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Abstract

Ordinal Classification (OC) is a widely en-
countered challenge in Natural Language Pro-
cessing (NLP), with applications in various do-
mains such as sentiment analysis, rating predic-
tion, and more. Previous approaches to tackle
OC have primarily focused on modifying ex-
isting or creating novel loss functions that ex-
plicitly account for the ordinal nature of labels.
However, with the advent of Pretrained Lan-
guage Models (PLMs), it became possible to
tackle ordinality through the implicit semantics
of the labels as well. This paper provides a com-
prehensive theoretical and empirical examina-
tion of both these approaches. Furthermore, we
also offer strategic recommendations regarding
the most effective approach to adopt based on
specific settings.

1 Introduction

Ordinal classification (OC) is a key task in natural
language processing (NLP), with many applica-
tions that require ordering or ranking in the output
such as Sentiment Analysis (Dang et al., 2020),
Rating Prediction (Liu, 2020), Age Group Classi-
fication (Sánchez-Hevia et al., 2022), etc. In each
of these examples, the output categories have a
natural order, making these tasks suited to ordinal
classification.

Broadly speaking, OC task can be tackled us-
ing one of the following two approaches - explicit
vs implicit. The classical explicit approach relies
on tweaking the loss function based on an explicit
notion of distance between labels and penalising
based on the degree of misclassification (Castagnos
et al., 2022; Díaz and Marathe, 2019). Alternat-
ively, the second implicit approach we propose is
based on more recent advancements in language
modeling. This approach organically engages the
semantics of the labels, thereby harnessing their
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inherent characteristics for the classification task.
Thus, while the former represents a time-tested ap-
proach, the latter offers a new way to tackle OC,
bringing the richness of semantic information into
the classification process. Our paper comprehens-
ively studies the different techniques that fall under
both these strategies. The classical approach re-
lies on tweaking Cross Entropy (CE) which is a
commonly used loss function for nominal classi-
fication (NC) (where the assumption is that the
classes are mutually exclusive and have no inher-
ent order or relationship to each other) (Yamasaki,
2022; Castagnos et al., 2022; Díaz and Marathe,
2019). The performance in NC task is usually meas-
ured in terms of accuracy-based metrics such F1
scores. While CE is optimal for NC, since it treats
all misclassifications as the same, it is sub-optimal
for OC. There are several approaches/tweaks pro-
posed to extend CE loss for OC, such as the ones
proposed by Díaz and Marathe (2019); Castagnos
et al. (2022), which adds a penalty based on the
absolute difference in the class rankings. These
loss functions are designed such that the more the
distance between prediction and ground truth, the
more the penalty. The performance of these OC
tasks is measured in terms of Mean Squared Error
(MSE), Mean Absolute Error (MAE) and Off-by-1
(OB1) accuracy (Castagnos et al., 2022).

Our work fills a crucial gap in the current un-
derstanding of these losses used in OC. Prior to
our research, a unifying analysis of these different
loss based approaches was conspicuously absent,
making it challenging to holistically compare and
contrast their characteristics and performance. In
an attempt to address this lacuna, we evaluate these
loss functions for four desirable properties, namely,
proper scoring rule, unimodality, convexity and or-
dinality. We also propose a loss function which
exhibits these desirable properties while demon-
strating that several of these loss functions can be
interpreted as specialized versions of the proposed
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generalized loss function.
Pretrained Language Models (PLMs), which in-

clude both encoder models (like BERT (Devlin
et al., 2019)) and decoder models (like GPT (Rad-
ford et al., 2018a)), offer a robust mechanism to
learn the semantics or representations of words.
These models are trained on vast amounts of text
data, during which they develop an understanding
of the context in which words are used. Encoder
models like BERT learn to predict a word based on
its surrounding context, thereby creating a rich and
nuanced understanding of word semantics. On the
other hand, decoder models like GPT generate a se-
quence of words, learning to predict the next word
in a sentence, hence understanding semantics in a
left-to-right context manner. This learning process
enables these models to develop high-dimensional
vector representations (embeddings) that capture
the underlying semantics of words.

Interestingly, these semantically rich embed-
dings can be utilized to implicitly factor in the or-
dinality of labels in OC tasks. The numeric vector
representation of words inherently carries semantic
relationships that can mirror ordinal relationships.
For instance, the embeddings of words like "good",
"neutral", and "bad" reflect their comparative se-
mantics in the vector space. When used for OC
tasks, such as sentiment analysis or rating predic-
tion, these learned embeddings can provide a more
natural and effective way to understand and encode
the ordinality of labels. The model does not just
see these labels as distinct classes, but as points on
some latent space, thus allowing a more nuanced
approach to such classification tasks.

In our study, we make the following contribu-
tions to advance the understanding and application
of OC in NLP:

• We conduct a comprehensive analysis of sev-
eral explicit loss-based approaches for Ordinal
Classification (OC), examining them through
the lens of useful theoretical properties, such
as proper scoring rule, convexity, unimodality
and ordinality. Our empirical findings demon-
strate that previously proposed techniques for
solving OC excel primarily in ordinal metrics
while compromising performance on nominal
metrics. This analysis has led us to propose
a hybrid loss function that achieves a better
balance between nominal and ordinal metrics
compared to the performance of its individual
components.

• Further, we study two general PLM based
methodologies (encoder & decoder-based)
that implicitly factor in ordinality. These ap-
proaches signify a paradigm shift from tradi-
tional methods, opening up new avenues in
ordinal classification.

• Lastly, we undertake an exhaustive compar-
ison of these explicit and implicit approaches
under different scenarios, providing neces-
sary ablations and conclude by offering stra-
tegic recommendations on the suitable choice
between these approaches in §6.

The rest of the paper is organized as follows:
In §2, we discuss the various explicit approaches
i.e. review the loss functions and discuss their the-
oretical properties. Using this as motivation, we
also propose a new hybrid loss function and study
it’s properties. In §3, we discuss the encoder mod-
els and show how OC can be approached from an
entailment-style modeling perspective. In §4, we
discuss the decoder models and how OC can be ap-
proached from a next word prediction task perspect-
ive. Figure 2 depicts the explicit as well as implicit
approaches. In §5, we empirically compare these
three methods and give our recommendations.

2 Explicit approach: Loss-functions and
Analysis

Loss PSR UM CX Ord
CE ✓ × ✓ low

OLL ✓ × ✓ high
MLL ✓ × ✓ high
SOFT × × ✓ low
EMD ✓ × ✓ low

CORAL ✓ × ✓ low
VS-SL × ✓ × low
WKL ✓ × × low

Table 1: Various properties satisfied by different loss
based approaches. Notation: PSR - Proper Scoring Rule,
UM - Unimodality, CX - Convexity, Ord - Ordinality

Let {(Xi, yi)}Ni=1 be N independent and identic-
ally distributed datapoints containing the input fea-
tures Xi and their corresponding labels yi; where
yi ∈ {1, . . . ,K} where K is the number of classes.
The output of the classifier is denoted by Φθ(Xi) =
p̂i = (p̂i1 , . . . , ˆpiK ) which is a probability distribu-
tion over the K classes. Let I(yi) be the one-hot en-
coding of yi. The classifier is trained by optimizing
the parameters θ such that 1

N

∑N
i=1 Lθ(p̂i, I(yi))

reaches a minimum. In the rest of the paper, for
ease of understanding, we omit the indexing with
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excellent
good

average
bad

awful

17%
11%

50%
13%

9%

probability

excellent
good

average
bad

awful

5%
10%

50%
20%

15%

probability

Figure 1: Classifier output on
the top does not satisfy UM as
the probabilities do not decrease
monotonically on either side of
the max probability label (label:
average); whereas the classifier
output on the bottom satisfies
UM

Figure 2: [Best viewed in color] (1) Explicit Approach: We explicitly impose ordinality
in the predictions by designing losses like MLL, OLL, etc. (2) Implicit Approach: In
this entailment technique, ordinality is implicitly enforced by passing the label semantic
information in the input itself. (3) Here we use a decoder LM to auto-regressively predict
the label in natural language format given the input sentence. (Notation: PLME : Encoder
PLM, PLMD: Decoder PLM)

respect to i, i.e. remove the 1
N and

∑N
i=1, wherever

it is evident from the loss expression.
In the next subsection, we give a few desirable

theoretical properties of the loss function L in the
context of OC and then follow it up by discussing
some of the widely used loss functions.

