
Findings of the Association for Computational Linguistics: ACL 2024, pages 5285–5299
August 11-16, 2024 ©2024 Association for Computational Linguistics

Generation Meets Verification: Accelerating Large Language Model
Inference with Smart Parallel Auto-Correct Decoding

Hanling Yi1, Feng Lin1,2, Hongbin Li1, Peiyang Ning1, Xiaotian Yu1, Rong Xiao1

1Intellifusion Inc.
2Harbin Institute of Technology, Shenzhen

{hanling.cuhk, lee.blingner, ningpeiyang,
xiaotianyu.ac, rongxiao}@gmail.com

lin1993@mail.ustc.edu.cn

Abstract

This research aims to accelerate the inference
speed of large language models (LLMs) with
billions of parameters. We propose Smart
Parallel Auto-Correct dEcoding (SPACE), an
approach designed for achieving lossless ac-
celeration of LLMs. By integrating semi-
autoregressive inference and speculative decod-
ing capabilities, SPACE uniquely enables au-
toregressive LLMs to parallelize token genera-
tion and verification. This is realized through
a specialized semi-autoregressive supervised
fine-tuning process that equips existing LLMs
with the ability to simultaneously predict mul-
tiple tokens. Additionally, an auto-correct de-
coding algorithm facilitates the simultaneous
generation and verification of token sequences
within a single model invocation. Through
extensive experiments on a range of LLMs,
SPACE has demonstrated inference speedup
ranging from 2.7x-4.0x on HumanEval-X while
maintaining output quality.

1 Introduction

The majority of large language models (LLMs), in-
cluding prominent examples like ChatGPT (Brown
et al., 2020) and LLaMA (Touvron et al., 2023),
are autoregressive (AR) in nature. During the in-
ference stage, these AR models generate tokens
one by one in a sequential manner. This sequential
approach limits parallelism, leading to underuti-
lization of modern parallel computing resources
such as GPUs. Consequently, the inference stage
becomes memory-bound and the inference latency
increases noticeably, particularly with advanced
LLMs boasting billions of parameters.

A straightforward method to mitigate the la-
tency is to adapt the model to predict multiple
future tokens in parallel. Such models are com-
monly referred to as semi-autoregressive (SAR)
models (Wang et al., 2018). Nonetheless, the vast
majority of LLMs are inherently AR and, hence,
unable to perform inference in a SAR manner. In

addition, SAR models commonly experience a de-
terioration in the output quality due to their parallel
decoding nature (Xiao et al., 2023). Furthermore,
it is worth mentioning that pretraining any LLM
from scratch is computationally expensive.

Another effective way to speed up AR sampling
is speculative decoding (Leviathan et al., 2023;
Chen et al., 2023; Miao et al., 2023). Speculative
decoding typically adheres to the ‘draft-then-verify’
paradigm, wherein multiple candidate tokens are
initially generated by fast-to-infer smaller mod-
els, and are subsequently validated in parallel by
the larger LLM. This validation process, based on
rejection sampling, ensures that the final output
is consistent with the LLM’s distribution, thereby
achieving lossless speedup. Nonetheless, specula-
tive decoding is contingent on the availability of
smaller models, which must utilize the same tok-
enizer as the larger model to function properly.

Integrating SAR inference with speculative de-
coding presents a promising approach to accelerate
language model inference. By adapting a model
to autonomously generate and validate a sequence
of future tokens, we establish an efficient and self-
reliant process that greatly enhances the speed of
inference. This union yields substantial practical
benefits: it eliminates the requirement for smaller
auxiliary models, thereby simplifying the overall
implementation and reducing memory overhead
during inference. Furthermore, by shifting the em-
phasis away from precise prediction of multiple
tokens towards speculative generation followed by
verification, the difficulty of the SAR training phase
can be significantly reduced.

