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Abstract

Recent advances in measuring hardness-wise
properties of data guide language models in
sample selection within low-resource scenar-
ios. However, class-specific properties are over-
looked for task setup and learning. How will
these properties influence model learning and
is it generalizable across datasets? To answer
this question, this work formally initiates the
concept of class-wise hardness. Experiments
across eight natural language understanding
(NLU) datasets demonstrate a consistent hard-
ness distribution across learning paradigms,
models, and human judgment. Subsequent ex-
periments unveil a notable challenge in mea-
suring such class-wise hardness with instance-
level metrics in previous works. To address this,
we propose GeoHard for class-wise hardness
measurement by modeling class geometry in
the semantic embedding space. GeoHard sur-
passes instance-level metrics by over 59 percent
on Pearson’s correlation on measuring class-
wise hardness. Our analysis theoretically and
empirically underscores the generality of Geo-
Hard as a fresh perspective on data diagnosis.
Additionally, we showcase how understanding
class-wise hardness can practically aid in im-
proving task learning. The code for GeoHard
is available 1.

1 Introduction

Data acts as a crucial intermediary proxy for AI
systems to understand and tackle real-world tasks
(Torralba and Efros, 2011; Vodrahalli et al., 2018).
Therefore, evaluating the hardness of individual
instances, or instance-level hardness (Kong et al.,
2020; Hahn et al., 2021; Ethayarajh et al., 2022;
Zhao et al., 2022), relative to the dataset is key for
learning and analyzing NLP tasks. This evaluation
is increasingly important with the rise of large lan-
guage models (LLMs; Touvron et al. 2023; Chung
et al. 2024). Measuring hardness aids in selecting

1https://github.com/TRUMANCFY/geohard
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Figure 1: The examples of premise-hypothesis pairs in
uncertain NLI (u-NLI; Chen et al. 2020). In u-NLI, the
probability of these pairs (in the parentheses) is anno-
tated by crowdworkers. The example showcases NEU’s
Middlemost and Diverse semantics, i.e., positioning in
the middle between ENT and CON and widely ranging
from low (14%) to high probability (84%).

examples for in-context learning (ICL; Ye et al.
2024) or training samples for fine-tuning models
(Zhou et al., 2023; Xie et al., 2023).

However, another critical yet underexplored
component of the dataset is the classes themselves,
whose properties, such as ambiguity in their defi-
nitions, can also contribute to difficulties. While
considerable efforts have been made to address
class imbalance in specific datasets (Subramanian
et al., 2021; Henning et al., 2023), there remains
a lack of comprehensive analysis on class-wise
properties that are consistent across different tasks.
Conventionally, classes are treated equally, e.g., the
demonstrations in In-Context Learning (ICL) typ-
ically being evenly sampled among classes (Min
et al., 2022). This raises an important question:
How do class-specific properties influence model
performance?

We formally initiate the concept of class-wise
hardness as the relative difficulty of a class, in
analogy to instance-level hardness (Ethayarajh
et al., 2022). To make this notion quantifiable,
we present the concept of the empirical class-wise
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hardness which assesses the class-specific perfor-
mance given an LM and learning paradigm. Subse-
quently, the intrinsic class-wise hardness can be ap-
proximated by pooling the empirical performances
across models and learning paradigms. Our analy-
sis across eight Natural Language Inference (NLI)
or Sentiment Classification (SC) tasks reveals the
consistent challenge of Neutral across a spectrum
of tasks, learning paradigms, and models together
with human annotation disagreement (Nie et al.,
2020). These findings verify the concept and estab-
lish the estimation of inherent class hardness.

Then, we study how to measure these class-
specific properties leading to consistent class-wise
hardness. We first show that naively aggregat-
ing Sensitivity Analysis (SA, Hahn et al. 2021)
and two similarity-based methods (Zhao et al.,
2022, 2023a) fails in measuring class-wise hard-
ness across datasets. This stimulates us to propose
a specific metric for class-wise hardness measure-
ment beyond the instance-level measurement. We
propose an effective, lightweight, and training-free
metric, GeoHard, which analyzes data distribution
from the geometrical space of semantic embed-
dings. GeoHard utilizes both inter- and intra-class
properties, e.g., Neutral’s MiddleMost and Diverse
semantics shown in Figure 1, respectively. Our
experiments show that GeoHard demonstrates its
exceptional capacity in measuring class-wise hard-
ness, outperforming the instance-level aggregation
by over 59 percent on Pearson’s correlation be-
tween measurement and reference. Our theoretical
and experimental analysis validates its generaliza-
tion to other tasks without further adaptation.

As for the practical perspective, we show how to
use GeoHard to improve task learning with class
reorganization (Nighojkar et al., 2023). Class re-
organization targets a balanced class performance,
e.g., by splitting one hard class into two sub-classes
(Potts et al., 2021). GeoHard is shown to be able
to well interpret the heuristic-based reorganization
proposed in the previous work (Potts et al., 2021).
We demonstrate that class-aware demonstration se-
lection guided by GeoHard also benefits ICL.

Our contribution is three-fold:

1. We initiate the concept of class-wise hardness
(Section 2) and show that the direct aggrega-
tion of the current instance-level hardness met-
rics fails to correlate with class-wise hardness
on 8 NLI/SC datasets (Section 4);

2. We instead target class semantics and put for-

ward a geometry-based method, GeoHard,
which outperforms the baselines by 59% (Sec-
tion 3). We theoretically and empirically show
GeoHard’s promising generalization to other
tasks (Section 5);

3. We demonstrate the potential application of
class-wise hardness measured by GeoHard to
interpret class reorganization and improve task
learning (Section 6).

2 Formulation of Class-wise Hardness

Here, we define class-wise hardness as the diffi-
culty of the class across all the classes, akin to
instance-level hardness (Ethayarajh et al., 2022).
Formally, given the classes C = {c1, ..., cK} for a
classification task where ck is a class, ck’s class-
wise hardness can be denoted as H(ck | C). We
denote H(C) = [H(c1 | C)), ...,H(cK | C)].

As H is intractable, we can empirically ob-
tain class-wise hardness by assessing the perfor-
mance of ck given the LM m ∈ M, e.g., Flan-
T5-Large (Raffel et al., 2020) or LLaMA-2-13B
(Touvron et al., 2023), and learning paradigms
l ∈ L, e.g., fine-tuning or ICL. We denote this
empirical class-wise hardness conditioned on LMs
and learning paradigms as H̃(ck | C,m, l). There-
fore, class-wise hardness H can be approximated by
marginalizing H̃ on the pairs of models and learn-
ing paradigms P = {(m, l) | m ∈M, l ∈ L}:

H(ck | C) = E(m,l)∈P [H̃(ck | C,m, l)] (1)

≈
∑

(m,l)∈P H̃(ck | C,m, l)

|P| (2)

In the rest of this section, we calculate empirical
class-wise hardness on eight NLI/SC datasets. We
observe the consistency of H̃ among LMs, learning
paradigms, and human annotation, which stimu-
lates us to simplify the approximation of H.

2.1 Datasets
We initiate class-wise hardness with 8 NLU
datasets, comprising 3 NLI datasets and 5 SC
datasets, as shown in Table 6 and Table 7 in Ap-
pendix A.1. We chose these datasets based on their
popularity and their similar format for comparison.
We normalize the label format of the SC datasets
to Positive, Neutral, and Negative, as described
in Appendix A.2. Lastly, we balance the number
of instances within each class2. Class imbalance

2We eliminate the potential influence of class imbalance by
randomly sampling the same number of instances belonging
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% Roberta-Large OPT-350M Flan-T5-Large

Amazon 87.6|71.0|80.6 87.0|68.7|79.3 88.6|71.6|81.3
APP 74.2|60.1|73.4 73.6|56.1|72.6 74.3|59.0|73.9
MNLI 91.0|87.2|92.9 86.1|80.5|85.8 91.3|87.5|92.9
SICK-E 92.9|86.8|92.4 85.8|79.1|89.1 92.9|85.7|92.4
SNLI 92.6|89.2|95.3 91.0|86.5|92.3 92.8|89.7|95.5
SST-5 83.1|53.1|75.8 82.3|55.6|71.5 83.4|51.7|76.1
TFNS 93.0|86.1|92.2 88.0|81.1|88.7 87.3|77.3|88.0
Yelp 87.9|75.4|86.6 86.4|73.5|85.0 88.3|76.4|87.0

Table 1: Class-wise performance by the finetuned
model Roberta-Large, OPT-350M, and Flan-T5-
Large. Each entry presents the F1 score of Posi-
tive/Entailment, Neutral, and Negative/Contradiction
concatenated with |. Bold indicates the lowest F1 score
among classes. The results are averaged by 3 runs with
different seeds, as shown in Appendix A.3.

is shown to negatively affect the performance of
minority classes (Henning et al., 2023).

