
Findings of the Association for Computational Linguistics: ACL 2024, pages 5559–5570
August 11-16, 2024 ©2024 Association for Computational Linguistics

SSS: Editing Factual Knowledge in Language Models towards Semantic
Sparse Space

Huazheng Wang*, Haifeng Sun*, Jingyu Wang†, Qi Qi, Zixuan Xia,
Menghao Zhang, Jianxin Liao

State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications

{wanghz,hfsun,wangjingyu,qiqi8266,zjjs2019xzx,zhangmenghao}@bupt.edu.cn
jxlbupt@gmail.com

Abstract

Language Models (LMs) acquire factual knowl-
edge during pre-training and store it in the
parameters, which can be valuable for down-
stream tasks. As world evolves, some facts
may be incorrectly induced or become obso-
lete over time. Various model editing methods
have been proposed to modify specific exam-
ples in LMs. However, existing training-based
methods still suffer from sub-optimal locality,
where irrelevant neighborhood examples can
be adversely influenced. Model’s gradients are
still struggling to identify the appropriate di-
rection when updating the parameters. To ad-
dress this issue, we find that directing the hid-
den state of the edit example towards spaces
where semantics are sparse tends to help pre-
serve the semantics of irrelevant neighborhood
examples. Based on this hypothesis, we pro-
pose a novel metric, named SSS, to evaluate
the degree of sparsity around a sentence embed-
ding in the semantic space without any human
or machine annotation. Subsequently, we in-
corporate SSS into the original loss function
of the existing training-based methods to en-
hance locality. Experiments conducted on two
datasets across various models demonstrate that
SSS is effective in improving both locality and
reasoning capability. Code will be available at:
https://github.com/MaybeLizzy/EditSSS.

1 Introduction

Language Models (Touvron et al., 2023; Ope-
nAI, 2023) (LMs) are surprisingly good at recall-
ing factual knowledge presented in the pre-training
corpus, which enables promising results in various
downstream tasks. However, as the world’s state
evolves, LMs may become incorrect or outdated
over time. Developing reliable and computation-
ally efficient methods to edit the model knowledge
without the need for expensive re-training becomes

*Equal Contribution.
†Corresponding Author.

𝑥𝑒: Lionel Messi plays

𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 : Cristiano Ronaldo plays

𝑦𝑒 : football

𝑦𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 : football

Model Editing

Post-edit Model 𝒇𝜽𝒆Pre-edit Model 𝒇𝜽

basketball

football

basketball

football

basketball

football

basketball
football

𝑝𝜃 (∙ |𝑥𝑒) 𝑝𝜃𝑒
(∙ |𝑥𝑒)

𝑝𝜃 (∙ |𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) 𝑝𝜃𝑒
(∙ |𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)

Edit Example : basketballedit to

Neighborhood :

Figure 1: Existing methods can negatively impact irrel-
evant neighborhood examples.

non-trivial. In response to this issue, the concept
of model editing has been proposed (Sinitsin et al.,
2020; Cao et al., 2021), which is to intervene a
pre-trained model’s behavior on a specific edit ex-
ample without damaging its performance on other
irrelevant examples.

Numerous works on model editing for language
models have emerged. One branch of research in-
volves additional training, such as training a hyper-
network to predict weight updates (Cao et al., 2021;
Mitchell et al., 2022a) or introducing additional
trainable parameters (Dong et al., 2022; Hartvigsen
et al., 2022; Huang et al., 2023). Another line of re-
search attributes knowledge to specific neurons or
modules within the network (Dai et al., 2022) and
updates the model parameters associated with the
edit example directly (Meng et al., 2022, 2023; Li
et al., 2023a), without any additional training. With
the development of in-context learning, some meth-
ods edit the model by either prompting it with the
edit example (Zheng et al., 2023) or retrieving edit
demonstrations from an explicit memory (Mitchell
et al., 2022b; Madaan et al., 2022; Zhong et al.,
2023).

To evaluate the post-edit model performance,

5559

https://github.com/MaybeLizzy/EditSSS

previous works formulate the criteria that a success-
ful model editor should not only adjust the model
behavior for in-scope examples that are closely as-
sociated with the edit example, but also maintain
locality (or specificity) for out-of-scope examples.
It means that irrelevant neighborhood examples
should be left unaltered. Recently, there emerges
diverse studies evaluating existing editing meth-
ods across various dimensions, such as learning
new entities (Onoe et al., 2023), reasoning implica-
tions (Cohen et al., 2023) and editing commonsense
mistakes (Gupta et al., 2023).

Though existing methods have demonstrated
considerable effectiveness in model editing tasks,
they still suffer from inferior locality, where irrele-
vant neighborhood examples can be adversely in-
fluenced (Yao et al., 2023) (as illustrated in Fig. 1).
Focusing on the training-based methods, we spec-
ulate the reason is that existing methods primarily
adopt two objectives when updating the model pa-
rameters, apart from their method-specific objec-
tive. One objective is to align the model predictions
with the edit label, and the other is to constrain
the Kullback-Leibler (KL) divergences between
the pre- and post-edit models on irrelevant neigh-
borhood examples. Due to the limited training
set, examples not included within the dataset can
still be potentially affected. Consequently, rely-
ing solely on the aforementioned objective is in-
adequate. Models’ gradient are still struggling to
identify the appropriate gradient direction when
updating the parameters (Li et al., 2023b).

To address this issue, we take a further step and
find that mapping the embedding of the edited ex-
ample into a sparse space helps preserve the se-
mantics of other irrelevant neighborhood examples.
Based on this hypothesis, we propose a novel met-
ric, named SSS, to evaluate the degree of sparsity
in the semantic space around a sentence embedding
for a specific model. We then incorporate SSS into
the original loss function of existing training-based
methods, guiding the embedding of the edited ex-
ample towards a Semantic Sparse Space to enhance
locality. This method is computationally efficient
and entirely unsupervised, requiring no human or
machine annotation.