2.1 Desirable Properties of Losses in OC

Proper Scoring Rule (PSR): A loss is said to be
a PSR (Gneiting and Raftery, 2007; Merkle and
Steyvers, 2013) if it takes the lowest value when
the predicted class probabilities match the ground
truth which is a one-hot encoded K-dimensional
vector. Being PSR ensures that the loss indeed
tries to optimize the classifier to predict the ground
truth without injecting any bias in the predicted
outputs. Further, PSR losses also help to produce
well calibrated probabilities (Lakshminarayanan
et al., 2017).

Convexity (Cx): Convexity of L with respect to
p̂ is a desirable property of the loss as it is an essen-
tial requirement for several convex formulations of
Neural Networks (NNs) (Kawaguchi et al., 2019;
Du et al., 2019; Pilanci and Ergen, 2020; Wojtow-
ytsch, 2023). Further, if both L and Φ (classifier
function) are convex with respect to θ (as in the
case of logistic regression or support vector ma-
chines), then it is guaranteed that the local minima
indeed coincides with the global minima.

Several widely used losses such CE, MAE, MSE,
etc. are both PSRs and Convex. Next, we look at
two desirable characteristics of the output probabil-

ities from the classifier in the context of OC.
Unimodality (UM): If the output probabilities

have single mode, i.e. p̂j > p̂l < p̂i is not satisfied
for any 1 ≤ j < l < i ≤ K, then we say the
classifier satisfies the UM condition (Beckham and
Pal, 2017; Yamasaki, 2022; Iannario and Piccolo,
2011). An illustration is given in Figure 1.

Ordinality (Ord): In the context of OC, we
require the loss L to explicitly penalize the mis-
classifications more which are farther away from
each other compared to the ones which are closer.
The goal is to enforce a meaningful ordering among
the labels unlike nominal classifcation where cat-
egories lack a specific order. We will see later that
different loss functions enforce ordinality to a vary-
ing degree.
In the next subsection, we discuss some of the
widely used loss functions in the context of OC in
NLP.

2.2 Widely used Loss Functions in OC

Cross-Entropy (CE): CE is given by

−
K∑

k=1

pk log(p̂k) (1)

The above expression boils down to − log(p̂yi).
Oftentimes CE is discredited for not being able to
factor in ordering as its expression does not take
into account the probabilities corresponding to the
non-groundtruth classes.

Ordinal Log Loss (OLL) (Castagnos et al.,
2022): OLL is given by
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−
∑

k ̸=y

|k − y|αlog(1− p̂k). (2)

Here α > 0 is a hyperparameter. This can be
seen as a complementary of CE where the miss-
classification is explicitly penalized in proportion
to its degree by the term |k − y|α. Both CE and
OLL belong to PSR family as both these losses are
zero when the output probabilities coincide with
the ground truth one-hot encoding.

SOFT labels (SOFT) (Díaz and Marathe,
2019): In this approach, first the ground truth K-
dimensional onehot encoded is modified to K ‘soft’
labels as follows.

psoft
k =

exp(−β|k − y|)∑
k′ exp(−β|k′ − y|) (3)

Then CE loss can be computed using these soft
ground labels as truth probabilities.

−
K∑

k=1

psoft
k log(p̂k) (4)

Clearly, introducing softlabels makes this ap-
proach not fall in the PSR family as the ground-
truth onehot encoding vector does not minimize
the loss anymore.

Earth Mover Distance (EMD) (Rubner et al.,
2000) : EMD or Wasserstein loss is defined

EMD = (CDF(I(yi))− CDF(p̂i))
2

Here CDF refers to the cumulative distribution
function. While EMD is a PSR, it does not impose
a strong penalty in the tails (as compared to OLL)
because CDFs are monotonic with range in [0, 1]
and hence the difference between the CDFs will be
small in the tails.

Unimodal Losses: da Costa et al. (2008) and
Beckham and Pal (2017) introduced a parametric
way to force unimodality in the predicted probab-
ility scores by first computing a scalar function
f(x) ∈ [0, 1] and then using this scalar to paramet-
erise a Binomial distribution Bin(f(x)). The Prob-
ability Mass Function (PMF) is computed which
forms the final predicted probabilities. Note that
the computing a single scalar f(x) (as opposed a
vector of embeddings as done in other methods)
severely hampers the learning; thus the guarantee
of unimodality comes at the cost of degradation
in performance. To address this, Yamasaki (2022)
proposes a more-flexible unimodal OC framework
by imposing shape-based constraints on the output
probabilities; the V-Shaped Stereotyped Logit (VS-
SL) method has shown to be the state-of-the-art for

UM in their work and hence, we use it as a baseline
in our experiments.

We also include two more loss function variants,
namely COnsistent RAnk Logits (CORAL) (Cao
et al., 2020) and Weighted Kappa Loss (WKL)
(de la Torre et al., 2017), and benchmark their ef-
fectiveness in terms of accuracy and ordinality.

To benchmark the performance of the above loss
functions, we run experiments on three benchmark
multi-class text classification datasets, each with
distinct tasks: Hypothesis entails Premise task -
SNLI (Bowman et al., 2015), Reviews Classifica-
tion task - Amazon Reviews (AR) (Keung et al.,
2020), and Sentiment Analysis task - SST-5 (Socher
et al., 2013). We report weighted-F1 scores and
MAE, MSE, Off-by-1 (OB1) accuracy to measure
both classification and ordinal performance respect-
ively. In the interest of space, we present the details
of datasets and metrics in Appendix A and B.

We observe that in general CE performs best in
terms of nominal metrics (like weighted-F1) and
OLL performs best in terms of ordinal metrics on
an average. However, there seems to be a trade-
off between nominal and ordinal performance i.e.
the improvement in ordinal metrics comes at the
expense of nominal metrics. However, given that
all these metrics are also from the PSR family, and
in some sense are not independent of each other
as a perfect classifier would improve both these
metrics simultaneously. This intuition prompted
us to experiment with a weighted combination of
CE and OLL, which we have named Multitask Log
Loss (MLL), hypothesizing that it would inherit
the best attributes of both methods.

Multi-task log loss function (MLL): MLL is
given by

MLL = λ× CE + (1− λ)×OLL (5)

Here, λ ∈ [0, 1] is a hyperparameter. MLL satisfies
both convexity and PSR conditions. Further, while
OLL and MLL are not theoretically guaranteed to
be UM, but empirically have been found to be sat-
isfying UM condition for 80-90% test datapoints
which we show later in Figure 4. A summary of
the properties satisfied by different loss-based ap-
proaches is given in Table 1, with discussions in
Appendix D and E. Note that while it’s theoretic-
ally possible to consider weighted combinations
involving other loss functions, we only considered
CE and OLL here because OLL has already been
shown to outperform other losses in terms of or-
dinal metrics (Castagnos et al., 2022) and we aimed
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to improve its performance in term of nominal met-
rics as well, by adding with the CE term.

We follow Castagnos et al. (2022) and using
TinyBERT as the backbone model, ran CE, OLL,
MLL, SOFT, EMD, CORAL, WKL and VS-SL
on the three real datasets mentioned in Appendix
A and compute the both the nominal and ordinal
metrics mentioned in Appendix B. The results are
given in Table 2.

