index I

1: if should stop then ▷ Pre-defined stop criteria
2: return p
3: end if
4: repeat
5: Ŷ ← Sample(Y)

▷ Sample a subset labels to represent Y
6: C ← GenCenters(T, Ŷ)

▷ Generate sub-index centers according to Ŷ
7: for li ∈ Y do ▷ Assign each label to relevant centers
8: Ci ← AssignCenter(li, C)
9: end for

10: P ← Partition({(li, Ci)}|Y0|
i=1 )

▷ Create sub-partitions according to the
assignment

11: P† ← V alidation(P)
12: until P† ̸= ∅
13: for pi ∈ P† do ▷ Recursive execution
14: Ii ← QuickCluster(pi, T ) ▷ Algorithm 1
15: end for
16: I ←Merge(c, {Ii}|P

†|
i=1 ) ▷ Algorithm 2

17: return I

2.2.1 Compare-based Hierarchical Indexing
Considering the label set Y0 in Figure 2.b, we ini-
tially regard it as a partition p⋆ = (root,Y0) and
sample a subset Ŷ as representations from p⋆. Then,
a collection of sub-index centers (e.g., Sports,
Creations, Clothing and Arts ) can be gen-
erated based on Ŷ , using the following prompt :

Which centers are relevant to the provided
product category?

To get the partition of Y0, each label li ∈ Y0 is
compared with C, assigning li to relevant centers
Ci, using the following prompt :

Look through the provided labels of product
categories and give a set of cluster centers.

This process generate k + 1 partitions eventu-
ally, denoted as P = {p1, · · · , pk, pother}. The
first k partitions correspond to the k centers and
their assigned labels, while the last partition pother,
encompasses labels irrelevant to all centers in C.

We additionally apply a post-refinement to ad-
dress potential issues existing in the obtained par-
tition (i.e., there is a significant overlap between

Algorithm 2 Merge Operation of self-construction

Input: Sub-index set {Ii}, Predecessor center c
Output: Hierarchical label index I

1: Init: Sc ← [ ] ▷ Successors of c
2: for Ii ∈ {Ii} do
3: if Ii is other then ▷ The index for a group of labels

assigned to center other
4: Add successors of Ii to Sc

5: else
6: Add Ii to Sc

7: end if
8: end for
9: return (c, Sc)

Algorithm 3 Scalable Label Integration of self-
construction
Input: Hierarchical label index I, New Labels Y ′

, Task de-
scription T

Output: Extended Index I
1: for li ∈ Y

′
do

2: Pi ← Search(I, li) ▷ Compare li with centers in
I in a top-down manner

3: for pij ∈ Pi do
4: pij ← (cij ,Yi

j ∪ {li}) ▷ Insert li to partition pij
5: if pij should split then ▷ Pre-defined criteria
6: Iij ← QuickCluster(pij , T ) ▷ Algorithm1
7: pij ← Iij ▷ Replace pij with new index
8: end if
9: end for

10: end for
11: return I

partition Arts and Creations in Figure 2.a, re-
taining both would result in the waste of resources),
as C is generated from a subset of Y0.

We recursively execute the above process for
each partition until the stopping criteria are sat-
isfied (i.e., the number of labels within the par-
tition is less than a pre-defined threshold). One
noteworthy benefit of using the recursive strategy
is that as the recursion depth increases, the label
similarities within an obtained partition also in-
crease. This in turn leads to the increase in the
specificity of the sub-index center’s representa-
tion (i.e., Clothing -> Athletic Apparel
-> Running Apparel).

As mentioned before, the partition process also
generates non-semantic centers, denoted as pother,
which block the information circulation over the
index. To address this issue, we establish direct con-
nections between the successors and predecessors
of these centers, thereby eliminating their impact
on the semantic index. The details of the index-
building process are shown in Algorithm 1.
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Figure 3: An example of adding a new label Polonaise2

to an existing label index. After a few level-wise com-
parisons, the new label is inserted into two terminal
partitions. Since neither of the partitions requires fur-
ther subdivision, the insertion is complete.