To assess the effectiveness of SSS, we select
three representative training-based methods, includ-
ing FT-L (Yao et al., 2023), MEND (Mitchell et al.,
2022a) and SERAC (Mitchell et al., 2022b). We
test these methods on two popular model editing
datasets, ZsRE (Levy et al., 2017) and COUNTER-

FACT (Meng et al., 2022) across various language
models with multiple scales (1.5B∼7B). Experi-
mental results highlight the effectiveness of SSS in
enhancing both locality and reasoning capability.

Our contributions are summarized as follows:

• We introduce a novel evaluation metric, SSS,
to measure the semantic sparsity of a sentence
embedding for a specific language model with-
out any human or machine annotation.

• We incorporate SSS into existing training-
based model editing methods to enhance the
locality of irrelevant neighborhood examples.

• Experiments conducted on two datasets across
various language models demonstrate the va-
lidity and scalability of SSS.

2 Related Work

Training-based Editing Method A branch of re-
search requires training when editing models. The
simplest method is directly fine-tuning the target
model with specific edit examples. In addition,
Cao et al. (2021) propose Knowledge Editor (KE)
approach, which trains a hyper-network to predict
the weight update for each edit example. To over-
come the limitation of KE that falls short in editing
language models with larger scale, Mitchell et al.
(2022a) introduce Model Editor Networks with
Gradient Decomposition (MEND), which learns
to transform the gradient obtained by standard fine-
tuning using a low-rank decomposition of gradi-
ents. Furthermore, Mitchell et al. (2022b) present
SERAC, which stores edit examples in explicit
memory. It utilizes a scope classifier to determine
if an input lies within the scope of any cache items
and trains a memory-based retrieval-augmented
counterfactual model to edit facts that fall within
the scope of stored edit examples. Other works in-
troduce additional trainable parameters while keep-
ing the original model parameters static (Dong
et al., 2022; Hartvigsen et al., 2022). For in-
stance, Huang et al. (2023) propose Transformer-
Patcher, a sequential model editing method that
simply incorporates and trains a few neurons in the
last feed-forward Network layer.

Training-free Editing Method Another line of
research attributes knowledge to specific neurons
or modules within the network. Notably, Dai
et al. (2022) view feed-forward network modules
in Transformer as key-value memories and propose

5560

the Knowledge Neuron (KN) method to edit spe-
cific factual knowledge by identifying the knowl-
edge neurons positively correlated to the knowl-
edge expression. Similarly, Meng et al. (2022)
modify feed-forward weights to update specific
factual associations using Rank-One Model Edit-
ing (ROME). To extend model editing to multiple
cases simultaneously (Li et al., 2023a), Meng et al.
(2023) build upon the ROME framework and pro-
pose MEMIT. With the development of in-context
learning, certain methods edit the model by either
prompting it with the edit example (Zheng et al.,
2023), or retrieving demonstrations from the edit
memory (Madaan et al., 2022; Zhong et al., 2023).

3 Task Definition

The objective of model editing is to adjust an
initial target model’s behavior on a specific edit ex-
ample, without impacting the model’s performance
on other irrelevant examples. More specifically,
the target model fθ is represented by a function
f : X 7→ Y, with θ denoting the model parameter.
Given an edit example (xe, ye) with the edit label
ye ̸= fθ(xe), the post-edit model fθe is required
to generate the expected output fθe(xe) such that
fθe(xe) = ye.

4 Preliminary

In this section, we introduce the objectives of
the existing training-based model editing methods.
An ideal post-edit model fθe should satisfy three
properties: reliability, generality and locality (Yao
et al., 2023).

Reliability A model editor is reliable if fθe pre-
dicts the edit label ye for the edit input xe:

Ex′
e,y

′
e∼{(xe,ye)}1{argmaxyfθe(y|x′e) = y′e}. (1)

Generality As the model editing process can im-
pact a wide range of examples that are closely as-
sociated with the edit example, known as the edit-
ing scope, a successful edit should also adjust the
model behavior for in-scope examples I(xe, ye),
such as examples with similar expressions:

Ex′
e,y

′
e∼I(xe,ye)1{argmaxyfθe(y|x′e) = y′e}. (2)

Locality A good edit is supposed to edit the
knowledge without influencing other irrelevant out-
of-scope examples O(xe, ye). It always refers to
locality (or specificity):

Ex′
e,y

′
e∼O(xe,ye)1{argmaxyfθe(y|x′e) = fθ(y|x′e)}.

(3)

To achieve reliability and generality, existing
works (Mitchell et al., 2022b; Huang et al., 2023)
use the loss function Le for the edit example and
its corresponding in-scope examples:

Le(θe) = −log pθe(ye|xe). (4)

To achieve locality, most works (Cao et al., 2021;
Mitchell et al., 2022a) choose to constrain updates
in terms of the Kullback-Leibler (KL) divergences
between the pre- and post- edit model conditioned
on the locality examples xloc:

Lloc(θ, θe) = KL(pθ(·|xloc)∥pθe(·|xloc)). (5)

The total training loss Lori is computed with the
sum of Le and Lloc using a hyper-parameter ce:

Lori = ce · Le(θe) + Lloc(θ, θe). (6)

Apart from the aforementioned losses, different
methods may employ their own method-specific
objectives to update the model parameters. Despite
these variations, in this paper, we consistently de-
note the original training loss of previous methods
as Lori.

5 Method

Existing methods are still struggling to maintain
high locality (Yao et al., 2023). We assume the
limitation is that they solely considering the KL
divergences between the pre- and post- edit model
on locality examples from the training set. This
proves inadequate since irrelevant examples not
collected in the training set can still be potentially
influenced. To address this issue, we are committed
to exploring strategies that guide model parameter
updates in a direction that protects the semantic
space of irrelevant examples from being disturbed.

