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Abstract

The potential for improvements brought by
Large Language Models (LLMs) in Text-to-
SQL systems is mostly assessed on monolin-
gual English datasets. However, LLMs’ per-
formance for other languages remains vastly
unexplored. In this work, we release the Stat-
Bot.Swiss dataset, the first bilingual benchmark
for evaluating Text-to-SQL systems based on
real-world applications. The StatBot.Swiss
dataset contains 455 natural language/SQL-
pairs over 35 big databases with varying level
of complexity for both English and German.
We evaluate the performance of state-of-the-
art LLMs such as GPT-3.5-Turbo and mixtral-
8x7b-instruct for the Text-to-SQL translation
task using an in-context learning approach. Our
experimental analysis illustrates that current
LLMs struggle to generalize well in generating
SQL queries on our novel bilingual dataset 1.

1 Introduction

Switzerland is a multilingual country, officially rec-
ognizing four national languages: German, French,
Italian, and Romansh. Multilingualism is a pillar
of the country’s identity, ensuring that all citizens
have equal access to public service, education, and
any other information, regardless of their linguis-
tic background. Switzerland started offering open
government data, and the supply continues to grow,
spurred on, among other things, by open-by-default
regulations of the federal government, and initia-
tives from cantons and municipalities.

While the opendata.swiss initiative implements
the once-only principle by offering a central cata-
log for all available Swiss open government data,
these datasets are often not standardized across
administration levels and neither are methods of
collection, compilation, and processing. If data are
found, one must then work out and understand the

†Equal contribution.
1We release our data and code to the community at https:

//github.com/dscc-admin-ch/statbot.swiss

methodological differences in order to know which
data are more suitable for the intended usage and
more importantly be capable of importing and ana-
lyzing the data through statistical software such as
a spreadsheet, Python, R or SAS, which all require
advanced computing skills.

These challenges pose a risk for the democratic
processes: the harder it is for a citizen to access
an accurate source of information such as national
statistics, the more likely a country is to suffer from
misinformation. The StatBot.Swiss project aims to
develop a Swiss statistical bot that simplifies access
to open government data by allowing interaction
with the data directly via natural language. More
precisely, one enters a question and gets an answer
built upon the result of a query on trusted datasets
from the opendata.swiss platform.

The main objectives of this paper are (1) to pro-
vide a real-world bilingual dataset to benchmark
Text-to-SQL systems, namely the StatBot.Swiss
dataset, which consists of 455 intricate instances
of querying data from 35 large databases, total-
ing 7.5 GB in size, available in both English and
German, and (2) to assess the performance of cur-
rent state-of-the-art pre-trained LLMs with various
prompting strategies and so to establish a strong
baseline on the StatBot.Swiss dataset.

To the best of our knowledge, the StatBot.Swiss
dataset is the first Text-to-SQL benchmark to incor-
porate English and German languages within the
context of a complex Text-to-SQL benchmark and
real-world databases. We conduct comprehensive
evaluations on two pre-trained LLMs, namely GPT-
3.5-Turbo-16k, (Brown et al., 2020) and Mixtral-
8x7B-Instruct-v0.1 (Jiang et al., 2024). Our ex-
perimental results show that current models using
in-context learning strategies achieve up to 50.58%
execution accuracy and struggle to generate SQL
queries giving exact matches on StatBot.Swiss,
which shows that multilingual Text-to-SQL sys-
tems using state-of-the-art LLMs still lack robust-
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ness for reliable applications.

2 Related Work

Text-to-SQL Dataset The development of Text-
to-SQL datasets and corresponding benchmarks,
such as the Spider (Yu et al., 2018) and WikiSQL
(Zhong et al., 2017) datasets and other domains
(Deriu et al., 2020), has been instrumental in ad-
vancing natural language interfaces to databases.
Although much of the initial work focused on the
English language, some progress has been achieved
in creating resources for other languages. DuSQL
(Wang et al., 2020b) brings Text-to-SQL interpre-
tation to Mandarin. PAUQ (Bakshandaeva et al.,
2022) fills the gap in the landscape of the Russian
language by introducing the complexities associ-
ated with Slavic languages to the Spider dataset.
ViText2SQL (Tuan Nguyen et al., 2020) is the first
public large-scale Text-to-SQL semantic parsing
dataset for Vietnamese.

MultiSpider (Dou et al., 2023) generalizes the
Spider benchmark to multiple languages. However,
the drawbacks of MultiSpider are also obvious. As
a translated work from the Spider dataset, the com-
plexity of the database schema and the datasets are
strongly limited, and the translation lacks native
language expertise.

Unlike MultiSpider, the StatBot.Swiss bench-
mark is realistic, complex, and curated by native
speakers with proper domain knowledge, while
covering both English and German for datasets
with trusted sources.

LLMs in Text-to-SQL Translation Recently,
there has been significant development in employ-
ing Large Language Models (LLMs) for the Text-
to-SQL task. Several approaches have been sug-
gested to improve the abilities of LLMs by in-
context learning techniques (Rajkumar et al., 2022;
Liu et al., 2023; Nan et al., 2023) or via semantic
hypothesis re-ranking (Von Däniken et al., 2022).
Additionally, methods such as intermediate reason-
ing steps and self-correction mechanisms have been
integrated to enhance the performance of LLMs in
Text-to-SQL applications (Chen et al., 2024; Pour-
reza and Rafiei, 2023). Following these pioneering
works, we combine in-context learning to LLMs
for the Text-to-SQL task and conduct a comprehen-
sive evaluation of prompt representations over the
StatBot.Swiss benchmark.

3 System Overview

3.1 Database preparation

OPENDATA.SWISS2 is the Swiss public adminis-
tration’s central portal for open government data.
As of the date of the submission, the catalog lists
more than 10,300 datasets, covering 14 categories,
e.g., health, environment, and economy. We meticu-
lously selected 22 German and 13 English datasets
from opendata.swiss and subsequently generated
corresponding PostgreSQL databases through an
automated pipeline.

3.2 Data Preparation

Each database contains a fact table that describes
the knowledge domain of the data, and a dimension
table for the corresponding spatial information (see
Database Schema Example in Appendix A). Note
that some statistical information is collected at the
municipality level, while other information is col-
lected at the cantonal level (which corresponds to
a state). Moreover, the content of the fact tables
does not overlap. Finally, one spatial dimensional
table is connected to each of the 35 fact tables via
a single foreign key constraint.
Dataset preparation For each dataset, our experts
analyzed the data sources and formulated natural
language questions that the dataset could answer.
We then crafted SQL queries to address these ques-
tions, executed them, and compared the results
with the original dataset. Since every table in our
database has only a single foreign key - referencing
the spatial dimension - the queries that we prepared
also target only a single table for each dataset with
a join on the spatial unit table.
Dataset statistics After manual curation and val-
idation, the dataset includes 455 natural language
question (NL)/SQL-pairs covering a total of 35
databases. Figure 1(a) presents the distribution of
the datasets by languages, spanning a wide range
of domains covered by opendata.swiss. There is,
however, an imbalance in the number of NL/SQL-
pairs between datasets: for instance, there are 23
NL/SQL-pairs for the database marriage_cit
izenship, while only 5 were generated for the
database greenhouse_gas_emissions_th
rough_consumption. Figure 1 (b) gives an
overview of the sample distribution for the train set
and the development set.
SQL statistics In order to evaluate the complexity

2https://opendata.swiss
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Figure 1: Dataset distribution: (a) Left: Knowledge domains, (b) Right: Distribution of natural language/SQL-
pairs over the train and development sets. EN = English, DE = German. The numbers on top of the bars denote the
number of Text-to-SQL pairs.

