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Abstract

We examine the assumption that hidden-state
vectors of recurrent neural networks (RNNs)
tend to form clusters of semantically similar
vectors, which we dub the clustering hypothe-
sis. While this hypothesis has been assumed in
RNN analyses in recent years, its validity has
not been studied thoroughly on modern RNN
architectures. We first consider RNNs that were
trained to recognize regular languages. This
enables us to draw on perfect ground-truth au-
tomata in our evaluation, against which we can
compare the RNN’s accuracy and the distri-
bution of the hidden-state vectors. Then, we
consider context-free languages to examine if
RNN states form clusters for more expressive
languages. For our analysis, we fit (general-
ized) linear models to classify RNN states into
automata states and we apply different unsuper-
vised clustering techniques. With a new ambi-
guity score, derived from information entropy,
we measure how well an abstraction function
maps the hidden state vectors to abstract clus-
ters. Our evaluation supports the validity of
the clustering hypothesis for regular languages,
especially if RNNs are well-trained, i.e., clus-
tering techniques succeed in finding clusters of
similar state vectors. However, the clustering
accuracy decreases substantially for context-
free languages. This suggests that clustering is
not a reliable abstraction technique for RNNs
used in tasks like natural language processing.

1 Introduction

In recent years we have seen significant advance-
ments in the analysis and verification of artificial
neural networks (ANNs) (Huang et al., 2017;
Gopinath et al., 2017; Sun et al., 2018). The mo-
tivation has been to establish trust in the growing
landscape of machine-learned systems. Most of the
work considered feed-forward ANNs that imple-
ment functions without internal states. In this work
we shift the focus to recurrent neural networks
(RNNs) that model processes with internal states.

Having access to an internal memory makes RNNs
ideal for challenging tasks on high-dimensional se-
quential data, such as natural language processing
(NLP) (Wang and Jiang, 2016; Tang et al., 2015)
and time series forecasting (Elman, 1990).

Consequently, many researchers have turned to
the internals of RNNs in hopes of understanding the
RNN decision-making process (Omlin and Giles,
1996). An important, yet scarcely examined, hy-
pothesis in this field postulates that the hidden state
vectors visited by an RNN while processing data
form clusters of semantically similar states. Con-
sider sentiment analysis for movie reviews as an
example (Dong et al., 2020). The sentences "This
movie is great." and "This movie is awesome." are
semantically similar, but syntactically different. An
RNN processing these sentences is assumed to tra-
verse states that belong to the same state clusters.

In recent years, the clustering hypothesis has
been the basis of several RNN analysis meth-
ods. Dong et al., 2020 applied it to construct finite-
state models over observed clusters. Through prob-
abilistic model checking, they identified adversarial
data. Weiss et al., 2018 developed an efficient tech-
nique for extracting deterministic finite automata
from RNNs, which was extended to context-free
languages (Yellin and Weiss, 2021). While these
approaches relied on some form of the cluster-
ing hypothesis, they also encountered, and sub-
sequently coped with inaccuracies of clustering
functions. Instead of using clusters as abstract
states directly, Dong et al., 2020 learned proba-
bilistic automata over clusters. While successful
applications of the clustering hypothesis might im-
ply its soundness, the validity of the hypothesis
still remains questioned. For example, already in
early work Kolen, 1993 warned against methods
that rely on state-space discretization (clustering)
due to the inherent information loss. Also, Zeng
et al., 1993 noticed problems with the clustering ap-
proach. Since validation and verification of RNNs
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Figure 1: Overview of the process for assessing the quality of clustering functions.

should not be based on anecdotal evidence, we re-
turn to this open question and empirically examine
the soundness of the clustering hypothesis.

More precisely, first, we train RNNs to recog-
nize formal languages with known and minimal
ground-truth automaton representations. Then, we
process data with the RNN to investigate the follow-
ing research questions: Are an RNN’s hidden-state
vectors linearly separable (RQ1)? Is the cluster-
ing hypothesis assumed for RNNs valid (RQ2)?
Does the level of the Chomsky hierarchy affect
clustering (RQ3)? We approach these questions
by simulating validation data on trained RNNs to
extract visited hidden state vectors. At the same
time, we track the unique automaton state corre-
sponding to each RNN state. Then, we partition
the sampled RNN states using multiple clustering
functions and we train linear multiclass classifiers
to classify RNN states to automaton states. Linear
classifiers use known ground-truth states, therefore
they establish an upper bound for the precision of
clustering with linear cluster boundaries. Hence,
RQ1 can be seen as a prerequisite for some clus-
tering techniques. To answer RQ2, we analyze
the correspondence between derived clusters and
automata states and assign an ambiguity score to
each clustering configuration. Ideally, each cluster
(or a set of clusters) should correspond to a unique
state in the respective ground-truth automaton. An
overview of this process can be seen in Fig. 1. For
the first two research questions, we focus on regu-
lar languages. Regular languages provide a good
basis for analysis, but many practical applications,
such as natural language processing require more
expressiveness. Therefore, for RQ3 we move one
layer up in the Chomsky hierarchy and analyze the
clustering hypothesis on a subset of context-free
languages that can be modeled with deterministic
pushdown automata.

Our contributions can be summarized as: (1)
analyses of 1950 trained RNNs w.r.t. separability
of their state space, (2) computation and analysis
of clusters over the hidden-state vectors, (3) and a
framework containing all presented functionalities
developed with AALPY (Muškardin et al., 2022),
PyTorch (Paszke et al., 2019), and scikit-learn (Pe-
dregosa et al., 2011). To the best of our knowledge,
this constitutes the first detailed empirical evalua-
tion of the "clustering hypothesis".
Structure. In Sect. 2 we discuss related work fol-
lowed by preliminaries in Sect. 3. Sect. 4 discusses
our research questions and presents techniques and
accuracy metrics that we use in Sect. 5 for an empir-
ical evaluation of the clustering hypothesis. Sect. 6
concludes the paper and discusses future work.