It has been demonstrated that language models
are pre-trained to implicitly learn sentence repre-
sentations (Li et al., 2020). Each sentence can be
encoded as a high-dimensional vector, representing
a point in the embedding space. The knowledge ac-
quired by the model is mapped into this space, char-
acterized by an uneven distribution where certain
regions may be denser than others (Aharoni and
Goldberg, 2020). Since the knowledge acquired
by LLMs is encoded within a network of intercon-
nected neurons, editing one piece of knowledge is
likely to impact others (Dai et al., 2022). When
editing knowledge, models often face challenges in
determining the appropriate gradient direction for

5561

FT-L

MEND

SERAC

𝑊1

𝑊2

𝑊𝑘

…

෪𝑊1

…

෪𝑊2

෪𝑊𝑘

Weights Updated Weights

Fine

Tune

Pre-edit Model Post-edit Model

Weights Delta Weights

∇𝑊1
∇𝑊2

∇𝑊𝑘

…

෩∇𝑊1

…

෩∇𝑊2

෩∇𝑊𝑘

…

MEND

𝑔1

𝑔𝑘
Pre-edit Model Post-edit Model

Scope

classifier

Edit Memory

Base

Model

Counterfactual

Model

Who is the president of the US?

𝑥𝑒𝑛

…

Who is the president of the US.

Tell me the current leader

of the United States.

Ariana Grande is from US.

Albert Einstein lived in Germany.

Who is the president of the US?

Tell me the current leader

of the United States.

Who is currently in charge

of the United States?

SSSWho is currently in charge

of the United States?

: Will not be influenced.

: Be badly influenced.

: In-scope Examples

: Out-of-scope Examples

In which direction

should the gradient

be updated?

: The Edit Example

Semantic Sparse

Space

: Frozen𝑥𝑒1 Joe Biden𝑦𝑒1

Who is the UK PM? Boris Johnson𝑦𝑒𝑛

Ariana Grande is from US.

Albert Einstein lived in Germany.

Figure 2: The illustration of SSS. Existing training-based model editing methods still lack explicit constraints on
updating model parameters related to other irrelevant examples. SSS provides an explicit direction for updating the
sentence embedding towards semantically sparse space, which is effective in protecting the irrelevant neighborhood
examples from being badly influenced.

updating the parameters (Li et al., 2023b). Building
upon these findings, we propose mapping the new
knowledge into a sparse space to provide clear guid-
ance for gradient updates while ensuring that the
distribution of other knowledge in the embedding
space remains unaffected.

To accomplish this, we utilize the vulnerability
of sentence embeddings to quantify the sparsity
of the embedding space. A robust sentence em-
bedding, resilient to large perturbations, suggests
a relatively sparse semantic space around it. Con-
versely, even a minor disturbance in the sentence
can change its semantics, indicating a semantically
dense space. Under this hypothesis, we introduce
an evaluation metric to quantify the vulnerability
(or sparsity) of sentence embeddings, named SSS.
Subsequently, we introduce a novel training ob-
jective for updating model gradients to enhance
locality. The detailed explanation is outlined as
follows.

We are inspired by Zhao et al. (2019), who adopt
the Fisher Information Matrix (FIM) of the input
sample as a metric tensor to measure the robustness
of deep learning models in adversarial attack task.
Borrowing from this idea, we define a FIM-based
matrix H to characterize the vulnerability of a sen-
tence embedding to the perturbation in its feature
space for a specific model LM. Specifically, given

an edit example (xe, ye), the matrix H ∈ Rn×n

is defined as follows, where n stands for the hid-
den dimension of LM and J (xe, ye) is the loss
function:

H = ∇xeJ (xe, ye)
⊤∇xeJ (xe, ye). (7)

∇xeJ (xe, ye) is the partial differential of
J (xe, ye) respecting to xe. We adopt the per-token
negative log-likelihood loss:

J (xe, ye) = −Eye|xe
[log PLM(ye|xe)]. (8)

Similar to the conclusion of Zhao et al. (2019),
which quantifies the vulnerability of deep learning
models, we deduce that the maximum eigenvalue
of H, denoted as λmax, reflects the vulnerability
of sentence embeddings to the perturbation. The
proof process is detailed in A.1. The expression for
λmax can be written as:

λmax=
1

m

m∑

i=1

(∇xiJ (xe, ye))
2, (9)

where m is the sentence length and xi is the ith
token of xe. A smaller λmax indicates a more ro-
bust sentence embedding with higher resilience
to the perturbation, indicating a relatively sparse
semantic space surrounding the sentence embed-
ding. As illustrated in Fig. 2, we name λmax as

5562

SSS and incorporate it into the original training
loss of previous methods using a tuning coefficient
C to enhance overall locality, denoted as Lall:

Lall = (1− C) · Lori + C · SSS. (10)

In general, SSS can be easily implemented by
three steps. Firstly, input xe to the model and calcu-
late the loss J(xe, ye) using the model prediction
and the edit label. Secondly, compute the maxi-
mum eigenvalue λmax of xe’s updated embedding
using Eq 9. Finally, the total training loss is derived
using J(xe, ye) and SSS according to Eq 10.

The advantage of the introduced SSS lies in
its computational efficiency, as it solely relies on
J (xe, ye) and the last hidden states of the edit ex-
ample xe. Additionally, integrating SSS into the
original loss function for various training-based
editing methods is straightforward and convenient.
More importantly, the entire process is unsuper-
vised, requiring no human or machine annotation.

6 Preliminary Experiments

In this section, we conduct preliminary exper-
iments to assess the effectiveness of SSS across
three training-based methods. The experimental
settings and results are outlined as follows. All
results are averaged over three runs.

