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Abstract
The widespread adoption of Large Language
Models (LLMs) has led to an increase in AI-
generated text on the Internet, presenting a
crucial challenge to differentiate AI-created
content from human-written text. This chal-
lenge is critical to prevent issues of authenticity,
trust, and potential copyright violations. Cur-
rent research focuses on watermarking LLM-
generated text, but traditional techniques strug-
gle to balance robustness with text quality. We
introduce a novel watermarking approach, Ro-
bust and Imperceptible Watermarking (RIW)
for LLMs, which leverages token prior prob-
abilities to improve detectability and main-
tain watermark imperceptibility. RIW method-
ically embeds watermarks by partitioning se-
lected tokens into two distinct groups based
on their prior probabilities and employing tai-
lored strategies for each group. In the detection
stage, RIW method employs the ‘voted z-test’
to provide a statistically robust framework to
identify the presence of a watermark accurately.
The effectiveness of RIW is evaluated across
three key dimensions: success rate, text quality,
and robustness against removal attacks. Our
experimental results on various LLMs, includ-
ing GPT2-XL, OPT-1.3B, and LLaMA2-7B,
indicate that RIW surpasses existing models,
and also exhibits increased robustness against
various attacks and good imperceptibility, thus
promoting the responsible use of LLMs. Our
code is available at https://github.com/Lilice-
r/RIW.

1 Introduction

Large Language Models (LLMs) such as ChatGPT
(OpenAI, 2022) and LLaMA (Touvron et al., 2023)
have marked a significant advancement in natural
language processing, enabling a range of applica-
tions from generating human-like text to under-
standing complex language patterns. However, this
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(a) Expected probability of tokens in the green list by previous
watermark methods.
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(b) Natural Frequency of tokens in the green list.

Figure 1: The disparity between the expected probability
and natural frequency of tokens on the green list.

success has also led to pressing challenges: the
spread of fake news, the risk of copyright viola-
tions, and a rise in academic dishonesty. These
issues highlight the necessity for reliable methods
to detect and audit machine-generated text. Ad-
dressing these concerns is essential for mitigating
potential harms associated with LLMs and ensuring
their responsible utilization in various domains. To
meet that need, watermarking has emerged as an ef-
fective method for tagging and detecting machine-
generated text from LLMs. A watermark in this
context is a distinct yet inconspicuous pattern em-
bedded within the text. It is designed to be im-
perceptible to human readers but allows for the
algorithmic identification of the text as synthetic.

One major way of using watermarks for LLMs
is watermarking during logit generation (Kirchen-
bauer et al., 2023a; Lee et al., 2023; Hu et al., 2023;
Wu et al., 2023; Yoo et al., 2023; Wang et al., 2023;
Zhao et al., 2023; Kirchenbauer et al., 2023b; Liu
et al., 2023a,b; Ren et al., 2023). This watermark-
ing technique typically involves segmenting the
vocabulary into two categories: a ‘green list’ and a
‘red list’. The approach is to preferentially utilize
tokens from the green list in the AI-generated text.
During the detection phase, the actual frequency of
these green list tokens within the text is calculated

5508

https://github.com/Lilice-r/RIW
https://github.com/Lilice-r/RIW


and compared against an expected probability, ex-
emplified in Figure 1 with an expectation set at 0.5.
A significant deviation from this expected probabil-
ity suggests AI involvement in the text’s generation,
calculated through a statistical method, the z-test.
However, the implementation of this method intro-
duces a critical dilemma. The expected probability
level for green list tokens can be at odds with the
natural frequency distribution of these tokens in
regular language use. This discrepancy can lead
to either the watermark is not robust enough, mak-
ing AI-generated text difficult to distinguish under
attack, or impacting the overall quality of the text.
Balancing these concerns is crucial: the watermark
must be detectable without compromising the au-
thenticity and readability of the generated content.

The disparity between the expected probability
and natural frequency of tokens on the green list
leads to two challenges: From the broader scope,
as illustrated in Figure 1, the natural frequency (at
around 0.43) is lower than the expected probability
(set at 0.5). When dividing vocabulary list evenly
into red and green, previous studies usually set the
z-test expected value to 0.5, this will lead to a slug-
gish response: need to first increase the frequency
of these tokens to reach the expected value before
any overlap in detection results becomes visible.
On an individual token basis, uniformly increasing
the logits for all tokens on the green list may not be
equally effective. For tokens with inherently low
frequency, substantial adjustments to their logits
might not significantly alter their frequency in the
generated text, as shown in Figure 1. This inef-
fectiveness suggests the need for a more tailored
approach, where adjustments are made by the spe-
cific prior probabilities of each token. This allows
for more precise detection with minimal, poten-
tially negligible, impact on the overall quality of
the text.

In this paper, we introduce a novel watermark-
ing approach termed the Robust and Imperceptible
Watermarking (RIW) algorithm for LLMs, based
on the approach of Kirchenbauer et al. (2023b).
Our focus centers on applying prior probabilities
of tokens in watermarks to remain detectable under
various types of realistic attacks and improve the
watermarking imperceptibility. Concretely, RIW

introduces a two-tiered process: a nuanced water-
mark injection strategy paired with a sophisticated
watermark detection mechanism. The watermark
injection phase begins with a meticulous selection

of tokens from the LLM’s vocabulary, forming the
foundational ‘green list’. This list undergoes a de-
liberate partitioning into two green sublists based
on prior probabilities. Then we design different
modifications to the logits of the token in each
sublist, ensuring a sensitive embedding process
with imperceptible and minimally intrusive to the
original text. This step skillfully balances the ran-
domness inherent in LLM outputs with the pre-
dictability necessary for watermark detection. In
watermark detection, RIW employs the ‘voted z-
test’, capitalizing on the prior probabilities of each
token, providing a statistically precise and robust
framework to accurately identify the presence of a
watermark. What sets RIW apart is its harmonious
blend of robustness and imperceptibility, ensuring
the integrity and naturalness of watermarked text.