2 Related Work.

Omlin and Giles, 1996 were among the first to mine
rules from RNNs. They proposed deterministic
finite automaton (DFA) extraction from a second-
order RNN trained to recognize a regular language
by applying a clustering algorithm over the RNN’s
hidden state space. They also visually analyzed the
clustering of the RNN states, postulating that they
are well separated. Similar works can be found
in (Cleeremans et al., 1989; Giles et al., 1991; Wa-
trous and Kuhn, 1991). Since then, RNN research
made significant advancements and the clustering
hypothesis was criticized (Kolen, 1993). Zeng
et al., 1993 observed that the “clustering hypoth-
esis” (Omlin and Giles, 1996) becomes unstable
as longer sequences are used to extract hidden-
state vectors. They propose changing the training
as a solution. Schellhammer et al., 1998 trained
an Elman RNN on a NLP task and constructed a
state-transaction diagram representing a grammar
of the data set with the help of clustering. However,
they considered RNNs with only two hidden neu-
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rons. Wang et al., 2018 empirically evaluated vari-
ous conditions that might influence DFA extraction
from second-order RNNs. Interestingly, they ob-
served that rules extracted from RNNs were more
precise than RNNs themselves in classifying longer
sequences. Dong et al., 2020 combined principles
from passive stochastic automata learning, with ab-
straction achieved by clustering the hidden-state
space of an RNN. Clustering enabled adversarial
data detection via probabilistic verification. Hou
and Zhou, 2020 extracted automata from different
types of gated RNNs with the help of clustering.
They also reason about the influence of gating on
clustering. However, their evaluation is restricted to
two regular languages and a coarse abstraction for
an NLP task, where they limit the number of clus-
ters to just two. We improve upon their analysis by
considering a significantly larger number of study
subjects, RNN types, and clustering approaches,
thus providing more nuanced insights into the clus-
tering hypothesis. Michalenko et al., 2019 exam-
ined the relationship between hidden (Elman) RNN
states and the states of DFAs. They learned decod-
ing functions from hidden states to (sets of) DFA
states and found that such (linear) functions exist,
though some DFA states may need to be grouped.
Their results suggest that “supervised clustering”
may not enable perfect reconstruction of FSM rules,
but rather non-deterministic approximations. We
examine if unsupervised clustering enables recon-
struction of the finite-state semantics of the concept
that is learned, i.e., a view that is closer to practice.

So far we presented related work that, in some
form or another, assumes or relies on the cluster-
ing hypothesis. The connections between formal
languages and RNN were studied in other contexts,
such as extraction of models from RNNs (Weiss
et al., 2024; Mayr and Yovine, 2018; Muškardin
et al., 2022; Eyraud et al., 2023), formal reasoning
about the expressive power of RNNs and trans-
formers (Merrill et al., 2020, 2022; Strobl et al.,
2024), adapting an RNN’s architecture and training
so that the RNN implicitly learns the model of its
behaviour (del Pozo Romero and Lago-Fernández,
2023; Aichernig et al., 2022), among others.

3 Preliminaries

A deterministic finite automaton (DFA) over al-
phabet Σ is a tuple A = (Q,Σ, q0, δ, F ), where Q
is a finite set of states, q0 ∈ Q is the initial state,
δ : Q× Σ → Q is the transition function, F ⊆ Q

are the final states. We extend the transition func-
tion as usual to arbitrary-length sequences s ∈ Σ∗,
i.e., δ(q, ϵ) = q and δ(q, e · s′) = δ(δ(q, e), s′),
where ϵ is the empty sequence, e ∈ Σ, s′ ∈ Σ∗.
A word w ∈ Σ∗ is accepted iff δ(q0, w) ∈ F . All
accepted words form a regular language. Moore
machines extend DFAs by producing an output
from a discrete output alphabet O in every state
defined by a function λ : Q → O.

A deterministic pushdown automaton (PDA)
is a 7-tuple (Q,Σ,Γ, δ, q0, Z, F ) where Q is a fi-
nite set of locations, Σ is a finite input alphabet, Γ
is a finite stack alphabet, δ : Q×Σ×Γ∗ → Q×Γ∗

is the transition function, q0 ∈ Q is the initial loca-
tion, Z ∈ Γ is the initial stack symbol, and F ⊂ Q
is the set of accepting locations. The state of a PDA
is a pair (q, γ) ∈ Q×Γ∗, where q is a location and
γ is a stack of symbols from Γ. As in DFAs, we ex-
tend δ to sequences w where δ(q0, Z, w) = (q, γ)
is the state reached after processing w.
Recurrent neural networks (RNNs). In this paper,
we examine standard implementations of Elman
RNNs (Elman, 1990) (with ReLU and tanh activa-
tion functions), LSTMs (Hochreiter and Schmidhu-
ber, 1997), and GRUs (Cho et al., 2014).

We view an RNN as a pair of functions (r, o),
where r : Rh × Rm → Rh updates the hidden
state based on the previous hidden state ht−1 and
the current input it. We use a one-hot encoding
for discrete inputs from an alphabet of size m. For
simplicity, we also use this view for LSTMs by ana-
lyzing the state space spanned by the concatenation
of the hidden state ht and the cell state ct of LSTMs.
The output function o : Rh → C maps the current
hidden state to an output class in C. We train RNNs
on sequences sampled from languages defined by
DFAs, Moore machines, and PDAs. For DFAs and
PDAs, we have C = {true, false}, where true de-
notes acceptance of the sequence processed so far.
For Moore machines, we have C = O, where O
is an output alphabet and o maps to the last output
produced by the corresponding Moore machine.

4 Method

This section presents the basis for the analysis
of the “clustering hypothesis”, including research
questions and accuracy metrics.

4.1 Research Questions

Setting. In our experiments, we train RNNs on
formal languages over an alphabet Σ. For each
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regular language L ⊆ Σ∗, we sample a dataset
D ⊂ Σ∗. We further split D into the training (Dt)
and validation data (Dv) sets.

For a regular language L, let A =
⟨Q,Σ, q0, δ, F ⟩ be a minimal DFA accepting ex-
actly L and let R = (r, o) be an RNN over the
hidden state space H = Rh trained to recognize
L. By processing every word in Dv simultaneously
with the recurrent part r of R and the minimal DFA
A, we determine the hidden states traversed by R as
well as the corresponding automaton states reached
by A. We store these data as pairs (h, q) ∈ H ×Q.
For the remainder of this section let HQ ⊂ H ×Q
be a concrete sample of such pairs and let H be the
same sample without states Q.

For a context-free language, we follow an
analogous procedure backed by a PDA A =
(Q,Σ,Γ, δ, q0, Z, F ). In this case, we store triples
(h, q, γ) ∈ H ×Q× Γ∗, i.e., we track the configu-
ration in addition to the automaton location.
RQ1: Are an RNN’s hidden-state vectors lin-
early separable? As a first step, we investigate
whether hidden-state vectors can be (piecewise lin-
early) separated into regions corresponding to au-
tomaton states with a focus on regular languages.
We formulate this as a multiclass classification
problem based on HQ, the sampled hidden-state
vectors labeled by automaton states. That is, we
train a classification model on HQ to learn a func-
tion cl : Rh → Q and we evaluate its accuracy at
classifying hidden states correctly. We rely on (gen-
eralized) linear models linear discriminant analysis
(LDA) and logistic regression (LR) for this task.
This choice is motivated by the observation that
non-linear functions were not required in a similar
setting (Michalenko et al., 2019). While piecewise
linear separability and low classification error of
linear models do not imply that the hidden states
form well-defined clusters, we gain insights into
the structure of the hidden-state space. Linear sepa-
rability can be seen as a prerequisite for clustering
with linear boundaries, like k-means.
RQ2: Is the clustering hypothesis assumed for
RNNs valid? This research question concerns the
validity of the clustering hypothesis for regular lan-
guages. To examine it experimentally, we consider
two aspects related to the clustering of RNN states.
(1) The definition of a cluster. Works based on the
hypothesis apply different clustering techniques,
hence we will analyze the effect of different popu-
lar clustering techniques.
(2) Usefulness of a cluster. A useful clustering