2.2.2 Integration of Scalable Indexing
To incorporate new labels into an existing index,
we propose an InsertSort like algorithm. We use
an example to illustrate the main idea in Figure
3. For each new label, XMC-AGENT recursively
compares it with the centers of the sub-index and
assigns it to relevant sub-indices until reaching the
terminal index. Once the labels within a terminal
index surpassing the pre-defined threshold, we use
Algorithm 1 to directly generate fine-grained sub-
indices for the terminal index.

2.3 Agent Adaption via Iterative Feedback
Learning

To adjust the mapping relationship between in-
stances and labels for a specific application, one
approach is to add summarized mapping rules to
the context of LLMs. However, due to the inherent
challenge of having extensive labels, the summa-
rized rules are incapable of covering all annotated
data, which gives rise to inconsistency between
classification results and user intent.

Different from using summarized decision cri-
teria, we propose an approach to utilize feedback
to inform the navigation process of LLMs. Giving
an input instance, LLMs would give several predic-
tions using the self-constructed index, which con-
sists of two distinct label types: Hit representing
labels both detected and relevant, like Pop in Fig-
ure 2, and Error representing labels detected but

2Polonaise is a dance of Polish origin. Polonaise dance
greatly influenced European ballrooms, folk music, and Euro-
pean classical music.

irrelevant, indicating inconsistency, like Latin
Dance in Figure 2. Additionally, there exist labels
which are relevant but remain undetected in the
search process, denoted as Miss, also indicating
inconsistency, like Rock in Figure 2. Furthermore,
based on the three types of labels, we also mark
the centers along their search paths with the corre-
sponding type. For example, Arts is on the search
path of Pop, and Dance is on the search path of
Latin Dance, thus they are marked as Hit and
Error respectively.

Verify whether the product should
be assigned to category Rock

It's a Man's Man's Field…

"reason": "The description contains
elements of rock music, and ... ”

"decision": "Yes"

Select labels from the candidate
list for the product

It's a Man's Man's Field…

Dance Pop Rock

Pop Rock

Inductive ReasoningDeductive Reasoning

Figure 4: An example of the collected feedback data.
Deductive Reasoning is the self-feedback explaining
why Rock (undetected but relevant) is a relevant la-
bel, and Inductive Reasoning is the contrastive feed-
back used to distinguish relevant labels from a carefully
crafted shortlist.

Self-Feedback by Deductive Reasoning To pro-
vide feedback using deductive reasoning, we utilize
the decision criteria provided by the LLMs them-
selves for both the two types of inconsistent labels
(Error and Miss). For example, in Figure 2, XMC-
AGENT leverages the self-generated decision cri-
teria for the inconsistent label Rock (Miss) as a
feedback signal to adjust its navigational capability.

Contrastive-Feedback by Inductive Reasoning
To provide feedback using inductive reasoning, we
create a shortlist by randomly sampling the three
types of labels along with irrelevant labels without
detection, akin to the navigation process, and the
expected response are all relevant labels in the list.

When a sufficient amount of feedback, i.e., Fig-
ure 4, is collected, we engage in the refinement of
LLMs iteratively to align the navigation capability
using the feedback data.

3 Experimental Setting

3.1 Datasets and Evaluation
We evaluate our method on the following datasets:
AmazonCat-13K (McAuley and Leskovec, 2013)
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Dataset
Instances Labels

Ntrain Ntest |Y0| |Y1| Avg.

AmazonCat-13K† 1.1M 307K 6658 6672 2.6/5.1
LF-Amazon-131K† 295K 135K 51378 77067 1.62/2.11

LF-WikiSeeAlso-320K† 693K 118K 124924 187387 2.26/3.05

Table 1: Dataset statistics information. |Y0| indicates
the label size in the first stage, and |Y1| indicates the
number of newly added labels in the second stage. Avg.
represents the average number of labels per instance
across the two stages.

in product tagging domain, LF-Amazon-131K
(McAuley and Leskovec, 2013) in the recommen-
dation domain and LF-WikiSeeAlso-320K in the
wiki-page tagging domain, where 13K, 131K and
320K indicate the total label size. All datasets are
available in the extreme classification repository
(Bhatia et al., 2016). To evaluate the ability of
various methods in an incremental setting, we ran-
domly split the labels into two parts. The statistics
of the processed datasets (notated with superscript)
are listed in Table 1.