We comprehensively evaluate the watermark-
ing algorithm using three critical criteria: Success
Rate: an indicator of the algorithm’s effectiveness
in accurately identifying watermarked texts. Text
Quality: determine if the watermarking process
compromises the naturalness and readability of the
text. Robustness: tested by assessing the water-
mark’s resilience to various attack strategies, en-
suring that the watermark remains detectable even
after potential tampering. Through extensive exper-
imentation on models of varying sizes, including
GPT2-XL (Radford et al., 2019), OPT-1.3B (Zhang
et al., 2022), and LLaMA2-7B (Touvron et al.,
2023), RIW demonstrates superior performance
over existing methods like KGW (Kirchenbauer
et al., 2023a) and Unigram-WM (Zhao et al., 2023).
RIW not only attains enhanced detection accuracy
but also exhibits increased robustness against vari-
ous attacks and good imperceptibility.

2 Related Work

Large Language Models (LLMs) offer the poten-
tial for embedding watermarks at various stages of
text generation: during the training phase, within
the logit generation process, and throughout token
sampling. Each stage presents distinct approaches
and challenges for watermarking.

2.1 Training Time Watermarking

At this stage, watermarks are incorporated directly
into the training data. The technique involves se-
lecting a subset of the training data to embed a wa-
termark through specific triggers, which are then
mixed with the rest of the data. Early methods
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Figure 2: Overview of the process of RIW, including watermark injection and watermark detection. To inject
watermark, we first partition the green list tokens into positive and negative groups according to token prior
probabilities and employ different strategies for each group. During detection, We separately detect the deviation of
each group from the prior probabilities.

involve introducing triggers that subtly alter the
input-output relationship, affecting only certain in-
puts. For example, Liu et al. (2023c) experimented
with embedding triggers at various levels (charac-
ter, word, sentence) for text classification, while
Sun et al. (2022) and Tang et al. (2023) applied
similar concepts to code generation and adversarial
learning, respectively. Sun et al. (2023) focused on
code transformations that preserve semantic mean-
ing but carry watermarks. Despite its potential, this
approach is limited by its specificity to certain in-
puts, low capacity for embedding information, and
the significant cost of retraining for any changes to
the watermark.

2.2 Watermarking during Logits Generation

This method modifies the logits output by LLMs to
embed watermarks, effectively altering the model’s
prediction probabilities. The pioneering work by
Kirchenbauer et al. (2023a) introduced a technique
of dividing the vocabulary into two lists (red and
green) and using these to detect watermarked text.
Follow-up studies have refined this approach, focus-
ing on enhancing the efficiency and robustness of
watermark detection and embedding. Techniques
include adjusting logits to favor certain tokens (Lee
et al., 2023; Wang et al., 2023), employing multi-
color partitions for more complex watermarks (Yoo
et al., 2023), and proving robustness against re-
moval attempts (Zhao et al., 2023). Additional
innovations involve transforming text or semantic
embeddings directly into watermarked logits (Liu
et al., 2023b; Ren et al., 2023), and developing
methods to reduce bias in watermarking (Hu et al.,
2023; Wu et al., 2023).

2.3 Watermarking during Token Sampling

Embedding watermarks during the token selection
phase takes advantage of the inherent randomness
in choosing the next word in a sequence. Initial
efforts in this area (Christ et al., 2023; Kuditipudi

et al., 2023) have introduced novel methods that use
binary representations and pseudo-random num-
ber sequences to embed watermarks more subtly.
While promising, this domain is still emerging,
with significant potential for further exploration
and refinement to improve practical applicability
and robustness.

3 Methodology

In this section, we will introduce the process of
embedding our designed watermark to LLMs as
well as the mechanism for detecting such water-
marks within sequences. To inject watermarks, we
randomly select several tokens from the vocabulary
and partition these tokens into two distinct sublists
based on their prior probabilities. Then, we develop
diverse watermarking strategies tailored to each list
to ensure the process remains efficient. For de-
tection, we have developed a ‘voted z-test’, which
leverages the prior probabilities of each token to
determine the watermark’s presence.

3.1 Notations & Preliminaries
In LLMs, the input text is segmented into dis-
crete units known as “tokens”. Let V denotes
the vocabulary from which LLMs draw tokens,
and let w represent the token within V , a se-
quence comprising T tokens, can be denoted by
w(0), . . . , w(t), . . . , w(T ), where t indexes the po-
sition of the token within this sequence. LLMs
predominantly employ auto-regressive decoding
for next-word prediction. This process yields a set
of logits l(t) upon receiving the preceding known
token sequence w(0), . . . , w(t−1). These logits
l(t) ∈ R|V |×d, where d represents the embedding
dimensionality and |V | signifies the size of the vo-
cabulary, are converted into a discrete probability
distribution p(t) via a softmax function. The subse-
quent token w(t) is then probabilistically selected
from p(t), employing strategies such as greedy sam-
pling or beam search.
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In the domain of LLMs, our watermark injection
and detection framework leverages the Gaussian
distribution of token frequencies. We have metic-
ulously analyzed 300k news articles from the C4
dataset (Raffel et al., 2020) to establish the nature
of word occurrence, which in turn are normalized
as the prior probabilities, πw, for each token w in
our vocabulary. This probabilistic foundation is
pivotal to our watermarking strategy. Our inno-
vative use of normalized linguistic statistics not
only underpins the watermarking process but also
enhances the robustness and subtlety of our water-
mark detection.

3.2 Watermark Injection

We commence with an overview of our watermark
injection procedure in Algorithm 1, providing a
foundational understanding. A detailed exposition
of the methodology follows in this section. Our
objective is to inject a watermark into LLMs that is
both robust and inconspicuous. To achieve this, the
injection process must introduce minimal perturba-
tion to the logits of unmarked LLM. Guided by this
principle, we propose the subsequent hypothesis:

Consider a sequence generation process in LLM.
For any token w with prior probability πw, we pro-
pose the following:

• If πw is relatively high, the perturbation mag-
nitude required to increase the observed fre-
quency of w is less than that to decrease the
occurrence frequency.

• If πw is relatively low, the perturbation mag-
nitude required to increase the observed fre-
quency of w is more than that to decrease the
occurrence frequency.

