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Abstract

Backdoor attacks pose an increasingly se-
vere security threat to Deep Neural Networks
(DNNs) during their development stage. In
response, backdoor sample purification has
emerged as a promising defense mechanism,
aiming to eliminate backdoor triggers while
preserving the integrity of the clean content
in the samples. However, existing approaches
have been predominantly focused on the word
space, which are ineffective against feature-
space triggers and significantly impair perfor-
mance on clean data. To address this, we in-
troduce a universal backdoor defense that puri-
fies backdoor samples in the activation space
by drawing abnormal activations towards opti-
mized minimum clean activation distribution
intervals. The advantages of our approach are
twofold: (1) By operating in the activation
space, our method captures from surface-level
information like words to higher-level semantic
concepts such as syntax, thus counteracting di-
verse triggers; (2) the fine-grained continuous
nature of the activation space allows for more
precise preservation of clean content while re-
moving triggers. Furthermore, we propose a
detection module based on statistical informa-
tion of abnormal activations, to achieve a better
trade-off between clean accuracy and defending
performance. Extensive experiments on diverse
datasets and against diverse attacks (including
syntax and style attacks) demonstrate that our
defense achieves state-of-the-art performance.1

1 Introduction

Backdoor attack (Gu et al., 2017; Chen et al., 2017,
2021; Li et al., 2022) is an increasingly severe secu-
rity threat to Deep Neural Networks (DNNs) when
building or deploying with open datasets, cloud
platforms, and public pre-trained models. It aims
to embed a covert backdoor function into a DNN

∗ Corresponding author.
1The code is publicly available at https://github.com/

clearloveclearlove/BadActs.

model, such that the backdoored model behaves
normally on normal samples but returns an attacker-
specified target label for samples manipulated by
the attacker (i.e., by adding triggers). The behavior
of backdoored models on clean inputs is indistin-
guishable from that of benign models, making them
highly concealed and raising significant safety is-
sues in the application of NLP models.

In response to such threats, researchers have re-
cently explored backdoor sample purification meth-
ods (Qi et al., 2021a; Li et al., 2023; He et al.,
2023a), which aim to remove the backdoor trigger
while preserving the integrity of the clean content
within input samples. This allows the protected
model to predict both clean and poisoned samples
correctly. This approach differs from previous ef-
forts that primarily focused on backdoor sample
detection (Gao et al., 2021; Yang et al., 2021b;
Chen et al., 2022b); their primary strategy was to
detect and then reject poisoned samples, preventing
the attacker from triggering the backdoor behavior.
However, a higher level of defense would enable
correct predictions for backdoor samples (i.e., cor-
recting predictions from the attacker’s target label
to the ground-truth label), thereby enhancing the
model’s backdoor robustness.

Existing backdoor sample purification efforts
have been almost exclusively conducted in the word
space. For instance, Qi et al. (2021a) observed
that adding context-independent trigger words com-
promises textual fluency, and thus dealt with this
by removing words that caused an abnormal in-
crease in perplexity. Moreover, Li et al. (2023)
and He et al. (2023a) noticed that injected trig-
ger words/sentences dominate the prediction for
backdoor samples, so they proposed to remove
words that have excessively high attribution scores
to achieve purification. While these strategies ef-
fectively counteract word-space triggers, they
are ill-equipped to handle more sophisticated
feature-space triggers, such as those manipulating
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Figure 1: The output neuron activation distribution of
the 8th Transformer FFN output layer of a BERT model
attacked by BadNets for clean and backdoor samples
on the SST-2 dataset.

text style (Qi et al., 2021b; Pan et al., 2022) or syn-
tactic structure (Qi et al., 2021c). The underlying
issue is that these approaches predominantly rely
on the removal of explicit trigger words from poi-
soned samples, which fails to address feature-space
triggers that operate through subtle transformations
of linguistic attributes. Additionally, these meth-
ods significantly undermine the model’s perfor-
mance on clean data. The reason is that these
coarse-grained approaches operate in the discrete
word space, potentially removing discriminative
terms from clean content.

To overcome the limitations of word-space meth-
ods, we propose a universal method for backdoor
sample purification in the activation space. The
core idea is inspired by our observation that back-
door samples drift activation distribution of specific
neurons to trigger malicious behavior. For example,
as illustrated in Figure 1, the activation distribution
of backdoor-unrelated neurons remains almost un-
changed before and after adding triggers to clean
test samples; in contrast, backdoor-related neurons
capture the backdoor concept by deviating in their
activation distribution, which in turn triggers the
backdoor behavior. Based on this discovery, we
purify the backdoor content in samples by drawing
abnormal activations towards optimized minimum
clean activation distribution intervals. Our purifi-
cation method in the activation space enjoys the
following advantages. First, individual neuron ac-
tivations encapsulate linguistic properties rang-
ing from surface-level information like words to
higher-level semantic concepts such as syntactic
structure and parts of speech (Sajjad et al., 2022).
Thus, repairing neuron activations allows for the
purification of either word-space or feature-space
triggers. Second, the space of neuron activations
is fine-grained and continuous, enabling the re-
moval of backdoor triggers while maintaining as
much original clean information as possible, thus

achieving higher clean accuracy.
Besides, we introduce a detection module based

on statistical information from distribution-shifted
neuron activations to filter out high-confidence
clean samples, thereby focusing purification ef-
forts only on potentially poisoned samples. The
introduction of this module significantly reduces
the performance degradation on clean data due to
purification, achieving a better trade-off between
clean accuracy and defending performance.