We consider two evaluation setups: Incremental
Performance (Inc) and Overall Performance (Over-
all). The former focus on classification results
only on Y1 and the latter focus on both Y0 and
Y1. We evaluate the models’ performance with Pre-
cision@k and Recall@k, where k ∈ {1, 3, 5, 10},
which are two commonly-used evaluation metrics
in XMC (Xiong et al., 2022; Aggarwal et al., 2023).

3.2 Baselines
We compare our method with the following base-
lines. 1) BM25 conducts a nearest neighbor re-
trieval using TF-IDF features. 2) TAS-B (Hofstät-
ter et al., 2021) ranks labels based on the simi-
larity with the instance by Faiss (Johnson et al.,
2019). 3) MACLR (Xiong et al., 2022) leverages
the raw text and self-training with pseudo positive
pairs to improve the extreme zero-shot capacity.
4) SemSup-XC (Aggarwal et al., 2023) use web-
collected semantic descriptions to represent labels
and facilitate generalization by using a combination
of semantic and lexical similarity. 5) ICXML
(Zhu and Zamani, 2023) propose three demonstra-
tion selection approaches to create in-context learn-
ing prompts for gpt-3.5-turbo to generate ap-
proximate labels, then using TAS-B mapping these
approximate labels to labels set and get final re-
ranking results by gpt-3.5-turbo. 6) Linear
Search To assess the efficacy of directly employ-
ing LLMs for XMC, we traverse all labels using

both zero-shot and few-shot approaches, sorting
the labels based on the output logits. Consider-
ing the scale of the label sets, we only conducted
experiments on AmazonCat-13K†.

4 Results and Analysis

4.1 Main results
In all experiments, we choose Vicuna-13B-v1.5
(Zheng et al., 2023) as the base LLM. The experi-
mental results over three datasets, as presented in
Table 2, reveal that:

1) XMC-AGENT exhibits a noteworthy improve-
ment in addressing incremental XMC problem.
Compared with previous methods, our classifica-
tion as a navigation approach demonstrates an im-
proved capability in handling new labels on three
datasets of different scales. Simultaneously, our
approach achieves optimal performance under the
overall setup, exemplifying a commendable bal-
ance between utility and generalization.

2) XMC-AGENT enhances its dynamic naviga-
tion capability by integrating the proposed com-
ponents. Compared with the Linear Search re-
sults on AmazonCat-13K†, our approach achieves
an acceptable time cost while exhibiting superior
navigation performance under both setups (i.e.,
9.3% P@1 improvement in Inc and 45.9% P@1
improvement in Overall), which indicates the effec-
tiveness of the proposed components.

3) XMC-AGENT demonstrates a stable perfor-
mance across various application scenarios. In
our experiments, we found that previous methods
have varying applicability across scenarios. For in-
stance, TAS-B exhibits a better performance in sce-
narios with longer label length (e.g., LF-Amazon-
131K† and LF-WikiSeeAlso-320K†), ICXML per-
forms better in cases where the mapping relation-
ship between instances and labels is complex (e.g.,
LF-WikiSeeAlso†), and SemSup-XC demonstrates
better capabilities in scenarios where the mapping
relationship is more direct (e.g., AmazonCat-13K†

and LF-Amazon-131K†). Our approach, which
utilizes an LLM to uniformly manage the label
space and learn mapping relationships from feed-
back rather than integrating them into embedding,
enables effective handling of various applications.

4.2 Analysis
To understand the impact of various key compo-
nents on the results, we conduct ablation studies on
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Method

Inc Overall

Precision Recall Precision Recall

P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10

AmazonCat-13K†

BM25 8.7 5.6 4.3 2.9 3.5 6.8 8.6 11.7 16.8 11.2 8.7 6.0 3.2 6.5 8.3 11.4

TAS-B (Hofstätter et al., 2021) 10.1 6.5 5.0 3.3 4.1 7.9 10.1 13.6 19.3 12.9 10.1 7.0 3.8 7.5 9.7 13.3

MACLR (Xiong et al., 2022) 7.4 5.0 4.0 2.8 2.7 5.5 7.4 10.6 15.2 10.3 8.2 5.8 2.7 5.6 7.4 10.4

SemSup-XC (Aggarwal et al., 2023) 25.6 17.2 13.3 9.0 11.0 23.6 30.7 41.3 86.5 62.5 47.3 29.4 19.4 37.3 45.1 54.4