Dataset #Examples (#DBs) #Tables (#Rows)/DB Language Function Granularity Knowledge
WITH-
Queries

WikiSQL(Zhong et al., 2017) 80,654 (26,521) 1 (17) EN ✗ ✗ ✗ ✗

SPIDER (Yu et al., 2018) 10,181 (200) 5.1 (2K) EN ✗ ✗ ✗ ✗

KaggleDBQA (Lee et al., 2021) 272 (8) 2.3 (280K) EN ✗ ✗ ✓ ✗

ScienceBenchmark (Zhang et al., 2024) 5,332 (3) 16.7 (51M) EN ✗ ✗ ✓ ✗

BIRD (Li et al., 2023) 12,751 (95) 7.3 (549K) EN ✓ ✗ ✓ ✗

StatBot.Swiss 455 (35) 2 (1.4M) EN, DE ✓ ✓ ✓ ✓

Table 1: Comparison between StatBot.Swiss and existing state-of-the-art Text-to-SQL datasets. Function refers
to SQL built-in functions. Knowledge stands for the necessity of external knowledge reasoning from the model.
Granularity refers to the degree of specificity or the level of details. WITH-Queries refer to complex sub
queries that are broken up into smaller ones. EN = English, DE = German.

of the queries, we apply the Spider hardness met-
ric (Yu et al., 2018). However, the StatBot.Swiss
dataset includes additional PostgreSQL grammar
and syntax features, which are not supported by
the Spider hardness evaluator: our dataset includes
queries with unencountered levels of complexity in
the Spider dataset. For more details see Appendix
B.

Thus, we extend the Spider-hardness to catego-
rize the NL/SQL-pairs into five classes, namely the
four classes easy, medium, hard, and extra, inher-
ited from Spider-hardness with the addition of a
fifth category unknown. In Table 1, we compare our
StatBot.Swiss dataset with other state-of-the-art
benchmarks for the Text-to-SQL task using several
metrics. Although our new dataset appears sim-
ple regarding the number of databases and tables,
the training and development datasets (see Section
4.1 for details) are highly complex and cover more

realistic natural language questions with external
knowledge and more complex SQL syntax than
state-of-the-art benchmarks.
Language: The StatBot.Swiss dataset includes
tables in two languages, that is, each table is in
English or German. All other datasets are only
available in English.
Function: Only BIRD and our dataset contain
built-in functions, e.g., CAST() for type casting
or ROUND() for rounding a number.
Granularity: It refers to the degree of speci-
ficity or the extent to which data are segmented
or detailed (Rudra and Nimmagadda, 2005; Huang
et al., 2023). Data may be depicted at varying levels
of granularity, spanning from fine-grained (indicat-
ing a high degree of detail, e.g., price of a single
item) to coarse-grained (denoting a low level of
detail, e.g., subtotal or total price of all items). The
choice of granularity depends on the objectives of
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the analysis and the information required from the
data. As an illustration, the table criminal_of
fences_registered_by_police contains
records at both the coarse and detailed levels query-
ing data at the highest level of detail with WHERE
offence_criminal_code=’Offence-to
tal’ and also including detailed values for each
offence_criminal_code.
Knowledge: It is defined as the external knowl-
edge reasoning by Li et al., 2023. The reason-
ing types comprise Domain knowledge, Numeric
Computing, Synonym and Value Illustration. Li
et al., 2023 also suggests that a comprehensive un-
derstanding of the database content is imperative
for addressing more complex real-world queries in
Text-to-SQL applications.
WITH-Queries: Finally, the StatBot.Swiss
records cover very complex query syntax, e.g.
WITH-queries allowing users to break down com-
plex queries into several smaller subqueries.

3.3 Text-to-SQL Translation

The Text-to-SQL translation task aims to match a
natural language question with an SQL query that
can effectively extract relevant information from
a database. Its formal definition is (Wang et al.,
2020a): Given a natural language question encoded
as a sequence of natural language tokens Q ={
q1, . . . , q|Q|

}
and a relational database schema

S = ⟨T , C⟩ where T =
{
t1, . . . , t|T |

}
is a series

of tables, and C =
{
c1, . . . , c|C|

}
denotes their

corresponding columns, a Text-to-SQL system is a
function f(Q,S) that outputs a correct SQL query
Y =

{
y1, . . . , y|Y|

}
as a sequence of tokens.

To develop a Text-to-SQL system, a prevalent
approach is to collect labeled data and train a model
via supervised learning (Scholak et al., 2021; Brun-
ner and Stockinger, 2021). Although effective, this
approach requires a considerable amount of train-
ing data, which is time- and resource-consuming:
annotating SQL queries requires SQL-specific ex-
pertise.

As an alternative to supervised learning, in-
context learning (ICL) (Brown et al., 2020),
an emergent method of large language models
(LLMs), alleviates the need for large training
datasets: with only a few examples, ICL enables
LLMs to demonstrate performance comparable
to, if not better, than fully supervised models for
many NLP downstream tasks. When applied to
the task of Text-to-SQL, ICL achieves encouraging

results (Liu et al., 2023; Nan et al., 2023).

Following this line of research, we formulate a
Text-to-SQL task as f(Q,S, E ,P), where f is a
LLM , and E is a set of m in-context exemplars
as (Qi,Yi)i<m,Qi ̸= Q}. P is a textual template
to represent the overall input, i.e. Q,S, E , as a
prompt and is fed into the LLM. We now describe
the structure of our prompt design for our Text-to-
SQL system.

Database information Providing prior knowledge,
i.e. examples, about an underlying task can aid the
generation process of LLMs. Particularly, in the
Text-to-SQL task, inclusion of a database’s meta-
data such as table relationships and variable en-
coding is crucial for enabling effective prompting
(Chang and Fosler-Lussier, 2023; Rajkumar et al.,
2022).

We opt for a textual representation of the
database information, as suggested by Rajkumar
et al. (2022). In particular, we rely on a CREATE-
statement for the initial table creation; see the ex-
ample prompt in Appendix D for more details. This
representation encompasses specific data type infor-
mation for each column and integrates all foreign
key constraint details within the database. Fur-
thermore, database content is partially included.
Specifically, the strategy appends a number r > 0
of example rows from each table; see Appendix C
for prompts with r = 5.