Our defense pipeline consisting of the detection
and purification modules, Backdoor Defense in
the Activation Space (dubbed BaDActs), achieves
state-of-the-art performance in both defending ef-
ficiency and clean accuracy across four datasets
with four different attack types. Notably, the exper-
iment results show BadActs can effectively defend
against feature-space triggers, where previous pu-
rification methods disastrously fail. Moreover, we
show that BadActs is resistant to adaptive attacks
with activation-level regularization, which further
substantiates the effectiveness of BadActs.

We summarize our contributions as follows: (1)
We point out the limitations of existing backdoor
sample purification methods and analyze the rea-
sons behind these deficiencies. Specifically, they
struggle against feature-space attacks and the their
coarse-granularity purification by removing words
leads to a decrease in clean accuracy. (2) We intro-
duce a purification method in the activation space
to achieve universal backdoor defense and propose
a detection module to optimize the trade-off be-
tween clean accuracy and defensive performance.
(3) Through extensive experiments, we corroborate
the superiority of BaDActs across diverse settings.

2 Related Work

Textual Backdoor Attacks Backdoor attacks are
emerging yet critical training-stage security threats,
attackers aim to embed a latent connection between
trigger patterns and malicious predictions. The
initial works mainly directly design word-space
triggers. (1) Character-level triggers (Chen et al.,
2021; Li et al., 2021a) imitate human spelling er-
rors, manipulating words through inserting, substi-
tuting, and deleting to be recognized as the token
[UNK] by the tokenizer, acting as a trigger signal
for achieving backdoor attacks. (2) Word-level trig-
gers (Kurita et al., 2020; Shen et al., 2021; Bag-
dasaryan and Shmatikov, 2022; Yang et al., 2021a;
Cai et al., 2022; Mei et al., 2023; Wan et al., 2023;
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Yang et al., 2021c; Yan et al., 2023; Yang et al.,
2024) insert or replace with specific trigger words
in the clean text to achieve trigger injection. (3)
Sentence-level triggers (Dai et al., 2019; Lin et al.,
2020) select particular sentences as triggers and
composite them into the clean samples to construct
poisoned samples. Word-space triggers are vulner-
able to defense due to the mechanism of shared
static trigger words across different poisoned sam-
ples (Chen and Dai, 2021; Azizi et al., 2021; He
et al., 2023b). Recent works exploit feature-space
triggers such as chosen syntax (Qi et al., 2021c;
Lou et al., 2023) and style (Qi et al., 2021b; Pan
et al., 2022), making the trigger words in a sample-
specific (Li et al., 2021b) manner.

Textual Backdoor Defense Existing backdoor
defense for NLP models can be primarily classified
into three types: (1) poison suppression methods
aim to produce a backdoor-free classifier from the
possibly poisoned training set by removing sus-
picious samples (Chen and Dai, 2021; Cui et al.,
2022a) or modifying the training procedure (Zhu
et al., 2022; Tang et al., 2023; Liu et al., 2023;
Huang et al., 2022) to enhance robustness against
data poisoning. (2) model-level backdoor de-
tection and purification methods try to identify
whether the models are poisoned or not (Shen et al.,
2022a; Liu et al., 2022; Azizi et al., 2021; Lyu et al.,
2022; Wang et al., 2023), and remove the learned
backdoor mapping by further fine-tuning or prun-
ing (Zhang et al., 2022; Liu et al., 2018; Zheng
et al., 2022). (3) sample-level backdoor detec-
tion and purification methods detect test samples
embedded with the backdoor triggers (Gao et al.,
2019, 2021; Yang et al., 2021b; Chen et al., 2022b;
Xi et al., 2023; Sun et al., 2021) and purify suspi-
cious samples (Qi et al., 2021a; Li et al., 2023; He
et al., 2023a). Similar approaches have also been
developed for detecting other types of anomalous
samples, such as out-of-distribution (OOD) (Huang
et al., 2021; Podolskiy et al., 2021; Chen et al.,
2022a, 2023) and adversarial samples (Ma et al.,
2018; Wang et al., 2022). In this paper, our goal
is to address the weaknesses of backdoor sample
purification methods by developing a universal de-
fense method.