2.2 Calculation of Empirical Hardness H̃

To achieve a precise and complete approximation
on H, we encompass various pairs of LMs and
learning paradigms for the calculation of H̃(ck |
C,m, l), as outlined in Equation 2.

Inter-annotator disagreement can reflect the
difficulty of the instance, namely that the higher
human disagreement implies more hardness on data
(Nie et al., 2020; Basile et al., 2021). Hence, we
calculate class-wise human disagreement as the
average entropy of the annotation distribution of the
instances labeled on MNLI and SNLI 3. Referring
to Table 11 in the Appendix A.3.1, Neutral’s class-
wise human disagreement is the highest, indicating
its exceptional hardness w.r.t. human.

Fine-tuning To generalize empirical class-wise
hardness, models from diverse architectures are
chosen: we use Roberta-Large (Liu et al., 2019),
OPT-350M (Zhang et al., 2022), and Flan-T5-
Large (Chung et al., 2024). These models belong to
encoder-only, decoder-only, and encoder-decoder
structures, respectively. We train these three mod-
els separately on eight datasets following the train-
ing setups presented in Appendix A.3. We select
the checkpoint with the best F1 score on the valida-
tion dataset to evaluate the test set. Table 1 shows
that Neutral performs poorest among classes with
all three models on all the datasets, verifying Neu-
tral’s consistent hardness w.r.t. fine-tuned LMs.

to each class in training, validation, and test sets, respectively.
3Only the inter-annotator agreement of MNLI and SNLI is

evaluated due to data accessibility.
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Figure 2: Correlation matrix among class-wise F1
scores of three finetuned models together with two ICLs
and class-wise human disagreement on SNLI, where the
high consistency is noted. Figure 8 presents MNLI’s
correlation matrix in Appendix A.3.2.

In-context Learning Beyond model fine-tuning,
we also explore another paradigm using large lan-
guage models (LLMs), where the answer is elicited
from LLMs by injecting a cue or instruction (Ye
et al., 2023). Specifically, we conduct experi-
ments on MNLI and SNLI using Flan-T5-XXL
and LLaMA-2-13B. The templates employed are
shown in Appendix A.3.2, and Neutral’s relative
hardness stands referring to Table 12.

Figure 2 demonstrates Neutral’s consistent hard-
ness, e.g., in SNLI, across various LMs m, learning
paradigms l, and human annotation, revealing that
its class-wise hardness is intrinsic. Given this ob-
servation, we further relax the approximation of H̃
in Equation 2 that if the correlation among H̃ with
(m, l) pairs is higher than a specific threshold, we
can approximate H with H̃ with arbitrary m and l:

H(ck | C) ≈ H̃(ck | C,m, l) (3)

3 GeoHard for class-wise hardness
measurement

Regarding the intrinsic class-wise hardness shown
in Section 2, we quantitatively measure the corre-
sponding empirical hardness motivated by its se-
mantic properties, e.g., Diverse and Middlemost
semantics of Neutral. Specifically, as the name sug-
gests, GeoHard measures class-wise hardness by
computing the geometrical metrics in the semantic
embedding space.

3.1 Notations

The set of K classes is denoted as C = {c1, ..., cK}.
The dataset with N instances is denoted as D =
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Figure 3: The illustration of GeoHard in semantic em-
beddings space. The ellipses approximate class-wise
data distribution. Class 2 is speculated to be difficult
due to its large variance and middlemost location.

{(X, y)1:N}, where X is the input and y ∈ C is
the corresponding label. And θ signifies model
parameters. ∥ · ∥1(2) presents L1(2)-norm. The
input instances of the label ck is denoted by Xck ,
i.e., Xck = {Xi|∀(Xi, yi) ∈ Dtrain, yi = ck}.

3.2 GeoHard
Semantic representation As GeoHard aims to
measure class-wise hardness through modeling se-
mantics, a sentence encoder is therefore required,
which maps a sentence to a vector with a dimension
E. We denote this mapping function as f(·).
Semantics-guided metrics GeoHard consists of
intra- and inter-class metrics modeling two seman-
tics properties, as illustrated in Figure 3. The intra-
class metric, corresponding to Diverse semantics,
quantifies the distributional variance within one
class, formulated as:

Hintra(ck) = ∥σ(f(Xck))∥2 (4)

where σ denotes the element-wise variance
across the instances, i.e., σ : RN×E → RE .

Middlemost semantics indicate one class is lo-
cated closer to other classes in the representation
space. Hence, the inter-class metric calculates the
average distance from one class center to the other
classes. The opposition aims to unite minter with
the mintra regarding the overall hardness tendency:

Hinter(ck) =

−∑K
i=1
i ̸=k
||µ(f(Xck))− µ(f(Xci))||1

K − 1

where µ(·) presents the element-wise mean oper-
ation across the input set, that is µ : RN×E → RE .

To this end, GeoHard of one specific class is the
amalgamation of the class-wise intra- and inter-
class metrics, i.e., HGeoHard(ck) = Hintra(ck) +

Hinter(ck). And the higher GeoHard indicates
more class-wise hardness, i.e., a poorer perfor-
mance.

3.3 Implementation

According to the open reference 4, we apply E5-
large-v2 (Wang et al., 2022) to project sentences to
a high dimensional space. Jha and Mihata (2021)
point out that the nonlinear dimension reduction on
contextualized representation benefits downstream
tasks. Therefore, we apply Uniform Manifold Ap-
proximation and Projection (UMAP; McInnes et al.
2018) to compress sentence representation to E 5.
The complete encoder consists of E5-large-v2 and
UMAP 6.

4 Experiments

4.1 Baseline: Instance Hardness Aggregation

Sensitivity Analysis (Hahn et al., 2021) mea-
sures data hardness by assessing how perturbations
in the input affect a model’s prediction. It calcu-
lates the model’s prediction confidence for an in-
stance and its perturbed neighbor on the golden la-
bel. A larger derivative between these confidences,
i.e., higher sensitivity, signifies greater hardness.

As for the class-wise hardness, we average the
sensitivity values of the samples in each class. The
higher class-wise sensitivity suggests more diffi-
culty in the class, in consistency with Hahn et al.
(2021). We take the finetuned Roberta-Large in
Section 2.2 as the reference model. More imple-
mentation details can be found in Appendix B.2.

Spread (Zhao et al., 2022) & Thrust (Zhao et al.,
2023b) measure the instance-level hardness by
estimating the similarity between test instances and
training samples. Concretely, Spread calculates the
semantic similarity between test instances and a
few-shot closest training samples, using the sen-
tence encoders. E5-large-v2 (Wang et al., 2022) is
also applied by Spread in line with GeoHard, and
the number of training selections is 8. Thrust calcu-
lates the distance of the decoded instance represen-
tation by LLMs between training and test sets. We
apply the identical LLM as the original work, i.e.,

4E5-large-v2 led Massive Text Embeddings Benchmark
leaderboard (Muennighoff et al., 2023) at the time of the work.