Dataset Loss LR F1 MSE MAE OB1

SS
T

5

CE 2.5E-05 0.357
(0.01)

1.197
(0.00)

0.768
(0.02)

0.852
(0.00)

MLL 1E-04 0.378
(0.02)

1.125
(0.01)

0.742
(0.01)

0.863
(0.00)

OLL 2.5E-05 0.359
(0.02)

1.055
(0.00)

0.740
(0.01)

0.870
(0.00)

WKL 7.5E-05 0.366
(0.00)

1.250
(0.00)

0.809
(0.02)

0.847
(0.01)

SOFT 1E-04 0.382
(0.00)

1.152
(0.00)

0.751
(0.03)

0.856
(0.00)

EMD 1E-04 0.354
(0.02)

1.125
(0.03)

0.744
(0.02)

0.857
(0.03)

CORAL 1E-04 0.109
(0.00)

2.739
(0.01)

1.281
(0.06)

0.641
(0.00)

VS_SL 2.5E-05 0.233
(0.05)

2.099
(0.02)

1.087
(0.09)

0.710
(0.01)

A
m

az
on

R
ev

ie
w

s

CE 1E-04 0.543
(0.02)

0.904
(0.04)

0.581
(0.01)

0.903
(0.00)

MLL 7.5E-05 0.544
(0.00)

0.819
(0.01)

0.568
(0.00)

0.915
(0.00)

OLL 1E-04 0.530
(0.00)

0.788
(0.00)

0.571
(0.00)

0.924
(0.00)

WKL 5E-05 0.515
(0.00)

0.871
(0.00)

0.594
(0.01)

0.907
(0.05)

SOFT 7.5E-05 0.537
(0.00)

0.904
(0.00)

0.586
(0.01)

0.903
(0.00)

EMD 5E-05 0.534
(0.00)

0.885
(0.00)

0.584
(0.00)

0.904
(0.00)

CORAL 1E-04 0.349
(0.00)

1.363
(0.01)

0.781
(0.01)

0.890
(0.00)

VS_SL 5E-05 0.377
(0.05)

1.535
(0.08)

0.853
(0.03)

0.793
(0.02)

SN
L

I

CE 5E-05 0.821
(0.00)

0.264
(0.00)

0.208
(0.02)

0.972
(0.01)

MLL 7.5E-05 0.832
(0.00)

0.257
(0.01)

0.205
(0.01)

0.974
(0.00)

OLL 1E-04 0.803
(0.01)

0.250
(0.03)

0.217
(0.01)

0.980
(0.02)

WKL 1E-04 0.782
(0.01)

0.289
(0.03)

0.242
(0.02)

0.975
(0.00)

SOFT 1E-04 0.824
(0.00)

0.257
(0.01)

0.203
(0.00)

0.972
(0.00)

EMD 1E-04 0.826
(0.00)

0.250
(0.00)

0.199
(0.01)

0.975
(0.00)

CORAL 1E-04 0.815
(0.00)

0.251
(0.02)

0.207
(0.02)

0.977
(0.01)

VS_SL 5E-05 0.778
(0.02)

0.339
(0.04)

0.261
(0.03)

0.955
(0.00)

Table 2: Loss functions comparison on three datasets
using BERT-tiny architecture

In order to facilitate fair comparison across expli-
cit and implicit approaches (discussed in the later
sections), we repeat the same experiments with
BERT-base-uncased. The results are given in Table
3 (refer Appendix C for the implementation details).
Note that the performance of different loss func-
tions is better contrasted when the size of the base
model is small, which is usually the case in online
settings where we cannot deploy larger models.

Dataset Loss LR F1 MSE MAE OB1

SS
T

5

CE 1E-05 0.484
(0.01)

0.761
(0.04)

0.576
(0.02)

0.925
(0.01)

MLL 5E-05 0.492
(0.01)

0.757
(0.01)

0.575
(0.02)

0.931
(0.00)

OLL 5E-05 0.456
(0.01)

0.735
(0.00)

0.586
(0.01)

0.927
(0.00)

WKL 2.5E-05 0.488
(0.00)

0.751
(0.01)

0.584
(0.03)

0.926
(0.03)

SOFT 1E-05 0.486
(0.00)

0.761
(0.01)

0.581
(0.02)

0.924
(0.01)

EMD 7.5E-05 0.466
(0.01)

0.770
(0.02)

0.592
(0.01)

0.916
(0.00)

CORAL 1E-05 0.450
(0.02)

0.927
(0.00)

0.717
(0.01)

0.923
(0.00)

VS_SL 1E-05 0.2764
(0.04)

2.663
(0.02)

1.204
(0.08)

0.670
(0.08)

A
m

az
on

R
ev

ie
w

s

CE 1E-05 0.586
(0.04)

0.675
(0.01)

0.485
(0.06)

0.938
(0.03)

MLL 5E-05 0.589
(0.04)

0.634
(0.01)

0.476
(0.06)

0.945
(0.03)

OLL 2.5E-05 0.586
(0.00)

0.622
(0.00)

0.477
(0.00)

0.948
(0.00)

WKL 1E-05 0.582
(0.02)

0.641
(0.03)

0.482
(0.07)

0.944
(0.01)

SOFT 1E-05 0.584
(0.00)

0.681
(0.00)

0.489
(0.00)

0.937
(0.00)

EMD 5E-05 0.580
(0.00)

0.652
(0.01)

0.490
(0.00)

0.942
(0.00)

CORAL 5E-05 0.406
(0.00)

1.231
(0.01)

0.865
(0.01)

0.966
(0.00)

VS_SL 7.5E-05 0.328
(0.01)

1.613
(0.02)

0.907
(0.05)

0.786
(0.00)

SN
L

I

CE 5E-05 0.890
(0.02)

0.152
(0.04)

0.123
(0.01)

0.985
(0.01)

MLL 5E-05 0.891
(0.02)

0.149
(0.04)

0.122
(0.02)

0.986
(0.01)

OLL 5E-05 0.890
(0.01)

0.143
(0.00)

0.121
(0.01)

0.989
(0.00)

WKL 1E-05 0.865
(0.01)

0.184
(0.01)

0.152
(0.00)

0.984
(0.00)

SOFT 5E-05 0.889
(0.02)

0.160
(0.02)

0.127
(0.04)

0.980
(0.00)

EMD 1E-05 0.890
(0.00)

0.154
(0.04)

0.126
(0.02)

0.985
(0.00)

CORAL 7.5E-05 0.885
(0.00)

0.189
(0.01)

0.128
(0.01)

0.988
(0.00)

VS_SL 2.5E-05 0.810
(0.01)

0.300
(0.01)

0.226
(0.01)

0.963
(0.00)

Table 3: Loss functions comparison on three datasets
using BERT-base architecture

3 Implicit approach: Entailment-style
Encoder Models

Wang et al. (2021) proposed reformulating vanilla
classification into an entailment-style task to en-
hance the few-shot capabilities of PLMs. Here, the
model learns to predict whether the input text and
the label entail each other or not (similar to Natural
Language Inference (NLI) setting), leveraging the
inherent semantic relationship between the label
and input text. We adopt a similar approach for our
task and explore it through the lens of ordinality,
which has not been studied in prior works.

We assume the existence of a classifier, based
on Pretrained Language Model (PLM), called Φθ.
Let L = {L1, L2, . . . , LK} be the collection of
textual labels. The training dataset can be divided
based on the labels into Dtr, which consists of sub-
sets D1, D2, . . . , DK . Each subset contains the
available training data {xki}nk

i=1 for label Lk. The
corresponding test data is represented by Dtst.

During the training phase in Dtr, the following
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entailment-style data augmentation technique is
employed: For each data point xij with a ground
truth label of Lj , K samples ({skij}Kk=1) are gener-
ated and augmented as follows:

skij = {xij + verbaliser(Lk),1j(k)}Kk=1 (6)

Here, 1j(k) is an indicator function that yields
1 if k = j else 0. The ‘+’ operator denotes con-
catenation operation (refer §C), and verbaliser()
is a pre-defined template (specific to the down-
stream task) describing the label in natural lan-
guage. For example, in sentiment classification
task verbaliser(Lj = positive) can be described
as: indicates positive sentiment. See Fig-
ure 2 for example.