Neuron-Concept Association Neuron-concept
association studies (Antverg and Belinkov, 2022;
Sajjad et al., 2022) look into individual neurons,
that are crucial for model performance or asso-

ciated with specific linguistic properties. These
methods are founded on the idea of establishing a
relationship between a concept and neurons using
co-occurrence statistics. Researchers have applied
this principle to identify and update neurons that
store specific known facts (Meng et al., 2022) or bi-
ases (Liu et al., 2024). Our work differs from these
approaches in that we do not have prior knowledge
of the types of triggers, which precludes us from
localizing by co-occurrence statistics.

3 Methodology

3.1 Preliminaries

Threat Model We examine a threat model in
which the adversary provides the defender with
a backdoored model. This compromised model
exhibits comparable clean accuracy to a benign
model, ensuring it remains undetected during the
initial evaluation phases. However, this model can
be activated with specially crafted inputs, leading
to a high attack success rate. Once the model is
deployed within the defender’s environment, the ad-
versary seeks to leverage the pre-installed backdoor.
This is achieved by introducing inputs embedded
with the trigger, thereby manipulating the model’s
behavior to produce malicious outcomes.

Defenders’ Capabilities Upon receipt of a
model, which may have been tampered with by
a backdoor, the defender is unaware of its origins,
including training datasets and schedules. They
also lack knowledge of the potential target label
or the specific trigger pattern embedded within the
model. Consistent with previous research (Qi et al.,
2021a; Li et al., 2023; Chen et al., 2022b), the de-
fender does have a small, clean validation dataset
to evaluate the clean performance of the model.

Defenders’ Goals The ultimate goal of defenders
is to identify and purify poisoned inputs, enabling
the model to predict their ground truth label without
compromising the clean performance.

3.2 Overview

Neurons responsible for the backdoor concept ex-
hibit different neuron activation distributions for
samples with and without triggers, and backdoor
samples drift these neuron activation distributions
to activate backdoor behavior. The state-of-the-art
NLP models (Liu et al., 2019; Brown et al., 2020;
Wang et al., 2024) typically comprise an embed-
ding block and L Transformer blocks with d output
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Figure 2: Illustration of our BadActs framework. (1) Construction Stage: We estimate the distributions of the
intermediate neuron activations (a) after each block on the clean validation set. Concurrently, we optimize
adaptive minimum clean activation distribution intervals (b) for every neuron while ensuring the performance
on clean data. (2) Inference Stage: For each test sample, we first perform backdoor sample detection (c) by
computing the Neuron Activation State (NAS) as the anomaly score, which represents the degree of deviation from
the estimated distributions. Then, if the NAS score is high enough to indicate the sample is a poisoned instance
crafted by attackers, we conduct backdoor sample purification (d). Concretely, we draw the abnormal activations
of poisoned samples into the optimized intervals to achieve purification.

neurons. Here we focus on the output neurons of
Transformer blocks. As shown in Fighure 2, we
detect backdoor samples by capturing the degree
of distribution shift in these neuron activations and
achieve backdoor purification by purifying the ab-
normal activations. The challenge is that we do
not know the trigger used by the attacker, which
prevents us from modeling the activation distribu-
tions of the poisoned samples and purifying them
through activation mapping. Instead, we track this
problem using an unsupervised idea. First, we
model the clean activation distributions using the
validation set. Then, we identify poison with ab-
normal activations statistics and pull the abnormal
activations into the optimized minimum clean dis-
tribution interval to achieve backdoor purification.

3.3 Backdoor Sample Detection

Based on the fact that backdoor samples trigger
malicious behavior by activating abnormal activa-
tions, we detect backdoor samples by computing
the Neuron Activation State (NAS) as the anomaly
score to measure the degree of deviation from the
clean activation distributions. Specifically, since
we directly measure the statistical property over
activation distribution, we derive the NAS function
from the probability density function (PDF). For-
mally, given an activation ri of i-th neuron, and its
PDF postulated to follow a Gaussian distribution
parameterized with mean µi

X and standard devia-
tion σi

X over a validation set X , the function for
identity abnormal activation is formulated as:

Φi
X(ri) = 1[µi

X−kσi
X ,µi

X+kσi
X ](ri), (1)

where 1[a,b](x) denotes the indicator function,
which is equal to 1 if x is within the interval [a, b]
and 0 otherwise. The parameter k adjusts the width
of this interval centered at the mean, and we set k =
3 to apply the three-sigma rule (Pukelsheim, 1994),
which is commonly used to cover 99.7% of the data
under the assumption of a Gaussian distribution.

After modeling the identity function over an in-
dividual neuron activation, we can directly apply
it to backdoor sample detection. Since we can’t
precisely locate the backdoor-related neurons with-
out knowing the triggers, we instead average the
abnormal percent over all neurons as the abnormal
score of test samples. Formally, given a test sample
x, the NAS score function can be given as:

NAS(x;X) =
1

L · d
L·d∑

i=1

Φi
X(ri; k), (2)

where L ∗ d is equal to the total number of Trans-
former block output neurons.