5We set E = 2 for visualization in the experiment.
6As E5-large-v2 is trained to capture uni-sentence seman-

tics, we concatenate premise and hypothesis in NLI tasks with
six conjunctive words or phrases shown in Appendix C.1.1
referring to the templates applied in Gao et al. 2021.
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Metric
Dataset SC NLI Macro Avg. ↑

(Absolute)Amazon APP SST-5 TFNS Yelp MNLI SNLI SICK-E

SA .4730 -.9620 -.2244 -.9047 .8980 -.7219 .3930 -.9962 .2556±.4961

Thrust -.9780 .9012 .0833 .5157 .9952 .0000 .8311 .0000 .2936±.3792

Spread -.6350 .4550 .8369 .9944 -.2148 .4292 -.3934 .8471 .2899±.3412

GeoHard-Intra .5857 .9539 .9892 -.1574 .9947 .9784 .8805 .6647 .7362±.1354

GeoHard-Inter .9997 .9964 .9908 .9722 .9978 .1500 .9042 .3663 .7972±.1006

GeoHard .9998 .9958 .9909 .8852 .9977 .8384 .8882 .4871 .8854±.0262

Table 2: Pearson’s correlation coefficients between class-wise hardness measurement and class-wise F1 scores,
i.e., the approximation of H. All the metrics have been adjusted so that the higher correlation indicates better
measurement. Red indicates that the value is opponent to the original design. Bold indicates the best performance
among the methods with the highest average correlation and lowest variance across the datasets. ↑ indicates the
higher values present better results. GeoHard’s results are averaged on 3 runs (and 6 conjunctions for NLI). Please
refer to Appendix C for the detailed values.

Flan-T5-Large fine-tuned on UnifiedQA dataset 7

(Khashabi et al., 2020).

As both methods are similarity-based, the
smaller similarity indicates more hardness. To this
end, we average Spread scores in each class as the
class-wise metrics. For Thrust, we select the bot-
tom 25 percentile of Thrust scores in each class as
the aggregation 8. Appendix B.3 and B.4 present
their detailed implementation.

4.2 Quantification of class-wise hardness

We benchmark the instance-aggregating methods
(SA, Spread, and Thrust) as well as GeoHard, in-
cluding its intra- and inter-class metrics, on the
eight NLI/SC datasets in Section 2.

Section 2 illustrates the consistency between
LMs and humans regarding class-wise hardness,
and this allows us to select an arbitrary empirical
class-wise hardness H̃ as a close approximation
of H. Consequently, we apply the class-wise F1
scores from fine-tuned Roberta-Large as the hard-
ness reference. Following the previous work (Zhao
et al., 2022), we determine the effectiveness of var-
ious metrics by calculating Pearson’s correlation
coefficient between metrics and the hardness refer-
ence (Table 2). Considering negative correlation,
we take the absolute value of average correlations
as shown in the right-most column, namely that
higher values indicate better measurement.

7https://huggingface.co/allenai/unifiedqa-t5-large
8The reason we do not average Thrust for class-wise hard-

ness here is that this metric is inversely proportional to the
distance. Therefore, Thrust values will come to infinity when
the test sample is extremely close to the training set.

4.3 Analysis on Experimental Results
Table 2 presents the correlation between class-wise
hardness measurement and the reference hardness
on these eight NLI/SC datasets. The class-wise
SA, Spread, and Thrust are shown to be poorly cor-
related to the reference, with average correlations
of 0.2556, 0.2936, and 0.2899, respectively. Their
large variance in correlation across tasks indicates
their incompetence in class-wise hardness measure-
ment. Meanwhile, GeoHard significantly outper-
forms these instance-level methods, exhibiting the
lowest variance across the tasks. In addition to
these metrics, GeoHard surpasses its components,
namely the intra- and inter-class metrics, highlight-
ing their complementarity and underscoring Geo-
Hard’s comprehension of class-specific properties.

5 Generalization of GeoHard

The previous section showcased the exceptional
performance of GeoHard in measuring hardness
in NLI and SC tasks by leveraging class-wise se-
mantic properties. In this section, we explore Geo-
Hard’s robustness and generalization both theoreti-
cally and empirically. We conduct the experiments
to demonstrate GeoHard’s generalization capabil-
ities across various sentence encoders and other
types of tasks, further substantiating the connec-
tion between class-wise hardness and semantics.
Furthermore, we highlight GeoHard’s robustness
in low resource scenarios, showcasing its advan-
tage as a training-free metric.

5.1 Theoretical proof on generalization
GeoHard’s robustness is evident in its ability to
effectively elucidate factors contributing to class-
wise hardness, such as overfitting depicted in Fig-
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Figure 4: The ratio between F1 scores on the test and
training sets for training epochs on NLI tasks. Neutral
in blue suffers from overfitting most. Figure 10 in Ap-
pendix D.2 presents a similar issue in NLI tasks.

ure 4. The intra-class metric within GeoHard
serves to gauge the extent of overfitting, namely,
the divergence between training and test data, as
elaborated in the following Theorem 1.

Theorem 1 Assuming a Gaussian distribution for
instances within ck, D ∼ N (µck , σ

2
ck
), the

means of the training and test data can be rep-
resented as µ̂tr

ck
∼ N (µck , σ

2
ck
/ntr) and µ̂te

ck
∼

N (µck , σ
2
ck
/nte), where ntr and nte are the sizes

of the training and test sets within ck, respectively.
Note that, conditioned on the class ck, the data D is
i.i.d. as mentioned above. By applying Chebyshev’s
inequality (Mitrinovic et al., 2013), the following
inequality holds for any arbitrary k ∈ R+ (see
mathematical derivation in Appendix D.1):

2

k2
≥ P

(
|µ̂tr

ck
− µ̂te

ck
| ≥ 2kσck√

nte

)
(5)

Hence, for any arbitrary k, the data variance σck
reflected by Hintra(ck), as depicted in Equation 4,
serves as an estimation for the distributional gap
|µ̂tr

ck
− µ̂te

ck
|, indicating the overfitting degree of ck.

5.2 Cross-embeddings generalization

We incorporate two other architectures of sentence
embeddings, i.e., GTE-large (Li et al., 2023) and
BGE-large-en-v1.5 (Xiao et al., 2023) into Geo-
Hard, substituting E5-large-v2. Observing Figure
5, we find a consistent trend of GeoHard’s measure-
ment across different sentence embeddings. The
significant gap between GeoHard and the instance-
level aggregation underscores the robustness of
GeoHard as a semantic-guided metric.

Instance-level aggregation GeoHard
0.0

0.2

0.4

0.6

0.8

1.0
SA
Thrust
Spread
GTE
BGE
E5

Figure 5: Average Pearson’s coefficient between various
metrics and hardness reference on five SC tasks. Geo-
Hard with different embeddings consistently and signif-
icantly outperform instance-level aggregation, demon-
strating the robustness of GeoHard.

AG News Yahoo Emo CARAR

GeoHard -.980±.0 -.838±.0 -.798±.1 -.817±.1

Table 3: Pearson’s correlation coefficients, averaged
on 3 seeds, between class-wise hardness measured by
GeoHard and class-wise F1 scores, i.e., the reference of
hardness, on topic classification and emotion detection.

5.3 Cross-task generalization

Complementary to the theoretical generalization,
we further validate GeoHard on other tasks beyond
SC and NLI, i.e., topic classification and emotion
detection. We include AG News (Zhang et al.,
2015), Yahoo Answer Topic (Yahoo; Zhang et al.
2015) for the former and Emo2019 (Emo; Chatter-
jee et al. 2019), Contextualized Affect Affect Rep-
resentations for Emotion Recognition (CARAR;
Saravia et al. 2018) for the latter.

We fine-tune Roberta-Large on these four
datasets to obtain the reference empirical hardness,
i.e., class-wise F1 scores, and also conduct Geo-
Hard, referring to Table 16-19 in Appendix D.3.
According to Table 3, the consistency between the
measurement and reference on the tasks other than
NLI and SC empirically exhibits the generalization
of GeoHard for class-wise hardness measurement.

5.4 Robustness in low-resource scenarios

In this section, we will demonstrate the robustness
of our method in low-resource scenarios. We have
randomly selected 1%, 10%, and 100% of the in-
stances from the training corpus across five SC
datasets included in Section 4. As illustrated in Fig-
ure 6, GeoHard exhibits notably less performance
degradation in low-resource settings compared to
PVI (Ethayarajh et al., 2022), underscoring its ro-
bustness as a training-free method.
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Figure 6: Performance comparison of GeoHard and
PVI in low-resource scenarios: GeoHard experiences
less degradation on the average Pearson’s correlation
(absolute values) across five SC datasets with 1% of the
training data compared with the full training data.