ICXML (Zhu and Zamani, 2023) 14.8 10.6 8.4 5.3 5.4 12.4 15.8 20.6 32.0 20.9 16.5 10.7 6.0 11.8 15.4 19.4

Linear Search (Zero-Shot) 16.0 13.8 12.3 9.7 9.2 23.3 33.7 49.7 21.6 21.0 20.2 16.5 5.6 19.7 30.9 49.7
Linear Search (3-Shot) 17.0 15.2 12.8 9.5 9.9 23.7 35.8 50.3 34.2 28.2 24.5 18.2 12.0 27.5 38.9 55.3

XMC-AGENT (ours) 36.3 29.2 24.1 15.3 24.1 37.5 43.4 50.6 80.1 64.2 50.3 33.3 22.8 39.6 51.0 62.7

LF-Amazon-131K†

BM25 10.2 8.8 6.8 4.3 7.2 17.8 22.3 27.6 13.8 12.2 9.5 6.1 7.1 17.4 22.0 27.3

TAS-B (Hofstätter et al., 2021) 11.5 9.6 7.4 4.7 8.1 19.3 24.2 30.0 15.9 13.4 10.5 6.7 8.2 19.2 24.1 29.9

MACLR (Xiong et al., 2022) 11.6 9.6 7.5 4.8 8.0 19.3 24.5 30.8 15.9 13.6 10.7 6.9 8.1 19.4 24.6 31.1

SemSup-XC (Aggarwal et al., 2023) 21.5 15.3 11.2 6.7 10.0 31.2 37.2 43.7 19.1 17.5 13.8 8.7 10.1 25.9 32.6 40.2

ICXML (Zhu and Zamani, 2023) 19.0 12.7 9.5 5.5 14.0 26.4 32.2 37.5 24.6 17.1 12.7 7.6 13.4 26.3 31.7 37.3

XMC-AGENT (ours) 24.8 18.3 13.1 8.1 21.4 32.0 39.3 45.5 22.7 18.9 13.7 10.2 26.1 25.7 34.3 46.5

LF-WikiSeeAlso-320K†

BM25 10.4 7.8 6.1 4.0 7.1 14.6 18.0 22.6 13.8 10.9 8.6 5.8 7.1 14.5 17.9 22.5

TAS-B (Hofstätter et al., 2021) 13.2 10.1 7.9 5.2 9.3 19.4 23.9 29.9 17.4 14.0 11.1 7.4 9.3 19.3 23.8 29.8

MACLR (Xiong et al., 2022) 7.5 7.2 5.9 4.1 5.1 12.7 16.5 21.6 10.6 10.7 8.8 6.1 5.4 13.5 17.3 22.5

SemSup-XC (Aggarwal et al., 2023) 13.4 13.5 12.1 9.2 5.5 14.4 20.1 28.3 10.6 14.1 13.4 11.3 3.1 10.1 14.9 23.0

ICXML (Zhu and Zamani, 2023) 15.0 10.9 9.0 6.6 5.3 10.4 13.1 18.5 21.6 17.2 14.3 10.5 4.9 10.6 13.5 19.2

XMC-AGENT (ours) 15.8 14.3 12.6 9.9 10.3 16.0 25.3 32.5 24.3 18.4 15.6 13.0 12.4 19.9 26.3 33.0

Table 2: Main results of XMC-AGENT on three datasets, where Inc measures the performance on Y1 and Overall
measures the performance on both Y0 and Y1. The best and second-best performing score in each column are
highlighted with bold and underline, respectively. Considering the scale of the label sets, we only experiment with
Linear Search on AmazonCat-13K†.

the key components of XMC-AGENT and further
provide qualitative analysis of the performance of
previous methods with continual fine-tuning.