This suggests that the perturbation direction for
watermarking a token w in an LLM output is de-
termined by its inherent prior probability πw. Fol-
lowing the methodology described in Kirchenbauer
et al. (2023a), we select a subset of tokens, denoted
as the “green list” G, from the vocabulary for wa-
termarking. These tokens are subsequently divided
into two sublists predicated on their prior probabil-
ities πw. We introduce ϕ as the threshold of prior
probability. Tokens from G with prior probabili-
ties surpassing ϕ are allocated to the positive green
list G+, while the remainder forms the negative
green list G−. The construction of these sublists is

Algorithm 1 Watermark Injection

Input: previous generated tokens, w(0), . . . , w(t−1)

prior probability, πw for w ∈ V
green list size, γ ∈ (0, 1)
hardness parameter, δ > 0

1: Seed a random number generator, and use it to select a
“green list” G from the vocabulary V of size γ|V |.

2: Partition the “green list” G into one positive green list G+
and one negative green list G− using Eq. 1.

3: for t = 0, 1, . . . do
4: Apply the language model to previous generated to-

kens, w(0), . . . , w(t−1) to get a logit vector l(t)w over
the vocabulary.

5: Apply watermark δ to each green list logit and use
the softmax operator to these modified logits to get a
probability distribution over the vocabulary according
to Eq. 2.

6: Sample the next token, w(t), using the watermarked
distribution p̃(t).

7: end for

governed by the ensuing formulation:

G+ =
{
w
∣∣πw > ϕ,w ∈ G

}
,

G− =
{
w
∣∣πw ≤ ϕ,w ∈ G

}
.

(1)

Drawing on the principles established in the
above hypothesis, we tailor the watermark pertur-
bation to align with the positive and negative lists
of the green list. For tokens w+ within the positive
green list G+, we aim to amplify their frequency of
occurrence. This is achieved by augmenting their
corresponding logits by a constant δ. In contrast,
for the tokens w− categorized under the negative
green list G−, our goal is to reduce their frequency
of occurrence. To this end, we decrement their
logits by the same constant δ. Consequently, af-
ter implementing our watermarking scheme, the
adjusted logits are processed by the softmax func-
tion, yielding a revised probability distribution p̃

(t)
w

across the vocabulary:

p̃(t)w =




exp(l
(t)

w−−δ)

∑
w\G exp(l

(t)

w\G )+
∑

w− exp(l
(t)

w−−δ)+
∑

w+ exp(l
(t)

w++δ)

exp(l
(t)

w++δ)

∑
w\G exp(l

(t)

w\G )+
∑

w− exp(l
(t)

w−−δ)+
∑

w+ exp(l
(t)

w++δ)

exp(l
(t)

w\G )

∑
w\G exp(l

(t)

w\G )+
∑

w− exp(l
(t)

w−−δ)+
∑

w+ exp(l
(t)

w++δ)

(2)

where w\G refers to the tokens not in green list and
1 denotes the Dirichlet function. The application
of divergent watermarking directions for the respec-
tive green lists enhances the efficacy and sensitivity
of our watermark, even when the magnitude of δ is
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Algorithm 2 Watermark Detection
Input: Text sequence of length T

Positive green list G+ and Negative green list G−
chosen threshold, Z > 0

1: Calculate the prior probability π+ and π− with Eq. 3.
2: |w|G+ ← 0
3: |w|G− ← 0

4: for w ∈ {w(0), . . . , w(t), . . . , w(T )} do
5: if w ∈ G+ then
6: |w|G+ ← |w|G+ + 1
7: else if w ∈ G− then
8: |w|G− ← |w|G− + 1
9: end if

10: end for
11: Calculate the positive z score z+ and negative z score z−

with Eq. 4.
12: if z+ > Z

⋃
z− < −Z then

13: Reject null hypothesis (Watermarked Text Sequence).
14: else
15: Accept null hypothesis (Natural Text Sequence).
16: end if

comparatively minor. This strategy affords a water-
marking technique for LLMs that is both robust, to
ensure persistence, and non-intrusive, to maintain
original model’s performance integrity.

3.3 Watermark Detection
In line with the method presented in previous re-
search (Kirchenbauer et al., 2023a), the detection
of watermarks does not necessitate direct interac-
tion with the LLM. The detection process requires
the computation of the prior probabilities for the
tokens in both the positive and negative green lists.
Let π+ and π− symbolize the aggregate prior prob-
abilities of the tokens within the positive green list
and the negative green list, respectively. The com-
putation of π+ and π− is as follows:

π+ =
∑

w∈G+

πw,

π− =
∑

w∈G−
πw.

(3)

Upon the watermark’s integration, we anticipate
an increased occurrence frequency for tokens in
the positive green list, surpassing their initial prior
probability π+. Conversely, tokens in the negative
green list should manifest a reduced presence com-
pared to their prior probability π−. This divergence
from the expected prior probabilities enables us to
detect the watermark by examining the empirical
data against the following null hypothesis:
H0: The sequence of text is produced in accor-

dance with the original token prior distribution.
To assess H0, we employ a robust detection

mechanism utilizing the one proportion z-test. If

the null hypothesis holds, then in a text sequence
containing T tokens, the expected frequency of to-
kens from positive green list should be π+T . Simi-
larly, the expected frequency for negative green list
tokens would be π−T . Here use |w|G+ and |w|G−

to denote the number of positive and negative green
list tokens, respectively. The z-statistics for the pos-
itive green list denoted as z+, and for the negative
green list, denoted as z−, are computed as:

z− = (|w|G− − π−T )/
√

Tπ−(1− π−),

z+ = (|w|G+ − π+T )/
√

Tπ+(1− π+).
(4)

We determine the presence of the watermark by
comparing the computed z+ and z− to a predefined
threshold Z. The null hypothesis is rejected if ei-
ther z+ > Z or z− < −Z. Conversely, to uphold
the null hypothesis, both conditions must be met:
z+ ≤ Z, and z− ≥ −Z. An algorithmic repre-
sentation of our watermark detection procedure is
provided in Algorithm 2.

4 Experiments

We conduct experiments assessing the performance
of watermark detection, the quality of watermarked
text, and its robustness against attacks, in compari-
son to established baseline methods.

4.1 Experimental Settings

We explore the behavior of the watermark using
three public language models of varying sizes and
model families: GPT2-XL with 1.5B parameters
(Radford et al., 2019), OPT-1.3B (Zhang et al.,
2022), and LLaMA2-7B (Touvron et al., 2023).