6 Why class-wise hardness measurement?

In the previous sections, we establish the concept of
class-wise hardness, which can be well and robustly
measured by GeoHard. One of the most relevant
literature for the application of GeoHard is class
reorganization.

Class reorganization has received relatively lim-
ited attention compared to research focusing on
addressing class imbalance (Subramanian et al.,
2021; Henning et al., 2023), primarily due to ex-
tra annotation. However, initial task formulations
are rarely perfect, and as research progresses, class
reorganization becomes necessary for a more com-
prehensive understanding and effective modeling
of the task. For example, in NLI, the task evolved
from a 2-way classification (Dagan et al., 2005) to a
3-way classification by separating Non-Entailment
into Neutral and Contradiction. Recently, Nigho-
jkar et al. (2023) further subdivided Neutral into
two distinct classes based on human disagreement.

As for the practical perspective, class reorganiza-
tion can balance the model performance among the
classes (Potts et al., 2021). To resolve the severe
imbalance between Neutral and other classes in SC
dataset, as shown in Table 1, Dynasent (Potts et al.,
2021) opted to split Neutral to Mixed (a mixture
of positive and negative sentiment) and Neutral
(conveying nothing regarding sentiment). This ap-
proach aims to achieve a coherent categorization,
which narrows the performance gap among classes.

In this section, we use Dynasant (Potts et al.,
2021) as an example to demonstrate how measuring
class-wise hardness can aid in interpreting class
reorganization and facilitate the learning process.
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Figure 7: Illustration of the class-wise geometrical dis-
tribution of 3-way and 4-way Dynasent by splitting Neu-
tral to Mixed and Neutral while maintaining Positive
and Negative. The reorganized class Mixed and Neutral
are highly separable in the representation space.

6.1 GeoHard interprets class reorganization

GeoHard can provide insights into two crucial ques-
tions regarding class reorganization: what and how
to reorganize classes. Firstly, even without training
a model, GeoHard can directly provide hardness
estimates across the original classes to locate the
operating target. Secondly, GeoHard can assess
the effectiveness of the formulation strategy and
hence guide the class reorganization.

We conduct GeoHard on classes before and af-
ter Dynasent’s class reorganization, which splits
Neutral to Mixed and Neutral. For comparison, we
randomly split Neutral into two classes, labeled
Rand1 and Rand2. As illustrated in Figure 7, the
Neutral and Mixed are shown to be highly separa-
ble, indicating their distinction in semantics.

As shown in Table 4, the new classes Mixed
and Neutral exhibit lower class-wise hardness com-
pared to the original Neutral. The standard deriva-
tion among class-wise hardness on the newly orga-
nized Dynasent drops by 40.9% (from 1.15 to 0.68).
This clearly explains the coherent class formation
by reorganizing Neutral into two sub-classes. How-
ever, not all class reorganizations yield beneficial
outcomes: a random split may result in high over-
all class-wise hardness and a severe imbalance of
class-wise hardness.

6.2 GeoHard propels task learning

We have demonstrated that GeoHard can interpret
and validate the reorganization of labels. Next, we
further investigate how to leverage the class-wise
hardness knowledge and its induced class reorgani-
zation to enhance task learning, with methods such
as ICL. Typically, ICL samples the demonstrations
uniformly across classes (Min et al., 2022). Here,
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Positive Neutral Negative Std
-5.58 -3.08 -5.48 1.15

Positive Rand1 Rand2 Negative Std
-3.89 -0.71 -0.71 -3.62 1.53

Positive Mixed Neutral Negative Std
-5.24 -4.26 -3.41 -4.78 0.68

Table 4: Class-wise GeoHard on the 3-way and reorga-
nized Dynasent (randomly and semantic-guided splits).
The results are averaged on 3 seeds. Note that larger
GeoHard indicates more hardness on the class. Bold
signifies the smallest standard derivation among class
hardness. Underline indicates the lowest hardness on
Neutral and its splits.

we demonstrate the benefits of splitting the hardest
class into two easier ones in ICL, elucidating the
significance of class-wise hardness.

We divide each class into two sub-classes and se-
lect instances from these newly formed classes. For
classes Positive and Negative, which lack prepared
sub-classes, we employ KMeans on the embed-
dings to separate instances within each class into
two sub-classes (Zhang et al., 2023; Yang et al.,
2023). Then, we select the center of each clus-
ter as a demonstration. For example, if Positive
is selected for reorganization, the demonstrations
consist of 2 Positive instances, 1 Neutral instance,
and 1 Negative instance. For convenience, we ab-
breviate the selection as 2P+1NEU+1N.

We randomly sample 1,000 instances from each
class from 3-way Dynasent (Potts et al., 2021),
wherein Neutral class contains 500 Mixed in-
stances and 500 new-formed Neutral instances.
We conduct ICL on two popular LLMs, i.e.,
OPT-6.7B (Zhang et al., 2022) and Llama-2-7B-
32K-Instruct (Touvron et al., 2023) with differ-
ent setups of demonstrations: (1) even sampling:
1P+1NEU+1N; (2) sampling based on class reor-
ganization: 2P+1NEU+1N, 1P+2NEU+1N, and
1P+1NEU+2N. For both setups, we select the cen-
troid instance from each cluster. The examples of
demonstrations can be found in Appendix D.5.

As shown in Table 5, both models utilizing the
setup 1P+2NEU+1N attain the best performance,
which is the advocated action from GeoHard since
Neutral is measured as the hardest class and the
new classes Mixed and Neutral are relatively easier.
However, reconstructing other classes may not lead
to such benefits in learning and can even lead to
significant degradation (e.g., 2P with LLama-7B).

Demonstration % OPT-6.7B LLama-7B

1P+1NEU+1N 61.7±3.54 61.4±1.82

2P+1NEU+1N 61.1±0.02 39.6±10.71

1P+2NEU+1N 64.3±1.24 69.9±1.74

1P+1NEU+2N 60.4±1.69 34.9±3.36

Table 5: Comparison of different compositions of
demonstrations on Dynasent, with each entry presenting
the prediction accuracy. Bold indicates the highest ac-
curacy on one specific model. The results are averaged
on three seeds for random initialization in KMean.

7 Related works

Hardness in NLP datasets Instance-level hard-
ness indicates the difficulty of an instance given
a distribution (Ethayarajh et al., 2022), and the
taxonomy is summarized in Figure 9 in Appendix
B.1. Without training, the reference model or em-
bedding is usually needed. With a model as the
reference, Sensitivity Analysis (Hahn et al., 2021;
Chen et al., 2023) assesses hardness by perturbing
input features and observing the resulting changes
in model predictions. Additionally, Thrust (Zhao
et al., 2023a) approximates instance hardness based
on the external knowledge required by an LLM. In
parallel with the model reference, Spread (Zhao
et al., 2022) leverages the similarity between test
and training samples in the space of semantic em-
beddings for hardness measurement. Alternatively,
information theory-based methods, such as point-
wise V -usable information (PVI; Ethayarajh et al.
2022) and Rissanen Data Analysis (RDA; Perez
et al. 2021), offer insights into data hardness using
training outcomes. Moreover, other methods mea-
sure data hardness from training dynamics, includ-
ing dataset cartography (Swayamdipta et al., 2020),
forgetting scores (Toneva et al., 2019), and Error
L2-Norm (Paul et al., 2021), etc 9. This work pri-
marily focuses on the training-free methods, which
are more practical and scalable for gauging hard-
ness with LLMs.

Although instance-level hardness is well studied,
class-wise hardness is under-explored. Therefore,
our work explores the class-wise measurement by
aggregating the existing instance-level methods
first and then specifically designs GeoHard, which
requires no additional data or training.

9We include the class-wise hardness measurement with
some training-based methods and training-dynamics methods
in Appendix D.4
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Geometrical view of classification complexity
In the context of general machine learning, prior
research (Ho and Basu, 2002; Lorena et al., 2019)
assesses the difficulty of a classification problem
through the analysis of data geometry and inter-
and intra-class distribution. Various metrics of
quantification, such as Fisher’s discriminant ra-
tio (Cummins, 2013), overlapping regions (Seijo-
Pardo et al., 2019) and network measures (Garcia
et al., 2015), have been proposed to qualify class-
wise complexity based on geometric features.