Backdoor samples will have a higher count of
these abnormal activations, and the NAS(x;X)
score would be low. In the inference stage, we
use NAS for poisoned sample detection:

D(x) =

{
Clean if NAS(x;X) ≥ λ;

Poisoned if NAS(x;X) < λ,
(3)

where D is the decision function and λ is the pre-
defined threshold. We calculate λ based on the held-
out validation set. Suppose we allow the defense
system to give an a% False Rejection Rate (FRR)
on clean samples, we choose the a-th percentile of
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all samples’ NAS score from small to large as the
threshold. Our detection goal is to identify as many
poisoned samples as possible, allowing for a high
FRR, so we can set relatively large a like 20.

3.4 Backdoor Sample Purification
We optimize an adaptive minimum clean activation
distribution interval for every neuron while ensur-
ing the performance of clean tasks, drawing the
abnormal activations of samples into correspond-
ing intervals to purify the backdoor samples. Let
σ(l) be the activations of the l-th transformer layer
(l = 1, . . . , L) of the victim classifier. The logit
function for class c and input x be defined as:

gc (x) = w⊤
c

(
σ(L) ◦ · · · ◦ σ(1) (Emd (x))

)
+ bc,

(4)
where wc and bc are the weight vector and bias
associated with class c respectively. Emd denots
the embedding block. For each transformer layer
l = 1, . . . , L, we denote a low bounding vector
zlow
l ∈ Rd and an up bounding vector zup

l ∈ Rd,
such that the logit function, with bounded activa-
tion, for each class c ∈ Y and any input x can be
represented by:

ḡc(x;Z) = w⊤
c

(
σ̄(L)

(
σ̄(L−1)(· · · σ̄(2)(σ(1)(x)

;zlow
1 , z

up
1 ) · · · ; zlow

L−1, z
up
L−1)

)
; zlow

L , z
up
L

)
+ bc,

(5)

where Z = {zlow
1 , z

up
1 , . . . , zlow

L , z
up
L } and

σ̄(l)(·; zlow
l , z

up
l ) = max{min{σ(l)(·), zup

l }, zlow
l },

(6)

for any l = 1, . . . , L (and where the min and max
operators are applied to each corresponding neuron
activation).

To find the minimum activation distribution inter-
val for each neuron without affecting the classifier’s
performance on clean test samples, we propose to
solve the following problem on clean validation set
X of clean samples:

min
Z={zlow

1 ,z
up
1 ,...,zlow

L ,z
up
L }

L∑

l=1

∥zup
l − zlow

l ∥2 s.t.

1

|X |
∑

(x,y)∈X
1

[
y = argmax

c∈Y
ḡc(x;Z)

]
≥ π, (7)

where 1[·] represents the indicator function, and
π is the minimum accuracy (e.g., guarantee accu-
racy of the validation set to drop lower than 3%).

Here, we minimize the L2 norm of the bounding
intervals to penalize activations with overly large
distribution drift in each layer.

To efficiently solve the above problem, we mini-
mize the following Lagrangian function using gra-
dient descent:

L(Z, λ;X ) =
1

|X | × |Y |
∑

(x,y)∈X

∑

c∈Y
[ḡc(x;Z)

−gc(x)]
2 + λ

L∑

l=1

∥zup
l − zlow

l ∥2, (8)

where Z is initialized magnitude large enough such
that no activation bounding is initially performed.
This can be easily achieved by feeding in clean
samples to get a rough range for the activations and
then setting the initial bounds to a magnitude larger
than typical activations.

Finally, a class posterior with activation purifica-
tion is obtained by applying a softmax to the logits
{ḡc(x;Z)}c∈Y .

4 Experiments

4.1 Experimental Settings

Datasets We conduct experiments on four widely
used text classification datasets covering binary and
multi-class scenarios. we use SST-2 (Socher et al.,
2013), YELP (Rayana and Akoglu, 2015; Azizi
et al., 2021), and HSOL (Davidson et al., 2017) for
binary classification scenarios and Agnews (Zhang
et al., 2015) in multi-class scenarios. More details
can be found in Appendix A.

Attack Setting To comprehensively assess the
defense methods we propose, we utilize word-
space triggers, including word-level badnets (Ku-
rita et al., 2020) and sentence-level addsent (Dai
et al., 2019), as well as feature-space triggers,
encompassing syntax synbkd (Qi et al., 2021c)
and style stylebkd (Qi et al., 2021b; Pan et al.,
2022), for evaluation. To obtain poisoned samples,
badnets selects rare words [“cf”, “mn”, “bb”,
“tq”] as triggers and randomly inserts them into
normal samples. addsent employs the sentence “I
watch this 3D movie” as the trigger and randomly
inserts them into normal samples. synbkd uses
sentence structures as triggers. Consistent with
the original paper (Qi et al., 2021c), we choose
the S(SBAR)(,)(NP)(VP)(.) syntactic template
as the trigger. stylebkd uses text styles as triggers.
Following the findings of (Qi et al., 2021b), we
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Dataset Attack STRIP RAP DAN NAS (Ours)