4.2.1 Ablating the Label Index
To investigate the impact of label index on the final
performance, we replaced the index used in XMC-
AGENT with two alternative methods. The first
one uses K-Means to recursively partition the label
set (with k=16) as mentioned in PECOS (Yu et al.,
2022). The second one employs Faiss (Johnson
et al., 2019) as a retriever, to identify the Top 500
similar labels with the instances as a shortlist. Both
the two approaches use TAS-B as the text embedder.
From results presented in Table 3, we can observe
that :

1) Replacing with K-Means results in significant
performance degradation. This is partly due to the
cascading error propagation in the index, as each
label only appears once in the K-Means index. Ad-
ditionally, to navigate over the index, each cluster
requires a description as representation. However,
due to the limitations of LLMs’ context window
and long-text processing capabilities, the generated
descriptions cannot fully cover labels within the
cluster, resulting in the inability to find relevant

Figure 5: Recall@k performance using TAS-B as
the text embedder and Faiss as the retriever on three
datasets.

labels based on the center during navigation.
2) Replacing with a shortlist is more effective

than K-Means, but still inferior to our approach.
This is due to the retrieval method can only detect a
fixed portion of relevant labels (as shown in Figure
5, even at R@3000, only 60%-70% of the relevant
labels can be detected), thereby restricting the ex-
ploration space for subsequent feedback learning.

4.2.2 Ablating Feedback Learning
To investigate the influence of the feedback mecha-
nisms, we separately employ one at a time. From
the results presented in Table 3, we can observe
that both mechanisms contribute to the final per-
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Method

Components AmazonCat-13K† LF-Amazon-131K†

LLM
Index

Inductive
Reasoning

Deductive
Reasoning

Inc Overall Inc Overall

P@1 R@10 P@1 R@10 P@1 R@10 P@1 R@10

Ablating Label Index

XMC-AGENT ✓ ✓ ✓ 36.3 50.6 80.1 62.7 24.8 45.5 22.7 46.5
Replace LLM Index with K-Means Index ✗ ✓ ✓ 17.3 24.4 15.6 25.3 19.9 34.6 17.1 25.2

Replace LLM Index with Faiss Top 500 ✗ ✓ ✓ 22.4 34.0 56.0 53.3 20.2 34.1 20.0 36.9

Ablating Feedback Learning

XMC-AGENT ✓ ✓ ✓ 36.313.0↑ 50.68.4↑ 80.135.8↑ 62.720.2↑ 24.87.2↑ 45.55.9↑ 22.75.4↑ 46.55.7↑
Adopt Inductive Reasoning ✓ ✓ ✗ 26.63.3↑ 49.37.1↑ 57.513.2↑ 58.115.6↑ 21.64.0↑ 42.83.2↑ 19.52.2↑ 44.43.6↑
Adopt Deductive Reasoning ✓ ✗ ✓ 31.58.2↑ 47.55.3↑ 60.416.1↑ 56.714.2↑ 22.44.8↑ 42.12.5↑ 19.01.7↑ 43.42.6↑
Adopt None (base performance) ✓ ✗ ✗ 23.3 42.2 44.3 42.5 17.6 39.6 17.3 40.8

Table 3: Component-wise ablation of XMC-AGENT. Ablating Label Index refers to replacing the self-construct
label index with a K-Means index and a shortlist composed of the Top 500 labels retrieved by Faiss to investigate
the impact of label index on the final performance. Ablating Feedback Learning represents separately employing
one feedback mechanism during iterative feedback learning to investigate the influence of the feedback mechanism.

Figure 6: Precision @{1, 3, 5, 10} and Recall@10 results at different iterations. Iter-0 stands for the model without
feedback learning. The various metrics of XMC-AGENT have all shown improvement during the iterative process,
and there is also an enhancement in the metrics on Y1 (Inc), indicating our method exhibits good generalization
performance and does not merely learn the corresponding relationships within the training set.

formance, but the emphasis on the improvements
differs between the two mechanisms. Employing
feedback based on inductive reasoning solely leads
to a greater improvement in recall. while solely
employing feedback based on deductive reasoning
leads to a greater improvement in precision.

This discrepancy arises from the inherent nature
of the feedback signals in the two mechanisms.
When using deductive reasoning, the feedback sig-
nal originates from the self-correction of the incon-
sistent label, thereby enhancing the discriminatory
ability for one specific label. While using inductive
reasoning, the signal comes from the exploration
of random candidates, leading to an improvement
in the discriminatory ability for overall labels.

Additionally, we assess the impact of iteratively
employing the feedback mechanism, as illustrated
in Figure 6. Across three rounds of iteration, both
metrics on the two datasets exhibit an improvement,
suggesting the proposed feedback learning mecha-
nism possesses robust stability and generalization.