should be a valid abstraction for model-based rea-
soning (Dong et al., 2020). Hence, clusters should
have similar qualities as abstractions for software
systems. Concrete hidden states abstracted to the
same cluster should behave similarly. Moreover,
an abstraction should be small enough to enable
efficient subsequent analyses, thus we will exam-
ine the number of detected clusters. We will an-
alyze these aspects via experiments with regular
languages with known minimal ground-truth au-
tomata. Hence, RQ2 can also be formulated as: Do
hidden state clusters correlate with states of an
automaton accepting the same language?
RQ3: Can the clustering hypothesis be extended
to languages higher in the Chomsky hierarchy?
While the clustering hypothesis was postulated for
RNNs trained on regular languages, it has also
been assumed for RNNs trained on natural lan-
guage (Dong et al., 2020). As natural language
cannot be modeled and analyzed in a similar man-
ner as regular languages, we instead extend our
analysis to the next level in the Chomsky hierarchy,
i.e., to context-free languages. To analyze the clus-
tering hypothesis in such a setting, we extend RQ1
and RQ2 to RNNs trained to recognize a subset
of context-free languages that can be modeled by
deterministic PDAs.

4.2 Accuracy Metrics
For RNN accuracy, denoted AccR(AV ) where
AV is the accuracy-validation set, we use the stan-
dard approach based on the misclassification of
sequences w.r.t. the ground-truth language L. That
is, AccR(AV ) is a percentage of correctly classi-
fied sequences in the AV . In contrast, clustering
accuracy is based on the ambiguity of interpreting
clusters as states of a finite-state model, compared
to the states of the ground-truth automation A.
Measuring the quality of clustering. For an in-
tuition on clustering optimality, let us focus on
regular languages first: all data points in a cluster
should correspond to a unique state in the ground
truth A. We can view a clustering as a function
c : H → K mapping sampled hidden states to
cluster labels. This lets us compare a clustering c
to the optimal mapping hq : H → Q. To relate
c and hq, we define c as optimal if there is an α
s.t. hq = α ◦ c. Such a c allows extracting a DFA
with states K from an RNN R that is equivalent
to ground truth A if AccR(AV ) = 1 and AV is
large enough. To empirically evaluate a concrete
c, we define the mismatch between c and hq based
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on entropy. Recall that for c to be a useful abstrac-
tion over H , it should group semantically similar
states. Therefore, we evaluate clustering impurity
by computing empirical entropy values. Thus, we
measure the degree of uncertainty (mismatch) in
our clustering mappings via

amb(k) = −
∑

q∈Q

nq,k

nk
log|Q|

nqk

nk
where

nqk = |{(h, q) ∈ HQ|c(h) = k}|, nk =
∑

q∈Q
nqk

The logarithm with base |Q| normalizes the am-
biguity to the interval [0, 1]. For the ambiguity of a
clustering function, we compute the average of all
clusters given by amb(c) =

∑
k∈K amb(k)

|K| and the

weighted average wamb(c) =
∑

k∈K amb(k)·nk

|HQ| .
We noted above that ideally hq = α ◦ c for a re-

naming α. This is achieved iff amb(c) = 0. We say
that clustering is perfect if it achieves a (weighted)
ambiguity of zero. Alternatively to our notion of
ambiguity, we could also use normalized mutual
information (NMI), a commonly used estimate of
clustering quality with an information-theoretic in-
terpretation. However, clustering size affects NMI
such that a perfect, but slightly non-minimal clus-
tering may have a lower NMI than an ambiguous,
but small clustering. Since the former (a perfect,
non-minimal clustering) is more useful for RNN
analyses than the latter (imperfect clustering), we
examine ambiguity and clustering size separately.

For PDAs, we sample triples (h, q, γ), i.e., we
need to match RNN states h to PDA states (q, γ).
However, considering that clustering shall serve as
an abstraction, we cannot take the complete stack
γ into account. This would lead to a very large
abstract state space, making linear separation and
clustering of the RNN states superficially simple
and the resulting abstraction not useful. As accep-
tance of words depends on whether a location q
is accepting and the stack is empty, hidden states
should form clusters corresponding to locations
and stack size. In addition to stack size, the top ele-
ment of the stack affects how PDAs process words.
Therefore, we abstract away from the concrete
stack configuration to either stack size or the top
element. Altogether, we apply three abstractions
in the experiments: the first stackful abstraction
abstos(q, γ) = (q, top(γ)) maps the PDA states
to the current location and top of the stack, the
second stackful abstraction abssl(q, γ) = (q, |γ|)
maps PDA states to pairs of location and stack size,

whereas the stackless abstraction abs l(q, γ) = q
completely ignores the stack.

To enable a straightforward comparison between
classification models and unsupervised clustering,
we apply ambiguity also for classification models,
by interpreting predicted classes as cluster labels.
Note that an ambiguity of zero coincides with a
misclassification rate of zero. Thus, zero ambi-
guity of linear models implies (piecewise linear)
separability on the sample dataset H.

5 Evaluation

Next, we present the experimental setup and empir-
ical results related to our research questions. The
code required to reproduce all experiments can be
online 1. The appendix includes numerical data
from plots and additional experiments. All experi-
ments were conducted on a laptop with an Intel®

Core™i7-11800H CPU, NVIDIA 3050 Ti Moblie
GPU32 GB RAM, and took ∼40h.

5.1 Experimental Setup

Case Study Subjects. We performed experiments
with 59 regular languages encoded by DFAs. Five
of which are evaluation subjects from the litera-
ture: three Tomita grammars (Tomita, 1982), an
MQTT server model (Tappler et al., 2017), and
a regular expression used by Michalenko et al.,
2019. Additionally, we randomly generated 30
DFAs and 24 Moore machines with up to 12 states
and 72 transitions using AALPY (Muškardin et al.,
2022). For RQ3, we encoded context-free lan-
guages from (Yellin and Weiss, 2021) as PDAs.
Those languages include variations of XnY n lan-
guages, Dyck languages (Hopcroft and Ullman,
1969), and variations of Dyck languages. Our
experiments cover smaller automata often used
in RNN research, as well as larger state spaces
spanned by the PDAs, which use unbounded stacks.
Training. For each language, we trained an RNN
to achieve perfect accuracy for three consecutive
epochs on the validation data to potentially increase
the likelihood of forming clusters in the hidden
state space (Merrill and Tsilivis, 2022). We trained
Elman RNNs with tanh and ReLU , LSTMs, and
GRUs, each of them with one layer of size t, one
layer of size 1.5t, two layers of size t, where t
is the number of transitions of the ground-truth
automaton. We have chosen these network sizes