SST-2

badnets 52.63 64.22 70.42 98.77
addsent 51.68 70.57 64.63 97.96
stylebkd 53.78 52.42 72.94 87.37
synbkd 50.51 59.89 79.11 88.83

YELP

badnets 54.13 89.72 87.04 99.82
addsent 51.38 77.29 84.69 99.81
stylebkd 51.52 30.55 98.04 99.28
synbkd 54.15 60.01 94.81 95.59

HSOL

badnets 53.55 40.79 96.63 98.91
addsent 52.11 76.83 85.40 95.46
stylebkd 48.59 56.29 91.82 98.33
synbkd 47.73 53.73 88.46 85.37

Agnews

badnets 53.60 69.78 97.86 92.41
addsent 51.58 73.67 72.03 98.16
stylebkd 52.84 66.59 99.93 99.42
synbkd 50.50 49.75 93.62 97.24

Average 51.89 62.01 86.09 95.80

Table 1: Backdoor sample detection performance (AU-
ROC in percentage) of our NAS and baselines. The best
results are highlighted in bold.

choose the Bible as the style trigger that achieves
the highest attack performance.

We use the popular bert-base-uncased (De-
vlin et al., 2019) model (110M parameters) in our
main experiments. During the construction of the
poisoned training sets, the poisoning rates are set to
20% consistent with the original attack settings (Qi
et al., 2021b,c). Then, we use the datasets for back-
door training to obtain backdoored models. We use
the AdamW (Loshchilov and Hutter, 2019) opti-
mizer with an initial learning rate 2e-5 that declines
linearly and train the models for 5 epochs.

Evaluation Metrics For evaluating the detection
method, we use the threshold-free metric Area Un-
der the Receiver Operator Characteristic (AU-
ROC). For assessing defending performance, we
adopt the following metrics. (1) Clean Accuracy
(CACC), namely the classification accuracy of the
backdoored model on the original clean test dataset
with defense. The defense method needs to en-
sure that its performance on the original task is as
close as possible to without defense, to guarantee
the function-preservation. (2) Poison Accuracy
(PACC), namely the classification accuracy of the
backdoored model on the poisoned test dataset with
defense. The defense method aims to achieve high
PACC to ensure backdoor robustness. (3) Attack
Success Rate (ASR) denotes the proportion of con-
taminated test sets that the backdoored model with
defense can successfully classify as the target label.
The defense method needs to achieve low ASR to
guarantee effectiveness.

4.2 Backdoor Sample Detection

Baselines We compare NAS with three existing
inference-stage backdoor sample detection meth-
ods for NLP models: (1) STRIP (Gao et al., 2021)
that perturbs the input repeatedly and uses the mean
prediction entropy to obtain the anomaly score; (2)
RAP (Yang et al., 2021b) that adds an adversarial
perturbation into the input and uses the change of
the prediction probability as the anomaly score. (3)
DAN (Chen et al., 2022b) that calculates the dis-
tance between input and clean validation datasets
in intermediate feature space as the anomaly score.

Overall Results Table 1 shows the performance
of NAS and baseline methods under different
datasets and attack methods, and we also provide
a visualization of the distribution of NAS scores
for clean and poisoned samples as shown in Fig-
ure 3, with more visualization results seen in the
Appendix B. The experimental results show that
our NAS achieves the highest AUROC in the
majority of settings (13 out of 16 settings), and
surpasses baselines by large margins on average
over all attacking methods on all datasets (nearly 10
percent better than the best baseline method DAN).
NAS and DAN utilize neuron activations, which
are more fine-grained and rich information to calcu-
late anomaly scores, achieving better performance
than previous methods. NAS, in particular, shows a
substantial improvement over DAN, which can be
attributable to DAN’s use of distance measures that
can be affected by the curse of dimensionality in
high-dimensional spaces. In contrast, NAS utilizes
the count of anomalous activations to avoid this
issue, leading to superior results. With an average
AUROC of 95.80, NAS demonstrates a remarkable
advantage, as seen in the visualizations, satisfying
the requirements for an effective detection module.

Ablation Study Here we further study the impact
of setting different k values on the model detection
performance, with the average detection results
shown in Table 3. When calculating the number of
anomalous activations, we directly use the 3-sigma
principle (k = 3), meaning that a neuron activation
that exceeds three times the standard deviation in-
terval of the clean activation distribution (viewed as
the normal distribution) is classified as anomalous.
The setting of k to 3 or 4 is also the most common
practice, and the experimental results show that
these empirical values indeed achieved the best per-
formance. If k is too small, it leads to the misjudg-
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Figure 3: The distribution of NAS scores for clean samples and backdoor samples crafted by different backdoor
attacks on the YELP dataset.