Datasets. The models are tested on three long-
form text datasets: C4 dataset (Raffel et al., 2020),
OpenGen, and LFQA (Krishna et al., 2023). Each
dataset finally generates 500 watermarked and 500
unwatermarked texts for evaluation. For C4, We
follow the setting of Kirchenbauer et al. (2023a)
to slice and dice a random selection of texts. For
OpenGen and LFQA, we follow Zhao et al. (2023)
to use human-written prefixes or questions as
prompts and the corresponding suffixes or answers
as human-written text. We only keep the generated
sentences with lengths over 200 tokens.

Evaluation metrics. Watermark detection is a
binary classification task, assessed by F1 score for
overall accuracy. We prioritize false positive and
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Method
C4 OpenGen LFQA Avg. Benchmark

FPR TNR TPR FNR F1 FPR TNR TPR FNR F1 FPR TNR TPR FNR F1 TNR TPR F1

GPT2-XL
KGW 0.001 0.999 0.996 0.004 0.997 0.001 0.999 0.997 0.003 0.998 0.000 1.000 1.000 0.000 1.000 0.999 0.998 0.998
Uni-WM 0.298 0.702 1.000 0.000 0.870 0.025 0.975 0.999 0.001 0.987 0.207 0.793 1.000 0.000 0.906 0.823 1.000 0.921
RIW (ours) 0.000 1.000 0.999 0.001 0.999 0.000 1.000 0.998 0.002 0.999 0.002 0.998 1.000 0.000 0.999 0.999 0.999 0.999

OPT-1.3B
KGW 0.000 1.000 0.992 0.008 0.996 0.000 1.000 0.996 0.004 0.998 0.000 1.000 1.000 0.000 1.000 1.000 0.996 0.998
Uni-WM 0.007 0.993 0.996 0.004 0.995 0.001 0.999 0.999 0.001 0.999 0.003 0.997 1.000 0.000 0.999 0.996 0.998 0.998
RIW (ours) 0.000 1.000 0.997 0.003 0.999 0.000 1.000 0.998 0.002 0.999 0.000 1.000 1.000 0.000 1.000 1.000 0.998 0.999

LLaMA2-7B
KGW 0.000 1.000 0.927 0.073 0.962 0.000 1.000 0.920 0.080 0.958 0.000 1.000 0.782 0.218 0.878 1.000 0.876 0.933
Uni-WM 0.000 1.000 0.977 0.023 0.988 0.001 0.999 0.970 0.030 0.984 0.000 1.000 0.978 0.022 0.989 1.000 0.975 0.987
RIW (ours) 0.000 1.000 0.995 0.005 0.997 0.000 1.000 0.989 0.011 0.995 0.000 1.000 0.994 0.006 0.997 1.000 0.993 0.996

Avg. Base Model
KGW 0.000 1.000 0.972 0.028 0.985 0.000 1.000 0.971 0.029 0.985 0.000 1.000 0.927 0.073 0.959 1.000 0.957 0.976
Uni-WM 0.102 0.898 0.991 0.009 0.951 0.009 0.991 0.989 0.011 0.990 0.070 0.930 0.993 0.007 0.965 0.940 0.991 0.969
RIW (ours) 0.000 1.000 0.997 0.003 0.998 0.000 1.000 0.995 0.005 0.998 0.001 0.999 0.998 0.002 0.999 1.000 0.997 0.999

Table 1: Performance comparison of our method (RIW) and KGW, Uni-WM. The highest average value is marked
with bold text.

false negative rates, given the higher risk false pos-
itives pose by mislabeling genuine texts. Addition-
ally, we use hypothesis testing to calculate z-scores
and p-values, further gauging detection success.

Baselines. We choose the first LLM watermark
method KGW (Kirchenbauer et al., 2023a) and its
improve work on robustness, Uni-WM (Zhao et al.,
2023), as our baselines.

Hyper-parameters. In our experiment, we set
the green list proportion γ to 0.5 and the hardness
parameter δ = 2.0, following previous baseline
Kirchenbauer et al. (2023a). We set the z-score
threshold Z to 4. For the threshold of prior proba-
bility ϕ, we set it to 2/|V |. Details about how we
select ϕ are shown in Section C. More thorough
experimental details are in Appendix B.4.

4.2 Watermarking Success Rate

Table 1 presents the overall watermark detection
results for three datasets and three base models.

RIW consistently outperforms the KGW and
Uni-WM across various datasets and base model
configurations, evidencing its remarkable gen-
eralization. Specifically, RIW exhibits a perfect
TPR of 1.000 averaged across all datasets and mod-
els, signifying no false positives, which is crucial
given the higher impact of false positives in wa-
termarking contexts. Additionally, the TNR for
RIW is average at 0.997, further underscoring its
precision in identifying genuine content. For the
challenging LFQA dataset, while the performance
of other methods, particularly KGW, significantly
diminishes (e.g., TPR drops to 0.782 for LLaMA2-
7B), RIW maintains a TPR above 0.994. Similar

improvement can be found in the Avg. Bench-
mark column, where RIW achieves an F1 score of
0.999, outstripping the baseline models, demon-
strating a high success rate in watermark detection.
The consistently low FPR (almost 0), especially in
comparison to Uni-WM reaching 0.102 in the Avg.
Base Model for C4 underscores RIW’s precision in
avoiding false positives. These performances not
only prove RIW’s best-in-class performance but
also its significant advancements in detection under
diverse conditions.

Conservative in KGW vs. Radical in Uni-WM.
(a) KGW’s conservative watermark detection is ev-
ident, with its FPR never exceeding 0.008 across
all datasets and models, indicating that it is less
prone to incorrectly identifying non-watermarked
text as watermarked. For instance, across the C4,
OpenGen, and LFQA datasets, KGW maintains
an FPR well below 0.01 in most cases, suggesting
it errs on the side of caution and is less likely to
generate false alarms. However, this conservative
strategy also resulted in a lower TPR, a 4% reduc-
tion compared to RIW. (b) In contrast, Uni-WM’s
more aggressive approach yields higher FPRs, no-
tably a 0.298 with the GPT2-XL model on the C4
dataset, indicating a greater likelihood of misclas-
sifying genuine text as watermarked. However,
this approach also results in Uni-WM’s TPR be-
ing generally higher than KGW’s, such as achiev-
ing 0.977 on the LLaMA2-7B model compared
to KGW’s 0.927, pointing to its higher sensitivity.
Both methods show sensitivity to the experimen-
tal setup and hyperparameter configuration, which
can skew their watermark detection scale toward
one extreme. For example, in the LFQA dataset,
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KGW’s and Uni-WM’s FPRs vary widely depend-
ing on the base model. This balance between false
positives and negatives is critical, as it affects the
practicality and trustworthiness of the watermark
detection system. Too conservative an approach
might overlook actual watermarked content, while
too aggressive could undermine the reliability of
the system by flagging genuine content as inau-
thentic. So it is challenging to achieve an optimal
balance between detecting watermarks and avoid-
ing false alarms, as shown in the results for RIW.