1 https://github.com/DES-Lab/Clustering_RNN_hidden_
state_space
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Figure 2: Boxplots of the weighted ambiguity resulting from different clustering techniques for all 1350 experiments
whose RNNs achieved at least 80% accuracy.

since a one-layer Elman RNN with t hidden neu-
rons is sufficient to encode automata with t tran-
sitions (Alquézar and Sanfeliu, 1995; Goudreau
et al., 1994; Minsky, 1967). We decided to not con-
sider very large networks, as it would complicate
the clustering analysis due to dimensionality reduc-
tion becoming more important, hindering us from
concentrating on clustering approaches. Moreover,
the network sizes are sufficient for accurate train-
ing. We used the ADAM optimizer (Kingma and
Ba, 2015) with a learning rate of 0.0005. The train-
ing data consisted of 50k randomly sampled words
of lengths in the range [1, 15], with labels derived
from the ground-truth model. The validation data
contained 2000 words, resulting in appr. 10k dif-
ferent hidden-state vectors for clustering. For all
experiments, we trained two RNNs per configura-
tion (network type, size).

Classification & Clustering. We used LDA and
LR to learn classification models to determine if
automaton states can be (piecewise linearly) sep-
arated in the hidden state space. We provide both
approaches with HS ⊂ H ×Q, sampled pairs of
hidden states and automaton states.

We focus on popular, efficient clustering tech-
niques available in scikit-learn (Pedregosa et al.,
2011). We apply k-means (MacQueen, 1967), a
partitional technique (Madhulatha, 2012) and three
density-based techniques: mean shift (Comaniciu
and Meer, 2002), DBSCAN (Ester et al., 1996),
and OPTICS (Ankerst et al., 1999).

We examine various parameterizations of these
algorithms and use Euclidean distance as a distance
metric. We set the k of k-means based on the size
n = |Q| of the minimal ground-truth automata A
with k ∈ {n − 1, n, n + 1, 2n, 4n, 6n, 8n}. With
the first three values, we check whether a good
clustering exists that is close to the minimal au-

tomaton representation. We also use greater values
because an RNN may learn a non-minimal repre-
sentation. When considering stackful mappings
used in our experiments of RNN trained on CFLs,
we increased the n to n×3 for stack-length abstrac-
tions and n × |Σ| for top-of-stack abstractions to
account for alternative PDA state representations.

For DBSCAN we experiment with multiples of
the neighborhood size ϵ = 0.5, the default in the
scikit-learn library. We leave the other parameter
minNeighbors at its default value of 5. For mean
shift, we estimate the bandwidth bw with scikit-
learn, which we denote α, to perform experiments
with multiples of α. As OPTICS improves upon
DBSCAN by mitigating its sensitivity on parameter
values, we only apply its default parameterization.
Since mean shift and OPTICS require more compu-
tation time than other techniques, we reduced the
sample H to 25% of its size for these two.

5.2 Analysis of RNNs Trained on Regular
Languages

In the first set of experiments, we consider all four
RNN types, Elman RNNs with ReLU and tanh acti-
vation functions, LSTMs, and GRUs, as well as all
clustering techniques. We evaluated all RNNs and
only considered those whose accuracy (AccR(AV )
from Sect. 4.2) was ≥ 80%. We chose this accu-
racy cutoff as, in practice, RNNs rarely achieve
perfect generalization due to the complexity of the
underlying task or quality of training data. This
resulted in a selection of 1350 from 1416 RNNs.

Figure 2 summarizes the results of these exper-
iments. It shows boxplots of the weighted cluster
ambiguity wamb resulting from different clustering
techniques, with outliers denoted by small crosses.
Furthermore, the second row of Table 1 shows the
number of perfect clusterings, i.e. wamb = 0,

5646



Table 1: Number of perfect clusterings (zero ambiguity) achieved by selected clustering methods.

Clustering Function LDA LR DBSCAN k-means OPTICS mean shift
Parameters 0.5 0.25 1.5 n 6n 8n α/2 α/4 α/8
Regular Languages
(1350 experiments) 1003 1235 368 185 639 49 629 783 16 373 1296 1331

PDA stackless
(600 experiments) 18 43 7 0 12 0 8 10 0 23 78 260

PDA stackfull
(600 experiments) 16 30 7 0 9 4 15 16 0 14 31 81

PDA top-of-stack
(600 experiments) 17 35 9 0 7 9 15 16 0 20 32 66

achieved by each method.

We observe that LDA and LR can achieve perfect
classification in 74% and 91% of the cases, respec-
tively. LDA has a mean wamb of 0.0009 ± 0.05,
while LR’s mean wamb was 0.0004± 0.039. Re-
lating to RQ1, this high level of accuracy suggests
that in most of the considered cases, piecewise
linear separability of the hidden state space is pos-
sible. To further solidify our findings, we perform
a quantile test on the wamb with the alternative hy-
pothesis being that 0.95-quantile is less than 0.05,
i.e., if the wamb is low in 95% of the cases. Due to
the large number of outliers, we failed to reject the
null hypothesis, i.e., we could not find statistically
significant support for general linear separability.

The median weighted ambiguity of DBSCAN
with ϵ ≥ 1 is almost equal to 0, which means that
in at least half of the cases, we can identify se-
mantically meaningful discrete states from clusters.
Likewise, k-means achieves a low ambiguity when
given at least four times as many clusters as “neces-
sary”, i.e., k ≥ 4n. This means that RNNs seem to
learn non-minimal representations of the concept
that is being learned. OPTICS generally improves
upon DBSCAN, but in this use case, it seems to
perform slightly worse than DBSCAN. The accu-
racy of clusters computed by mean shift depends
on the parameterization of the bandwidth bw. The
bandwidth estimated by scikit-learn results in a
number of clusters that is smaller than n, causing
high ambiguity. But as we decrease bw, in turn
increasing the number of found clusters, mean shift
becomes the best clustering method, even outper-
forming supervised classification approaches like
LDA and LR. Regarding RQ2, we can state that
clusters often correlate with automaton states, with
the caveat that proper parameterization is necessary.
As for LDA and LR, we perform a hypothesis test
on wamb with the alternative hypothesis that the
0.95-quantile is less than 0.05. The only clustering
method for which we rejected the null hypothe-
sis with p < 0.05 is mean shift with bw = α/8,
i.e., we see significant support for the clustering
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Figure 3: Weighted ambiguity for selected methods
for RNNs trained on PDAs, without stack information
(bottom) and with stack length (middle), and with top
of the stack mapping (top).

hypothesis to hold in this case. Additional results
related to RQ2, such as the impact of the network
architecture, can be found in the appendix.