Essentially, for each data point, (K − 1) neg-
ative samples and 1 positive sample are created.
Finally the problem reduces to the following NLI
task - Does xij entail verbaliser(Lj) or not? Once
these K × ∑

nk augmented examples are gener-
ated, the parameters θ are finetuned for a binary
classification task, where skij serves as the input
and 1j(k) acts as the ground truth. During the in-
ference phase, for a datapoint x the predicted label
L̂ is obtained using:

L̂ = argmax
k

{Φθ(s
k)} ∀ i ∈ {1, . . . , nk} (7)

During inference for x, sk is computed following
Eq. 6 and softmax() is applied on the predicted
logits before taking argmax so that all the class
probabilities sum up to 1. As the model leverages
the natural language meanings of the labels dur-
ing training, we argue it is inherently capable of
learning to predict labels that are ordinally consist-
ent. For instance, the model learns to comprehend
that the label very negative sentiment is closer
in semantic space to negative sentiment than
to very positive sentiment. This understand-
ing prevents the model from deviating significantly
from the actual ground truth. In contrast, in the
case of vanilla CE, these labels are treated solely
as numbers, disregarding their inter-semantic re-
lations. We again use BERT-base here as base
model for performing experiments. The exact label
verbalisers used for all datasets are mentioned in
Appendix 8.

4 Implicit approach: Generative Models

Decoder-based text generative models have seen
notable advancements in recent years, facilitating
the production of coherent and contextually rel-
evant text. The development of models like the

GPT series (Radford et al., 2018a,b; Brown et al.,
2020) has led to state-of-the-art results in text gen-
eration and summarization benchmarks. One of the
primary objectives of this paper is to investigate
whether these models demonstrate ordinal beha-
vior by accurately capturing the inherent order or
ranking of elements in the generated text.

Formally, in the context of OC, for a given a tex-
tual input xi which comprises the following words
(wi1 , wi2 , . . . , win) and its corresponding ground
truth label Li, we append the input and label as
(wi1 , wi2 , . . . , win , Li). Next, the parameters θ of
generative model are finetuned s.t.

θ∗ = argmax
θ

N∑

i=1

logP (wi1 , . . . , win , Li; θ)

During inference for ith input xi, the generative
model predicts the word win+1 from the vocabulary
V which maximizes the conditional probability:

L̂ = argmax
win+1

∈V
{logP (win+1 |wi1 , . . . , ; θ

∗)} (8)

Further, it is possible that the predicted label may
not be in the set of ground truth labels i.e. for an ith

input xi the label L̂i /∈ L where L is the set of K
distinct labels (see Appendix 9). This is the notori-
ous hallucination problem associated with generat-
ive models. To mitigate this issue during inference,
we compare the conditional log-probabilities of
each the K labels , given the text segment xi. The
class corresponding to the highest probability is
proposed as the generated label. That is, given that
θ∗ represents the learned parameters of LM, the
label selection during inference will be s.t.

L̂ = argmax
Lj∈L

logP (Lj |wi1 , . . . , win ; θ
∗) (9)

Here (wi1 , wi2 , . . . , win) are the words in input xi

and (L1, L2, . . . , LK) are the labels in the set L.
For fair comparison with other explicit and im-

plicit approaches, we use GPT2-small as our base
model for experiments to maintain similar number
of model parameters (with BERT-base). Similar to
the entailment approach (§3), we also experiment
with informative and un-informative verbalisers
here.

Motivated by recent advancements and the ac-
cessibility of open-source Large Language Models
(LLMs), and to demonstrate the true potential of
the generative approach, we also experiment with
Llama-7B (Touvron et al., 2023), a decoder-based
LLM with 7 billion parameters. Pre-trained on
trillions of tokens using publicly available data, it
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100 %
Dataset Metric CE MLL

SN
L

I
F1 0.821

(0.00)
0.832
(0.00)

MSE 0.264
(0.00)

0.257
(0.01)

MAE 0.208
(0.02)

0.205
(0.01)

OB1 0.972
(0.01)

0.974
(0.00)

SS
T

5

F1 0.357
(0.01)

0.378
(0.02)

MSE 1.197
(0.00)

1.125
(0.01)

MAE 0.768
(0.02)

0.742
(0.01)

OB1 0.852
(0.00)

0.863
(0.00)

A
m

az
on

R
ev

ie
w

s

F1 0.543
(0.02)

0.544
(0.00)

MSE 0.904
(0.04)

0.819
(0.01)

MAE 0.581
(0.01)

0.568
(0.00)

OB1 0.903
(0.00)

0.915
(0.00)

Table 4: CE vs MLL using
TinyBERT as base model.
For full comparison refer
Table 2.

100 % 50 % 25 % 10 %
CE MLL ENT GPT CE MLL ENT GPT CE MLL ENT GPT CE MLL ENT GPT

SN
L

I F1 0.890
(0.02)

0.891
(0.02)

0.885
(0.30)

0.776
(0.00)

0.873
(0.00)

0.882
(0.09)

0.885
(0.04)

0.654
(0.00)

0.861
(0.00)

0.865
(0.04)

0.869
(0.01)

0.527
(0.01)

0.836
(0.00)

0.848
(0.04)

0.845
(0.01)

0.389
(0.01)

MAE 0.123
(0.01)

0.122
(0.02)

0.128
(0.00)

0.261
(0.00)

0.146
(0.00)

0.131
(0.01)

0.129
(0.00)

0.424
(0.00)

0.161
(0.00)

0.153
(0.01)

0.150
(0.00)

0.599
(0.02)

0.191
(0.00)

0.171
(0.05)

0.181
(0.00)

0.811
(0.01)

MSE 0.152
(0.04)

0.149
(0.04)

0.157
(0.01)

0.338
(0.00)

0.188
(0.00)

0.156
(0.05)

0.159
(0.00)

0.596
(0.00)

0.206
(0.00)

0.190
(0.00)

0.190
(0.00)

0.878
(0.04)

0.249
(0.01)

0.210
(0.06)

0.236
(0.00)

1.263
(0.04)

OB1 0.985
(0.01)

0.986
(0.01)

0.985
(0.02)

0.961
(0.00)

0.979
(0.00)

0.987
(0.02)

0.980
(0.00)

0.913
(0.00)

0.977
(0.00)

0.981
(0.02)

0.980
(0.00)

0.860
(0.01)

0.971
(0.00)

0.980
(0.00)

0.972
(0.00)

0.774
(0.01)

SS
T

5

F1 0.484
(0.01)

0.492
(0.01)

0.508
(0.01)

0.487
(0.02)

0.442
(0.02)

0.468
(0.03)

0.46
(0.02)

0.476
(0.00)

0.415
(0.03)

0.440
(0.04)

0.423
(0.03)

0.316
(0.01)

0.417
(0.02)

0.428
(0.08)

0.430
(0.03)

0.274
(0.02)

MAE 0.576
(0.02)

0.575
(0.02)

0.543
(0.01)

0.585
(0.01)

0.620
(0.01)

0.600
(0.02)

0.585
(0.01)

0.595
(0.00)

0.652
(0.04)

0.620
(0.04)

0.619
(0.04)

0.966
(0.03)

0.697
(0.02)

0.662
(0.10)

0.651
(0.01)

1.043
(0.02)

MSE 0.761
(0.04)

0.757
(0.01)

0.683
(0.02)

0.802
(0.02)

0.845
(0.04)

0.760
(0.04)

0.694
(0.04)

0.819
(0.01)

0.910
(0.10)

0.827
(0.12)

0.870
(0.01)

1.740
(0.10)

1.04
(0.06)

0.905
(0.25)

0.871
(0.01)

1.897
(0.19)

OB1 0.925
(0.01)

0.931
(0.00)

0.932
(0.01)

0.918
(0.00)

0.910
(0.08)

0.929
(0.01)

0.93
(0.01)

0.912
(0.00)

0.902
(0.01)

0.918
(0.02)