RIW exhibits a remarkable balance in wa-
termark detection, as indicated by its consis-
tently low FPR and high TPR. For instance, RIW

maintains a zero FPR averaged across all datasets
and models, clearly demonstrating its reliability in
not misclassifying genuine content as watermarked.
Simultaneously, its TPR is robust, staying above
0.989 in most cases, such as with the most diffi-
cult LLaMA2-7B model, ensuring that actual wa-
termarked content is seldom overlooked. These
metrics underscore RIW’s precision and its ability
to maintain system integrity, effectively navigating
the trade-off between sensitivity and specificity that
often challenges watermarking algorithms. RIW’s
superior performance can be attributed to its incor-
poration of prior probabilities, ensuring that word
frequency is measured with precision. By factor-
ing in prior probabilities, RIW achieves a finely
tuned balance between sensitivity to watermarks
and specificity to authentic content, a balance that
is crucial for the watermarking in LLMs.

4.3 Watermark Strength vs Text Quality

Figure 3 shows the tradeoff between watermark
strength (z-score) and text quality (perplexity, se-
mantic score) for various combinations of water-
marking parameters.

Z-score vs PPL. RIW can achieve a very strong
watermark, while also maintaining a high-quality
text generation. The proximity of RIW data points
to the optimal lower right corner reflects its superior
capability to embed watermarks effectively with-
out degrading the naturalness or fluency of the text
compared to KGW and Uni-WM. This suggests
that RIW maintains text quality (as evidenced by
lower perplexity values) while achieving a strong
watermark (reflected by higher z-scores). This is
in contrast to KGW and Uni-WM, which either
sacrifice text quality for watermark strength or vice
versa. RIW’s performance suggests a more opti-
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Figure 3: Watermark Strength vs Text Quality

mized balance, demonstrating its robustness and
adaptability across varied settings.

Z-score vs Semantic Similarity. RIW points
cluster towards higher semantic similarity scores
while also maintaining elevated z-scores, illustrat-
ing its capacity to produce watermarks that are both
strong and semantically consistent with the original
content. This balance showcases RIW’s superiority
over KGW and Uni-WM, asserting its proficiency
in embedding watermarks that are robust to de-
tection yet remain imperceptible, thus preserving
the content’s original subtlety and ensuring non-
intrusiveness for users. This dual excellence makes
RIW an ideal choice for practical applications that
require maintaining the subtlety of the watermark
without alerting users to its presence.

4.4 Robustness to Real-world Attacks

In text watermarking, a crucial evaluation metric is
its robustness against watermark removal attacks.
A watermark removal attack refers to the process of
altering watermarked text in an attempt to erase the
embedded watermark. If a watermarked text still
has a high probability of being detected following
a Watermark Removal Attack, then the text wa-
termarking algorithm is considered highly robust.
To provide comprehensive evidence of its robust-
ness, we conduct experiments to test its resilience

5514



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Substitution Attack_C4_GPT2-XL

Subs-10% KGW AUC: 0.894
Subs-10% Uni-WM AUC: 0.914
Subs-10% RIW (Ours) AUC: 0.953
Subs-30% KGW AUC: 0.872
Subs-30% Uni-WM AUC: 0.923
Subs-30% RIW (Ours) AUC: 0.927
Subs-50% KGW AUC: 0.750
Subs-50% Uni-WM AUC: 0.880
Subs-50% RIW (Ours) AUC: 0.883

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Substitution Attack_C4_OPT-1.3B

Subs-10% KGW AUC: 0.842
Subs-10% Uni-WM AUC: 0.876
Subs-10% RIW (Ours) AUC: 0.928
Subs-30% KGW AUC: 0.813
Subs-30% Uni-WM AUC: 0.884
Subs-30% RIW (Ours) AUC: 0.895
Subs-50% KGW AUC: 0.664
Subs-50% Uni-WM AUC: 0.827
Subs-50% RIW (Ours) AUC: 0.832

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Substitution Attack_C4_LLaMA2-7B

Subs-10% KGW AUC: 0.810
Subs-10% Uni-WM AUC: 0.853
Subs-10% RIW (Ours) AUC: 0.911
Subs-30% KGW AUC: 0.778
Subs-30% Uni-WM AUC: 0.861
Subs-30% RIW (Ours) AUC: 0.877
Subs-50% KGW AUC: 0.616
Subs-50% Uni-WM AUC: 0.797
Subs-50% RIW (Ours) AUC: 0.802

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Substitution Attack_LFQA_GPT2-XL

Subs-10% KGW AUC: 0.955
Subs-10% Uni-WM AUC: 0.954
Subs-10% RIW (Ours) AUC: 0.977
Subs-30% KGW AUC: 0.934
Subs-30% Uni-WM AUC: 0.966
Subs-30% RIW (Ours) AUC: 0.964
Subs-50% KGW AUC: 0.813
Subs-50% Uni-WM AUC: 0.924
Subs-50% RIW (Ours) AUC: 0.934

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Substitution Attack_LFQA_OPT-1.3B

Subs-10% KGW AUC: 0.934
Subs-10% Uni-WM AUC: 0.939
Subs-10% RIW (Ours) AUC: 0.969
Subs-30% KGW AUC: 0.908
Subs-30% Uni-WM AUC: 0.951
Subs-30% RIW (Ours) AUC: 0.952
Subs-50% KGW AUC: 0.757
Subs-50% Uni-WM AUC: 0.898
Subs-50% RIW (Ours) AUC: 0.911

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Substitution Attack_LFQA_LLaMA2-7B