Sentences encoders (Reimers and Gurevych,
2019) excel at generating high-dimension sentence
embeddings based on semantics. We explore class-
wise hardness by leveraging geometrical features
within and among the classes, inspired by Neutral’s
specific semantics.

Neutral in NLU Neutral depicts undetermined
or middlemost semantics while ruling out other
classes, and widely exists in NLU tasks such as
NLI (Williams et al., 2018; Bowman et al., 2015)
and SC (Sun et al., 2019). Generally, the class
with the prefix Non- also delivers similar semantics
with Neutral, i.e., excluding other classes. For in-
stance, the Microsoft Research Paraphrase (MRPC;
Dolan and Brockett 2005) dataset aims to deter-
mine whether a pair of questions are semantically
equivalent, i.e., to classify sentence pairs to Equiv-
alent and Non-equivalent. In GLUE (Wang et al.,
2019)), six of nine tasks contain a Neutral or Non-
class, indicating the wide existence of classes with
undetermined semantics in NLU.

Due to Neutral’s semantic prevalence, we initiate
class-wise hardness from exploring the tasks con-
taining Neutral and then extend to general classes.

8 Conclusion

In this work, to study how class-specific proper-
ties influence model learning, we initiate the notion
of class-wise hardness analogous to instance-level
hardness. The consistent pattern observed across
various LMs, learning paradigms, and human anno-
tations on eight NLU datasets affirms the presence
of class-wise hardness as an inherent property. In
addressing the challenge of estimating class-wise
hardness, conventional instance-level metrics fall
short, necessitating a tailored approach to measure
hardness specifically at the class level. Thus, we
introduce GeoHard, which models both inter- and
intra-class semantics, surpassing instance-level ag-
gregation by 59%. Moreover, GeoHard, formu-

lated with a foundation in semantics, demonstrates
robust generalization properties, as validated both
theoretically and empirically. Lastly, we showcase
the potential of GeoHard in reorganizing classes
and enhancing task-learning methodologies. We
recommend more attention to class-wise hardness
and exploring its potential across a broader range
of scenarios.

Limitations

Our work, introducing the concept of class-wise
hardness and proposing a practical metric, does
come with specific limitations that justify further
exploration. Firstly, as an initiative work, we only
cover limited types of classification tasks in NLU
due to the space constraint. Some classification
problems such as sequence labeling (He et al.,
2020) are not covered in our scope. Class-wise
hardness for other formats of classification tasks
is still obscure and needs further exploration. Sec-
ondly, as our proposed method GeoHard is built
upon the pre-trained sentence encoders, they in-
herit their corresponding limitations. For example,
it will be intricate to measure class-wise hardness
in the complex semantics or long inputs. These
cases can not be well modeled by a single-sentence
encoder yet. Combining the two problems above
leads to a new issue. Hypothetically, given the
assumption that the class-wise hardness for other
formats of NLP problems still exists, how to model
them will be the potential concern, as it is beyond
the capacity of sentence encoders. Regarding the
application of GeoHard and the class-wise hard-
ness that it measures, we have not gone deeper into
this problem. A larger-scale study is expected to
further explore this topic. In conclusion, further
efforts are expected to overcome the limitations of
this work.
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The datasets we used in this work are all publicly
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Appendix
A Validation of class-wise hardness

A.1 Dataset

Dataset Description Statistics (train/dev/test)

Amazon Review Multi en †

(Amazon; Keung et al. 2020)
an Amazon product reviews dataset for multilingual text
classification (we only use English part)

120,000 / 3,000 / 3,000

App Reviews † (APP; Grano
et al. 2017)

Android app reviews categorized classifying types of
user feedback from a software maintenance and evolu-
tion perspective

56,151 / 6,804 / 6,633

MultiNLI ‡ (MNLI; Williams
et al. 2018)

Multi-Genre Natural Language Inference annotated
with textual entailment information

353,408 / 39,270 / 9,369

SICK-E ‡ (Marelli et al., 2014) A dataset targeting Natural Language Inference 1,920 / 213 / 2,136

SNLI ‡ (Bowman et al., 2015) Stanford Natural Language Inference Corpus 548,292 / 9,705 / 9,657

SST-5 † (Socher et al., 2013) Stanford Sentiment Treebank with 5 labels 4,872 / 1,332 / 1,332

Twitter Financial News Senti-
ment † 10 (TFNS)

A dataset is used to classify finance-related tweets for
their sentiment

3,891 / 435 / 1,041

Yelp review † (Yelp; Zhang
et al. 2015)

A dataset containing custom reviews from Yelp 351,000 / 39,000 / 30,000

Table 6: The description of the datasets used in the class-wise hardness measurement, together with the statistics
of newly-formulated datasets after balancing the number of instances in each class. All the datasets consist of 3
classes, namely Positive/Neutral/Neagtive in SC † and Entailment/Neutral/Contradiction in NLI ‡.

A.2 Dataset Normalization
We follow the setup of the previous work (Shrestha and Nasoz, 2019) to convert 5 degrees of sentiment to
3 classes: for Amazon, APP, and Yelp, we map 1 and 2 to Negative, 3 to Neutral, and 4 and 5 to Positive;
for SST-5, we map very positive and positive to Positive, and negative and very negative to Negative. for
TFNS, the original class labels Bearish and Bullish are mapped to Negative and Positive.

10https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
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Dataset Example Original labels Original statistics

Amazon Review Multi
en (Amazon; Keung
et al. 2020)

Title: bubble
Body: went through 3 in one day doesn’t fit
correct and couldn’t get bubbles out (better
without)

1, 2, 3, 4, 5 200,000 / 5,000 / 5,000

App Reviews (APP;
Grano et al. 2017)

simple and perfect About this software
rtl sdr is very useful ... installed done.
Thanks.

1, 2, 3, 4, 5 230,452 / 28,806 /
28,807

MultiNLI (MNLI;
Williams et al. 2018)

Premise: I burst through a set of cabin
doors, and fell to the ground.
Hypothesis: I burst through the doors and
fell down.

Entailment/Neutral/
Contradiction

353,431 / 39,271 /
9,815

SICK-E (Marelli et al.,
2014)

Sentence A: A group of kids is playing in
a yard and an old man is standing in the
background
Sentence B: A group of boys in a yard
is playing and a man is standing in the
background

Entailment/Neutral /
Contradiction

4,439 / 495 / 4,906

SNLI (Bowman et al.,
2015)

Text: A soccer game with multiple males
playing.
Hypothesis: Some men are playing a sport.

Entailment/Neutral/
Contradiction

549,367 / 9,842 / 9,824

SST-5 (Socher et al.,
2013)

a metaphor for a modern-day urban china
searching for its identity .

very positive/positive/
neutral / negative / very
negative

8,544 / 1,101 / 2,210

Twitter Financial News
Sentiment 1

"$BYND - JPMorgan reels in expectations
on Beyond Meat https://t.co/bd0xbFGjkT"

Bearish/ Bullish / Neu-
tral

8,587 / 956 / 2,388

Yelp review (Yelp;
Zhang et al. 2015)

Tonya is super sweet and the front desk
people are very helpful

1, 2, 3, 4, 5 585,000 / 65,000 /
50,000

Table 7: The examples for the given datasets and the original label and statistics before reformatting.
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A.3 Experimental Setup
The seeds of training are {1, 10, 100}, and the learning rate is 1e-5. The detailed configuration of
Roberta-Large, OPT-350M and Flan-T5-Large, including training are shown at Table 8, 9, and 10. All
the experiments are conducted on a single NVIDIA A100.

Datasets Batch size Epochs Seq. length

Amazon 16 10 512
APP 16 10 256
MNLI 64 10 128
SICK-E 16 10 256
SST-5 16 10 128
SNLI 20 5 128
TFNS 16 10 128
Yelp 24 5 256

Table 8: Training configuration of Roberta-Large.