Furthermore, in line with the findings of
Huang et al. (2023), and Nan et al. (2023) who
demonstrated the efficacy of schema augmentation
through metadata via in-context learning for the
Text-to-SQL task, we enhance the representation
of the database structure. This augmentation in-
volves integrating metadata column information,
such as column name and column description, as
illustrated in Appendix D.
Selection of exemplars E In-context learning en-
ables LLMs to improve their performance on the
Text-to-SQL tasks with a small number of train-
ing data, with or without a small number of ex-
ample pairs containing natural language questions
and their corresponding SQL representations. We
consider two widely used settings for in-context
learning in Text-to-SQL: (i) Zero-shot: In this con-
text, the evaluation focuses on the Text-to-SQL
capability of pretrained LLMs, where the goal is
to infer the relationship between a given question
and SQL directly from unknown LLM’s training
dataset. This approach does not leverage any kind
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of task specific examples; the input prompt is lim-
ited to a natural language question along with its
corresponding database metadata. The zero-shot
setting is used to directly assess the Text-to-SQL
capability of pretrained LLMs (Rajkumar et al.,
2022; Chang and Fosler-Lussier, 2023). (ii) Few-
shot In this scenario, the LLMs’ prompts include
examples from a benchmark such as Statbot.swiss.
We include a small number of pairs consisting of
natural language questions and their corresponding
SQL examples, which are inserted between the rep-
resentation of the database and the target question.
The aim is to assess the Text-to-SQL performance
of LLMs using a limited number of training data.
When employing few-shot learning, a crucial as-
pect to consider is the careful selection of a subset
of demonstrations from a pool of annotated exam-
ples for each test instance. This particular design
choice plays a significant role and can influence the
overall performance of ICL (Liu et al., 2022; Nan
et al., 2023).

In the few-shot scenario, we established various
subset selection methods, including random and
similarity-based strategies. To implement the latter,
we initially transformed both the in-domain train-
ing questions, i.e., those from the same database
as the target question, and the test question into
vectors using a sentence encoder. Through cosine
similarity we then identified and selected the top m
training examples that exhibited the highest similar-
ity to the target question as exemplars. Appendix
D displays a prompt example comprising two (i.e.
m = 2) chosen training instances.

4 Experiments and Results

4.1 Experimental Settings

Dataset We randomly split the StatBot.Swiss
dataset into training and development datasets.
Specifically, the dataset is divided into a devel-
opment dataset constituting 30% of the total data
and a training dataset comprising the remaining
70%. The splitting is stratified to ensure that the
proportion of records with varying degrees of com-
plexity, as introduced in Section 3.2, is maintained
equal for all combinations of partition elements and
databases.

Table 2 in Appendix C lists the hardness distri-
bution across the multilingual databases for each
language in the train, dev, and each individual Stat-
bot.swiss datasets.

Large Language Models We examine different
strategies for in-context learning using two large
language models. To accommodate for extended
context lengths in some of our scenarios, i.e., more
than 4096 tokens, we restrict our experiment to
the GPT-3.5-Turbo-16k model3 and the Mixtral-
8x7B Instruct model4. To reduce the computational
and memory costs of running inferences using the
Mixtral model, we apply QLoRA (Dettmers et al.,
2023) with 4-bit quantization and run the inferenc-
ing on two nVidia A100-40GB GPUs. The LLMs’
API temperature is configured to 0, indicating the
use of a greedy decoding strategy.

Evaluation Metrics We employ the frequently
used evaluation metric execution accuracy (EA),
which computes the percentage of the system’s
correctly generated SQL statements (predictions),
whose execution results correspond to the results of
the gold standard SQLs, i.e. the exact output of the
query in the benchmark. However, Floratou et al.,
2024 suggest that the original EA may underesti-
mate the overall accuracy due the ambiguity of the
queries. Therefore, the evaluation metric should
ensure that the generated queries not only produce
exact matches, but also meet the underlying pur-
pose of the user’s natural language query.

From a chatbot perspective, the nature of user
questions can often encompass a range of accept-
able queries. To illustrate this issue with a simple
example, let us analyze the question "What canton
got the most money from tourism in 2016?" which
targets the table tourism_economy_by_can
ton. This question is by nature uncertain, and a
user could be equally content with responses that in-
clude either [canton_name] only or [canton_name,
mio_chf_gross_value_added_of_tourism ], which
also includes the corresponding funds value. The
ground truth from Statbot.swiss for this question
outputs only [canton_name]. With EA, a query out-
put with [canton_name, mio_chf_gross_value_add
ed_of_tourism] will be considered a false answer.

This complexity makes conventional metrics
based on string-matching or execution-matching
inadequate. We start by renaming EA as strict
execution accuracy (EAstrict) and then introduce
soft execution accuracy (EAsoft) and partial exe-
cution accuracy (EApartial) for more effective out-
come evaluation of certain ambiguous or uncertain

3Using the API at https://openai.com/api
4https://huggingface.co/mistralai. The model supports up

to a 32k context window.
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questions:
Given N NL/SQL-pairs, we have

EAk = N−1
∑N

n=1 Ik(rn, r̂n) where rn, re-
spectively r̂n, are the result set of the ground
truth, respectively the system’s prediction,
k ∈ {strict, soft, partial}, and Ik is an indicator
function defined as

Istrict(rn, r̂n) =

{
1, if rn = r̂n

0, otherwise

Isoft(rn, r̂n) =

{
1, if rn ⊆ r̂n

0, otherwise

Ipartial(rn, r̂n) =

{
1, if rn ⊆ r̂n or r̂n ⊆ rn

0, otherwise
While EAstrict might underestimate the fraction

of correct answers, its partial and soft versions tend
to overestimate the overall system’s performance:
for the final user, the true performance is likely to
lie in-between these two types of metrics.

In-context Learning (ICL) Strategies We as-
sess the performance of the following ICL strate-
gies for the Text-to-SQL task on the StatBot.Swiss
dataset in both zero-shot and few-shot scenarios.

Zero-shot (Baseline): We use the standard
prompt for the Text-to-SQL task along with the
database information described in Section 3.3. The
database information is stored as a text representa-
tion in the input prompt without any demonstration
examples.