6.1 Experiment Settings

We initially employ two popular model editing
datasets, ZsRE (Levy et al., 2017) and COUNTER-
FACT (Meng et al., 2022). Following the data split
from Yao et al. (2023), we use the training set for
model training and evaluate the performance on the
test set. For test efficiency, the test set is limited to
10,000 examples on ZsRE. We evaluate the results
of fine-tuning, a fundamental approach for model
editing. Following (Yao et al., 2023), we fine-tune
layers identified by ROME (Meng et al., 2022) to
avoid the computational cost of retraining all lay-
ers, which is denoted as FT-L. Furthermore, we
choose two influential training-based methods for
evaluation, namely MEND (Mitchell et al., 2022a)
and SERAC (Mitchell et al., 2022b). Instead of
using smaller language models for knowledge edit-
ing, such as BERT (Devlin et al., 2019), we follow
Yao et al. (2023) and focus on generation-based
models. Specifically, we choose GPT2-XL (1.5B)
as the target model. In these experiments, we set
the hyper-parameter C to 0.9.

6.2 Experiment Results

FT-L For basic FT-L, we follow Yao et al. (2023)
and utilize Eq. 4 to train the model. For FT-L w/
SSS, the training objective is computed by incor-
porating SSS with Eq. 4. To ensure fairness, all
hyper-parameters follow default settings in Yao
et al. (2023), utilizing Adam with early stopping,
and only modifying the weights of mlpproj at the
selected layer.

As shown in Table 1, when using FT-L, the ac-
curacy of generality is significantly lower than that
of reliability, exhibiting an absolute difference of
83.49%. This suggests that fine-tuning can only
modify the model’s behavior on the specific edit
example, failing to generalize to other rephrased
sentences. Despite of this, FT-L w/ SSS outper-
forms FT-L by up to 1.19% on reliability, 1.52%
on generality and 1.15% on locality, illustrating the
effectiveness of SSS.

MEND Following (Mitchell et al., 2022a), the
training objective of MEND is consistent with
Eq. 6, where ce is set to be 0.1. For MEND w/
SSS, we integrate SSS with Eq. 6. Both MEND
and MEND w/ SSS are trained on ZsRE training
set using the Adam optimizer.

As shown in Table 1, when tested on ZsRE, the
performance of MEND w/ SSS surpasses that of
MEND, exhibiting an absolute improvement of
2.73% on generality. When tested on COUNTER-
FACT in an out-of-distribution (OOD) scenario,
MEND demonstrates remarkable robustness, with
reliability outperforming ZsRE by 32.74%, though
at a cost of relatively lower locality and generality.
We speculate that the reason lies in the nature of
the model, which may excel in domain adaptation
for editing data formulated as language modeling.
In this scenario, MEND w/ SSS demonstrates a
more robust capability than MEND, with an abso-
lute improvement of 4.99% on reliability, 1.85%
on locality and 4.0% on generality. This verifies
the effectiveness of SSS.

SERAC SERAC consists of an edit memory, clas-
sifier, and counterfactual model. The scope classi-
fier and counterfactual model are trained indepen-
dently. We solely concentrate on the training objec-
tive of the counterfactual model, which aligns with
MEND (w/ SSS). The training parameter settings
of SERAC (w/ SSS) remain consistent with Yao
et al. (2023).

As shown in Table 1, when tested on ZsRE,

5563

Dataset Metric FT-L w/ SSS MEND w/ SSS SERAC w/ SSS

ZsRE
Reliability 57.25 58.44 40.36 42.74 56.35 56.91
Locality 86.98 87.32 90.20 90.56 93.11 93.26

Generality 28.05 29.57 38.86 41.59 46.24 46.66

COUNTERFACT
Reliability 96.85 96.96 70.49 75.48 12.61 14.99
Locality 81.50 82.65 64.50 66.35 18.78 22.30

Generality 13.36 14.20 12.37 16.37 10.18 12.65

Table 1: Overall performance comparison between the three selected training-based methods and w/ SSS. Note that
the accuracy of MEND and SERAC on the COUNTERFACT dataset represents an out-of-domain scenario.

Reliability Locality Generality

n 1 10 100 1000 1 10 100 1000 1 10 100 1000

ROME 100 100 98.0 65.8 100 40.0 22.0 3.4 100 43.0 30.0 8.0

MEMIT 100 92.0 89.8 85.0 100 100 91.0 54.8 100 62.5 41.3 40.0

FT-L 100 99.0 97.4 92.5 100 60.0 13.0 3.0 66.7 27.0 20.0 7.5
w/ SSS 100 100 98.1 97.0 100 60.0 19.0 3.9 66.7 33.3 20.0 8.7

MEND 100 70.0 13.0 1.3 66.7 30.0 6.0 0.6 75.0 21.7 14.0 0.4
w/ SSS 100 73.3 19.0 3.8 75.0 33.3 9.0 1.0 75.0 21.0 14.3 1.0

SERAC 100 20.0 13.2 10.0 100.0 27.0 18.0 14.6 75.0 40.0 14.7 10.9
w/ SSS 100 20.0 14.9 13.0 100.0 30.0 24.0 22.4 100 50.3 16.0 13.3

Table 2: Sequential Editing performance on COUNTERFACT dataset.

SERAC w/ SSS outperforms SERAC across all
three metrics. When tested on COUNTERFACT,
SERAC demonstrates significantly inferior OOD
robustness. The bottleneck may lie in the accuracy
of the pre-trained classifier and the capabilities of
the inference model. Despite of this, SERAC w/
SSS consistently outperforms SERAC by 2.38%
on reliability, 3.52% on locality and 2.47% on gen-
erality. The significant improvement confirms the
effectiveness of SSS on editing model facts and
preserving neighborhood knowledge.

Sequential Editing The default evaluation pro-
cedure involves updating the knowledge of a sin-
gle model, evaluating the updated model, and then
rolling back the update before repeating the pro-
cess for each test example. In practical scenarios, a
model editor must continuously and promptly fix
a series of mistakes. Therefore, we conduct ex-
periments on sequential editing using the COUN-
TERFACT dataset, where models retain previous
changes while making new edits. Following Yao
et al. (2023), we choose the sequence number
n from [1, 10, 100, 1000]. For comparative pur-

poses, we also present the results of two training-
free methods: ROME (Meng et al., 2022) and
MEMIT (Meng et al., 2023).