Datasets Batch size Epochs Seq. length

Amazon 6 3 256
APP 16 10 256
MNLI 64 5 128
SICK-E 16 10 256
SNLI 64 5 128
SST-5 64 10 128
TFNS 64 10 128
Yelp 16 5 256

Table 9: Training configuration of OPT-350M

Datasets Batch size Epochs Seq. length

Amazon 6 3 256
APP 6 5 256
MNLI 12 5 128
SICK-E 6 10 256
SNLI 12 5 128
SST-5 12 10 128
TFNS 12 10 128
Yelp 6 5 256

Table 10: Training configuration of Flan-T5.

A.3.1 Neutral’s hardness in human disagreement
We present the human variation on the classification as a hardness measurement from human beings.
Table 11 presents the distribution of human disagreement of MNLI (Williams et al., 2018) and SNLI
(Bowman et al., 2015). The high entropy of Neutral reveals its class-wise hardness for humans. For
the convenient comparison with other metrics, we take the negative of the entropy to obtain the positive
correlation between the knowledge, as shown in Figure 2 and 8.
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Dataset
Class Entailment Neutral Contradiction

MNLI 0.3202 0.4717 0.2664
SNLI 0.3515 0.5175 0.2781

Table 11: Average entropy of annotation distribution for the instances belonging to the same class in MNLI and
SNLI. Bold indicates the highest entropy score.

A.3.2 Neutral’s hardness in LLMs
Regarding the hardness of Neutral w.r.t. LLMs, we conduct two families of LLMs, Flan-T5-XXL (Raffel
et al., 2020) and LLaMA-2-13B (Touvron et al., 2023). The prompting templates for MNLI and SNLI
present as follows:

The prompt for Flan-T5:
{premise}. Does this imply {hypothesis}? options:
entailment
contradiction
neutral

The prompt for LLaMA-2-13B:
Input: {premise} Question: Does this imply that {hypothesis}? Please respond with ’Entailment’,
’Contradiction’, or ’Neutral’. Result:

Models
Datasets MNLI SNLI

Entailment Neutral Contradiction Entailment Neutral Contradiction

Flan-T5-XXL 0.90 0.87 0.94 0.90 0.88 0.93
LLaMA-2-13B 0.51 0.28 0.50 0.41 0.39 0.55

Table 12: F1 scores of in-context learning using Flan-T5-XXL and LLaMA-2-13B on MNLI and SNLI. Bold
indicates the poorest performance across the class. The results are averaged on the seeds {100, 200, 300}
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Figure 8: Correlation matrix among class-wise F1 scores of three finetuned models together with two ICLs and
class-wise human disagreement on MNLI, where the high consistency is noted.
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B Hardness measurement

B.1 Taxonomy of hardness measurement

Training-free Training-required

SA
Thrust

Spread
GeoHard

RDA
PVI

Model Embeddings Information Theory

Our Interest

Acc
ECE

Performance

Figure 9: Taxonomy of hardness measurement and the scope of this work.

B.2 SA

The technical steps of SA are as follows:

1) Train a Roberta-Large model θ with Dtrain and evaluate the model with Dtest = {(Xtest
i , ytesti )};

2) By randomly masking several consecutive words on Xi and reconstructing K samples with LMs,
generate perturbed test dataset D′

test = {(X ′
ij , yi)}, where j = 1, ...,K;

3) Calculate the confidence for each disturbed input X ′
ij on the golden label yi with θ;

4) The sensitivity for each input Xi is then defined as the maximum value of the deviation between the
confidence values for the original Xi and the corresponding perturbed samples X ′

ij .

For each dataset, sensitivity values are averaged on the three Roberta-Large models trained in Table 1.

B.3 Thrust

Thrust (Zhao et al., 2023a) measures how likely the query to LLMs can be solved by the internal knowledge
of the target model, in other words, how necessary the knowledge is needed to propel the model’s inference.
There are two essential assumptions of Thrust: (1) LLMs are expected to well study the given tasks.
(2) Meanwhile, the particular samples deviate from the output embeddings of LLMs, mainly due to
insufficient knowledge of LLMs.

We denote the representation function, namely the decoder of UnifiedQA-Flan-T5-Large, as fthrust(·).
We sample a certain number of instances from the datasets, i.e., Dsample. Concretely, for the task of
sentiment classification, Dsample = 200, and for the task of natural language inference, Dsample = 600.
Based on the representation obtained, the samples belonging to the identical classes are grouped together
as Gl = {(fthrust(xi), yi, )|yi = l}, where (xi, yi) are the sampled instances, and l is the class index.
Then, each Gl is clustered to K clusters by the k-means algorithm, and each cluster and its corresponding
centroid are denoted as Ckl and mkl, respectively. Regarding the selection of cluster numbers K, we refer
to the original setup (Zhao et al., 2023a), i.e., K = max(ceil( 4

√
|Dsample|), 3). The seeds for sample

selection and clustering initialization are both {2, 4, 42, 102, 144}, and hence the results are averaged on
25 initial setups.

sthrust(q) =

∥∥∥∥∥
1

N ·K
N∑

l=1

K∑

k=1

|Ckl|
∥dkl(q)∥2

· dkl(q)

∥dkl(q)∥

∥∥∥∥∥

where q denotes the query, namely, the test instance, and dkl = mkl − f(q) is a vector pointing from
f(q) towards the centroid mkl.

The prompts for NLI and SC tasks used on the model are shown as follows:
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The prompt for NLI tasks:
{premise}. And {hypothesis}. What is the relationship between these two sentences? Option:
Entailment or Neutral or Contradiction. Answer:

The prompt for SC tasks:
{sentence}. Is it a happy review? Answer:

B.4 Spread
Spread aims to measure the instance-level hardness in the few-shot scenario (Zhao et al., 2022). The
idea of Spread is to examine the similarity between training and test instances. Concretely, if one test
sample is close to train samples semantically, it is taken as an easy instance. We denote the semantic
encoder for Spread as fSpread. The distance of one test instance to the training set is defined as the
average distance between the test instance to the k-closest training instances. Let Dtr = {(xtri , ytri )} and
Dte = {(xtei , ytei )} denote the training and test sets, respectively. xtrik denotes the k-th closest training
instances to the test instance xtei . Kshot is the number of shots to the training sets, and d(·, ·) is the
measurement between two data points.

sSpread(x
te
i ) =

1

Kshot

Kshot∑

k=1

d(xtei , x
tr
ik)

B.5 PVI
Algorithm 1 presents the procedure of PVI (Ethayarajh et al., 2022). g′ is fine-tuned on the original
training dataset D, i.e., {(Xi, yi)|∀(Xi, yi) ∈ D}. Meanwhile, g is fine-tuned on the null-target pairs
{(∅, yi)|∀(Xi, yi) ∈ D}, where ∅ is an empty string.

Algorithm 1 PVI calculation

Input: a dataset D = {(X1:N , y1:N )}, a model G, and the test instance of (Xtest, ytest)
1: g′← fine-tune G on D
2: g← fine-tune G on {(∅, yi)|∀(Xi, yi) ∈ D}
3: PVI(Xtest, ytest)←− log2 g[∅](ytest) + log2 g

′[Xtest](ytest)

C Experimental results

As a supplement of Table 2, the following Table 13 presents the fine-grained numerical values of the
golden hardness and different metrics.