Few-shot: Building upon the zero-shot setting,
we select m ∈ {1, 2, 3, 4, 5, 6, 8} NL/SQL-pairs
from the Statbot.swiss training set and insert them
between the representation of the database and the
target question. We pick these instances employing
the following approaches: (i) Random Selection:
Randomly selecting demonstration examples from
the training data, where both the NL-questions and
the SQL-queries relate to the same dataset, and
(ii) Similarity-based Selection: Demonstrative ex-
amples are chosen based on their cosine similar-
ity scores as described in Section 3.3 within the
training set, ensuring that both the examples and
the target question are collected from the same
database. Since our dataset comprises both English
and German NL/SQL-pairs, we employ the multi-
lingual sentence transformers model (Reimers and
Gurevych, 2020), specifically the distiluse-
base-multilingual-cased-v2 from Hug-
gingFace model hub 5, to encode natural language

5https://huggingface.co/sentence-transformers

Figure 2: Mean strict execution accuracy : zero-shot
and few-shot for GPT-3.5 (m = 5) and Mixtral (m =
6) models using similarity-based selection where the
number of examples are chosen to maximize EAstrict.

questions.
Instruction Tuning: We further fine-tune the Mix-
tral model using the training dataset and the stan-
dard instructions for the Text-to-SQL task, incorpo-
rating the database information outlined in Section
3.3. Then, we assess the instruction-tuned models
in a manner similar to the ICL strategies, includ-
ing both zero-shot and few-shot evaluations. The
model is trained for 200 epochs under Low-Rank
Adaptation (LoRA) and 4-bit quantization with a
learning rate of 5e−5. The batch size per device is
1, with gradient accumulation steps set to 16 and
epochs set to 100. The fine-tuning is performed on
a single NVIDIA A100 40GB GPU for approxi-
mately 20 hours.

4.2 Results

In this section, we present a comprehensive anal-
ysis of various prompting strategies and their ef-
fectiveness across the StatBot.Swiss datasets. To
make the right conclusions when comparing differ-
ent scenarios, we calculate the mean and standard
deviation (std) of the evaluation metrics using 3
independent LLMs’ queries over the development
set with identical prompting strategies. Figures 2
and 3 give a summary of the performance results.
We report the detailed estimated evaluation metrics
for all models with various demonstration selection
strategies and both languages in Tables 4, and 5 of
Appendix F.

It is worth noting that the instruction-tuned Mix-
tral model significantly underperformed compared
to the ICL strategies evaluation of the original Mix-
tral model. Consequently, we do not provide fur-
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Figure 3: (Left) Strict execution accuracy (EAstrict) for each language. (Right) EAstrict for each language per query
hardness level. All metrics are computed on the development set for zero-shot and few-shot prompting strategies
(6-shot in Mixtral, 5-shot in GPT-3.5).

ther details on the results of this experiment.
Model Performance: Looking at the model per-
formance across various shot levels and selection
methods, GPT-3.5 consistently demonstrates supe-
rior performance compared to Mixtral, achieving
higher mean accuracy scores. Specifically, in terms
of EAstrict, GPT-3.5 achieves a superior result of at
most 41.68% using 5 examples, whereas Mixtral is
left behind with at most 28.39% using 6 shots. Tak-
ing into account the concept of correctness rather
than exact matching of the generated SQL query, it
can be stated that in the optimal few-shot scenario,
GPT-3.5 achieves an EApartial of 50.07%.
Zero-shot vs. Few-shot Learning: In zero-shot
learning, where no additional labeled examples are
provided, both models perform relatively poorly.
GPT-3.5 achieves an EAstrict of 13.52%, outper-
forming the result by Mixtral at 5.82%. Few-
shot learning significantly improves model perfor-
mance, demonstrating the effectiveness of provid-
ing a small number of labeled examples. Upon
providing a small number of labeled examples
(one-shot setting), both models show consider-
able improvement. GPT-3.5 achieves an EAstrict
of 33.57%, resulting in an improvement of approxi-
mately +20.05% points compared to the zero-shot
setting. Mixtral achieves an EAstrict of 16.92%, in-
dicating an improvement of approximately +11%
compared to the zero-shot setting.
Effect of Selection Method: The Similarity se-
lection method generally outperforms the Random
selection method, particularly in few-shot learning
scenarios. Selecting examples based on their sim-
ilarity to the natural language questions provides

more relevant training examples in ICL for LLMs,
leading to better model performance.
Impact of Exemplars Number on Model Per-
formance: Transitioning from zero-shot to few-
shot learning leads to a significant improvement
in model performance across both GPT-3.5 and
Mixtral models. On average, each additional shot
results in approximately a 5-10% increase in mean
EAstrict, underscoring the importance of providing
labeled examples during the inference. However,
this improvement is followed by a significant de-
crease once the number of examples reaches a cer-
tain threshold: maximal performance is achieved
with 5 examples in GPT-3.5, and 6 examples in
Mixtral using similarity-based selection.
Language and Hardness Level: When differen-
tiating by language, with zero-shot learning, GPT-
3.5 achieves an EAstrict of 8.75% for English (EN),
whereas Mixtral shows a slightly higher accuracy
at 10.39%. For German (DE), GPT-3.5 records an
EAstrict of 17.07%, compared to Mixtral’s 2.44%.

Transitioning to the few-shot setting, GPT-3.5
demonstrates significant superiority over Mixtral
for English (EN), achieving an EAstrict of 34.43%,
as opposed to Mixtral’s 22.29%. Similarly, in Ger-
man (DE), GPT-3.5 exhibits better performance
with an EAstrict of 46.83%, contrasting Mixtral’s
32.93%.

Moreover, we analyze the Type-Token Ratios
(TTR) and the token length of both English and
German questions respectively, revealing that the
German dataset exhibits greater linguistic diver-
sity and consequently appears more challenging.
This finding is inspired by prior research on the
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difficulty and discrimination of natural language
questions by (Byrd and Srivastava, 2022), and on
cross-lingual summarization by (Wang et al., 2023),
both of which assess lexical richness and diversity.
TTR, defined as the ratio of unique tokens to the
total number of tokens, serves as a measure of lin-
guistic diversity. The average TTR for German
questions is 0.961, compared to 0.927 for English
questions. Furthermore, the average token length
for German questions is 15.6, whereas for English
questions, it is 15.13. These indices unveil that
German questions in the dataset are more diverse
and, therefore, potentially more difficult.

The results in Figure 3 also show that both mod-
els exhibit higher performance in German than in
English, despite the German dataset being inher-
ently more difficult. This trend persists even when
the difficulty level of SQL within the development
dataset is taken into account. This can be attributed
to the fact that the German questions were writ-
ten by native speakers, while the English questions
were not, and thus suggesting potential avenues
for future research in paraphrasing and linguistic
characteristics of both datasets.

Furthermore, Figure 3 (right) and Table 5 show
that GPT-3.5 is unable to answer English questions
classified as extra hard or unknown in the zero-shot
setting. Conversely, Mixtral succeeds in providing
answers for the English questions, even when their
difficulty is categorized as medium or extra hard.
However, Mixtral also struggles to answer ques-
tions in the hard level category, indicating limita-
tions in handling challenging queries despite some
capability in the zero-shot scenario.