In this paper, we propose Smart Parallel Auto-
Correct dEcoding (SPACE), a approach that allows
LLMs to generate multiple tokens speculatively
while simultaneously verifying them. SPACE har-
monizes a SAR model with a draft-then-verify
inference algorithm to optimize inference speed
while maintaining high model quality. We demon-

5285

Figure 1: A visual comparison between conventional AR inference (left) and SPACE inference (right) is illustrated.
In AR inference, token generation proceeds in a sequential manner, with only one token output per decoding step.
In SPACE inference, the input token sequence (i.e., “LLMs are”) is augmented with k + 1 groups of mask tokens
and k candidate tokens (i.e., “auto” and “model”). The candidate tokens undergo verification to obtain accepted
tokens (i.e., “auto” and “regressive”), and k new candidate tokens (i.e., “model” and “<s>”) are generated from one
of the mask groups after a single model invocation. An illustration of the generation and verification process can be
found in Figure 2. SPACE allows for a variable number of tokens to be generated in each step, with the quantity
ranging from a minimum of 1 to a maximum of k + 1.

strate that an AR language model can be adapted
to produce probable token sequences in parallel
through semi-autoregressive supervised fine-tuning
(SAR-SFT). This strategy obviates the need for sup-
plementary models and maintains the fine-tuning
process within reasonable computational demands.
We also introduce an auto-correct decoding algo-
rithm that enables the generation and validation
of token candidates to occur concurrently within a
single invocation of a model, thereby significantly
boosting inferential efficiency. SPACE is particu-
larly useful for edge server applications of LLMs,
where it can effectively utilize the computing re-
sources to accelerate the inference speed in low
batch size scenarios. A visual comparison between
AR and SPACE inference can be found in Figure 1.
Our key contributions are summarized as follows:

• We propose a SAR-SFT scheme that empow-
ers autoregressive LLMs to generate multiple
tokens at once, without requiring substantial
computational overhead.

• We introduce an auto-correct decoding algo-
rithm that facilitates the concurrent generation
and validation of candidate tokens within a
single forward pass of the model.

• Our extensive experiments, conducted across

various LLMs with parameters ranging from
6B to 70B, validate that SPACE is effective
in achieving an inference speedup from 2.7x
to 4.0x in HumanEval-X while maintaining
output quality.

2 Related Work

Speculative Decoding Speculative decod-
ing (Leviathan et al., 2023; Chen et al., 2023)
accelerates LLM inference by using a smaller
draft model to predict larger target model outputs,
with subsequent verification by the target model.
The efficacy of the method is contingent on
the accuracy of the draft model’s predictions.
To enhance accuracy, researchers have adopted
various strategies such as employing ensembles of
boosted draft models (Miao et al., 2023), staged
draft models (Spector and Ré, 2023), retraining the
target model with addition of auxiliary prediction
heads (Stern et al., 2018), introducing advanced
coordination policies (Kim et al., 2023) and
refining the decoding algorithm (Sun et al., 2023;
Lin et al., 2024). However, speculative decoding
hinges on the accessibility of suitable smaller
models, which can be difficult to obtain and often
requiring extra training and careful tuning (Liu
et al., 2023). SPACE circumvents this challenge

5286

by fine-tuning the target model to prognosticate
future token sequences in parallel, eliminating the
dependency on extra small model.

Recent advancements like Lookahead Decod-
ing (Fu et al., 2023) and Self-Speculative (Zhang
et al., 2023) have refined the draft-then-verify pro-
cess, forgoing the need for extra models or intricate
training steps. Although simpler, these methods
tend to provide less acceleration than SPACE. Con-
trarily, Medusa (Cai et al., 2024) and PaSS (Monea
et al., 2023) leverage fine-tuning of a single LLM
to perform both token generation and validation.
PaSS, through fine-tuning lookahead token em-
beddings, allows LLMs to predict multiple tokens
ahead, but with a limited speedup of about 30%
as their verification and drafting phases occur se-
quentially. Medusa adds multiple decoding heads
to the LLM and introduces a tree-based decoding
algorithm for faster inference, but it struggles with
larger batch sizes owing to the increased computa-
tional demands of tree-structured attention.