As shown in Table 2, FT-L maintains high Reli-
ability even when n = 1000, but its Locality and
Generality decrease significantly as n increases.
MEMIT demonstrates stable performance in se-
quential editing, while MEND’s performance de-
teriorates with increasing n. SSS consistently out-
performs the baselines as n increases. Specifi-
cally, SERAC w/ SSS achieves up to a 7.8% im-
provement in Locality compared to SERAC when
n = 1000. These results confirm that SSS is able
to preserve the model’s original irrelevant knowl-
edge during sequential editing, validating the effec-
tiveness of SSS.

7 Comprehensive Study

The impact of model editing on the language
model is intricate, demanding a thorough and com-
prehensive evaluation to fully comprehend its ef-
fects. Consequently, in line with Yao et al. (2023),
we conduct additional tests to assess SSS from both

5564

Metric ROME MEMIT FT-L w/ SSS MEND w/ SSS SERAC w/ SSS

Reliability 98.73 83.71 97.26 97.64 68.71 72.64 10.95 12.44
Pre-Neigh 95.27 96.55 72.84 73.35 91.48 92.00 12.60 13.59
Post-Neigh 93.46 95.81 75.25 75.72 92.01 92.94 13.74 14.53

Distract-Neigh 58.40 63.53 57.64 59.19 71.55 70.73 12.84 12.61
Unrelated Attri 79.46 89.07 91.73 92.04 88.03 93.44 29.88 36.28

Table 3: Performance comparison between different methods and w/ SSS on locality.

Metric Dataset Size

Locality counterfact 804

Subject Replace zsre 293

Reversed Relation zsre 385

One-Hop counterfact 1031

Table 4: The data statistics of comprehensive study.

locality and portability perspectives. The statistics
of the datasets are shown in Table 4. In this experi-
ment, FT-L (w/ SSS) is directly fine-tuned on the
specific dataset using GPT2-XL. MEND (w/ SSS)
and SERAC (w/ SSS) utilize the pre-trained check-
points from Section 6. We keep C = 0.9.

7.1 Evaluate Locality
Consider an edit example xe with its original

ground truth yr and edit label ye. To thoroughly
examine the potential side effects of model editing
on neighborhood examples, SSS is tested at four
different levels.

Pre-Neighbor: We name a neighborhood exam-
ple as Pre-Neighbor if its label is yr.

Post-Neighbor: We name a neighborhood ex-
ample as Post-Neighbor if its label is ye.

Distract-Neighbor: Following Yao et al. (2023),
we concatenate the edit example before Pre-
Neighbor example to test whether the model pre-
diction will be influenced by the edit example. The
post-edit model is expected to maintain consistent
behavior on Distract-Neighbor examples, predict-
ing yr instead of ye.

Unrelated Attributes: The unrelated attributes
of the subject in the edit example should remain
unchanged after editing. For instance, if we edit
the knowledge from “Alfred Kubel has citizenship
from Germany" to “Alfred Kubel has citizenship
from Finland", the answer of the Unrelated At-
tribute example “What is Alfred Kubel’s sex or
gender?" should remain the same.

We also present the results of ROME and

MEMIT on locality. However, this locate-and-edit
method heavily relies on the data format and is
limited to modifying examples in triplets, where
(e, r, o) represents a subject entity e, a relation r,
and an object o. Therefore, we do not directly
compare the accuracy with ROME and MEMIT.

Results As shown in Table 3, FT-L exhibits
higher reliability compared to MEND and SERAC.
It is reasonable since the latter two are tested in
an OOD scenario where generalization may be
somewhat reduced. In detail, MEND w/ SSS ex-
hibits better reliability than MEND by 3.93%,
highlighting the effectiveness of SSS in editing
model knowledge. However, MEND w/ SSS and
SERAC w/ SSS exhibit sub-optimal performance
on Distract-Neighbor, showing reductions of 0.82%
and 0.23%, respectively. We suspect this is at-
tributed to the fact that training with SSS enhances
the edit example’s resilience to semantic perturba-
tion, thereby making the model more responsive
to the edit example when incorporated as a prompt
concatenated in front of the test query. There-
fore, the edit example may distract the model atten-
tion, resulting in a relatively lower performance on
Distract-Neighbor. In addition, w/ SSS shows a rel-
atively modest increase in Pre-Neighbor and Post-
Neighbor, ranging from 0.47% to 0.99%. However,
the improvements introduced by SSS on Unrelated
Attributes are substantial, with an absolute enhance-
ment of 6.4% compared to SERAC. It indicates that
SSS is more effective in enhancing the robustness
of the subject in edit example itself, protecting it
from the semantic perturbation of other irrelevant
examples. This validates the effectiveness of SSS.

Impact of C We apply parameter tuning method
to explore the impact of C on model performance.
Experiments are conducted on the locality dataset
using FT-L w/ SSS with C ranging from 0.0 to
1.0. Other parameters remain unchanged. As
shown in Fig 3, the best accuracy is achieved when
C = 0.9, highlighting the importance of consid-

5565

0.1 0.3 0.5 0.7 0.9
C

72

73

74
Ac

cu
ra

cy
(%

)
Pre-Neighbor

0.1 0.3 0.5 0.7 0.9
C

74

75

76

Ac
cu

ra
cy

(%
)

Post-Neighbor

0.1 0.3 0.5 0.7 0.9
C

56
57
58
59
60

Ac
cu

ra
cy

(%
)

Distract Neighbor

0.1 0.3 0.5 0.7 0.9
C

91

92

93

Ac
cu

ra
cy

(%
)

Unrelated Relation

Figure 3: Ablation study on C. Experiments are con-
ducted on FT-L w/ SSS using GPT2-XL.