It is apparent that in the Mixtral setting with an
easy difficulty level, there is a notable decline in
performance when transitioning from zero-shot to
few-shot scenarios. This decline stems from the
scarcity of data points within our dataset under
easy difficulty level. Specifically, there are only
two instances present in the development set, both
in English. Consequently, even a single failed pre-
diction significantly impacts the local distribution
of percentage scores, causing the performance on
easy samples to drop from 100% to 50%. Upon
examining the failed prediction, we identified the
root cause as a key term swap between COUNT
and DISTINCT during the few-shot ICL execution
on Mixtral as illustrated in Appendix E.

On average, Mixtral demonstrates better perfor-
mance than GPT-3.5 in the zero-shot scenario for

English questions. Nevertheless, the situation is
reversed in the German dataset.

In the few-shot scenario, considering the opti-
mal prompting strategies, i.e., 5-shot with GPT-3.5
and 6-shot with Mixtral, both models exhibit the
capability to provide exact matches in every cate-
gory. Nevertheless, it is important to note that al-
though both models demonstrate some proficiency
in answering questions within the few-shot setup,
they encounter challenges on many occasions, espe-
cially when dealing with queries of higher difficulty
levels such as hard and extra hard.

5 Error Analysis

To delve deeper into the difficulties faced by state-
of-the-art LLMs in the Text-to-SQL task using the
StatBot.Swiss dataset, we have a closer look at
the results of the best performing model, namely
GPT-3.5, to perform an error analysis. We ob-
serve that (i) the model struggles significantly with
inferring the queries involving GROUP BY mul-
ti-columns and mixed numeric operators.
This leads to a low accuracy of 27.27% and 38.89%
for these queries, respectively. These difficulties
highlight the need for domain knowledge, which
might not always be explicitly represented in the
database schema, (ii) queries requiring proper
built-in Functions or other general SQL key-
words are answered slightly better by the LLM,
which counts for 40% and 44.44% accuracy, re-
spectively, (iii) the language model results in an
accuracy of 50% for NULL-values and 66.67% for
nested SELECT-alias, suggesting that the model
has learned well from value illustration and grasped
the use of sub-queries; see Appendix D for exam-
ples, and (iv) finally, the outcome for WITH-queries
and SET-operation queries show an accuracy
of 100%. However, the statistical significance
of this performance is not guaranteed because of
the small number of examples available in the
dataset. For a more detailed understanding, we
list NL/SQL-pairs for each type of complex query
in Table 3 of Appendix D.

We particularly investigated datasets in which
the underlying LLM fails to answer any of their
questions; see Figure 6 in Appendix F. In the tou
rism_economy_by_canton English dataset,
there exists a few false predictions due to the wrong
understanding of data granularity. However, others
are correctly labeled in terms of usefulness metrics,
resulting in 66.67% of both EAsoft and EApartial.
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Given that each dataset was manually curated by
various experts, we found that the observed dis-
parity between EAstrict and user’s intent-based EA,
namely soft and partial, is concentrated in certain
datasets, which is in line with the previous assump-
tion that semantic ambiguity is often subjective
and individual. This insight of finding also demon-
strates the importance of EAsoft and EApartial from
the experimental perspective.

In the datasets of staatsausgaben_nach
_aufgabenbereichen_cofog and gover
nment_expenditure_by_function_cof
og, the knowledge misunderstanding related to
the granularity of the data led to the majority of
wrongly generated queries. Upon examining the
similarity scores between the target question and
the few-shot examples within each dataset, it be-
comes clear that there is a considerable level of
disparity in the natural language questions found
within these two datasets.

6 Conclusions

Our work highlights the potential and current limi-
tations of Large Language Models (LLMs) using
our novel bilingual Text-to-SQL benchmark Stat-
Bot.Swiss. While LLMs like GPT-3.5-Turbo and
mixtral-8x7b show promising results for relatively
simple queries, they face challenges with complex
queries, domain knowledge inference, and handling
NULL values. The analysis underscores the neces-
sity for enhanced in-context learning in LLMs to
incorporate a broader range of Text-to-SQL and
database knowledge. The observed disparities in
error analysis, especially in datasets with semantic
ambiguities and data granularity issues, call for a
more nuanced approach to evaluating the perfor-
mance of Text-to-SQL systems, considering cor-
rectness from the user’s perspective as apposed to
exact matching.

Our work sets a benchmark for future develop-
ments in bilingual Text-to-SQL systems and em-
phasizes the importance of diverse and complex
datasets in advancing LLM capabilities. As the
field progresses, refining these models to better un-
derstand and execute multi-column grouping, nu-
meric operations, and domain-specific queries will
be crucial for realizing their full potential in real-
world applications.

In future work, we aim to include other lan-
guages, e.g., French and Italian, in our bench-
mark and extend towards cross-lingual Text-to-

SQL tasks.

7 Limitations

One major constraint of our study lies in the intrin-
sic challenges of Text-to-SQL evaluations across
bilingual datasets. This includes a limited number
of Large Language Models (LLMs) assessed in our
experiments, the finite languages chosen, and the
complexity and diversity of datasets.

Despite our comprehensive analysis, the limited
dataset size, the constrained domain scope, the im-
balanced query types, and the predefined hardness
may not fully represent the breadth of other real-
world applications.

Additionally, there is a lack of natural
language/SQL-pairs across languages. That means
that our benchmark dataset does not use English
questions to query a database in German, or the
other way around.

Lastly, our study assumes the target datasets are
known beforehand, which could potentially bias the
interpretation and application of the Text-to-SQL
models’ performance. This presupposition that the
user or upstreaming network ideally grasps domain-
specific knowledge may not always hold true, espe-
cially in diverse real-world scenarios where domain
expertise varies widely. Such assumptions are apt
to yield experimental outcomes that surpass the
actual accuracy in realistic applications.
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A Database Schema Example

1

*

spatial_unit

spatialunit_uid varchar(30)

spatialunit_current_id integer

spatialunit_ontology varchar(30)

name varchar(100)

name_de varchar(100)

name_fr varchar(100)

name_it varchar(100)

country boolean

canton boolean

district boolean

municipal boolean

residence_area boolean

neighborhood boolean

region boolean

zone boolean

spatialunit_hist_id integer

canton_hist_id integer

district_hist_id integer

valid_from date

valid_until date

criminal_offences_registered_by_police

uid serial

offence_criminal_code text

year integer

offence_category text

number_criminal_offences_registered numeric

number_criminal_offences_unsolved numeric

number_criminal_offences_solved numeric

number_criminal_offences_completed numeric

number_criminal_offences_completed_unsolved numeric

number_criminal_offences_completed_solved numeric

number_criminal_offences_attempted numeric

number_criminal_offences_attempted_unsolved numeric

number_criminal_offences_attempted_solved numeric

spatialunit_uid varchar

Figure 4: Entity-relationship diagram of the knowledge domain criminal offences. spatial_unit is the
dimension table and criminal_offenses_registered_by_police is the fact table. EN = English, NN
stands for NOT NULL constraint. Note that the dimension table spatial_unit contains information about
different levels of granularity and thus enables aggregating facts by, e.g. municipality, canton and country.
However, note that not all facts contain information about all levels of granularity. For instance, some facts are only
collected at municipality level while others are collected a cantonal level.
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1