Subs-10% KGW AUC: 0.921
Subs-10% Uni-WM AUC: 0.930
Subs-10% RIW (Ours) AUC: 0.964
Subs-30% KGW AUC: 0.892
Subs-30% Uni-WM AUC: 0.942
Subs-30% RIW (Ours) AUC: 0.945
Subs-50% KGW AUC: 0.726
Subs-50% Uni-WM AUC: 0.883
Subs-50% RIW (Ours) AUC: 0.898

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Substitution Attack_OpenGen_GPT2-XL

Subs-10% KGW AUC: 0.926
Subs-10% Uni-WM AUC: 0.936
Subs-10% RIW (Ours) AUC: 0.967
Subs-30% KGW AUC: 0.903
Subs-30% Uni-WM AUC: 0.946
Subs-30% RIW (Ours) AUC: 0.947
Subs-50% KGW AUC: 0.779
Subs-50% Uni-WM AUC: 0.903
Subs-50% RIW (Ours) AUC: 0.910

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Substitution Attack_OpenGen_OPT-1.3B

Subs-10% KGW AUC: 0.888
Subs-10% Uni-WM AUC: 0.910
Subs-10% RIW (Ours) AUC: 0.952
Subs-30% KGW AUC: 0.860
Subs-30% Uni-WM AUC: 0.920
Subs-30% RIW (Ours) AUC: 0.925
Subs-50% KGW AUC: 0.705
Subs-50% Uni-WM AUC: 0.864
Subs-50% RIW (Ours) AUC: 0.873

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Substitution Attack_OpenGen_LLaMA2-7B

Subs-10% KGW AUC: 0.865
Subs-10% Uni-WM AUC: 0.894
Subs-10% RIW (Ours) AUC: 0.942
Subs-30% KGW AUC: 0.834
Subs-30% Uni-WM AUC: 0.903
Subs-30% RIW (Ours) AUC: 0.912
Subs-50% KGW AUC: 0.664
Subs-50% Uni-WM AUC: 0.841
Subs-50% RIW (Ours) AUC: 0.851

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Copy-Paste Attack_C4_GPT2-XL

CP-1-10% KGW AUC: 0.971
CP-1-10% Uni-WM AUC: 0.966
CP-1-10% RIW (Ours) AUC: 0.983
CP-3-25% KGW AUC: 0.940
CP-3-25% Uni-WM AUC: 0.977
CP-3-25% RIW (Ours) AUC: 0.973
CP-3-10% KGW AUC: 0.860
CP-3-10% Uni-WM AUC: 0.868
CP-3-10% RIW (Ours) AUC: 0.940

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Copy-Paste Attack_C4_OPT-1.3B

CP-1-10% KGW AUC: 0.934
CP-1-10% Uni-WM AUC: 0.939
CP-1-10% RIW (Ours) AUC: 0.969
CP-3-25% KGW AUC: 0.884
CP-3-25% Uni-WM AUC: 0.951
CP-3-25% RIW (Ours) AUC: 0.952
CP-3-10% KGW AUC: 0.757
CP-3-10% Uni-WM AUC: 0.793
CP-3-10% RIW (Ours) AUC: 0.895

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Copy-Paste Attack_C4_LLaMA2-7B

CP-1-10% KGW AUC: 0.905
CP-1-10% Uni-WM AUC: 0.920
CP-1-10% RIW (Ours) AUC: 0.958
CP-3-25% KGW AUC: 0.844
CP-3-25% Uni-WM AUC: 0.932
CP-3-25% RIW (Ours) AUC: 0.937
CP-3-10% KGW AUC: 0.694
CP-3-10% Uni-WM AUC: 0.750
CP-3-10% RIW (Ours) AUC: 0.866

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Paraphrase Attack_C4_GPT2-XL

Para-ChatGPT KGW AUC: 0.977
Para-ChatGPT Uni-WM AUC: 0.978
Para-ChatGPT RIW (Ours) AUC: 0.970

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Paraphrase Attack_C4_OPT-1.3B

Para-ChatGPT KGW AUC: 0.944
Para-ChatGPT Uni-WM AUC: 0.976
Para-ChatGPT RIW (Ours) AUC: 0.986

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Paraphrase Attack_C4_LLaMA2-7B

Para-ChatGPT KGW AUC: 0.849
Para-ChatGPT Uni-WM AUC: 0.932
Para-ChatGPT RIW (Ours) AUC: 0.947

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Paraphrase Attack_LFQA_GPT2-XL

Para-ChatGPT KGW AUC: 0.958
Para-ChatGPT Uni-WM AUC: 0.967
Para-ChatGPT RIW (Ours) AUC: 0.981

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Paraphrase Attack_LFQA_OPT-1.3B

Para-ChatGPT KGW AUC: 0.955
Para-ChatGPT Uni-WM AUC: 0.912
Para-ChatGPT RIW (Ours) AUC: 0.979

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Paraphrase Attack_LFQA_LLaMA2-7B

Para-ChatGPT KGW AUC: 0.797
Para-ChatGPT Uni-WM AUC: 0.823
Para-ChatGPT RIW (Ours) AUC: 0.933

Figure 4: ROC curves with corresponding AUC values for watermark detection against various attack methods.

against word-level attacks (Substitution Attacks)
and document-level attacks (Copy-paste Attacks
and Paraphrasing Attacks) across various datasets
and base models. More Details are in Appendix A.

Substitution Attacks. The ROC curves and AUC
values for comparison across various datasets and
models indicate RIW’s consistently robust water-
mark detection capabilities facing different levels
of substitution attacks. RIW consistently shows
higher AUC values, such as 0.977, 0.964, and
0.934 for the 10%, 30%, and 50% substitution lev-
els on LFQA dataset with GPT2-XL, respectively,
outperforming KGW and Uni-WM. This is indica-
tive of RIW’s superior discriminative power, main-
taining higher TPR at lower FPR, hence demon-
strating its effectiveness in resisting such attacks
across different testing conditions and LLMs. This
resilience suggests that RIW is more secure, of-
fering a reliable safeguard in environments where
content authenticity is critical.

Copy-paste Attacks. Analyzing the ROC curves
against copy-paste attacks, RIW displays a dis-
cernible trend of superior resistance compared to
KGW and Uni-WM. RIW achieves higher AUC
values, such as 0.983 for GPT2-XL, 0.969 for
OPT-1.3B, and 0.958 for LLaMA2-7B, indicat-
ing its superior capability to maintain accurate
watermark detection in the presence of additional
text. Notably, RIW’s performance across differ-
ent models—GPT2-XL, OPT-1.3B, and LLaMA2-
7B—remains less affected by increasing attack
complexity, as indicated by the lesser decline in

AUC values with larger text insertions.