Pre-Neighbor Post-Neighbor Distract-Neighbor Unrelated Attributes

G
P

T
-N

eo
-2

.7
B

T
5

-3
B

L
L

A
M

A
-7

B

w/ SSSFT-L w/ SSSFT-L w/ SSSFT-L w/ SSSFT-L

w/ SSSFT-L

w/ SSSFT-L

w/ SSSFT-L

w/ SSSFT-L w/ SSSFT-L w/ SSSFT-L

w/ SSSFT-Lw/ SSSFT-L

Figure 4: Experimental results across different models.

ering SSS when editing model knowledge. Addi-
tionally, the model performance can fluctuate when
C = 0.0 ∼ 0.5 where Le takes a large propor-
tion. However, for C ≥ 0.6, the accuracy across
all metrics consistently exhibits a stable improve-
ment. This suggests that increasing the proportion
of SSS can make the training process less depen-
dent on Le. A small Le may imply that the post-
edit model performs well on the edit example, but it
does not necessarily ensure that the neighborhood
examples are protected from disturbance. There-
fore, increasing the proportion of SSS can more ef-
fectively enhance locality. Moreover, for C = 1.0,
the reliability is 0.25% with locality reaching 100%.
It demonstrates that solely relying on SSS is inade-
quate for editing the model knowledge.

Model Scaling To thoroughly evaluate the im-
pact of model scaling on SSS, we conduct ex-
periments with larger LMs on locality dataset, in-
cluding GPT-Neo-2.7B, T5-3B and LLaMA-7B. As
shown in Fig. 4, the accuracy does not exhibit a
pattern with the scaling of LMs. We suspect that
accuracy can be influenced by various aspects of
models, including the pre-trained dataset, model ar-
chitecture, and training methods. Larger models do
not necessarily indicate better accuracy (Onoe et al.,

2023; Hoelscher-Obermaier et al., 2023). Despite
the variations, FT-L w/ SSS consistently outper-
forms FT-L, validating the effectiveness of SSS.

7.2 Evaluate Portability

To thoroughly evaluate the effectiveness of SSS,
we test SSS on portability, assessing its ability to
transfer the edited knowledge to related facts (Yao
et al., 2023). There are three aspects: Subject Re-
place, Reversed Relation and One-hop. We provide
detailed explanation as follows.

Subject Replace We substitute the subject in the
edit example with an alias or synonym, evaluating
the post-edit model’s ability to generalize the edited
attribute to other descriptions of the same subject.

Reversed Relation When the target of a subject
and relation is edited, the attribute of the target
entity also changes. We test the model’s ability
with the reverse question to check if the target entity
is also updated. For instance, if we edit the answer
of the edit example “Who is Nebaioth’s father?"
from “Babylon 5" to “Babur", then the post-edit
model is expected to predict “Nebaioth" for the
Reversed Relation example “Who is the son of
Babur?".

One-Hop The post-edit model should employ the
edited knowledge for downstream tasks. Therefore,
we evaluate the post-edit model’s ability to perform
one-hop reasoning. For instance, if we edit the an-
swer of the edit example “What company made
Volvo B12M?" from “Volvo Buses" to “Volkswa-
gen Group", then the post-edit model is expected to
predict “Wolfsburg, Germany" instead of “Gothen-
burg, Sweden" for the One-Hop example “In which
city is the headquarters of the company that made
the Volvo B12M?".

Results As shown in Table 5, MEND w/
SSS presents a superior performance over MEND
by 2.26% on Subject Replace. Though FT-L w/
SSS exhibits lower reliability and generality than
FT-L, the accuracy difference is within 0.28%.
Though SERAC w/ SSS exhibit a modest improve-
ment of 0.85% on Reversed Relation, it demon-
strates an improvement of 2.55% on One-Hop
compared to SERAC. The overall performance in
portability suggests that SSS can help the post-edit
model to handle the implications of the edit exam-
ples and transfer the edited knowledge to associated
facts for downstream applications, particularly in

5566

Dataset Metric FT-L w/ SSS MEND w/ SSS SERAC w/ SSS

Subject
Replace

Reliability 54.88 55.28 42.27 44.78 47.39 47.39
Generality 28.31 28.80 42.43 44.77 47.39 47.39

Subject Replace 15.88 16.27 38.39 40.65 47.27 47.45

Reversed
Relation

Reliability 40.85 40.72 60.94 65.28 71.56 71.57
Generality 34.19 33.91 60.17 64.24 71.13 71.24

Reversed Relation 35.57 35.6 33.38 33.97 67.16 68.01

One
Hop

Reliability 97.19 98.93 60.33 64.01 11.35 13.68
Generality 5.04 4.85 11.59 16.20 38.12 44.28
One-Hop 41.62 41.88 37.69 38.3 41.75 44.30

Table 5: Performance comparison between the three selected methods and w/ SSS on portability.

𝑥𝑒 : What is Elizabeth Bonifacia of Poland's father's name?

𝑥𝑟𝑞 : Who is the daughter of Charles Bonifacia, Duke of

Poland?

𝑦𝑜𝑟𝑖𝑔𝑖𝑛 : Charles II Bonifacia of Poland

𝑦𝑟𝑞 : Elizabeth Bonifacia of Poland

Edit

Example

𝑦𝑛𝑒𝑤 : Charles Bonifacia, Duke of Poland

edit to

Reversed

Question

MEND MEND w/ SSS

Model prediction

of 𝑥𝑒 :

Model prediction

of 𝑥𝑟𝑞 :

Reliability:

Reversed Relation :

Prelude Bonifacia Total

Queen of Poland

\n Bonifacia\n Duke of

Poland

Prelude Queeni Po Polish \n\nifacia of Poland

0.625 0.75

0.333 0.50

Figure 5: Case study on Reversed Relation dataset.

terms of one-hop capability. Nevertheless, the abso-
lute portability accuracy remains relatively modest
(less than 50%), calling for further exploration and
innovation in future research.