*

raeumliche_einheit

raeumliche_einheit_uid varchar(30)

aktuelle_raeumliche_einheit_id integer

ontologie_raeumlicher_einheit varchar(30)

name varchar(100)

name_de varchar(100)

name_fr varchar(100)

name_it varchar(100)

land boolean

kanton boolean

bezirk boolean

gemeinde boolean

wohngebiet boolean

nachbarschaft boolean

region boolean

zone boolean

historische_raeumliche_einheit_id integer

historische_kanton_id integer

historische_bezirk_id integer

gueltig_ab date

gueltig_bis date

medizinisch_technische_infrastruktur

uid serial

genutzte_infrastruktur text

jahr integer

anzahl_gerate numeric

anzahl_untersuchungen_total numeric

anzahl_ambulante_untersuchungen numeric

anzahl_stationare_untersuchungen numeric

spatialunit_uid varchar

Figure 5: Entity-relationship diagram of the knowledge domain medizinisch_technische_infrastruktur
[DE] (in Eng. medical technical infrastructure), where NN stands for NOT NULL constraint. Note
that the dimension table raeumliche_einheit contains information about different levels of granularity and
thus enables aggregating facts by, e.g. Gemeinde (in English: municipality), Kanton (in English: canton) and
Land (in English: country). However, note that not all facts contain information about all levels of granularity. For
instance, some facts are only collected at municipality level while others are collected at cantonal level.

B Queries that Cannot be Analyzed by the Spider Hardness Evaluator

Here we show the complex query categories of our new dataset that use additional PostgresSQL features
that cannot be evaluated by the Spider hardness evaluator:

1. GROUP BY or ORDER BY of more than one column, for instance, GROUP BY
offence_criminal_code, number_criminal_offences_registered.

2. Nested SELECT-query alias, e.g., SELECT a.col_1 FROM (SELECT. . .) AS A. Unlike the
column alias, these nested SELECT-queries are often required to break down complex queries into
more managable sub queries and may cause errors when omitted.

3. WITH-queries also enable breaking down larger queries into smaller sub queries.

4. Built-in Functions except basic aggregators7, e.g., CAST-function for type casting.

5. Numeric operators mixed with aggregators, such as 100*SUM(number_criminal_offen
ces_solved)/SUM(number_criminal_offences_registered).

6. SET-operators to combine sub queries, e.g. UNION ALL, INTERSECT ALL, or EXCEPT ALL.

7The basic aggregators denotes COUNT, SUM, MAX, MIN, and AVG
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7. Special keywords, e.g., IN, CASE.

8. NULL values.

C Query Hardness Distribution of the Bilingual Dataset

English German

easy medium hard extra unknown easy medium hard extra unknown

Train 3 (2.26) 5 (3.76) 6 (4.51) 37 (27.82) 82 (61.65) 0 (0.00) 4 (2.23) 17 (9.50) 37 (20.67) 121 (67.60)
Dev 2 (3.28) 8 (13.11) 9 (14.75) 24 (39.34) 18 (29.51) 0 (0.00) 8 (9.76) 9 (10.98) 24 (29.27) 41 (50.00)
All 5 (2.58) 13 (6.70) 15 (7.73) 61 (31.44) 100 (51.55) 0 (0.00) 12 (4.60) 26 (9.96) 61 (23.37) 162 (62.07)

Table 2: Hardness distribution per language for each dataset. The values in parentheses represent the distribution of
samples corresponding to the hardness level across languages and datasets in percentage.
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D Example Prompt

Below we show the prompt for two examples (2-shot). First, we show the CREATE TABLE statement
(database schema) followed by several example rows (data values) per table. Afterward, we illustrate
natural language questions and their corresponding SQL queries. The examples are about the usage of
electric cars in certain areas.
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Table 3: Complex SQL query examples with hardness "unknown". Note that these kind of queries cannot be handled
by the Spider hardness evaluator due to their high complexity especially in terms of SQL features used.

Query Types [db_id] | Question | Query

1. GROUP BY > 1 column [volksabstimmung_nach_kanton_seit_1861]

Welche Kantone haben 2023 gegen das Bundesgesetz über Klimaschutz gestimmt und wieviel
Prozent Ja Stimmen gab es dort jeweils?

SELECT S.name_de AS kanton_gegen_klimaschutzgesetz,
T.ja_in_prozent
FROM volksabstimmung_nach_kanton_seit_1861 AS T
JOIN spatial_unit AS S
ON T.spatialunit_uid = S.spatialunit_uid
WHERE S.canton = ’TRUE’
AND LOWER(T.vorlage) LIKE ’%bundesgesetz%klimaschutz%’
AND T.jahr = 2023
AND T.ja_in_prozent <= 50

GROUP BY S.name_de, T.vorlage, T.jahr, T.ja_in_prozent ;

2. Nested SELECT-Query [marriage_citizenship]

Alias

Show me the lowest number of marriages that occurred at the canton level in 1990, where
both the wife and husband were from different nationalities?

SELECT A.*
FROM (SELECT T2.name, T1.citizenship_category_husband,
T1.citizenship_category_wife, T1.amount
FROM marriage_citizenship AS T1
JOIN spatial_unit AS T2
ON T1.spatialunit_uid = T2.spatialunit_uid
WHERE T2.canton = ’True’
AND T1.year = 1990
AND T1.citizenship_category_husband = ’Foreign country’
AND T1.citizenship_category_wife = ’Switzerland’
UNION
SELECT T2.name, T1.citizenship_category_husband,
T1.citizenship_category_wife, T1.amount
FROM marriage_citizenship as T1
JOIN spatial_unit AS T2

5501



Table 3 (Continued): Complex SQL query examples of hardness "unknown".

Query Types [db_id] | Question | Query

ON T1.spatialunit_uid = T2.spatialunit_uid
WHERE T2.canton = ’True’
AND T1.year = 1990
AND T1.citizenship_category_husband = ’Switzerland’
AND T1.citizenship_category_wife = ’Foreign country’) AS A
ORDER BY A.amount ASC
LIMIT 1;

3. Built-in Function [basel_land_bevolkerung_nach_nationalitat_konfession_gemeinde]

Welcher Anteil der Bevölkerung von Basel-Landschaft gehörte 2021 einer bekannten Religion
an?

SELECT 1 - (

SUM( CAST(T.anzahl_unbekannt_konfession AS FLOAT) )
/ SUM(T.gesamt_anzahl_personen))
AS proportion_known_religion_basel_land_2021
FROM
basel_land_bevolkerung_nach_nationalitat_konfession_gemeinde
AS T
JOIN spatial_unit AS S ON T.spatialunit_uid = S.spatialunit_uid
WHERE S.municipal = ’TRUE’
AND T.jahr = 2021
GROUP BY T.jahr;

4. WITH-Queries [medizinisch_technische _infrastruktur]

Welchem drei Kantone hatte den grössten Zuwachs und Untersuchungen mit medizinischen
Geräten zwischen 2013 and 2021 und wieviel hoch war der Zuwachs verteilt auf ambulante
und stationäre Untersuchungen und Geräte?