4.2.3 Effect of Continual Fine-tuning
As the baselines are not designed for incremental
XMC problems, we conduct continual fine-tuning
(CFT) on the model trained with Y0 using addi-
tional labels to assess their adaptability in deal-
ing with new labels. The corresponding results
are shown in Table 4. It can be observed that the
model’s classification ability for new labels signif-
icantly improved after CFT. However, the overall
performance across the entire labels does not show
improvement, suggesting the forgetting of the ca-
pabilities learned by previous methods on a fixed
label set.

5 Related Works

Previous research on XMC can be divided into
two settings: full label coverage (Prabhu et al.,
2018; Mittal et al., 2021b,a; Kharbanda et al.,
2022; Yu et al., 2022) and weak label coverage
(Gupta et al., 2021; Dahiya et al., 2021; Xiong
et al., 2022; Gupta et al., 2023), the difference is
whether supporting predictions for newly added
labels during inference.
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Method
Inc Overall

P@1 R@10 P@1 R@10
AmazonCat-13K†

XMC-AGENT 36.3 50.6 80.1 62.7
MACLR (CFT) 15.8 12.3 14.6 9.8
SemSup-XC (CFT) 74.3 48.9 41.4 54.7

LF-Amazon-131K†

XMC-AGENT 24.8 45.5 22.7 46.5
MACLR (CFT) 17.3 34.3 15.8 31.8
SemSup-XC (CFT) 23.3 47.2 19.8 42.4

LF-WikiSeeAlso-320K†

XMC-AGENT 15.8 32.5 24.3 33.0
MACLR (CFT) 12.3 23.6 11.2 22.8
SemSup-XC (CFT) 14.6 28.3 13.5 24.7

Table 4: Results of XMC-AGENT and continue fine-
tuning baselines (CFT). CFT represents previous meth-
ods in a continue fine-tuning setting that first train on
Y0 and then continue fine-tuning on Y1.

A prevalent approach for addressing weak la-
bel coverage entails the utilization of a bi-encoder
to map labels and instances into the same vector
space. SiameseXML (Dahiya et al., 2021) general-
izes existing Siamese Networks (Chen et al., 2020)
by combining Siamese architectures with per-label
extreme classifiers. MACLR (Xiong et al., 2022)
constructs label and input text encoders by training
a pseudo label-input annotation data through a two-
stage process. SemSup-XC (Aggarwal et al., 2023)
uses web information to augment label semantics
and calculates the similarity between label and in-
put from both semantic and lexicon perspectives.

Unlike previous approaches that transformed the
classification task into an end-to-end generation
task (Simig et al., 2022) or utilized the in-context
learning ability of LLMs to generate approximate
labels(Chang et al., 2018; Tay et al., 2022; Kishore
et al., 2023; Wang et al., 2023), we model XMC as
an LLM-Agent dynamic navigation task(Kishore
et al., 2023; Wang et al., 2023), allowing for better
handling the dynamically growing extensive labels.

6 Conclusion

In this paper, we propose XMC-AGENT to address
the challenge of dynamically expanding label set in
extreme multi-label classification. This framework
utilizes a self-constructed label index for effective
management of the extensive labels. And incor-
porates an iterative feedback learning mechanism
to adjust general navigational capabilities to a spe-
cific task. The results on three standard datasets
indicate that our approach effectively enhances the
classification performance in incremental settings.

Limitations

We identify two limitations in our work that neces-
sitates further investigation. Firstly, we only em-
ploy Vicuna-13B-v1.5 as the base model of XMC-
AGENT, the impact of using different LLMs on the
final performance requires further detailed research.
Additionally, we only explore extreme multi-label
text classification problem with XMC-AGENT, fu-
ture works can extend the approach presented in
this paper to other domains, like the extreme multi-
label image classification problem.
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A Experiment Details

The deductive and inductive data used across each
iteration of feedback learning is list in Table 5, with
a distribution ratio of approximately 1:1. When
using feedback data to adjust Vicuna-13B-v1.5, we
set epoch to 1, learning rate to 2e-5 with no warm-
up and batch size to 256 using FSDP (Zhao et al.,
2023). All the experiments are implemented on
NVIDIA A100-80GB GPU clusters.