5.3 Analysis of RNNs Trained on
Context-Free Lanugages

In the second set of experiments, we trained RNN
on a deterministic subset of context-free languages
in the same manner as described in Sect. 5.1. We
examined RNNs with 3t and 5t neurons, where t is
the number of transitions in the ground-truth PDA.
The training resulted in 600 networks all of which
had an accuracy higher than 80%.

Figure 3 summarizes the weighted ambiguity re-
sults of selected clustering methods. We performed
the analysis with three PDA state abstractions pre-
sented in Sect. 4.2. We considered two stackful
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mapping, one that considers the PDA location and
the symbol found at the top of the stack, and the
other that considers the PDA location and the cur-
rent stack length. In addition, we examined a map-
ping that ignores the stack and only considers the
current PDA location. The stackful abstractions
strengthen the analysis, as they offer an alterna-
tive mapping that provides more information when
compared to cluster-to-location mapping. However,
we did not observe major differences between the
weighted ambiguity of these abstractions, implying
that additional stack information has little influ-
ence on RNN states compared to PDA locations
themselves.

As seen in Tab. 1, compared to RNNs trained on
regular languages, RNNs trained on context-free
languages achieved perfect piecewise linear separa-
bility in a small fraction of all experiments. From
this, we deduce that hidden states of RNNs trained
to recognize context-free languages are rarely per-
fectly linearly separable and tend to form clusters
that carry less semantic meaning than ones com-
puted on RNNs trained on regular languages.

In general, we observe that the clustering func-
tions of RNNs trained to recognize context-free
languages are more ambiguous than those of RNNs
trained to recognize regular languages, and as seen
in Tab. 1 rarely achieve perfect clustering. More
concretely, while k-means with 8n clusters resulted
in mappings with low weighted ambiguity (0.018±
0.05), it failed to compute unambiguous mappings
for all configurations of PDA experiments resulting
in weighted ambiguities of 0.245±0.238 for stack-
less abstraction, 0.234± 0.139 for length-of-stack
abstraction, and 0.241± 0.151 for the top-of-stack
abstraction.

To further compare the clustering hypothesis
on RNNs trained on regular and context-free lan-
guages, we examined the relationship between

weighted ambiguity and RNN accuracy. In Fig. 4,
we plot the weighted ambiguity against the accu-
racy (with linear regression lines) of every RNN
from our experiments. We observe a strong nega-
tive correlation between weighted ambiguity and
accuracy for RNNs trained on regular languages,
while there is no correlation between wamb and ac-
curacy for RNNs trained on context-free languages.
The Pearson correlation coefficient is -0.802, where
a test for correlation yields a p-value smaller than
0.05, and -0.012, respectively. This finding further
implies that the clustering hypothesis mostly holds
for accurate RNNs trained on regular languages,
while it cannot be assumed even for accurate RNNs
trained on more complex languages.

Regarding RQ3, we showed that unlike for reg-
ular languages, clusters of hidden state vectors of
RNNs trained on context-free languages are gener-
ally hardly linearly separable and do not strongly
correlate with PDA locations. This can be con-
sidered a falsification of the clustering hypothesis
on the higher-level languages, given that it mostly
holds for regular languages, but does not hold for
the next level in Chomsky hierarchy. However, in
rare cases, clustering may be an effective abstrac-
tion, as it can be seen in Tab. 1.

5.4 Number of Clusters
As clustering is a tool for abstraction, we also
need to look at the size of the abstraction, i.e., the
number of clusters. Figure 5 shows the number
of clusters derived by different techniques for ex-
periments conducted on regular languages. We
observed similar trends in cluster sizes between
regular and context-free experiments.

K-means fixes the clustering size, but the number
of clusters derived by other approaches depends on
their parameters and the given data. The number
of clusters in DBSCAN increases with decreasing
ϵ parameter. While regardless of the ϵ the total
number of clusters is higher than in k-means, it
still facilitates an abstraction of RNNs. OPTICS
finds a similar number of clusters as DBSCAN.
The fact that mean shift with bw = α/8 finds up
to 1.5k clusters and that the third quartile in Fig. 5
is 500 weakens our findings regarding RQ2. The
accurate clusterings found with mean shift hardly
group states in many cases, thus making it trivial
to achieve high clustering accuracy.

Discussion. Given our findings on the number of
clusters, we should consider techniques and param-
eterizations that create reasonably-sized abstrac-
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Figure 5: Number of clusters found in experiments of
RNNs trained on regular languages.

tions. K-means with k = 8n achieves perfect clus-
tering in 58% of the cases on RNNs trained on
regular languages (see Table 1). Additionally, we
found that this k-means parameterization achieved
a mean wamb of 0.018 when considering regular
languages, but in the most extreme case, wamb was
0.67. As such reasonably-sized clustering func-
tions do not achieve high accuracy in some cases,
we cannot rely on the clustering hypothesis alone.
This is exacerbated when we move to more com-
plex languages, as we have in the experiments with
deterministic context-free languages.
Generalizability. Since we consider formal lan-
guages in our experiments, our findings might not
translate to NLP tasks. However, we believe that
moving from context-free to free-form natural lan-
guage, we may see an even larger ambiguity gap
than between regular and context-free language.
However, since a formal model of a natural lan-
guage generally does not exist, we cannot examine
the clustering hypothesis in that setting, and can
only postulate based on this inductive step.

6 Conclusion and Future Work

We revisited and empirically analyzed the hypoth-
esis that an RNN’s hidden-state vectors tend to
form clusters. Our analysis examines the clustering
hypothesis for RNNs trained to recognize formal
languages. This provided us with a ground truth
enabling a comparison of the identified clusters
with the original finite-state semantics that underlie
the learned concept. Additionally, we examined
the (linear) separability of hidden-state vectors into
regions corresponding to automata states.

We observed that the hidden-state vectors of
RNNs trained to recognize regular languages can
often be (piecewise linearly) separated when con-
sidering regular languages. Considering unsuper-
vised clustering, the regions identified by classi-

fiers may contain multiple clusters and clusters
may span across decision boundaries. Restricted
to regular languages, we show that it is possible
to compute clustering functions that correlate with
automata states. For example, clusterings obtained
by k-means with large k overall achieved high ac-
curacy and perfect accuracy in 58% of the first
set of experiments. This drastically changes when
considering deterministic context-free languages,
where the k-means with a large k achieved per-
fect clustering in only 2.6% of the cases. This is
a strong indication that the clustering hypothesis
alone should not be used as a basis for abstraction
in the analysis of RNNs.
Future Work. With RNN verification being our ul-
timate goal, we will investigate ways to mitigate
imprecisions and errors resulting from imperfect
clustering. A stochastic interpretation of RNNs and
stochastic automata learning over clusters seems
promising (Dong et al., 2020). Further analysis of
factors affecting the clustering is also important,
like the effect of different optimizers or overtrain-
ing. Finally, we will investigate how to adapt the
training and RNN architecture such that clusters are
likely to form, enabling explainability-by-design.