WITH Untersuchungen2013 AS (
SELECT SUM(T1.anzahl_untersuchungen_total)
AS anzahl_untersuchungen_gesamt_2013,
SUM(T1.anzahl_ambulante_untersuchungen)
AS anzahl_ambulante_untersuchungen_2013,
SUM(T1.anzahl_stationare_untersuchungen)
AS anzahl_stationare_untersuchungen_2013,
SUM(T1.anzahl_gerate) AS anzahl_gerate_2013,
S1.name_de AS kanton
FROM medizinisch_technische_infrastruktur AS T1
JOIN spatial_unit AS S1
ON T1.spatialunit_uid = S1.spatialunit_uid
WHERE S1.canton = ’TRUE’ AND T1.jahr = 2013
GROUP BY S1.name_de),
Untersuchungen2021 AS (
SELECT SUM(T2.anzahl_untersuchungen_total)
AS anzahl_untersuchungen_gesamt_2021,
SUM(T2.anzahl_ambulante_untersuchungen)
AS anzahl_ambulante_untersuchungen_2021,
SUM(T2.anzahl_stationare_untersuchungen)
AS anzahl_stationare_untersuchungen_2021,
SUM(T2.anzahl_gerate) AS anzahl_gerate_2021,
S2.name_de AS kanton2021
FROM medizinisch_technische_infrastruktur AS T2
JOIN spatial_unit AS S2
ON T2.spatialunit_uid = S2.spatialunit_uid
WHERE S2.canton = ’TRUE’
AND T2.jahr = 2021
GROUP BY S2.name_de)
SELECT U2013.kanton,
U2021.anzahl_untersuchungen_gesamt_2021 -
U2013.anzahl_untersuchungen_gesamt_2013
AS zuwachs_untersuchungen_gesamt,
U2021.anzahl_ambulante_untersuchungen_2021 -
U2013.anzahl_ambulante_untersuchungen_2013
AS zuwachs_ambulante_untersuchungen,
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Table 3 (Continued): Complex SQL query examples of hardness "unknown".

Query Types [db_id] | Question | Query

U2021.anzahl_stationare_untersuchungen_2021 -
U2013.anzahl_stationare_untersuchungen_2013
AS zuwachs_statinonare_untersuchungen,
U2021.anzahl_gerate_2021 - U2013.anzahl_gerate_2013 AS
zuwachs_geraete
FROM Untersuchungen2013 AS U2013
JOIN Untersuchungen2021 AS U2021
ON U2013.kanton = U2021.kanton2021
ORDER BY zuwachs_untersuchungen_gesamt DESC
LIMIT 3;

5. Numeric Operators mixed [resident_population_birthplace_citizenship_type]

with Aggregators

What was the percentage of the population in Switzerland who were born in a foreign country
on 2017?

SELECT SUM(un.in), SUM(un.out),

SUM(un.out)/(SUM(un.in)+SUM(un.out)) AS percentage
FROM (SELECT T1.year, T1.place_of_birth, T1.citizenship,
SUM(T1.amount) AS in, SUM(0) AS out
FROM resident_population_birthplace_citizenship_type AS T1
JOIN spatial_unit AS T2
ON T1.spatialunit_uid = T2.spatialunit_uid
WHERE T2.country = ’True’ AND T1.year = 2017
AND T1.place_of_birth = ’Switzerland’
AND T1.citizenship = ’Citizenship - total’
GROUP BY T1.year, T1.place_of_birth, T1.citizenship
UNION
SELECT T1.year,T1.place_of_birth,T1.citizenship,
SUM(0) AS in, SUM(T1.amount) AS out
FROM resident_population_birthplace_citizenship_type AS T1
JOIN spatial_unit AS T2
ON T1.spatialunit_uid = T2.spatialunit_uid
WHERE T2.country = ’True’ AND T1.year = 2017
AND T1.place_of_birth = ’Abroad’
AND T1.citizenship = ’Citizenship - total’
GROUP BY T1.year, T1.place_of_birth, T1.citizenship)
AS un;

6. SET-Operation Query [marriage_citizenship]

In 2000, among the municipalities, which had the highest and lowest numbers of marriages
where the husbands were Swiss citizens?

(SELECT T2.name, T2.spatialunit_ontology, T1.year, T1.amount
FROM marriage_citizenship as T1
JOIN spatial_unit AS T2
ON T1.spatialunit_uid = T2.spatialunit_uid
WHERE T2.municipal = ’True’
AND T1.year = 2000
AND T1.citizenship_category_husband = ’Switzerland’
AND T1.citizenship_category_wife = ’Citizenship of wife -
total’
AND T1.amount = (SELECT Max(T1.amount)
FROM marriage_citizenship as T1
JOIN spatial_unit AS T2
ON T1.spatialunit_uid = T2.spatialunit_uid
WHERE T2.municipal = ’True’
AND T1.year = 2000
AND T1.citizenship_category_husband = ’Switzerland’
AND T1.citizenship_category_wife = ’Citizenship of wife -
total’)
LIMIT 1)
UNION ALL
(SELECT T2.name, T2.spatialunit_ontology, T1.year, T1.amount
FROM marriage_citizenship as T1
JOIN spatial_unit AS T2
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Table 3 (Continued): Complex SQL query examples of hardness "unknown".

Query Types [db_id] | Question | Query

ON T1.spatialunit_uid = T2.spatialunit_uid
WHERE T2.municipal = ’True’
AND T1.year = 2000
AND T1.citizenship_category_husband = ’Switzerland’
AND T1.citizenship_category_wife = ’Citizenship of wife -
total’
AND T1.amount = (SELECT MIN(T1.amount)
FROM marriage_citizenship as T1
JOIN spatial_unit AS T2
ON T1.spatialunit_uid = T2.spatialunit_uid
WHERE T2.municipal = ’True’
AND T1.year = 2000
AND T1.citizenship_category_husband = ’Switzerland’
AND T1.citizenship_category_wife = ’Citizenship of wife -
total’)
LIMIT 1);

7. Special Keywords [stock_vehicles]

What was the proportion of electric vehicles in Geneva in 2010?

SELECT
SUM( CASE WHEN sv.fuel_type ILIKE ’%electric%’ THEN
sv.amount ELSE 0 END ) AS electric_vehicles,
SUM(sv.amount) AS total_vehicles,
(SUM(CASE WHEN sv.fuel_type ILIKE ’%electric%’
THEN sv.amount ELSE 0 END ) * 100.0 / NULLIF(SUM(sv.amount),
0))
AS proportion_electric_vehicles
FROM spatial_unit AS su
INNER JOIN stock_vehicles AS sv
ON su.spatialunit_uid = sv.spatialunit_uid
WHERE su.name ILIKE ’%geneva%’
AND sv.year = 2010;

8. NULL-value [nationalratswahlen]

In welchen Kantonen stand die Partei SVP 2019 nicht zur Wahl?