Dataset Attack
ONION AttDef BadActs (Ours) w/o Attack

CACC↑ PACC↑ ASR↓ CACC↑ PACC↑ ASR↓ CACC↑ PACC↑ ASR↓ CACC↑ PACC↑

SST-2

badnets 86.22 74.23 25.77 89.29 65.46 34.54 89.84 81.14 18.86 91.98 90.24
addsent 86.77 6.03 93.97 89.24 28.73 71.27 89.51 68.75 31.25 90.23 81.58
stylebkd 81.71 9.10 90.90 88.19 13.05 86.95 89.24 42.32 57.68 91.54 80.37
synbkd 82.92 6.47 93.53 86.44 10.96 89.04 88.36 51.21 51.21 91.43 81.80

YELP

badnets 90.34 80.15 19.85 92.27 79.35 20.65 94.60 93.40 6.60 96.23 96.07
addsent 91.04 23.98 76.02 93.24 50.90 49.10 94.60 80.75 19.25 95.73 93.40
stylebkd 79.27 6.46 93.54 92.47 7.46 92.54 94.04 72.88 27.12 95.53 88.67
synbkd 88.64 1.27 98.73 92.07 7.46 92.54 94.44 68.75 31.25 96.20 84.81

HSOL

badnets 89.05 52.13 47.87 82.78 54.22 45.78 95.17 93.81 6.19 95.61 95.09
addsent 88.61 1.13 98.87 82.25 16.73 83.27 94.81 90.02 9.98 95.41 94.21
stylebkd 87.65 11.91 88.09 82.21 11.91 88.09 94.73 52.70 47.30 95.37 66.21
synbkd 87.81 4.18 95.82 80.72 0.88 99.12 94.85 53.66 46.34 95.41 60.34

Agnews

badnets 93.08 85.05 9.88 92.92 82.18 13.68 93.47 86.51 7.89 94.49 94.16
addsent 92.92 19.46 79.19 92.92 9.93 89.74 93.92 90.33 1.53 94.53 93.53
stylebkd 90.24 6.09 93.40 92.51 7.77 91.65 93.92 80.58 10.51 94.38 83.82
synbkd 93.13 2.79 96.86 92.87 7.72 91.65 94.14 72.51 11.84 94.45 77.33

Average 88.09 24.40 75.14 88.90 28.42 71.23 93.10 73.71 23.90 94.28 85.10

Table 2: Backdoor purification performance (in percentage) of our BadActs and baselines. The grayed out CACC and
PACC results of clean models without attack serve as an upper bound, and the best results achieved by purification
methods are highlighted in bold. ↑ indicates higher is better and ↓ indicates lower is better.

k 2 3 4 5

AUROC 94.02 95.80 96.09 92.03

Table 3: The backdoor sample detection performance of
our NAS w.r.t different values of k.

ment of normal activations as anomalous, causing
performance to decline; if k is too large, it results
in the misidentification of anomalous activations as
normal, which also leads to a performance drop.

4.3 Backdoor Sample Purification

Baselines We compare BadActs with two exist-
ing backdoor sample purification methods for NLP
models: (1) ONION (Qi et al., 2021a) that removes
words from the input text that cause excessive in-
creases in perplexity; (2) AttDef (Li et al., 2023)
that initially identifies potential backdoor samples
using the ELECTRA (Clark et al., 2020) model
and subsequently removes words that contribute
disproportionately to predictions. Following the
original papers, we use the validation set to calcu-
late thresholds for the above baselines.

Overall Results Table 2 displays the perfor-
mance of BadActs and baselines. Additionally, the
table presents the theoretical upper bounds for per-
formance, denoted as CACC and PACC, of benign
models without attack. The experimental results
indicate that our BadActs achieves the best de-
fending performance. Specifically, BadActs beats
baselines in terms of both ASR and PACC in all
settings, with the ASR decreasing by an average
of over 47%, and the PACC increasing by an
average margin of over 45% compared to the best
baseline method AttDef across various datasets and
attack strategies. Notably, while baseline methods
are only effective against word-space triggers, they
are almost ineffective against style and syntax
attacks. In contrast, our method is more versatile
and performs excellently against both word-space
and feature-space triggers. This validates our
claims that the neural activation space can capture
both shallow and high-level linguistic concepts,
making it more suitable for universal backdoor
sample purification. Furthermore, our method ex-

5345



CACC PACC ASR

Val FRR=10% 93.33 70.50 27.19
Val FRR=20% 93.10 73.71 23.90
Val FRR=30% 92.86 74.50 23.09
Val FRR=40% 92.63 74.94 22.65
w/o Detection 90.71 75.28 22.31

Table 4: BadActs’ performance w.r.t different Val FRRs.

hibits a slightly lower PACC against feature-space
trigger patterns compared to word-space triggers.
This may be attributed to the fact that style and
syntax transformation may cause distributional
shifts (Shen et al., 2022b) in poisoned samples
(including semantic and background shifts) to
distort their ground-truth labels, even resulting in
lower PACC of benign models.

Our method also demonstrates the highest
clean accuracy. The CACC of BadActs surpasses
that of baselines in all settings, showing an av-
erage increase of more than 4% across different
datasets and attack methods when compared to the
best baseline AttDef. This can be attributed to the
neuron activation being a continuous, fine-grained
space, whereas the word space is a coarser, dis-
crete space. Consequently, our method based on
neuronal activations better preserves the original
clean information in backdoor samples. Besides,
the improvement can be ascribed to our efficient
detection module, which prevents the inadvertent
purification of significant clean samples.