0.911
(0.02)

0.769
(0.01)

0.875
(0.01)

0.898
(0.05)

0.915
(0.02)

0.734
(0.01)

A
m

az
on

R
ev

ie
w

s

F1 0.586
(0.04)

0.589
(0.04)

0.585
(0.03)

0.522
(0.00)

0.573
(0.00)

0.579
(0.01)

0.586
(0.02)

0.449
(0.01)

0.563
(0.00)

0.572
(0.02)

0.573
(0.01)

0.402
(0.00)

0.534
(0.01)

0.553
(0.03)

0.544
(0.01)

0.389
(0.00)

MAE 0.485
(0.06)

0.476
(0.06)

0.483
(0.01)

0.573
(0.01)

0.505
(0.00)

0.497
(0.01)

0.480
(0.00)

0.678
(0.00)

0.520
(0.00)

0.503
(0.07)

0.502
(0.02)

0.773
(0.00)

0.56
(0.01)

0.528
(0.05)

0.541
(0.02)

0.813
(0.00)

MSE 0.675
(0.01)

0.634
(0.01)

0.664
(0.02)

0.848
(0.04)

0.707
(0.01)

0.683
(0.03)

0.655
(0.01)

1.085
(0.01)

0.739
(0.02)

0.698
(0.05)

0.689
(0.02)

1.348
(0.01)

0.835
(0.04)

0.708
(0.06)

0.767
(0.01)

1.475
(0.01)

OB1 0.938
(0.03)

0.945
(0.03)

0.939
(0.01)

0.911
(0.00)

0.932
(0.00)

0.935
(0.00)

0.942
(0.00)

0.864
(0.00)

0.929
(0.00)

0.938
(0.03)

0.935
(0.01)

0.825
(0.00)

0.913
(0.00)

0.934
(0.02)

0.925
(0.01)

0.807
(0.00)

Table 5: Comparison of techniques for all 3 datasets in full-data and few-shot settings (100,
50, 25, 10% of data) using BERT-base and GPT2-small as base models. We include one
representative loss from each approach - cross-entropy (CE) baseline (nominal), proposed
explicit ordinal loss (MLL) and implicit approaches - Entailment (ENT), Generative (GPT).

achieves state-of-the-art performance, surpassing
its larger predecessors like GPT-3 (175B) on the
majority of benchmarks.

Note that our approach is different from
GPT2ForSquenceClassification1 where the last
embedding of the last token is used for classifica-
tion, which is similar to encoder-model (like BERT)
style classification. Instead we train it for a lan-
guage modelling task to generate within a fixed set
of tokens i.e. the set of labels.

5 Results and Discussion

For the explicit loss-based approaches, the exper-
imental results presented in Table 4 and 5 show
that our proposed hybrid MLL loss improves the
ordinal performance (as measured via MAE, MSE,
OB1), compared to CE, without compromising
its performance along the nominal dimension (as
measured via weighted-F1). A detailed comparison
of the performance of MLL against other ordinal
loss functions is given in Table 3 where we further
notice that MLL consistently achieves a balanced
performance on both ordinal and nominal metrics,
compared to other ordinal losses where nominal
metrics degrade in general. But, compared to the
results of TinyBERT in Table 2, the difference in
performances is less pronounced (Castagnos et al.,
2022). The observed phenomenon may be ex-
plained by the necessity for the smaller base mod-
els to rely more on the explicit enforcement of or-
dinal losses in enhancing performance in OC tasks.

1https://tinyurl.com/am93sjdw

However, as mentioned in §2, given that both the
losses and metrics are also from the PSR family,
and hence are not independent of each other, a big-
ger base model would improve both the nominal
and ordinal metrics simultaneously. Thus, in off-
line use cases where it is possible to deploy much
bigger models, the difference in performance due
to various losses is quite minimal. However, in
online settings, where it is imperative to deploy
lightweight models due to latency reasons, the dif-
ference is quite pronounced.

When considering implicit approaches, we ob-
serve that the Entailment (ENT) approach performs
on par with the MLL loss across all three datasets,
without any explicit ordinality enforcing mechan-
ism. It even outperforms CE, MLL, and GPT in
almost all data settings for SST-5. This could
be attributed to the fact that SST-5 has a signific-
antly lower number of samples (∼12k) compared to
SNLI and AR (∼200k). Thus, the ENT approach
performs better in few-shot scenarios. Another
interesting observation is that for SNLI and AR,
although the performances of ENT and MLL are
similar, the standard deviation numbers are con-
sistently lower in the case of ENT, making it a
reliable and relatively more stable approach to use
in low-data settings. This supports our claimed hy-
pothesis that the model is able to leverage natural
language label descriptions to inherently enforce
ordinality in its predictions.

To examine the impact of incorporating inform-
ative verbalisers, we also fine-tuned using un-
informative ones, replacing the label descriptions
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Figure 3: Effect of informative vs uninformative prompts in Implicit approaches on the nominal (F1) and ordinal metrics (MAE,
MSE, OB1) on SNLI (top), SST5 (middle) and Amazon Reviews (bottom) datasets. Results averaged across 5 random seeds.
(Notation: _U refers to the un-informative verbaliser variant. Weighted-F1 and OB1: ↑ better, MAE and MSE: ↓ better.)

with unrelated words such as "cat"/"lion"/"zebra".
Our observations, depicted in Figure 3, reveal in-
triguing findings. When the training data volume is
low, the effect of label semantics becomes clearly
visible. In the SST-5 dataset (with training data
volume ∼10k), the influence of informative la-
bels is evident across all settings (refer to middle
section in Figure 3). Similarly, in the AR and SNLI
datasets (with training data volume ∼250k), the im-
pact of informative labels is noticeable only in the
25% or 10% data settings (refer to top and bottom
sections in Figure 3). In other cases, the distinc-
tion is less clear due to the sheer volume of train-
ing data; even un-informative labels yield decent
performance, possibly leveraging some spurious
correlations, thus rendering the semantics not so
effective. This finding also aligns with the hypo-
thesis proposed by Wang et al. (2021), indicating
that prompt-based models may not leverage label
semantics as expected, with the dependency be-
ing influenced by the model and dataset size to
some extent. On another note, for ENT approach,
the inference time is scaled by ∼O(K) (K: total
labels). But with more carefully engineered verbal-
isers, similar or even better performance could be
achieved even with smaller base models (Jin et al.,
2022) making it a suitable candidate for ordinal
problems.

In our generative (GEN) approach, we initially
employed the GPT2-small model for experiments,
as it has a comparable number of fine-tunable para-

meters to the encoder counterpart used in ENT &
Explicit loss approaches. Despite its usual under-
performance compared to MLL and ENT, which
aligns with the general observation that GPT-2 typ-
ically fares worse than BERT-base on most clas-
sification tasks (Neerudu et al., 2023), we demon-
strate its ability to recognize label order by contrast-
ing informative versus un-informative verbalisers,
akin to the ENT approach. Similar trends are ob-
served with the Entailment technique, particularly
the significant failure of the un-informative verb-
aliser variant on the SST-5 dataset. Across other
datasets, performance in terms of F1-score is com-
parable to the informative variant, except for 10%
case in SNLI and AR (low-data setting). Notably,
for ordinal metrics like MAE and MSE, we observe
high variance in AR and SST-5 datasets (Figure 3),
underscoring the importance of employing inform-
ative label verbalizers for stable learning. Two
common findings emerge from the informative vs
un-informative ablations in both ENT and GEN ex-
periments: (a) The hypothesis posited in (Webson
and Pavlick, 2022) holds true for ordinal metrics
as well as nominal metrics. (b) Label semantics
become significant only in low-data settings.