C.1 GeoHard
C.1.1 NLI’s fine-grained results with different connecting words or phrases
Table 14 and 15 present the measurement of Distributional complexity and Biased gravity. Different from
the SC datasets, a pair of sentences is in the NLI task. Therefore, a conjunction word is needed to convert
a pair of sentences to a natural sentence. As shown in Table 14 and 15, six conjunctive words or phrases
are selected, including And, It is true that, etc. As mentioned above, we average the metrics on different
conjunctions to measure the NLI sentence pair.
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Datasets Class F1(↓) Sensitivity(↑) Thrust(↑) Spread(↑) Intra-class (↑) Inter-class (↑) GeoHard

Amazon
Positive 87.6±0.41 0.1708±0.0121 0.455±0.004 0.839 2.837±0.003 -11.152±0.096 -8.316±0.096

Neutral 71.0±0.96 0.2511±0.0222 0.575±0.008 0.842 2.968±0.007 -6.786±0.056 -3.818±0.061

Negative 80.5±0.69 0.3153±0.0158 0.513±0.027 0.844 2.712±0.007 -9.205±0.071 -6.493±0.076

APP
Positive 74.2±0.16 0.245±0.033 0.54±0.024 0.876 5.359±0.012 -7.28±0.72 -1.921±0.709

Neutral 60.1±0.14 0.1368±0.0062 0.447±0.014 0.864 6.251±0.012 -4.945±0.342 1.306±0.353

Negative 73.4±0.8 0.2724±0.0252 0.513±0.027 0.862 5.668±0.05 -7.24±0.72 -1.571±0.77

MNLI
Entailment 91.1±0.12 0.8233±0.01 1.503±0.021 0.837 4.013±0.008 -0.049±0.005 3.964±0.012

Neutral 87.2±0.12 0.496±0.0085 1.503±0.021 0.832 4.037±0.009 -0.062±0.007 3.975±0.015

Contradiction 92.8±0.05 0.6828±0.0142 1.503±0.021 0.833 3.989±0.01 -0.07±0.002 3.92±0.012

SICK-E
Entailment 92.9±0.22 0.8968±0.0231 1.589±0.07 0.859 3.112±0.026 -2.205±0.172 0.906±0.187

Neutral 86.8±2.11 0.3036±0.0431 1.589±0.07 0.854 3.471±0.013 -2.363±0.163 1.108±0.171

Contradiction 92.4±0.46 0.9049±0.0106 1.589±0.07 0.863 2.197±0.002 -4.135±0.312 -1.937±0.312

SNLI
Entailment 92.6±0.08 0.8712±0.0155 1.582±0.011 0.877 5.64±0.018 -0.069±0.013 5.571±0.03

Neutral 89.2±0.17 0.6938±0.0205 1.582±0.011 0.87 5.645±0.02 -0.064±0.015 5.581±0.035

Contradiction 95.3±0.08 0.5447±0.0188 1.88±0.179 0.864 5.596±0.021 -0.104±0.035 5.491±0.056

SST-5
Positive 83.1±0.73 0.2242±0.0389 0.821±0.014 0.828 1.648±0.022 -7.665±0.366 -6.017±0.346

Neutral 53.1±1.55 0.2347±0.0667 0.801±0.013 0.824 1.904±0.01 -5.014±0.261 -3.11±0.27

Negative 75.8±1.7 0.364±0.0451 0.764±0.022 0.83 1.68±0.023 -7.376±0.416 -5.696±0.418

TFNS
Positive 93.0±0.08 0.3627±0.0585 0.553±0.035 0.818 2.25±0.025 -7.836±0.176 -5.587±0.191

Neutral 86.1±0.29 0.1292±0.0133 0.523±0.03 0.806 2.391±0.02 -6.204±0.301 -3.813±0.287

Negative 92.2±0.54 0.4689±0.0169 0.752±0.033 0.819 2.769±0.083 -7.481±0.163 -4.712±0.144

Yelp
Positive 87.9±0.14 0.0451±0.0021 0.455±0.006 0.822 4.043±0.011 -9.793±0.012 -5.75±0.016

Neutral 75.4±0.25 0.0832±0.0033 0.395±0.006 0.819 4.396±0.003 -6.328±0.009 -1.931±0.006

Negative 86.6±0.12 0.0639±0.0036 0.455±0.006 0.811 4.108±0.015 -9.19±0.018 -5.082±0.033

Table 13: The class hardness measurement on the tasks containing the undetermined class Neutral using SA, Spread,
and Thrust to class hardness measurement. ↓ indicates that the lower value reflects more hardness, while ↑ indicates
that the higher value reflects more hardness.

Datasets Class Maybe And Therefore But On the other hand It is true that Average

MNLI
Positive 4.078±0.003 4.04±0.008 3.956±0.024 4.017±0.029 4.016±0.001 3.972±0.05 4.013
Neutral 4.099±0.011 4.061±0.008 3.976±0.026 4.037±0.035 4.056±0.001 3.993±0.052 4.037

Negative 4.063±0.001 4.017±0.009 3.906±0.018 3.99±0.03 4.013±0.001 3.946±0.061 3.989

SNLI
Positive 6.256±0.058 5.738±0.064 5.314±0.034 5.44±0.069 5.513±0.028 5.579±0.062 5.640
Neutral 6.261±0.057 5.75±0.061 5.31±0.043 5.445±0.067 5.523±0.029 5.581±0.065 5.645

Negative 6.26±0.059 5.722±0.06 5.188±0.019 5.382±0.072 5.467±0.046 5.556±0.055 5.596

SICK-E
Entailment 3.521±0.003 3.066±0.3 2.537±0.086 2.705±0.029 3.445±0.035 3.397±0.289 3.112

Neutral 3.749±0.048 3.398±0.184 3.192±0.038 3.287±0.013 3.639±0.024 3.561±0.209 3.471
Contradiction 2.181±0.027 2.212±0.061 2.155±0.029 2.252±0.017 2.212±0.016 2.172±0.038 2.197

Table 14: Intra-clas metrics of premise and hypothesis concatenated with different conjunctions on three NLI
datasets. The results is averaged on three seeds.
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Datasets Class Maybe And Therefore But On the other hand It is true that Average

MNLI
Positive -0.033±0.019 -0.039±0.003 -0.103±0.004 -0.042±0.019 -0.027±0.002 -0.05±0.01 -0.049
Neutral -0.05±0.027 -0.052±0.003 -0.101±0.007 -0.067±0.031 -0.038±0.004 -0.065±0.027 -0.062

Negative -0.036±0.01 -0.063±0.006 -0.168±0.005 -0.048±0.013 -0.044±0.002 -0.058±0.003 -0.07

SNLI
Positive -0.011±0.004 -0.035±0.005 -0.111±0.018 -0.068±0.016 -0.123±0.09 -0.064±0.009 -0.069
Neutral -0.012±0.004 -0.034±0.008 -0.092±0.015 -0.064±0.008 -0.122±0.084 -0.058±0.008 -0.064

Negative -0.013±0.005 -0.048±0.013 -0.164±0.034 -0.11±0.028 -0.203±0.188 -0.087±0.029 -0.104

SICK-E
Entailment -1.372±0.199 -2.822±0.9 -2.992±0.316 -2.877±0.317 -1.335±0.161 -1.834±0.363 -2.205

Neutral -1.614±0.219 -2.811±0.897 -3.274±0.368 -3.027±0.277 -1.364±0.152 -2.089±0.385 -2.363
Contradiction -2.501±0.382 -5.259±1.564 -5.631±0.615 -5.397±0.498 -2.609±0.308 -3.411±0.711 -4.135

Table 15: Inter-class metrics of premise and hypothesis concatenated with different conjunctions on three NLI
datasets. The results is averaged on three seeds.
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D Generalization and Application of GeoHard

D.1 Theoretical generalization
Taking the data distribution as one Gaussian distribution D ∼ N (µ, σ2), the mean of n instances
sampled from D follows N (µ, σ2/n). Therefore, the means of the training data and the test data, µ̂tr

and µ̂te, follow N (µ, σ2/ntr) and N (µ, σ2/nte), where ntr and nte are the size of training and test sets,
respectively. According to Chebyshev’s inequality (Mitrinovic et al., 2013), the following inequalities
stand with arbitrary k ∈ R+:

P (|µ̂tr − µ| ≥ kσ√
ntr

) ≤ 1

k2

P (|µ̂te − µ| ≥ kσ√
nte

) ≤ 1

k2

Assuming ntr ≥ nte without loss of generality, we combine the two inequalities above and derive:

2

k2
≥ P (|µ̂tr − µ| ≥ kσ√

ntr
) + P (|µ̂te − µ| ≥ kσ√

nte
)

≥ P (|µ̂tr − µ| ≥ kσ√
nte

) + P (|µ̂te − µ| ≥ kσ√
nte

)

≥ P (|µ̂tr − µ|+ |µ̂te − µ| ≥ 2kσ√
nte

)

≥ P (|µ̂tr − µ̂te| ≥
2kσ√
nte

)

D.2 Neutral’s overfitting
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Figure 10: The ratio between F1 scores on the test and training sets for each training epoch on SC tasks (Left:
Amazon and APP; Right: Yelp, SST-5 and TFNS).