Ablation Study Furthermore, we investigate the
impact of the threshold value for the detection mod-
ule, i.e., the validation FRR, on the whole defense
pipeline performance. The average results, which
span all datasets and attacks, are depicted in Ta-
ble 4. We also list the detailed defending results
of BadActs without the detection module in Ap-
pendix D. Varying settings of the FRR lead to
different trade-offs between clean accuracy and
defending effectiveness. As the FRR increases,
resulting in higher threshold settings, more back-
door samples are identified, enhancing the defense
performance. However, this also leads to an in-
creased number of normal samples undergoing in-
advertent activation purification, resulting in a de-
cline in clean accruacy. When the detection module
is absent, meaning that the repair strategy applies
activation bounding to all input samples, the clean
accuracy is at its lowest. Yet, the defending perfor-
mance is at its highest.

Attack Setting CACC PACC

badnets
w/o Reg 86.16 81.14
w/ Reg 85.12 75.00

addsent
w/o Reg 83.31 68.75
w/ Reg 83.53 67.32

stylebkd
w/o Reg 83.80 46.27
w/ Reg 82.81 38.38

synbkd
w/o Reg 81.88 57.24
w/ Reg 77.32 43.64

Table 5: The purification performance of BadActs when
the activation-level regularization (Reg) is applied to
launch an adaptive attack on the SST-2 dataset.

5 Robustness to Adaptive Attacks

Considering that BadActs is based on the observa-
tion that certain neurons responsible for the back-
door concept exhibit different activation distribu-
tions for clean samples and backdoor samples,
pulling the activations of backdoor samples to the
clean distribution during attacking may pose a po-
tential threat to BadActs. We notice that similar
activation-level backdoor attacks have been studied
in the vision area (Zhao et al., 2022; Zhong et al.,
2022). Therefore, to further test the robustness
of BadActs, we launch adaptive attacks by apply-
ing the activation-level regularization (Zhong et al.,
2022) to four types of backdoor attacks on SST-2.

As shown in Table 5, BadActs is resistant to
such activation-level adaptive attacks, as the pu-
rification performance only drops moderately when
the regularization is applied. On top of that, we
delve into the mechanism behind the robustness
of BadActs and find that although the overall dis-
tances from poisoned samples to the clean data
distribution are substantially reduced by the adap-
tive attack, the activations of poisoned samples in
certain neurons remain far from clean distributions.
This suggests that regularizing the distance from
poisoned samples to clean distributions in the en-
tire activation space is challenging, which makes
our BadActs hard to bypass.

6 Conclusion

In this paper, we propose a backdoor sample pu-
rification method that eliminates backdoor effects
in the activation space instead of the word space
exploited by existing methods. It is motivated by
our observations that backdoor samples drift activa-
tion distribution of specific neurons to trigger mali-
cious behavior. Our method is capable of handling
feature-space backdoor triggers, which cannot be

5346



well addressed by existing purification methods.
Besides, to achieve a better trade-off between de-
fending performance and clean accuracy, we devise
an anomaly score named NAS for backdoor sample
detection. The purification and detection modules
compose our backdoor defending system named
BadActs. Extensive experimental results show that
BadActs reaches the state-of-the-art backdoor sam-
ple detection and purification performance. What’s
more, BadActs is resistant to activation-level adap-
tive attacks. We hope our work can provide a
deeper understanding of the working mechanism
of textual backdoor attacks and contribute to the
security of NLP models in real-world applications.

Limitations

The limitations of our work are discussed as fol-
lows: (1) Our methods rely on the assumption
that the user possesses a small, clean validation
dataset to estimate the activation distribution of
clean data. This requirement is relatively easy to
meet in real-world scenarios and is also consistent
with previous sample-level backdoor defense meth-
ods (Qi et al., 2021a; Yang et al., 2021b; Chen et al.,
2022b; He et al., 2023a; Li et al., 2023). (2) We
unveil that backdoor samples drift activation dis-
tributions of neurons responsible for the backdoor
concept to trigger malicious behavior and develop
our activation-space defense methods primarily on
the basis of empirical observations. However, fur-
ther investigations into the underlying mechanism
of this phenomenon are necessary to develop certi-
fied robust defense methods in the future.