Acknowledgments. This work has been sup-
ported by the "University SAL Labs" initiative of
Silicon Austria Labs (SAL) and its Austrian partner
universities for applied fundamental research for
electronic based systems. In addition, this work
has been partially supported by the WWTF project
ICT22-023.

Limitations. To the best of our knowledge, our
empirical analysis has two potential limitations:
a) statistical significance of results, and b) depen-
dence of our findings on the quality of clustering
metric introduced in Sect. 4.2.

Regarding a), we applied exploratory data anal-
ysis to find trends in the data from a total of 1950
trained RNNs over 74 (59 regular languages and
15 context-free) formal languages. These networks
include different architectures of various sizes, and
for each trained network, we conduct experiments
that contain multiple parameterizations of cluster-
ing algorithms. We examined selected findings
through statistical tests, where we found statisti-
cally significant support for mean shift computing
clusters with low ambiguity and a statistically sig-
nificant correlation between ambiguity and accu-
racy of RNNs trained on regular languages. In
cases, where trends were very clear, we did not
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perform statistical tests like for the high ambiguity
results involving context-free languages.

Regarding b), we believe that our entropy-based
metric for the clustering quality reflects the quality
of clustering in the scope of the presented research
questions, that is, it encodes the correspondence of
identified clusters to states. We further compared
it to NMI, and the reason why NMI is not suited
as a measure of clustering quality in our research
context, is that might penalize perfect, but non-
minimal, correspondence of clusters to states. Our
experiments were performed on formal languages
where the ground truth model against which we
can compare RNNs performance is known and ac-
cessible. However, the existence of such a model
cannot be generally assumed for NLP tasks.

Ethical Considerations. To the best of our
knowledge, our work is fully in line with ACM
Code of Ethics and Professional Conduct. Our ex-
periments do not involve human subjects or any
human-generated data that may intrude on an indi-
vidual’s privacy. We present fundamental research
that contributes to the theoretical aspects of comput-
ing, for which we see no immediate issues related
to ethics guidelines and/or potential misuse.
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A Appendix

A.1 Appendix A – RNNs.
A.1.1 Mathematical definitions of RNNs.
Below, we provide the mathematical definitions of
Elman RNN’s, LSTMs and GRUs following the
PyTorch implementation (Paszke et al., 2019).

Elman RNNs:

ht = g(xtW
T
ih + bih + ht−1W

T
hh + bhh)

where g ∈ {tanh,ReLU}
yt = f(htW

T
ho)

LSTMs:

it = σ(Wiixt + bii +Whih(t−1) + bhi)

ft = σ(Wifxt + bif +Whfh(t−1) + bhf )

gt = tanh(Wigxt + big + rt ∗ (Whgh(t−1) + bhg))

ot = σ(Wioxt + bio +Whoh(t−1) + bho)

ct = ft ⊙ c(t−1) + it ⊙ gt

where ⊙ is the Hadamard product and

σ is the sigmoid function

ht = ot ⊙ tanh(ct)

GRUs:

rt = σ(Wirxt + bir +Whrh(t−1) + bhr)

zt = σ(Wizxt + biz +Whzh(t−1) + bhz)

nt = tanh(Winxt + bin + rt ⊙ (Whnh(t−1) + bhn))

ht = (1− zt)⊙ nt + zt ⊙ h(t−1)

A.2 Appendix B – Additional Evaluation
Details

In the following, we provide additional details on
the experimental setup and additional experimental
results in tables.

A.3 Impact of Network Architecture.
We examine the influence of the RNN architecture
on classification and clustering. Figure 6 shows the
average weighted ambiguity achieved by LR and
selected clustering parameterizations for each RNN
architecture separately. GRU networks appear to
create state space structures that lend themselves
best to clustering with any of the approaches. In-
terestingly, Elman ReLU RNNs lead to the highest

ambiguity on average, even for LR. A potential ex-
planation is that ReLU activations are unbounded,
whereas tanh is bounded. Hence, tanh Elman
RNNs may create clusters in the saturated area of
tanh.
Clustering of GRU Networks. In the following,
we examine the clustering hypothesis for GRU net-
works trained on regular languages, for which we
found particularly low ambiguity measurements.
Figure 7 shows box plots of ambiguity values mea-
sured for different clustering techniques. On the
left, we show measurements from all experiments
involving GRUs and on the right, we show mea-
surements from experiments, where LDA is able to
perfectly separate hidden states corresponding to
all automaton states.

We found that the hidden state space of the
trained GRUs has a structure that is well-suited
for linear separation of states. In 88% of the exper-
iments, both LDA and LR can perfectly separate
states.

This benefits k-means as well, which achieves
lower ambiguity in all considered parameteriza-
tions when compared to other network types. In
particular, k-means with k = 8n performs very
well, where the third quartile of the ambiguity val-
ues is equal to zero. From the other techniques,
DBSCAN with ϵ = 1 benefits from restricting the
analysis to GRUs. OPTICS and especially mean
shift are hardly affected. Focusing only on the
experiments where LDA has an ambiguity of 0
(Fig. 7 (right)), we see that k-means performs espe-
cially well, with an ambiguity of at most 0.034 for
k = 8n.

A.3.1 Further Details on Case Study Subjects.
We used regular language from the literature includ-
ing three of the Tomita grammars (Tomita, 1982),
where we have chosen Tomita 3, 5, and 7, as they
define the most interesting languages. For example,
Tomita 5 defines a parity language, which are diffi-
cult to learn for RNNs (Goudreau et al., 1994). The
Tomita grammars have five, four, and four states, re-
spectively, and an alphabet of size two. The MQTT
server that we used in the evaluation has seven
states, six inputs, and six outputs, and the regular
expression from Michaelenko et al. (Michalenko
et al., 2019) has seven states and an alphabet con-
taining four symbols.

The randomly generated DFAs have five or ten
states, and alphabet sizes of two, four, or six. For
each combination of state and alphabet size, we
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Figure 6: Weighted ambiguity for selected methods sorted by network types.
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Figure 7: Boxplots of the weighted ambiguity resulting
from different clustering techniques for all 346 exper-
iments with GRUs (left) and for a subset of 278 GRU
experiments, where LDA and LR acheived perfect sepa-
rability.

generated five DFAs. We generated three Moore
machines for each combination of eight and twelve
states, two and four inputs, and three and five out-
puts. Note that Moore machines encode regular
languages that contain all possible input-output se-
quences. From an RNN perspective, they enable
us to analyze how multi-class classification tasks
affect clustering.
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Figure 8: Relationship between accuracy and ambiguity
over the training process.