The purpose of presenting GPT-2 results was
to illustrate the true potential of generative ap-
proaches, through LLMs, as introduced in §4.
We leverage the Llama-Adapter technique (Zhang
et al., 2023) which introduces only 1.2M tunable
parameters over the base model by prepending a
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set of learnable adaption verbalisers to the word
tokens at higher transformer layers and show that it
still outperforms all explicit & implicit approaches
presented above (refer Table 6). While we acknow-
ledge that the enhanced ordinal performance may
be attributed to the increased classification perform-
ance resulting from larger model size, we refer to
Table 6 to demonstrate that even with larger base
models, the distinction between informative and un-
informative verbalisers persists. This underscores
the model’s ability to recognize label order. In Fig-
ure 4 we show the % of samples which follow the
unimodality (UM) property empirically. Although
there is no theoretical guarantee for both our pro-
posed explicit & implicit strategies, we observe
∼ 95%+ samples satisfy this property which justi-
fies the increased ordinal performance of the above
discussed approaches.

SST AR SNLI
I U I U I U

F1 60.845
(0.16)

58.55
(0.22)

62.71
(0.02)

62.4
(0.1)

90.19
(0.15)

89.08
(0.39)

MAE 0.4066
(0.003)

0.4327
(0.008)

0.4139
(0.001)

0.4186
(0.003)

0.1068
(0.001)

0.1188
(0.004)

MSE 0.4538
(0.007)

0.4918
(0.01)

0.5087
(0.005)

0.5182
(0.008)

0.1241
(0.001)

0.1366
(0.013)

OB1 0.9786
(0.001)

0.9750
(0.003)

0.963
(0.001)

0.9595
(0.003)

0.9913
(0.001)

0.9911
(0.002)

Table 6: Effect of informative (I) vs un-informative (U) verb-
alisers on Llama-7B

SST

Amazon Reviews

SNLI

SST
0.9

0.95
1.0

GPT-2
Entailment
MLL
CE

Figure 4: % samples following UM property.

Technique Recommended Setting
MLL high-data regime, high % unimodality
ENT low-data regime, inference time ∼ O(K)
LLM high-data regime, compute-intensive,

hallucinates in low-data setting

Table 7: Recommended techniques for various settings

6 Conclusion

This paper presents an unified analysis of expli-
cit and implicit strategies for addressing OC. It is

the first study to thoroughly examine and compare
these approaches from both theoretical and em-
pirical standpoints. Our analysis (summarized in
Table 7) reveals that MLL demonstrates balanced
performance across ordinal and nominal metrics,
unlike existing explicit losses. However, in few-
shot scenarios, ENT is preferred for its ability to
achieve optimal performance with fewer examples,
leveraging label semantics. Furthermore, we high-
light the importance of providing informative verb-
alisers in low-data settings, resulting in reduced
variance and improved outcomes. However, the dis-
tinction between strategies becomes less clear with
increasing data. In full-data scenarios, fine-tuning
Llama-7B-Adapter surpasses previous approaches
due to its substantial model size. Interestingly, even
with such a large base model, the impact of adding
informative verbalisers remains apparent, indicat-
ing its recognition of label order. We hope that
our work will serve as a benchmark encompassing
multitude of approaches, providing a foundation
for future efforts to address OC in NLP.

7 Limitations

In this study, we don’t consider the effect of prob-
ability calibration techniques on the explicit ap-
proaches (Kull et al., 2019), as the techniques em-
ployed are largely identical to those used in nom-
inal classification, offering no distinct or novel
methodologies specifically for OC tasks. Also
for implicit approaches, a more deeper analysis
is required on how implicit methods like LLMs &
PLMs implicitly capture ordinality. It’s not always
analogous to how humans use task instructions as
shown in Webson and Pavlick (2022). Furthermore,
in this study we limit ourselves to only finetuning-
based OC approaches. However, it would also be
interesting to explore OC through the lens of in-
context learning (ICL) for generative approaches.
Also for the generative approach, we make the as-
sumption that the label word will not break further
into multiple tokens by re-mapping original labels
to simpler words (see Appendix 9). This avoids
having to account for multiple token probabilities
when taking the argmax. Without this some sort of
normalization would be required across the entire
generation length to compare different outputs. We
leave these discussions for future work. Although
we observe that LLMs such as Llama-7B outper-
form all other models in full-data settings, they
pose challenges in terms of compute resources and
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inference time. Additionally, fine-tuning Llama-7B
is susceptible to hallucinations in low-data settings
(Zhao et al., 2021), which is why we do not report
LLM results for the few-shot case. Furthermore,
the possibility that some of these popular bench-
mark datasets might have been used for pretraining
recent LLMs is an important consideration, not
just for this work but for all empirical research
involving LLMs. Hence, further research on this
issue is warranted.

References
Christopher Beckham and Christopher Pal. 2017. Un-

imodal probability distributions for deep ordinal clas-
sification. In International Conference on Machine
Learning, pages 411–419. PMLR.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large annot-
ated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Stephen P Boyd and Lieven Vandenberghe. 2004. Con-
vex optimization. Cambridge university press.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clem-
ens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka.
2020. Rank consistent ordinal regression for neural
networks with application to age estimation. Pattern
Recognition Letters, 140:325–331.

François Castagnos, Martin Mihelich, and Charles
Dognin. 2022. A simple log-based loss function
for ordinal text classification. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 4604–4609.

Joaquim F Pinto da Costa, Hugo Alonso, and Jaime S
Cardoso. 2008. The unimodal model for the classific-
ation of ordinal data. Neural Networks, 21(1):78–91.

Nhan Cach Dang, María N Moreno-García, and
Fernando De la Prieta. 2020. Sentiment analysis
based on deep learning: A comparative study. Elec-
tronics, 9(3):483.

Jordi de la Torre, Domenec Puig, and Aida Valls. 2017.
Weighted kappa loss function for multi-class clas-
sification of ordinal data in deep learning. Pattern
Recognition Letters.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and
Xiyu Zhai. 2019. Gradient descent finds global min-
ima of deep neural networks. In International confer-
ence on machine learning, pages 1675–1685. PMLR.

Raúl Díaz and Amit Marathe. 2019. Soft labels for
ordinal regression. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 4733–4742.

Tilmann Gneiting and Adrian E Raftery. 2007. Strictly
proper scoring rules, prediction, and estimation.
Journal of the American statistical Association,
102(477):359–378.

Maria Iannario and Domenico Piccolo. 2011. Cub mod-
els: Statistical methods and empirical evidence. Mod-
ern Analysis of Customer Surveys: with applications
using R, pages 231–258.

Woojeong Jin, Yu Cheng, Yelong Shen, Weizhu Chen,
and Xiang Ren. 2022. A good prompt is worth
millions of parameters: Low-resource prompt-based
learning for vision-language models. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2763–2775, Dublin, Ireland. Association for
Computational Linguistics.

Kenji Kawaguchi, Jiaoyang Huang, and Leslie Pack
Kaelbling. 2019. Every local minimum value is
the global minimum value of induced model in
nonconvex machine learning. Neural Computation,
31(12):2293–2323.

Phillip Keung, Yichao Lu, György Szarvas, and Noah A.
Smith. 2020. The multilingual Amazon reviews cor-
pus. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4563–4568, Online. Association for
Computational Linguistics.

Meelis Kull, Miquel Perello Nieto, Markus Käng-
sepp, Telmo Silva Filho, Hao Song, and Peter Flach.
2019. Beyond temperature scaling: Obtaining well-
calibrated multi-class probabilities with dirichlet cal-
ibration. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

5399

https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1016/j.patrec.2020.11.008
https://doi.org/10.1016/j.patrec.2020.11.008
https://doi.org/10.1016/j.patrec.2017.05.018
https://doi.org/10.1016/j.patrec.2017.05.018
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/CVPR.2019.00487
https://doi.org/10.1109/CVPR.2019.00487
https://doi.org/10.18653/v1/2022.acl-long.197
https://doi.org/10.18653/v1/2022.acl-long.197
https://doi.org/10.18653/v1/2022.acl-long.197
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://proceedings.neurips.cc/paper_files/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf


Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
Advances in neural information processing systems,
30.

Zefang Liu. 2020. Yelp review rating prediction: Ma-
chine learning and deep learning models.