Case Study We provide a case study on Reversed
Relation dataset using MEND. As shown in Fig 5,
the predictions made by MEND on the edit exam-
ple and the reversed question significantly differ
from the label, leading to lower accuracy. However,
when using MEND w/ SSS, the predictions no-
tably improve, resulting in higher accuracy, which
validates the effectiveness of SSS.

8 Conclusion

In this paper, we introduce SSS, a novel eval-
uation metric to measure the semantic sparsity of
a sentence for a specific language model without
any human or machine annotation. Subsequently,
we incorporate SSS into existing training-based

model editing methods to enhance the locality of
irrelevant neighborhood examples. Experiments
conducted on two datasets across various models
demonstrate the validity and scalability of SSS.

In summary, SSS presents a promising approach
for mitigating the side effects of model editing,
offering a notable perspective compared to existing
training-based model editing methods.

Ethical Considerations

We believe that this study contributes intellec-
tual value to the dependable application of model
knowledge editing in the field of NLP, with poten-
tial broader implications for tasks in other areas.
It is noteworthy that there are no direct societal
consequences, and all experiments are conducted
on open datasets.

Limitations

Given the constraints of computing power, incor-
porating language models with larger scales poses
a challenge for us. While results using automatic
metrics offer a fair assessment of task performance,
we plan to conduct a human evaluation in the near
future.

Acknowledgements

This work was supported in part by the Na-
tional Natural Science Foundation of China un-
der, Grant 62201072, Grant U23B2001, Grant
62171057, Grant 62101064, Grant 62001054, and
Grant 62071067; in part by the Ministry of Edu-
cation and China Mobile Joint Fund under Grant
MCM20200202 and Grant MCM20180101; in part
by the BUPT-China Mobile Research Institute Joint
Innovation Center.

5567

References
Roee Aharoni and Yoav Goldberg. 2020. Unsupervised

domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 7747–7763. Associa-
tion for Computational Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 6491–6506. Association
for Computational Linguistics.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023. Evaluating the ripple effects
of knowledge editing in language models. CoRR,
abs/2307.12976.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons
in pretrained transformers. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 8493–
8502. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pages 5937–5947. Association
for Computational Linguistics.

Anshita Gupta, Debanjan Mondal, Akshay Krishna She-
shadri, Wenlong Zhao, Xiang Li, Sarah Wiegreffe,
and Niket Tandon. 2023. Editing common sense in
transformers. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 8214–8232. Association for Computational
Linguistics.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2022.
Aging with GRACE: lifelong model editing with dis-
crete key-value adaptors. CoRR, abs/2211.11031.

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran,
Ioannis Konstas, and Fazl Barez. 2023. Detecting
edit failures in large language models: An improved

specificity benchmark. In Findings of the Association
for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 11548–11559. Asso-
ciation for Computational Linguistics.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In Proceedings of the 21st Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2017), Vancouver, Canada, August 3-4,
2017, pages 333–342. Association for Computational
Linguistics.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 9119–
9130. Association for Computational Linguistics.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023a. PMET: precise model editing
in a transformer. CoRR, abs/2308.08742.

Zichao Li, Ines Arous, Siva Reddy, and Jackie Chi Kit
Cheung. 2023b. Evaluating dependencies in fact edit-
ing for language models: Specificity and implication
awareness. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 7623–7636. Association
for Computational Linguistics.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt editing to
improve GPT-3 after deployment. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
2833–2861. Association for Computational Linguis-
tics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022a. Fast

5568

https://doi.org/10.18653/V1/2020.ACL-MAIN.692
https://doi.org/10.18653/V1/2020.ACL-MAIN.692
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.522
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.522
https://doi.org/10.48550/ARXIV.2307.12976
https://doi.org/10.48550/ARXIV.2307.12976
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.438
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.438
https://aclanthology.org/2023.emnlp-main.511
https://aclanthology.org/2023.emnlp-main.511
https://doi.org/10.48550/ARXIV.2211.11031
https://doi.org/10.48550/ARXIV.2211.11031
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.733
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.733
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.733
https://openreview.net/pdf?id=4oYUGeGBPm
https://openreview.net/pdf?id=4oYUGeGBPm
https://doi.org/10.18653/V1/K17-1034
https://doi.org/10.18653/V1/K17-1034
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.733
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.733
https://doi.org/10.48550/ARXIV.2308.08742
https://doi.org/10.48550/ARXIV.2308.08742
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.511
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.511
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.511
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.183
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.183
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt

model editing at scale. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
15817–15831. PMLR.

Yasumasa Onoe, Michael J. Q. Zhang, Shankar Padman-
abhan, Greg Durrett, and Eunsol Choi. 2023. Can
lms learn new entities from descriptions? challenges
in propagating injected knowledge. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
5469–5485. Association for Computational Linguis-
tics.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry V.
Pyrkin, Sergei Popov, and Artem Babenko. 2020.
Editable neural networks. In 8th International Con-
ference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 10222–10240.
Association for Computational Linguistics.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin
Peng, Guixu Zhang, and Chaomin Shen. 2019. The
adversarial attack and detection under the fisher in-
formation metric. In AAAI2019, IAAI 2019, EAAI
2019, pages 5869–5876. AAAI Press.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, pages 4862–
4876. Association for Computational Linguistics.

Zexuan Zhong, Zhengxuan Wu, Christopher D. Man-
ning, Christopher Potts, and Danqi Chen. 2023.
Mquake: Assessing knowledge editing in language

models via multi-hop questions. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 15686–15702. Associa-
tion for Computational Linguistics.

A Appendix

A.1 Proof
To evaluate the vulnerability of edit examples,

we are inspired by Zhao et al. (Zhao et al., 2019),
who adopt the Fisher Information Matrix (FIM) of
the input sample as a metric tensor to measure the
robustness of deep learning models in adversarial
attack task. Given a labeled data example (x, y),
the FIM matrix named Gx is defined by Eq 11:

Gx =
∑

i

pi

[
(∇xJ (yi, x)) (∇xJ (yi, x))

T
]
,

(11)
where J (yi, x) = −logp(yi|x) is the loss function
and pi represents the probability of p(yi|x) when
y takes the i-th class. ∇xJ (yi, x) is the partial
differential of J (yi, x) respecting to x.