B Ablating the Navigation Policy

To investigate the impact of navigation policy on
the results, we experiment with multiple combi-
nations of strategies on AmazonCat-13K†. Due
to the second-stage navigation strategy adopting
an end-to-end approach to sequentially generate
relevant labels from the shortlist, we only experi-
ment with the first-stage strategy. We evaluate the
effectiveness of the navigation policy from two as-
pects: 1) The recall of the first stage, denoted as
Recall, where a higher proportion of relevant labels
in the shortlist obtained in the first stage implies a
smaller performance loss in subsequent processing.
2)The number of labels in the obtained shortlist,
denoted as Size, where a higher number of labels in
the shortlist leads to higher subsequent processing
costs.

We employed two distinct navigation policies: 1)
Breadth-First Search (BFS): This policy explores
the label index in a breadth-first manner, employing
a queue to store upcoming sub-indices for search
initiation upon detection of a terminal index during
any iteration, and continuing until completion of
the process. 2) Depth-First Search (DFS): This
policy explores the index in a depth-first manner,
utilizing a stack to retain the next sub-indices for
search initiation upon detection of a terminal index
during any iteration. And we terminate the naviga-
tion process upon detecting 20 terminal indices.

When navigating over the label index, we em-
ploy two different methods to represent the sub-
index currently being compared: 1) Only utilizing
the description center of the sub-index currently be-
ing confronted (i.e., Dance, Music or Sports).
2) Providing a series of descriptions centers tra-
versed from the root to the current sub-index, de-
noted as ancestor aug, i.e., [ Root -> Arts ->
Dance ].

From the results in Table 6 we can observe that
compared with retrieved top 300 similar labels us-
ing Faiss, employing a breadth-first manner nav-

Dataset Num

AmazonCat-13K 448k

LF-Amazon-131K 149k

LF-WikiSeeAlso-320K 159k

Table 5: The instance-label pairs used for training
XMC-AGENT

Policy at first stage Recall Size

Faiss (base performance) 53.7 300

BFS w/ ancestor aug 60.0 219.7
BFS w/o ancestor aug 68.9 220.5

DFS w/ ancestor aug 53.2 192.0
DFS w/o ancestor aug 59.3 179.6

Table 6: Impact of different navigation policies on the
shortlist obtained in the first stage.

igation policy achieved a higher recall rate while
retrieving fewer labels. Furthermore, despite the
additional information offered by ancestor augmen-
tation, it does not enhance the recall rate of nav-
igation results. This phenomenon is attributed to
the information from common ancestors enhancing
the similarity between different sub-indexes, thus
diminishing their distinctiveness.

C Full results for Linear Search

Considering the scale of the label set, we traverse
all tags in AmazonCat-13K† in a point-wise man-
ner, sorting the labels based on the output logits.
We conducted experiments using both zero-shot
and few-shot (k=1, 3, 5) approaches. When using
the few-shot approach, for each label, we randomly
select k instances related to that label from the
training set to construct demonstrations. We then
employ the large language models to determine the
relevance between the label and the input instance,
and we rank all labels based on the logits of the
response. The full results are present in Table 7 and
the comparison results with the previous method
and XMC-AGENT are shown in Figure 7. From the
results, it can be observed that employing LLMs
in a point-wise manner has achieved comparable
recall rates to the previous method, with slightly
lower precision rates. However, the Linear Search
approach incurs high time costs due to the need to
traverse all labels for each instance. XMC-AGENT

improves search speed by constructing a scalable
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Figure 7: The comparison of Linear Search (k=0, 1, 3,
5) with SemSup-XC and XMC-AGENT on AmazonCat-
13K†

hierarchical label index and employing feedback
learning to adjust the navigational capability, which
simultaneously enhances precision.

D Full results for ablation study

The full results for ablation study are present in
Table 8 and Table 9.