Quentin Mérigot, Filippo Santambrogio, and Clément
Sarrazin. 2021. Non-asymptotic convergence bounds
for wasserstein approximation using point clouds.
Advances in Neural Information Processing Systems,
34:12810–12821.

Edgar C Merkle and Mark Steyvers. 2013. Choosing
a strictly proper scoring rule. Decision Analysis,
10(4):292–304.

Pavan Kalyan Reddy Neerudu, Subba Reddy Oota,
Mounika Marreddy, Venkateswara Rao Kagita, and
Manish Gupta. 2023. On robustness of finetuned
transformer-based nlp models. arXiv preprint
arXiv:2305.14453.

Mert Pilanci and Tolga Ergen. 2020. Neural net-
works are convex regularizers: Exact polynomial-
time convex optimization formulations for two-layer
networks. In International Conference on Machine
Learning, pages 7695–7705. PMLR.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018a. Improving language under-
standing by generative pre-training. OpenAI.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018b. Language
models are unsupervised multitask learners.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas.
2000. The earth mover’s distance as a metric for
image retrieval. International journal of computer
vision, 40(2):99.

Héctor A Sánchez-Hevia, Roberto Gil-Pita, Manuel
Utrilla-Manso, and Manuel Rosa-Zurera. 2022. Age
group classification and gender recognition from
speech with temporal convolutional neural networks.
Multimedia Tools and Applications, 81(3):3535–
3552.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empir-
ical Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edou-
ard Grave, and Guillaume Lample. 2023. Llama:
Open and efficient foundation language models. Cite
arxiv:2302.13971.

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao,
and Hao Ma. 2021. Entailment as few-shot learner.

Albert Webson and Ellie Pavlick. 2022. Do prompt-
based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2300–2344, Seattle, United States.
Association for Computational Linguistics.

Stephan Wojtowytsch. 2023. Stochastic gradient des-
cent with noise of machine learning type part i: Dis-
crete time analysis. Journal of Nonlinear Science,
33(3):45.

Ryoya Yamasaki. 2022. Unimodal likelihood models
for ordinal data. Transactions on Machine Learning
Research.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu,
Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and
Yu Qiao. 2023. Llama-adapter: Efficient fine-tuning
of language models with zero-init attention. arXiv
preprint arXiv:2303.16199.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697–12706.
PMLR.

5400

http://arxiv.org/abs/2012.06690
http://arxiv.org/abs/2012.06690
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2104.14690
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://openreview.net/forum?id=1l0sClLiPc
https://openreview.net/forum?id=1l0sClLiPc
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html


A Datasets

A.1 SNLI

The dataset utilised in this study, initially intro-
duced by Bowman et al. (2015) comprises a sub-
stantial collection of 570,000 pairs of human-
authored English sentences. This dataset has a CC
BY-SA 4.0 license. To ensure robustness, 10,000
pairs have been set aside for both testing and val-
idation purposes. Within this corpus, the labels
assigned to each sentence pair are evenly distrib-
uted among three distinct categories: entailment,
neutral, and contradiction. In order to maintain con-
sistent data sizes across all datasets and expedite
the training process, a subset of 250,000 pairs was
randomly sampled from the entire collection.

A.2 Amazon Reviews

The dataset utilised in this study, originally intro-
duced by Keung et al. (2020), was constructed by
extracting customer reviews from a diverse range
of product categories found on the Amazon mar-
ketplace. While reviews were collected in six dif-
ferent languages, only those composed in English
were retained for training purposes. The dataset
is structured for classification tasks and includes
the corresponding star ratings, represented as in-
tegers spanning from 1 to 5. With a total of 210,000
samples, 5,000 samples were allocated separately
for testing and validation purposes. Unlike the
SNLI dataset, which underwent a sampling pro-
cess, the entire dataset was utilised for training in
this particular study.

A.3 SST5

The Stanford Sentiment Treebank (SST), originally
introduced by Socher et al. (2013), serves as a
dedicated corpus tailored specifically for sentiment
analysis tasks. This dataset comes with a CC0
(public domain) license. What sets this corpus
apart is its incorporation of parse trees, which
enable comprehensive sentiment analysis at
a granular level. The SST corpus consists of
a meticulously curated collection of 12,000
sentences extracted from movie reviews, with
each sentence undergoing thorough annotation
by three human annotators. In the fine-grained
variant of SST, known as SST-5, every individual
phrase within the sentences is assigned a rating
on a five-star scale. These ratings correspond to
distinct sentiment categories, including negative,
somewhat negative, neutral, somewhat positive,

and positive, providing nuanced insights into the
sentiment expressed within the sentences.

Furthermore, for the few-shot learning scen-
ario, we selected subsets consisting of 10%, 25%,
and 50% of the data in a randomised manner. This
random selection process was repeated for multiple
seed values, and the average results were reported
to mitigate potential variations.

B Metrics

B.1 Nominal Metrics

B.1.1 F-1 Score
The F1 score is a popular metric for evaluating clas-
sification models. It combines precision and recall
to provide a single value that represents the model’s
overall performance. A good F1 score indicates the
model’s effectiveness in correctly classifying data
points.

F1 = 2× precision × recall
precision + recall

B.2 Ordinal Metrics

B.2.1 MSE
Mean Squared Error (MSE), quantifies the average
squared difference between the predicted values
and the corresponding actual values. A lower MSE
signifies a superior alignment between the model’s
predictions and the ground truth values, thereby
indicating heightened accuracy.

MSE =
1

n

n∑

i=1

(yi − ŷi)
2

B.2.2 MAE
Mean Absolute Error (MAE), calculates the av-
erage absolute difference between the predicted
values and the corresponding actual values. MAE
offers a straightforward interpretation, representing
the average magnitude of errors. A lower MAE
value signifies a more accurate alignment between
the model’s predictions and the ground truth values,
indicating a superior fit.

MAE =
1

n

n∑

i=1

|yi − ŷi|

B.3 Off-by-k Accuracy

Off-by-k accuracy is a metric used to evaluate the
performance of a prediction model, particularly in
the context of ranking or recommendation systems.
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It measures the percentage of predictions that are
within k positions of the correct prediction.

OBk = 100× 1

S

S∑

s=1

1{d(ys, ŷs) ≤ k}

C Implementation Details

We employed the BERT-base-uncased model as the
backbone for our vanilla CE, MLL, and entailment
experiments. It consists of a total of 110M paramet-
ers including 12 encoder stacks, 12 attention heads,
and a hidden state dimension of 768. This model
was trained on lower-cased English text. To enable
classification, we added a linear layer on top of the
backbone model.

For the generative model experiments, we util-
ized GPT2-small as the backbone model, which
comprises 117M parameters, including 12 decoder
stacks, 12 attention heads, and a hidden state di-
mension size of 768. We choose the small variant
to ensure fair comparison with its encoder-model
counterpart.

For all the explicit loss-based experiments, we
followed the standard supervised learning setup
with the necessary modifications to loss function.
For the Amazon Reviews (AR), and SST-5 datasets,
the input to the model was the text/review and the
corresponding class label was provided in a one-hot
encoded format. For the SNLI dataset, we passed
the input as Premise [SEP] Hypothesis.

For the entailment experiments, as mentioned
in §3, we included one positive example and (K-
1) negative examples. To address data imbalance,
for AR, and SST-5, where there are five classes,
we augmented an additional positive sample by
randomly deleting 5% of the text span in the in-
put text. For SNLI, we created two negative ex-
amples corresponding to each positive sample. For
all four datasets, we trained for 5 epochs using a
learning rate of 5e-5, max sequence length 128,
and batch size 32. Through experimentation, we
determined the reported settings to yield the best
results. Here, the input format to the model was -
verbaliser(label) [SEP] text for 1-sentence
tasks like AR, and SST-5. For 2-sentence task
like SNLI, the input format was - premise [SEP]
verbaliser(label) [SEP] hypothesis.