A.3.2 Relationship between Accuracy and
Ambiguity during Training

Figure 8 shows the relationship between RNN accu-
racy and ambiguity over the training process. We
observe that the ambiguity decreases during the
training process, as the accuracy increases. This
shows that the clustering hypothesis is related to
RNN accuracy, and even further validates the am-
biguity metric introduced in Sect. 4.2. In only
few cases, accuracy decreases slightly as ambigu-
ity decreases and vice versa, which explains the
kinks in the graphs. However, there is generally a
strong negative correlation, i.e., the more accurate
an RNN gets, the clustering gets less ambiguous:
the Spearman correlation coefficients are −0.87,
−0.96, and −0.9 for Elman RNNs, LSTMs, and
GRUs in Fig. 8. Additionally, if the RNN retains
the accuracy over long sequences (100-200 input
symbols), the clustering ambiguity remains con-
stant.

A.3.3 Extraction of cluster automata.
Figure 9 depicts a non-minimal automaton ex-
tracted from an RNN trained on the Tomita 5 gram-

5654



mar. The extracted model is a non-minimal rep-
resentation of the ground truth model, which is
shown on the left-hand side of Fig. 1. We have
applied the extraction method found in (Hou and
Zhou, 2020) with multiple clustering functions that
achieved perfect accuracy, where Fig. 9 is based
on k-means clustering with k = 4n. Basically,
we create one DFA state for each cluster k ∈ K.
For the transitions, suppose that (h, q) and (h′, q′)
are pairs of hidden states and automaton states col-
lected consecutively while processing symbol e. In
this case, we add a transition from c(h) to c(h′)
labeled by e, where c is the clustering function. If
the RNN outputs true for one hidden state in a clus-
ter k, we add k to the accepting states. While the
extracted model size varied, all extracted automata
were non-minimal representations of the ground-
truth model that was used to train the RNN. Our
findings conform to those of (Hou and Zhou, 2020)
and they indicate that RNNs learn non-minimal
representations of regular languages.

A.3.4 Numerical Values of Results.
In Table 2 we show detailed results from our clas-
sification and clustering experiments performed
on RNNs trained on regular languages, Table 4
shows detailed results of the analysis performed
on RNN when mapping from clusters to states did
not take stack into account, while Table 3 provides
detailed results of experiments where clusters were
mapped to state × stack length, whereas Table 5
presenters numerical values for top-of-stack PDA
abstraction. The tables provide numerical data used
to construct/be consistent with tables found in the
paper.
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Figure 9: Extracted cluster automata from an RNN trained on the Tomita 5 grammar. K-means clustering with
k = 4n was used. The extracted model is a non-minimal representation of the ground truth model shown in Fig. 9.

Table 2: Clustering ambiguity results from 1350 RNNs that achieved 80% accuracy.

Clustering Function Ambiguity Weighted
Ambiguity

Number of
Clusters # Perfect

Clustering
Mean ± Std Dev Max Mean ± Std Dev Max Mean ± Std Dev Max

LDA 0.01 ± 0.06 0.933 0.009 ± 0.05 0.933 8 ± 2.5 15 1003
Logistic Regression 0.003 ± 0.036 0.935 0.004 ± 0.039 0.935 8 ± 2.5 12 1235
DBSCAN (ϵ = 0.5) 0.002 ± 0.002 0.025 0.179 ± 0.239 0.721 200 ± 140 531 368
DBSCAN (ϵ = 0.25) 0.003 ± 0.002 0.02 0.29 ± 0.276 0.772 210 ± 118 506 185
DBSCAN (ϵ = 1) 0.005 ± 0.025 0.672 0.066 ± 0.15 0.716 143 ± 135 568 591
DBSCAN (ϵ = 1.5) 0.016 ± 0.063 0.939 0.05 ± 0.123 0.939 99 ± 115 596 639
DBSCAN (ϵ = 2) 0057 ± 0.144 0.989 0.110 ± 0.208 0.98 69 ± 90 560 514
k-means (k = n) 0.359 ± 0.199 0.863 0.395 ± 0.207 0.929 8.5 ± 2.5 12 49
k-means (k = n+ 1) 0.322 ± 0.131 0.811 0.356 ± 0.201 0.928 9.5 ± 2.5 13 68
k-means (k = n− 1) 0.401 ± 0.2 0.895 0.428 ± 0.21 0.934 7.5 ± 2.5 11 42
k-means (k = 2n) 0.175 ± 0.154 0.736 0.2 ± 0.172 0.92 16 ± 5 24 209
k-means (k = 4n) 0.06 ± 0.091 0.652 0.068 ± 0.105 0.904 33 ± 10 48 432
k-means (k = 6n) 0.0291 ± 0.065 0.585 0.032 ± 0.075 0.878 50 ± 15 72 629
k-means (k = 8n) 0.017 ± 0.051 0.54 0.0181 ± 0.057 0.674 67 ± 21 96 783
OPTICS 0.006 ± 0.003 0.06 0.134 ± 0.071 0.544 156 ± 20 206 16
mean shift (bw = α) 0.847 ± 0.244 0.998 0.878 ± 0.201 0.998 1.35 ± 1.2 20 84
mean shift (bw = α/2) 0.038 ± 0.063 0.935 0.073 ± 0.136 0.958 37 ± 51 829 373
mean shift (bw = α/4) 0.001 ± 0.014 0.246 0.011 ± 0.086 0.943 136 ± 178 1425 1296
mean shift (bw = α/8) 0.0004 ± 0.005 0.09 0.005 ± 0.06 0.912 391 ± 397 1448 1331
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Table 3: Clustering ambiguity results from 600 RNNs trained to recognize PDAs with stackful mapping.

Clustering Function Ambiguity Weighted
Ambiguity

Number of
Clusters # Perfect

Clustering
Mean ± Std Dev Max Mean ± Std Dev Max Mean ± Std Dev Max

LDA 0.169 ± 0.127 0.685 0.141 ± 0.176 0.759 5 ± 3 11 16
Logistic Regression 0.105 ± 0.119 0.847 0.121 ± 0.181 0.842 5 ± 3 11 30
DBSCAN (ϵ = 0.5) 0.036 ± 0.042 0.192 0.25 ± 0.136 0.63 264 ± 129 679 7
DBSCAN (ϵ = 0.25) 0.017 ± 0.031 0.178 0.264 ± 0.14 0.624 302 ± 109 684 0
DBSCAN (ϵ = 1) 0.078 ± 0.093 0.879 0.342 ± 0.185 0.901 196 ± 140 656 4
DBSCAN (ϵ = 1.5) 0.184 ± 0.226 0.965 0.456 ± 0.237 0.965 95 ± 119 641 9
DBSCAN (ϵ = 2) 0.3700 ± 0.281 0.965 0.578 ± 0.237 0.965 51 ± 49 709 5
k-means (k = n) 0.341 ± 0.147 0.742 0.404 ± 0.184 0.866 16 ± 8 33 4
k-means (k = n+ 1) 0.324 ± 0.144 0.735 0.383 ± 0.183 0.853 19 ± 8 36 5
k-means (k = n− 1) 0.371 ± 0.148 0.749 0.441 ± 0.179 0.875 13 ± 8 30 2
k-means (k = 2n) 0.291 ± 0.139 0.794 0.336 ± 0.177 0.158 33 ± 17 66 2
k-means (k = 4n) 0.256 ± 0.128 0.684 0.279 ± 0.16 0.822 66 ± 33 132 11
k-means (k = 6n) 0.242 ± 0.124 0.665 0.252 ± 0.145 0.815 98 ± 50 198 15
k-means (k = 8n) 0.233 ± 0.121 0.627 0.234 ± 0.139 0.794 131 ± 66 264 16
OPTICS 0.048 ± 0.035 0.179 0.183 ± 0.087 0.414 224 ± 55 376 0
mean shift (bw = α) 0.611 ± 0.252 0.914 0.707 ± 0.201 0.914 3 ± 4 46 0
mean shift (bw = α/2) 0.242 ± 0.147 0.839 0.395 ± 0.246 0.876 44 ± 81 783 14
mean shift (bw = α/4) 0.066 ± 0.065 0.576 0.179 ± 0.238 0.873 513 ± 512 2589 31
mean shift (bw = α/8) 0.02 ± 0.04 0.381 0.090 ± 0.2 0.854 1123 ± 738 2680 81