Paraphrasing Attacks. The ROC curves for the
paraphrase attack scenario across two datasets and
three base models indicate RIW’s adeptness at
watermark retention. Notably, RIW consistently
presents higher AUC values, such as 0.986 for OPT-
1.3B and 0.970 for GPT2-XL, which highlights its
strong performance in maintaining watermark de-
tection even when the text undergoes paraphrasing
transformations. These figures suggest that RIW’s
watermarking technique is resilient to sophisticated
linguistic alterations, positioning it as a robust so-
lution for protecting the integrity of content against
paraphrase attacks.

5 Conclusion

This paper introduced Robust and Imperceptible
Watermarking (RIW), a novel watermarking tech-
nique designed for enhancing the traceability of
text generated by LLMs. Our evaluation of RIW

across various metrics such as success rate, text
quality, and robustness has yielded encouraging
results, particularly in comparison to existing wa-
termarking methods like KGW and Uni-WM. The
experimentation on LLMs of different sizes, in-
cluding GPT2-XL, OPT-1.3B, and LLaMA2-7B,
demonstrated RIW’s effectiveness in maintaining
watermark integrity while ensuring minimal impact
on text quality. While RIW represents a signifi-
cant step forward in addressing some of the ethical
concerns associated with LLM-generated content,
future work is vital to refine its application further.

5515



Ongoing research will be directed towards enhanc-
ing the algorithm’s robustness and exploring its
potential in a broader range of LLM applications,
thereby contributing to the responsible use of these
powerful technologies in various domains.

Limitations

As we tentatively give a successful implementa-
tion of watermark LLMs, such paradigm deserves
a further and more detailed exploration. First, our
calculation of prior probability is quite intuitive
and simple, how to better capture the prior proba-
bility is still challenging and thrilling, yet still in
its fledgeless stage. Aside from it, while extensive
experiments demonstrate that RIW consistently im-
proves watermarking on three LLMs, applying our
approach to other LLMs will evaluate the effective-
ness of our work in a more general way.
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A Real-world Attack Settings

A.1 Substitution Attack
Substitution attacks on existing text refer to the
replacement of words in a pre-generated water-
marked text, they are less likely to be mitigated
by rule-based methods and align more closely with
realistic attack scenarios. To evaluate the robust-
ness against substitution attacks, we follow the set-
ting in Wang et al. (2023) model to carry out word

substitution. We conduct these attacks for the wa-
termarked text of RIW, KGW, and Uni-WM. Figure
4 compares the results under a substitution ratio of
10%, 30%, and 50%.

A.2 Copy-paste Attack
Copy-paste attack is to surround the target text with
distraction text, which in this context is equal to
the watermarked and non-watermarked text respec-
tively. Such an attack will result in a much longer
text as compared to the original watermarked text.
This attack aims to test if the low ratio setting can
cause algorithm effectiveness to drop. To simulate
this, we follow the setting in Zhao et al. (2023) to
insert a 200-token watermarked text into a 1000-
token piece of human-written text, taken from the
C4 dataset. The detection involves using a sliding
window technique (Kirchenbauer et al., 2023b).

A.3 Paraphrasing Attack
The paraphrasing attack, while offering extensive
text modifications, presents greater implementation
challenges than word-level methods. We follow the
setting in Zhao et al. (2023) to employ the ChatGPT
API (gpt-3.5-turbo), generating paraphrases by
prompting with phrases like “Rewrite the following
paragraph:”. The outcomes, depicted in Figure 4,
demonstrate our method’s significant robustness
improvement over KGW and Uni-WM.

B Dataset and Model

B.1 Details of Datasets
• C4 dataset: is a part of the family of datasets

used by Google in their T5 (Raffel et al.,
2020), which is a colossal, cleaned version
of Common Crawl’s web crawl corpus. We
follow Kirchenbauer et al. (2023a) to use the
‘RealNews-like’ subset, which is specifically
tailored to resemble the content and style of
real-world news articles.

• OpenGen: collected by Krishna et al. (2023),
consists of 3k two-sentence chunks sampled
from the validation split of WikiText-103
(Merity et al., 2017). The subsequent 300
tokens serve as the human-written continua-
tion.

• LFQA: a long-form question-answering
dataset created by Krishna et al. (2023) by
scraping questions from Reddit, posted be-
tween July and December 2021, across six do-
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mains. It randomly selects 500 questions from
each domain and pairs them with their cor-
responding longest human-written answers,
resulting in 3k QA pairs.

B.2 Evaluation metrics

Given that watermark detection inherently repre-
sents a binary classification problem — discerning
whether a text is watermarked or not — we use clas-
sification metrics F1 score to evaluate its success
rate. Besides, we use additional metrics including
false positive and false negative rates. Here, false
positives denote the erroneous classification of non-
watermarked texts as watermarked, whereas false
negatives refer to the incorrect classification of wa-
termarked texts as non-watermarked. Generally,
false positives are more important since misidenti-
fying human-generated texts as watermarked can
lead to more adverse consequences. We also em-
ploy hypothesis testing methods to calculate the
z-score and p-value as an important metric for suc-
cess rate.

In total, we report true positive rate (TPR), false
negative rate (FNR), true negative rate (TNR), false
negative rate (FPR), F1 score, z-score, p-value, and
ROC curves. We evaluate the quality of the text
by calculating perplexity (PPL). For OPT-1.3B, we
use the OPT-2.3B model to calculate perplexity.
For GPT2-XL, we use the GPT3 (text-davinci-003)
(Ouyang et al., 2022) model to calculate perplexity.
For OPT-1.3B, we use the OPT-2.3B model to cal-
culate perplexity. As for the LLaMA2-7B model,
we use the LLaMA2-13B model to calculate per-
plexity.

B.3 Details of Baselines

We compare our model with the following previous
models.