For the generative model experiments, as men-
tioned in §4, we trained GPT2 on the language
modeling task for 7 epochs using learning rate 1e-5,
max sequence length 128, and batch size 32. Posi-

tioning the label verbaliser at the end of the text seg-
ment demonstrated the best results. The input is in
the format - text [SEP] verbaliser(label) for
1-sentence tasks and premise [SEP] hypothesis
[SEP] verbaliser(label) for 2-sentence task.
For verbaliser() details refer to Table 8 and 9.

For un-informative verbalisers, we used
"cat"/"lion"/"zebra"/"dog"/"snake" for SST-5, AR
and "cat"/"lion"/"zebra" for SNLI.

We also conducted additional experiments us-
ing the TinyBERT model as the backbone to com-
pare various loss functions. The TinyBERT model
has a smaller number of 14.5M parameters and
is more sensitive to hyperparameters. We trained
this model using the same setup as the BERT-base-
uncased experiments. The only difference was that
we explored different variants of the OLL, MLL,
and SOFT loss functions by tuning hyperparamet-
ers to compare them with other available loss func-
tions such as CE, EMD, CORAL, etc.

For the Llama-Adapter based experiments, we
keep the number of adapter layers at 30, the adap-
tion verbaliser length at 10, max sequence length
512 to accommodate the instructions + verbaliser,
batch size 4, weight decay 0.02, base learning rate
9e-3, warmup steps 2 and train it for 5 epochs. The
instruction-verbaliser template is kept the same as
Alpaca2 format.

All experiments were conducted with 5 different
seeds on 8 Nvidia A100 GPUs in parallel. The
reported results include the mean and standard de-
viations. The CE and MLL experiments took ∼2
hours for AR, and SNLI, while SST-5 required ∼1
hour. In comparison, the entailment experiments
took 3-5x longer to train since the dataset size was
effectively increased by adding more negative &
positive samples. The generative model experi-
ments, took ∼1 hour for AR, and SNLI datasets
with max sequence length 128, and ∼30 mins for
SST-5. All the reported training times are based on
the full-data setting.

D PSR proofs

For a function to be proper scoring rule, it should
attain its minimum value at the ground truth. For
some losses, like CE and EMD, which are standard
losses in ML/NLP, it is well established that they
are satisfy by PSR. For others, we verify this prop-
erty analytically by checking if loss goes to zero
when we pass the ground truth information directly.

2https://github.com/tloen/alpaca-lora
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Dataset Label Verbaliser
SST-5 indicates {very negative / negative / neutral / positive / very positive} sentiment
AR given {very negative / negative / neutral / positive / very positive} review
SNLI implies {entailment / neutral / contradiction} to

Table 8: Verbalisers used for Entailment-style approach. The texts inside {} show all the possible label descriptions available to
construct the verbaliser.

Dataset Label Verbaliser
SST-5 worse / bad / neutral / good / excellent
AR worse / bad / neutral / good / excellent
SNLI yes / fair / no

Table 9: Verbalisers used for Generative approach.

Except for SOFT and VS-SL rest all other losses
shown in Table 1 satisfy this PSR property. Below
we give the overall idea on how to check for PSR
condition.

Cross-Entropy (CE): It is well established that
CE belongs to PSR family (Gneiting and Raftery,
2007).

Ordinal Log Loss (OLL): OLL also belongs to
the PSR family since the ground-truth one-hot
encoding vector minimizes the loss.

Multi-task log loss function (MLL): Since MLL
is a weighted sum of CE and OLL, it can be said
that the ground-truth one-hot encoding vector
minimizes the MLL loss too since it is already
established that both CE and OLL follow this
property.

SOFT labels (SOFT): The SOFT loss is similar
to CE, computed with the soft ground labels due
to which, the one hot encoded ground truth fails
to minimise the loss. Hence SOFT loss doesn’t
belong to the PSR family.
Earth Mover Distance (EMD) : The EMD loss for
one particular arbitrary i will be -

EMD = (CDF(I(yi))− CDF(p̂i))
2

When the predicted probabilities p̂i coincide with
the one hot encoded ground truth I(yi), loss value
will be zero. Hence EMD does belong to the PSR
family.
Weighted Kappa Loss (WKL): The loss is defined
as -

κ = 1−
∑

i,j wijOij∑
i,j wijEij

(10)

where Oij is the observed agreement between
the annotators for class i and class j, Eij is the

expected agreement by chance, and wij represents
the weight assigned to each class pair.

To define the Weighted Kappa Loss function,
we can formulate it as the negative value of the
weighted kappa coefficient:

Lweighted_kappa = −κ. (11)

If our classifier correctly predicts the ground
truth our loss becomes zero, which guarantees that
WKL is a PSR.

E Convexity proofs

Most of the proofs are one-liners when we employ
the standard results of convex optimization. We
refer to Boyd and Vandenberghe (2004) for these
standard results.

Ordinal Log Loss (OLL): OLL is given by

−
N∑

i=1

∑

K:ik ̸=yi

|ik − yi|αlog(1− p̂ik). (12)

We will use the double derivative approach to
prove the convexity. If we can prove the OLL to
be convex for any one arbitrary i, then the whole
function would also be convex(summation of con-
vex functions is convex), so for an arbitrary i OLL
is given by :

−
∑

K:ik ̸=yi

|ik − yi|αlog(1− p̂ik). (13)

The |ik − yi|α term is a positive constant with
respect to pik , so it won’t affect the sign of double
derivative and hence can be ignored for easier com-
putations. We now need to check the convexity of
just :

−
∑

K:ik ̸=yi

log(1− p̂ik). (14)

To prove the convexity of the given function, we
will use the second derivative approach and try to
prove that Hessian wrt {pik} terms is positive semi-
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definite (PSD) everywhere on the domain [0, 1]K−1

. For OLL, the Hessian will contain only diagonal
terms and if we prove that each of these diagonal
terms are positive, then we can say that Hessian is
PSD and hence, OLL is convex. The diagonal term
corresponding to pik is 1

(1−pik )
2 which is always

non-negative.
MLL: MLL can be viewed as a sum of two func-

tions on the K-dimensional simplex [0, 1]K−1 i.e.

OLL− log(1−
∑

K:ik ̸=yi

p̂ik) (15)

Previously, we have seen that OLL is convex by
proving the Hessian is PSD. Now, we also prove
that the Hessian of − log(1−∑

K:ik ̸=yi
p̂ik) is PSD

on [0, 1]K−1 and hence, by the property that sum
of two convex functions on the same domain is
convex, we can say MLL is also convex.

It is easy to verify Hessian of − log(1 −∑
K:ik ̸=yi

p̂ik) is 1
(1−∑

K:ik ̸=yi
p̂ik )

2 IK−1×K−1

where IK−1×K−1 is an identity matrix of dimen-
sion K − 1 × K − 1. For the Hessian to be
PSD, all diagonal values must be non-negative
and it’s true in this case. Hence the function
− log(1−∑

K:ik ̸=yi
p̂ik) is convex along with the

OLL being convex in the same domain, which
makes MLL a convex loss function.

SOFT labels (SOFT):
The SOFT loss is given by :

−
N∑

i=1

∑

k′
psoft
ik′

log(p̂ik′ ) (16)

where -

psoft
ik

=
exp(−β|ik − yi|)∑
k′ exp(−β|ik′ − yi|)

(17)

The loss function bears resemblance to the Cross-
Entropy (CE) loss, with the distinction that the
ground truth one-hot encoded label is replaced by
softlabels. The term psoft

ik
represents a positive con-

stant concerning the differentiating variable and
does not affect the sign of the double derivative.
The convexity of the remaining function can be
demonstrated in a similar manner as the CE loss.
Alternatively, the convex nature of CE implies the
convexity of the SOFT loss, and the convexity of
CE has been previously established.

Earth Mover Distance (EMD) EMD is also
known as Wassertein distance and is well known
to be a convex loss on the probabilities (Mérigot
et al., 2021).
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