Table 4: Clustering ambiguity results from 600 RNNs trained to recognize PDAs with location × length of stack
mapping.

Clustering Function Ambiguity Weighted
Ambiguity

Number of
Clusters # Perfect

Clustering
Mean ± Std Dev Max Mean ± Std Dev Max Mean ± Std Dev Max

LDA 0.177 ± 0.163 0.849 0.160 ± 0.18 0.808 5 ± 3 11 18
Logistic Regression 0.131 ± 0.179 0.891 0.133 ± 0.196 0.886 5 ± 3 11 43
DBSCAN (ϵ = 0.5) 0.014 ± 0.023 0.186 0.171 ± 0.217 0.815 264 ± 130 679 7
DBSCAN (ϵ = 0.25) 0.007 ± 0.018 0.176 0.185 ± 0.229 0.697 302 ± 109 705 0
DBSCAN (ϵ = 1) 0.046 ± 0.098 0.957 0.246 ± 0.235 0.978 169 ± 140 650 7
DBSCAN (ϵ = 1.5) 0.137 ± 0.226 0.988 0.376 ± 0.286 0.988 95 ± 118 637 12
DBSCAN (ϵ = 2) 0.238 ± 0.288 0.989 0.5 ± 0.29 0.99 50 ± 93 710 11
k-means (k = n) 0.396 ± 0.238 0.979 0.476 ± 0.25 0.979 5 ± 3 11 0
k-means (k = n+ 1) 0.364 ± 0.225 0.966 0.447 ± 0.244 0.961 6 ± 3 12 0
k-means (k = n− 1) 0.469 ± 0.265 0.986 0.534 ± 0.262 0.986 4 ± 3 10 0
k-means (k = 2n) 0.302 ± 0.221 0.96 0.386 ± 0.249 0.953 11 ± 6 22 4
k-means (k = 4n) 0.235 ± 0.215 0.945 0.309 ± 0.25 0.947 22 ± 11 44 5
k-means (k = 6n) 0.201 ± 0.205 0.937 0.271 ± 0.245 0.944 33 ± 17 66 8
k-means (k = 8n) 0.181 ± 0.198 0.925 0.245 ± 0.238 0.944 44 ± 22 88 10
OPTICS 0.019 ± 0.03 0.189 0.134 ± 0.147 0.546 224 ± 55 383 0
mean shift (bw = α) 0.567 ± 0.284 0.952 0.649 ± 0.251 0.946 3 ± 4 36 2
mean shift (bw = α/2) 0.817 ± 0.181 0.931 0.345 ± 0.266 0.931 42 ± 75 782 23
mean shift (bw = α/4) 0.027 ± 0.052 0.525 0.141 ± 0.234 0.919 509 ± 505 2619 78
mean shift (bw = α/8) 0.008 ± 0.034 0.665 0.079 ± 0.192 0.893 1120 ± 735 2699 260
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Table 5: Clustering ambiguity results from 600 RNNs trained to recognize PDAs with top-of-stack mapping.

Clustering Function Ambiguity Weighted
Ambiguity

Number of
Clusters # Perfect

Clustering
Mean ± Std Dev Max Mean ± Std Dev Max Mean ± Std Dev Max

LDA 0.195 ± 0.181 0.777 0.154 ± 0.196 0.800 5 ± 3 11 17
Logistic Regression 0.129 ± 0.152 0.774 0.128 ± 0.188 0.839 5 ± 3 11 35
DBSCAN (ϵ = 0.5) 0.054 ± 0.054 0.249 0.284 ± 0.164 0.732 264 ± 129 667 9
DBSCAN (ϵ = 0.25) 0.028 ± 0.041 0.230 0.293 ± 0.169 0.674 302 ± 109 706 0
DBSCAN (ϵ = 1) 0.104 ± 0.110 0.911 0.359 ± 0.208 0.694 196 ± 140 649 7
DBSCAN (ϵ = 1.5) 0.207 ± 0.226 0.957 0.491 ± 0.250 0.947 95 ± 118 649 14
DBSCAN (ϵ = 2) 0.327 ± 0.283 0.957 0.609 ± 0.249 0.957 50 ± 93 176 8
k-means (k = n) 0.355 ± 0.175 0.881 0.403 ± 0.208 0.918 33 ± 26 110 9
k-means (k = n+ 1) 0.340 ± 0.168 0.857 0.382 ± 0.203 0.913 39 ± 28 120 11
k-means (k = n− 1) 0.377 ± 0.185 0.889 0.430 ± 0.217 0.924 27 ± 25 100 6
k-means (k = 2n) 0.313 ± 0.161 0.834 0.341 ± 0.193 0.908 66 ± 53 220 11
k-means (k = 4n) 0.282 ± 0.150 0.768 0.286 ± 0.173 0.895 133 ± 107 440 15
k-means (k = 6n) 0.267 ± 0.146 0.754 0.259 ± 0.160 0.889 200 ± 161 660 15
k-means (k = 8n) 0.257 ± 0.141 0.726 0.241 ± 0.151 0.873 267 ± 215 880 16
OPTICS 0.067 ± 0.04 0.198 0.215 ± 0.106 0.529 224 ± 55 373 0
mean shift (bw = α) 0.637 ± 0.266 0.938 0.732 ± 0.215 0.938 2 ± 4 40 1
mean shift (bw = α/2) 0.279 ± 0.177 0.932 0.435 ± 0.259 0.932 42 ± 76 813 20
mean shift (bw = α/4) 0.078 ± 0.070 0.643 0.199± 0.246 0.928 512 ± 504 2577 32
mean shift (bw = α/8) 0.024 ± 0.038 0.34 0.102 ± 0.211 0.922 1130 ± 734 2671 66
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