Ethics Statement

Our study introduces efficient pipelines for detect-
ing and purifying backdoor samples in the activa-
tion space, aiming to protect NLP models from
backdoor attacks. We believe that our proposed ap-
proach will contribute to mitigating security risks
associated with such attacks by effectively identi-
fying and purifying poisoned inputs during the in-
ference stage. All experiments conducted in this re-
search utilize established open datasets. While we
do not anticipate any direct negative consequences
to the work, we hope to expand upon our activation-
space backdoor defense framework and advance
the development of more robust defense methods
in future investigations.
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A Dataset Details

We conduct experiments on four widely used
text classification datasets covering binary and
multi-class scenarios. For binary classification
scenarios, we use SST-2 (Socher et al., 2013),
YELP (Rayana and Akoglu, 2015; Azizi et al.,
2021), and HSOL (Davidson et al., 2017), The SST-
2 and YELP datasets include positive and negative
polarity reviews, and the attack target is to clas-
sify negative reviews as positive by the backdoored
models, thereby bypassing detectors and posting
targeted malicious comments to undermine busi-
ness competitors. Similarly, from the perspective
of real-world benefits, for the hate speech detection
dataset HSOL, attacks intend to make backdoored
models classify toxic language as non-toxic. To test
the performance of our approaches in multi-class
scenarios, we use the Agnews (Zhang et al., 2015),
a news article dataset with topics including Sports,
World, Business, and Sci/Tech, and randomly se-
lect Sports as the target label. The details of the
four datasets we used are shown in Table 6.

B More Visualization Results

Visualization of the distribution of NAS scores for
clean and poisoned samples over different datasets
as shown in Figure 4, Figure 5, and Figure 6.

C Detailed Attacking Results

We list the attacking results of badnets, addsent,
synbkd, and stylebkd in Table 7.

D Detailed Defending Results of BadActs
without the Detection Module

We list the detailed defending results of BadActs
without the detection module in Table 8.

E Details of Adaptive Attacks

The activation-level adaptive attack in Section 5
tries to pull the activations of backdoor samples to
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SST-2 YELP HSOL AGNEWS

Task Sentiment Analysis Sentiment Analysis Offensive Language Identification News Topic Classification
Types of Class Positive/Negative Positive/Negative Non-Toxic/Toxic World/Sports/Business/SciTech
Train:Val:Test 7K:1K:2K 14K:3K:3K 6K:2K:2K 108K:12K:8K
Average Length 19.24 29.25 14.32 37.96

Table 6: Details of the datasets used in our experiments.

Attacks Metrics SST-2 YELP HSOL Agnews

badnets
CACC 90.23 95.10 95.25 94.42
ASR 100.00 100.00 99.91 100.00

addsent
CACC 90.66 95.10 94.81 94.26
ASR 100.00 100.00 100.00 100.00

synbkd
CACC 88.58 95.20 94.73 94.43
ASR 95.07 100.00 99.03 99.81

stylebkd
CACC 89.40 95.00 94.45 93.95
ASR 89.91 91.74 86.00 93.07

Table 7: The performances of different attacks in terms of ASR and CACC in percentage.

the manifold of clean samples. Concretely, follow-
ing Zhong et al. (2022) and Chen et al. (2022b), we
adopt this activation-level regularization target:

Lreg =
∑

1≤i≤L·d

(∥∥rbackdoor
i − rclean

i

∥∥) , (5)

where L ∗ d is equal to the total number of Trans-
former block output neurons, rbackdoor

i is the activa-
tion of backdoor samples, and rclean

i is the activa-
tion of clean samples. The overall training loss is
formulated as:

L = Lce + λLreg, (6)

where Lce is the custom cross-entropy target for
classification tasks, and λ is the coefficient of the
activation-level regularization term. We set a large
value 250 for λ in our experiments, so that Lreg is
sufficiently optimized.

F Software and Hardware Requirements

We implement our code based on the Py-
Torch (Paszke et al., 2019), HuggingFace Trans-
formers (Wolf et al., 2020), and OpenBack-
door (Cui et al., 2022b) Python packages. All code
and data will be released upon publication. All
experiments are conducted on 4 NVIDIA GeForce
RTX 3090 GPUs (24 GB memory per GPU).
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Datasets Attacks CACC↑ PACC↑ ASR↓

SST-2

badnets 86.16 81.14 18.86
addsent 83.31 68.75 31.25
stylebkd 83.80 46.27 53.73
synbkd 81.88 57.24 42.76

YELP

badnets 91.50 93.40 6.60
addsent 91.40 80.75 19.25
stylebkd 90.04 72.75 27.25
synbkd 92.27 68.75 31.25

HSOL

badnets 94.73 93.81 6.19
addsent 95.17 90.43 9.57
stylebkd 95.13 63.56 36.44
synbkd 94.85 53.66 46.34

Agnews

badnets 91.93 90.18 4.02
addsent 92.99 90.33 1.53
stylebkd 93.03 80.89 10.16
synbkd 93.09 72.54 11.81

Table 8: Backdoor purification performance (in percentage) of our BadActs w/o the detection module. ↑ indicates
higher is better and ↓ indicates lower is better.
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Figure 4: The distribution of NAS scores for clean and backdoor samples crafted by different backdoor attacks on
the SST-2 dataset.
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Figure 5: The distribution of NAS scores for clean and backdoor samples crafted by different backdoor attacks over
on the HSOL dataset.
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Figure 6: The distribution of NAS scores for clean and backdoor samples crafted by different backdoor attacks on
the Agnews dataset.
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