5671



Linear Search

Inc Overall

Precision Recall Precision Recall

P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10

Zero-Shot 16.0 13.8 12.3 9.7 9.2 23.3 33.7 49.7 21.6 21.0 20.2 16.5 5.6 19.7 30.9 49.7

1-Shot 14.9 13.1 10.0 7.8 5.7 19.7 25.1 42.8 37.8 27.9 23.8 17.9 15.0 28.1 38.7 54.6

3-Shot 17.0 15.2 12.8 9.5 9.9 23.7 35.8 50.3 34.2 28.2 24.5 18.2 12.0 27.5 38.9 55.3

5-Shot 18.1 13.8 13.0 9.6 10.8 21.7 35.5 50.1 37.8 27.9 23.8 17.9 15.0 28.1 38.7 54.6

Table 7: Employ Vicuna-13B-v1.5 in zero-shot and few-shot (k=1, 3, 5) manner to to determine the relevance
between the label and the input instance.

Method

Inc Overall

Precision Recall Precision Recall

P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10

Ablating Label Index

XMC-AGENT 36.3 29.2 24.1 15.3 24.1 37.5 43.4 50.6 80.1 64.2 50.3 33.3 22.8 39.6 51.0 62.7
Replace LLM Index with K-Means Index 17.3 12.7 9.0 6.2 9.6 15.1 20.4 24.4 15.6 13.1 8.7 6.5 10.8 15.7 22.0 25.3
Replace LLM Index with Faiss Top 500 20.2 15.3 10.3 5.7 10.4 16.5 22.5 34.1 20.0 16.5 13.1 8.4 17.0 21.6 28.5 36.9

Ablating Feedback Learning

XMC-AGENT 36.3 29.2 24.1 15.3 24.1 37.5 43.4 50.6 80.1 64.2 50.3 33.3 22.8 39.6 51.0 62.7
Adopt Inductive Reasoning 26.6 23.7 18.3 13.0 22.8 36.4 42.1 49.3 57.5 45.7 40.1 26.3 18.2 33.3 46.9 58.1]
Adopt Deductive Reasoning 31.5 26.6 19.4 11.9 22.3 36.2 41.2 47.5 60.4 47.8 37.7 26.0 18.3 33.8 43.2 56.7
Adopt None (base performance) 23.3 20.1 14.8 10.2 21.5 35.8 38.4 42.2 44.3 38.6 32.8 19.3 17.3 30.1 39.7 42.5

Table 8: Component-wise ablation results of XMC-AGENT on AmazonCat-13K†. Ablating Label Index refers
to replacing the self-construct label index with a K-Means index and a shortlist composed of the top 500 labels
retrieved by Faiss to investigate the impact of label index on the final performance. Ablating Feedback Learning
represents separately employing one feedback mechanism during iterative feedback learning to investigate the
influence of the feedback mechanism.

Method

Inc Overall

Precision Recall Precision Recall

P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10

Ablating Label Index

XMC-AGENT 24.8 18.3 13.1 8.1 21.4 32.0 39.9 45.5 22.7 18.9 13.7 10.2 26.1 25.7 34.3 46.5
Replace LLM Index with K-Means Index 19.9 8.7 7.8 6.6 10.3 17.7 26.2 34.6 17.1 16.8 8.7 5.5 8.4 14.5 20.7 25.2
Replace LLM Index with Faiss Top 500 20.2 15.3 10.3 5.7 10.4 16.5 22.5 34.1 20.0 16.5 13.1 8.4 17.0 21.6 28.5 36.9

Ablating Feedback Learning

XMC-AGENT 24.8 18.3 13.1 8.1 21.4 32.0 39.9 45.5 22.7 18.9 13.7 10.2 26.1 25.7 34.3 46.5
Adopt Inductive Reasoning 21.6 16.5 11.3 7.8 20.2 30.7 36.4 42.8 19.5 16.8 12.3 10.0 19.5 16.8 12.3 10.0
Adopt Deductive Reasoning 22.4 17.2 11.1 7.4 20.2 29.5 34.2 42.1 19.0 17.0 12.6 9.7 19.1 25.5 33.2 43.4
Adopt None (base performance) 17.6 14.8 9.8 6.1 16.7 25.7 33.1 39.6 17.3 15.5 10.8 7.2 18.4 25.7 29.4 40.8

Table 9: Component-wise ablation results of XMC-AGENT on LF-Amazon-131K†. Ablating Label Index refers
to replacing the self-construct label index with a K-Means index and a shortlist composed of the top 500 labels
retrieved by Faiss to investigate the impact of label index on the final performance. Ablating Feedback Learning
represents separately employing one feedback mechanism during iterative feedback learning to investigate the
influence of the feedback mechanism.
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