Borrowing from this idea, we define a FIM-
based matrix H to characterize the vulnerability
of an edit example to the perturbation in its fea-
ture space for LM. The matrix H ∈ Rn×n of
edit example e = (xe, ye) is defined as follows,
where n stands for the hidden dimension of LM
and J (xe, ye) is the loss function:

H = ∇xeJ (xe, ye)
⊤∇xeJ (xe, ye). (12)

The matrix H proposed in Eq 12 can be considered
as a special case of Gx. In Gx, each class’s prob-
ability of p(y|x) is weighted, and Gx calculates
the expectation accordingly. In contrast, H sets
the probability of p(y|x) to 1 when y takes the cor-
rect class and 0 for other classes. Such difference
between H and Gx originates from the different
objectives. The aim of Gx is to find a subtle pertur-
bation η that shifts the probability p(y|x+ η) from
the correct class to an incorrect one. So each class
is given a probability. However, our objective is to
ensure the model consistently predicts the correct
class. So other classes can be ignored with weight
being 0.

Similar to the conclusion of Zhao et al. (Zhao
et al., 2019), we deduce that the maximum eigen-
value of H, denoted as λmax, reflects the robust-
ness of the edit example to LM. A smaller λmax

indicates a more robust edit example with higher
resilience to the perturbation. We present the key
derivation steps as follows.

5569

https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.18653/V1/2023.ACL-LONG.300
https://doi.org/10.18653/V1/2023.ACL-LONG.300
https://doi.org/10.18653/V1/2023.ACL-LONG.300
https://doi.org/10.48550/ARXIV.2303.08774
https://openreview.net/forum?id=HJedXaEtvS
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://aclanthology.org/2023.emnlp-main.632
https://aclanthology.org/2023.emnlp-main.632
https://aclanthology.org/2023.emnlp-main.296
https://aclanthology.org/2023.emnlp-main.296
https://aclanthology.org/2023.emnlp-main.971
https://aclanthology.org/2023.emnlp-main.971

We assume the existence of an ideally robust
edit example, denoted as x̂e, that can yield the
post-edit model prediction aligned with ye while
maintaining the distribution of other neighborhood
knowledge in the embedding space unaffected. We
evaluate the robustness of xe by observing the dis-
tance between xe and x̂e, denoted by ∥xe − x̂e∥.
The embedding of xe is denoted as X ∈ Rm×n

where m is the length of xe and n is the hidden
dimension of LM. X̂ is the corresponding embed-
ding of x̂e. Subsequently, we transform the task
into observing ∥X − X̂∥. Given the parameters of
LM expressed as W ∈ Rn×n, the loss function can
be transformed into:

J (X, X̂) =
∥∥∥WX⊤ −WX̂

⊤∥∥∥
2
. (13)

The partial differential of J (X, X̂) respecting to X
is:

∇XJ (X, X̂) ≜
(
∇X1J (X, X̂), · · · ,∇XmJ (X, X̂)

)⊤
,

(14)

where Xi is the row vector standing for the ith to-
ken embedding, denoted by Xt = (x1, · · · , xn) ∈
R1×n.

The maximum eigenvalue of H, denoted as
λmax, can be calculated as the weighted sum of
each token’s maximum eigenvalue:

λmax=
1

m

m∑

i=1

aiλi (15)

where ai is the weight coefficient of the ith to-
ken, and

∑m
i=1 ai = m. We consider the simplest

case where every token is equally important and
let a1 = a2 = · · · = am = 1. λt is the tth token’s
maximum eigenvalue, which can be calculated by:

λt=

n∑

i=1

(∇xiJ (Xt, X̂t))
2. (16)

Substituting Eq 16 to Eq 15, we get the expres-
sion of λmax as:

λmax=
1

m

m∑

z=1

n∑

k=1

(∇xz
k
J (Xz, X̂z))

2, (17)

where xji and x̂ji represent the jth element of Xi

and X̂i.
To calculate λmax, we expand the square sum of

Eq. 17 and then simplify it into a comprehensive
expression. For simplicity, we introduce a notion

∆j
i = xji − x̂ji to represent the distance between the

ith dimension of the jth token embeddings. And
then λmax can be derived as:

λmax =
4

m

m∑

z=1

n∑

k=1




n∑

i=1

w2
ik ·∆z

i +
∑

j∈Φ
j ̸=k

(
n∑

i=1

wikwij

)
∆z

j




2

(18)

where Φ = {1, 2, · · · , n}. And wi,j is the element
in row i, column j of matrix W.

We conclude from Eq 18 that λmax is a function
on ∆j

i and the coefficients are only related to the
model parameters. Hence, a small λmax represents
a relatively small ∆j

i , leading to a small ∥X − X̂∥
and a more robust edit example.

A.2 Experiments
We conduct additional experiments to explore

the impact of C on portability using GPT2-XL. Ex-
periments are conducted on the Subject Replace
dataset using FT-L w/ SSS with C ranging from
0.0 to 1.0. Other parameters remain unchanged.
As illustrated in Fig. 6, the highest accuracy is ob-
served at C = 0.8 ∼ 0.9, which aligns with the
observation in Section 7.1.

0.1 0.3 0.5 0.7 0.9
C

54.0

54.5

55.0

55.5

56.0

Ac
cu

ra
cy

(%
) Reliability

0.1 0.3 0.5 0.7 0.9
C

28.00

28.25

28.50

28.75

29.00

Ac
cu

ra
cy

(%
) Generality

0.1 0.3 0.5 0.7 0.9
C

15.0

15.5

16.0

16.5

17.0

Ac
cu

ra
cy

(%
) Subject Replace

Figure 6: Ablation study of C on Subject Replace
dataset.

5570