D.3 Empirical Validation on GeoHard’s Generalization
As mentioned in the main part of the paper, we also include four datasets, i.e., AG News, Yahoo, Emo,
and CARAR, from the tasks of emotion detection and topic classification. Similarly, we formulate the
datasets to balance the number of instances inside each class to achieve class-wise balance. Specifically,
we re-sample 10,000 instances from each class in Yahoo to handle the trade-off between computational
efficiency and representativeness.

Trained on Roberta-Large with three seeds {1, 10, 100}, the performance of four datasets present the
class-wise F1 scores in Table 16 - 19.
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AG News World Sports Business Sci/Tech

F1 score (%) 96.4±0.08 99.1±0.07 92.7±0.16 93.2±0.14

Intra-class 4.464±.016 3.835±.034 3.775±.042 3.978±.070

Inter-class -15.49±.133 -17.62±.100 -13.11±.221 -13.35±.075

GeoHard -11.02±.119 -13.79±.084 -9.340±.253 -9.377±.018

Table 16: AG News’s class-wise F1 scores trained with Roberta-Large and class-wise hardness measured by
GeoHard.

Emo Others Happy Sad Angry

F1 score (%) 82.4±1.09 89.8±0.44 90.1±1.37 91.5±0.94

Intra-class 2.331±.025 2.286±.024 2.120±.015 2.117±.006

Inter-class -6.841±.081 -9.781±.147 -9.521±.186 -8.278±.428

GeoHard -4.509±.063 -7.495±.170 -7.400±.177 -6.160±.425

Table 17: Emo’s class-wise F1 scores trained on Roberta-Large and class-wise hardness measured by Geohard.

CARAR Sadness Joy Love Anger Fear Superise

F1 score (%) 90.9±0.49 89.1±0.61 90.4±0.68 93.2±1.25 90.1±0.09 95.1±0.83

Intra-class 1.817±.129 2.285±.068 1.656±.013 1.641±.075 1.505±.040 1.675±.007

Inter-class -6.538±.144 -6.232±.216 -5.806±.079 -7.159±.122 -6.043±.123 -6.822±.116

GeoHard -4.720±.263 -3.947±.199 -4.150±.066 -5.517±.196 -4.537±.107 -5.147±.111

Table 18: CARAR’s class-wise F1 scores trained on Roberta-Large and class-wise hardness measured by GeoHard.
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Metric
Dataset SC NLI Macro Avg.Amazon APP SST-5 TFNS Yelp MNLI SNLI SICK-E

PVI 0.985 0.9825 0.9808 1.0000 1.0000 0.9805 0.9628 0.9973 0.9861
Confidence 0.6966 0.9947 0.9959 0.997 0.7183 0.9721 0.9897 0.7478 0.8890
Variablity -0.8755 -0.5244 -0.1256 0.8683 -0.7595 -0.9991 -0.9949 -0.0117 -0.4278

Table 20: Pearson’s correlation coefficients between class-wise hardness measurement and class-wise F1 scores.
The metrics include PVI and two metrics from training dynamics, i.e., confidence and variability.

D.4 Other metrics beyond training-free methods

Here, we include two training-based methods to further validate the existence of class-wise hardness.
One is PVI (Ethayarajh et al., 2022) and the other is data cartography (Swayamdipta et al., 2020). PVI
has been introduced in Appendix B.5. Data cartography focuses on the behavior of the model on data
instances during training, referred to as training dynamics. This includes two metrics for each instance:
the model’s confidence in the correct class and the variability of this confidence across epochs. Data
points characterized by high confidence and low variability are considered easy. In Table 20, we observe
that PVI can well model the hardness of the classes. Moreover, we also notice the correlation between
class-wise hardness and the metrics from training dynamics. These results further validates the existence
of class-wise hardness through a training-based way.

D.5 GeoHard’s Application

The following demonstrates two examples of the demonstration applied in the ICL on Dynasent (Potts
et al., 2021). Precisely, the upper and the lower demonstrations are 2P+1NEU+1N and 1P+2NEU+1N,
respectively.

Sentence: This place is fine.i love this place, the staff is great the food is great and the atmosphere
is great.
Sentiment: pos1
#####
Sentence: The casino has some of the lowest house-edge blackjack you will find anywhere.
Sentiment: positive
#####
Sentence: Too bad they only had one available spot that day, it was an appointment at 4:30pm,
fortunately for me that is the least busiest time so I was in and out.
Sentiment: neutral
#####
Sentence: I went to the ticket counter. I wasn’t going to the ticket counter after the show demanding
a refund, but I certainly wouldn’t go again.
Sentiment: negative
#####
Sentence: {input}
Sentiment:
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Sentence: I tried a new place. I definitely recommend this place if you are looking for some good
chinese food, and I definitely will be coming back.
Sentiment: positive
#####
Sentence: It was cool. It is set up like a lounge, but it has a dinky dancefloor, and music that is
WAY TOO LOUD for a place that has a lounge setup.
Sentiment: mixed
#####
Sentence: So I’ll give this one just one store.
Sentiment: neutral
#####
Sentence: I went to the ticket counter. I wasn’t going to the ticket counter after the show
demanding a refund, but I certainly wouldn’t go again.
Sentiment: negative
#####
Sentence: {input}
Sentiment:
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Artifacts/Packages Citation Link License
Artifacts(datasets/benchmarks).

Amazon (Keung et al., 2020) https://huggingface.co/datasets/amazon_reviews_multi LICENSE
APP (Grano et al., 2017) https://huggingface.co/datasets/app_reviews Missing
MNLI (Williams et al., 2018) https://huggingface.co/datasets/multi_nli MIT License
SICK-E (Marelli et al., 2014) https://huggingface.co/datasets/sick CC-by-NC-SA-3.0
SNLI (Bowman et al., 2015) https://huggingface.co/datasets/snli CC-by-4.0
SST-5 (Socher et al., 2013) https://huggingface.co/datasets/SetFit/sst5 Missing
TFNS N/A https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment MIT License
Yelp (Zhang et al., 2015) https://huggingface.co/datasets/yelp_review_full LICENSE
Dynasent (Potts et al., 2021) https://github.com/cgpotts/dynasent Apache License 2.0

Packages
PyTorch (Paszke et al., 2019) https://pytorch.org/ BSD-3 License
transformers (Wolf et al., 2019) https://huggingface.co/datasets/yelp_review_full Apache License 2.0
numpy (Harris et al., 2020) https://numpy.org/ BSD License
pandas (McKinney, 2010) https://pandas.pydata.org/ BSD 3-Clause License
matplotlib (Hunter, 2007) https://matplotlib.org/ BSD compatible License
umap (McInnes et al., 2018) https://github.com/lmcinnes/umap BSD 3-Clause License

Models
E5-Large-v2 (Wang et al., 2022) https://huggingface.co/intfloat/e5-large-v2 MIT License
GTE-Large (Li et al., 2023) https://huggingface.co/thenlper/gte-large MIT License
bge-large-en-v1.5 (Xiao et al., 2023) https://huggingface.co/BAAI/bge-large-en-v1.5 MIT License
RoBERTa (Liu et al., 2019) https://huggingface.co/docs/transformers/model_doc/roberta MIT License
Flan-T5 (Raffel et al., 2020) https://huggingface.co/docs/transformers/model_doc/flan-t5 Apache-2.9
OPT (Zhang et al., 2022) https://huggingface.co/facebook/opt-2.7b LICENSE
LLaMA-v2 (Touvron et al., 2023) https://huggingface.co/docs/transformers/model_doc/llama2 LICENSE

Table 21: Details of datasets, major packages, and existing models we use. The datasets we reconstructed or revised
and the code/software we provide are under the MIT License.

E Artifacts and Packages

The details of the datasets, major packages, and existing models are listed in Table 21.
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