• KGW (Kirchenbauer et al., 2023a): Based
on LLM logits modification, the watermark
generator uses a hash function to split the vo-
cabulary into red and green lists at each to-
ken position, influenced by the preceding to-
ken. Watermarked texts are designed to have a
higher green token ratio than unwatermarked
texts. The detector categorizes each token
as red or green using the same hash function
and calculates the green proportion with the
z-metric. Texts exceeding a set green token
threshold are identified as watermarked.

Threshold
Positive Green List Negative Green List RIW

Size Prior TPR Size Prior TPR TPR

ϕ = 1/|V | 2672 0.44 0.98 22464 0.08 0.76 0.93
ϕ = 2/|V | 1362 0.40 0.99 23774 0.12 0.94 1.00
ϕ = 3/|V | 938 0.38 0.91 24198 0.14 0.94 0.98

Table 2: The threshold selection of prior probability.

• Uni-WM (Zhao et al., 2023): the most robust
version of KGW, adopted a fixed global split
between red and green lists for generating wa-
termark logits. Such a simple rule is suscep-
tible to being deciphered through statistical
analysis of the watermarked text, potentially
exposing the tokens classified as green. Nev-
ertheless, this study proved that maintaining
a consistent global division between red and
green lists contributes to increased robustness
against attempts to remove the watermark.

B.4 Implementation Details

We implement RIW using the Pytorch backend of
the Huggingface library (Wolf et al., 2020). The
generate API provides useful abstractions, includ-
ing modules for warping the logit distribution that
comes out of the language model. We generate
green lists using the torch random number gener-
ator. The experiments are conducted on Nvidia
A100 GPUs.

Sample Outputs. We provide a series of repre-
sentative outputs from different ranges in the sam-
ple space for model generations under a soft wa-
termark with parameters δ = 2.0, and γ = 0.5
under the multinomial sampling scheme. To tabu-
late these outputs, the ~500 generations collected
at this setting are either sorted by the average spike
entropy of the watermarked model’s output dis-
tribution at generation time or the measured test
statistic, the z-score for that sequence.

Hash Scheme. Following the hash implementa-
tion in Kirchenbauer et al. (2023a), we make use
of the hash key to calculate the hash value.

C Further Analysis

The threshold ϕ selection of prior probability.
We calculate the respective sizes of positive and
negative green lists, the prior probability values,
and the TPR of watermark detection based on each
specific list. The sum of the positive green list size
and the negative green list size equals 25136, which
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Prompt Real Completion No Watermark
(NW)

Watermarked (W)
(W)
z+

(W)
z−

(NW)
PPL

(W)
PPL

...one count of
conspiracy to par-
ticipate in a corrupt
organization, one
count of conspiracy
to commit theft and
nine counts of theft
by unlawful taking
or disposition.
Boubacar Diallo,
32, Brooklyn, NY,
is charged with

one count of partici-
pating in a corrupt
organization, one
count of conspiracy
to participate in
a corrupt organi-
zation, one count
of conspiracy to
receive stolen
property and one
count of criminal
attempt to receive
stolen [...continues]

one count of
conspiracy to par-
ticipate in a corrupt
organization, one
count of conspiracy
to receive stolen
property. Monte
Qualls, 31, Wash-
ington, DC, is
charged with one
count of partici-
pating in a corrupt
organization [...con-
tinues]

one count of partici-
pating in a corrupt
organization, one
count of conspiracy
to participate in
a corrupt organi-
zation, one count
of conspiracy to
receive stolen prop-
erty and one count
of unauthorized
use of automobiles
[...continues]

10.99 3.19 3.12 1.90

...The couple
moved to Lubbock
shortly thereafter
and they have
been here ever
since. They were
happily married
for 69 years and
had three children,
Brenda Boydston,
Perry Harrison, and
Jeanette Pettigrew.
He is survived by
his wife, Vera Mae

; his three children;
ten grandchil-
dren; 21 great-
grandchildren; and
five great-great
grandchildren.
He will be dearly
missed.Claude
joined the U. S.
Army in Febru-
ary of 1943 and
was deployed
to the European
Theatre where
he participated
in the occupation
of the Ardennes,
Rhineland [...con-
tinues]

Harrison of Lub-
bock; three children,
Brenda Boydston of
Lubbock, Perry Har-
rison of Lubbock,
and Jeanette Petti-
grew of Lubbock;
three grandchildren,
Jeff Boydston
of Dallas, Texas,
Eric Boydston
of Lubbock, and
Michael Pettigrew
of Lubbock; and
numerous great-
grandchildren.
[...continues]

Harrison of Lub-
bock; his sons,
Perry and Jeanette
of Lubbock; and six
grandchildren, three
of whom live in
the same town. He
also had eight great-
grandchildren, and
eight great-great-
grandchildren.
The family would
like to especially
thank his long
time and faithful
companion, Elanor
[...continues]

-1.57 -6.13 4.76 2.66

Table 3: Selected outputs from non-watermarked (NW) and watermarked (W) sampling of C4 dataset, based on
OPT-1.3B. Based on the case, even if one z score is wrong, we still have the other z score to balance the performance.

is a 0.5 fraction of OPT-1.3B vocabulary. Table 2
indicates that as the threshold ϕ decreases, more to-
kens are allocated to the positive green list, enhanc-
ing the TPR for watermark detection in that list.
Conversely, higher ϕ values correspond to more
tokens in the negative green list, leading to an im-
proved TPR for that list. The choice of ϕ = 2/|V |
represents an optimal balance, evidenced by a per-
fect TPR of 0.99 for positive watermark detection
and a high TPR of 0.94 for negative, showcasing
the effectiveness of this middle-ground threshold
in the watermarking process for both positive and
negative lists.

Case Study. Beyond numerical data, qualitative
insights are illustrated in Table 3 through actual
prompts and watermarked outputs. The case study
showcases two scenarios: a successful watermark
detection with high entropy yielding a high z-score,
and another successful case with low entropy re-

sulting in a negative z-score. From the two cases,
we find that RIW applies subtle changes to the
output of the LLMs, achieving a lower perplex-
ity for the watermarked output compared to the
non-watermarked version. Also, the success in the
second example represents that with our design of
negative green list, RIW can detect the watermark
in low entropy sequences while maintaining the
minimal difference in perplexity between water-
marked and non-watermarked outputs. This under-
scores the effectiveness of the RIW model in main-
taining text quality while embedding detectable
watermarks, even in cases where the sequence is
low-entropy.
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