SELECT S.name_de AS kanton_ohne_svp_2019
FROM nationalratswahlen AS T
JOIN spatial_unit AS S
ON T.spatialunit_uid = S.spatialunit_uid
WHERE S.canton = ’TRUE’
AND T.partei = ’SVP’
AND T.jahr = 2019
AND T.parteistarke_in_prozent IS NULL ;

Table 3 (End): Complex SQL query examples of hardness "unknown".
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E Failure Case

Upon examining the failed prediction of easy queries, we identified the root cause as a key term swap
between COUNT and DISTINCT during the few-shot ICL execution on Mixtral. As shown below, the
discrepancy between the expected and predicted queries is evident for the Mixtral setting at an easy
difficulty level in the few-shot scenario.

Data Schema baby_names_favorite_firstname

Question How many favorite baby names are registered in year 2011?

Ground Truth SELECT COUNT(DISTINCT first_name) FROM baby_names_favorite_firstname
WHERE year = 2011

Predicted Query SELECT DISTINCT COUNT(bnff.first_name) FROM baby_names_favorite_firstname
as bnff WHERE bnff.year = 2011

F Detailed Results

Experiments Shot
GPT-3.5 Mixtral

EAstrict EAsoft EApartial EAstrict EAsoft EApartial

Zero-shot 0 13.52 (0.33) 13.76 (0.33) 17.95 (0.33) 5.82 (0.33) 5.82 (0.33) 6.52 (0.33)

1 36.36 (0.00) 41.26 (0.00) 46.15 (0.00) 18.18 (0.00) 21.68 (0.00) 23.08 (0.00)
2 36.36 (0.44) 41.68 (0.34) 46.57 (0.34) 21.68 (0.57) 27.97 (0.57) 29.37 (0.57)

Few-shot
3 35.02 (0.81) 41.12 (0.52) 46.01 (0.52) 23.78 (0.44) 29.23 (1.03) 31.75 (1.75)

(Random)
4 36.36 (0.44) 41.26 (0.44) 43.50 (0.52) 24.20 (0.56) 30.07 (0.89) 32.87 (0.89)
5 36.83 (0.33) 44.53(0.33) 50.58 (0.66) 23.78 (0.57) 30.07 (0.57) 32.40 (0.87)
6 37.76 (0.00) 42.66 (0.00) 45.45 (0.00) 21.68 (0.00) 26.57 (0.00) 29.84 (0.33)
8 36.36 (0.00) 41.26 (0.00) 44.76 (0.00) 21.21 (0.33) 29.60 (0.33) 31.94 (0.33)

1 33.57 (0.00) 38.46 (0.00) 41.26 (0.00) 16.92 (0.28) 23.78 (0.00) 26.57 (0.00)
2 33.71 (0.28) 38.60 (0.28) 40.56 (0.00) 21.12 (1.12) 26.71 (1.12) 28.95 (0.95)

Few-shot
3 39.02 (0.28) 45.73 (0.56) 47.83 (0.56) 22.52 (0.82) 28.81 (0.82) 30.63 (0.69)

(Similarity)
4 39.16 (0.44) 46.15 (0.44) 48.25 (0.44) 26.01 (0.69) 32.31 (0.69) 34.13 (0.82)
5 41.68 (0.56) 48.25 (0.44) 50.07 (0.34) 21.68 (0.44) 30.77 (0.44) 35.94 (0.71)
6 40.56 (0.44) 45.45 (0.44) 46.85 (0.44) 28.39 (0.34) 35.38 (0.34) 38.18 (0.34)
8 39.30 (0.52) 44.90 (0.52) 46.99 (0.52) 21.40 (0.34) 28.95 (0.34) 31.47 (0.44)

Table 4: Execution accuracy for different query evaluation metrics (strict, soft and partial). The upper part shows
few-shot results where the samples are randomly selected. The bottom part shows few-shot results where the
samples are selected based on a similarity score. Accuracy is presented by the average and standard deviation across
three separate and independent runs.
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Experiment Hadness
GPT-3.5 Mixtral

EN DE EN DE

Zero-shot

Easy (2,0) 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 0.00 (0.00)
Medium (8,8) 29.17 (5.89) 37.50 (0.00) 41.67 (5.89) 12.50 (0.00)
Hard (9,9) 11.11 (0.00) 22.22 (0.00) 0.00 (0.00) 11.11 (0.00)
Extra hard (24,24) 0.00 (0.00) 29.17 (0.00) 4.17 (0.00) 0.00 (0.00)
Unknown (18,41) 0.00 (0.00) 4.88 (0.00) 0.00 (0.00) 0.00 (0.00)

Few-shot
Easy (2,0) 100.0 (0.00) 0.00 (0.00) 50.00 (0.00) 0.00 (0.00)

(similarity)
Medium (8,8) 75.00 (0.00) 50.00 (0.00) 45.00 (6.12) 37.50 (0.00)
Hard (9,9) 11.11 (0.00) 44.44 (0.00) 11.11 (0.00) 33.33 (0.00)
Extra hard (24,24) 29.17 (2.50) 50.00 (0.00) 25.00 (0.00) 45.83 (0.00)
Unknown (18,41) 27.78 (0.00) 44.88 (1.20) 11.11 (0.00) 24.39 (0.00)

Table 5: Strict execution accuracy (EAstrict) of zero-shot and optimal few-shot results per query hardness (easy,
medium, hard, extra hard, and unknown).
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Figure 6: Strict execution accuracy (EAstrict) per knowledge domain and language over 35 different databases. Left
hand: English. Right hand: German.
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Experiment Execution Accuracy (EA)
GPT-3.5 Mixtral

EN (#82) DE (#61) EN (#82) DE (#61)

Zero-shot
strict 8.75 (0.77) 17.07 (0.00) 10.39 (0.77) 2.44 (0.00)
soft 8.75 (0.77) 17.48 (0.58) 10.39 (0.77) 2.44 (0.00)
partial 10.39 (0.77) 23.17 (0.00) 12.02 (0.77) 2.44 (0.00)

Few-shot
strict 34.43 (0.00) 46.83 (0.60) 22.29 (0.80) 32.93 (0.00)
soft 40.00 (0.80) 54.15 (0.60) 27.21 (0.80) 41.46 (0.00)
partial 41.67 (0.66) 57.08 (0.49) 30.49 (0.80) 43.90 (0.00)

Table 6: Mean execution accuracy (standard deviation) using three different metrics (strict, soft and partial) for
zero-shot and optimal few-shot experiments. The results are shown for the two different languages English (EN)
and German (DE). #XX represents the number of NL/SQL-pairs in the development set for each language.

5507