Semi-Autoregressive Decoding SAR departs
from the AR approach by decoding multiple tokens
in parallel, thereby significantly enhancing infer-
ence efficiency. Particularly in machine translation,
SAR has achieved a fivefold speed increase while
preserving 88% of the model quality (Wang et al.,
2018). For SAR decoding, it is a common trick
to employ mask tokens as placeholders in input.
This approach, originating from the mask-predict
paradigm introduced by Ghazvininejad et al. in
machine translation, has since become a widely
recognized decoding strategy (Xiao et al., 2023).
Inspired by this paradigm, SPACE adopts k mask
tokens to predict k future tokens. Xia et al. acceler-
ate inference of an AR model by creating draft to-
kens with a SAR model and then refined by the AR
model. Unlike their method which necessitates a
secondary SAR model for draft generation, SPACE
eliminates this requirement, merging generation
and verification phases for enhanced efficiency.

3 Methods

SPACE primarily comprises two components: the
SAR-SFT scheme and the auto-correct decoding
algorithm. The SAR-SFT scheme enhances an au-
toregressive LLM’s capacity for speculative multi-
token generation in a single decoding step. Mean-
while, the auto-correct decoding algorithm allows
the LLM to concurrently generate and verify candi-
date tokens. We introduce the details of these two

components in the following subsections.

3.1 Semi-Autoregressive Finetuning
Conventionally a pretrained LLM undergoes a
process known as supervised fine-tuning (SFT)
to adapt the model to specific downstream
tasks. Specifically, given the prompt token se-
quence X and the answer token sequence Y =
{y1, y2, · · · , yN}, the AR model is trained in SFT
with loss function

LAR = −
N∑

t=1

logP (yt|y<t, X; θ), (1)

where yt is the token to be predicted at step t, y<t

is the tokens predicted in previous t− 1 decoding
steps and θ is the model parameters.

In the proposed SAR-SFT scheme, our objec-
tive is to train the model to generate k consecutive
tokens when presented with an input sequence con-
taining k mask tokens. The adaptation from tradi-
tional SFT to SAR-SFT affects only the dataloader
component in implementation. In this modified dat-
aloader, each data sample remains unchanged with
a probability par. Conversely, with a probability
of 1− par, we randomly select a position m from
{0, 1, · · · , N − k} in the input sequence to replace
k consecutive tokens with mask tokens. We then
truncate the input token sequences to keep the first
m+ k tokens, denoted as yk<m:

yk<m = {y1, y2, · · · , ym−1, [M], · · · , [M]︸ ︷︷ ︸
×k

}. (2)

Under this modified dataloader, with probability
par the model is trained with the original AR loss
LAR. With probability 1−par, the model is trained
with the SAR loss function defined as follows:

LSAR = −
m−1∑

t=1

logP (yt|y<t, X; θ)

−
m+k∑

t=m

logP (yt|yk<m, X; θ) (3)

Intuitively, the hyper-parameter par plays a critical
role in striking a balance between the AR loss and
the SAR loss. By selecting an appropriate value for
par, the LLM is trained not only to adhere to down-
stream tasks but also to predict multiple tokens at
each decoding step.

We note that the primary goal of SAR-SFT is
not to compel the LLM to predict several tokens

5287

Figure 2: An illustrative example of the auto-correct decoding algorithm in SPACE. In this example, the first
candidate token “auto” is accepted, while the second candidate token “model” is rejected. The LLM generates two
new tokens “auto” and “regressive” in this decoding step and two new candidate tokens “model” and “<s>” from
the second mask group.

in parallel with high accuracy, as this can be an
exceedingly challenging task. Rather, our goal is
to enable the LLM to make an “educated guess”
about the upcoming few tokens, which is more at-
tainable. This strategy allows the model to improve
its inference efficiency by preparing probable token
sequences beforehand, which can later be validated
and refined by the auto-correct decoding algorithm
introduced in next subsection.

3.2 Auto-Correct Decoding Algorithm

Unlike previous methods (Leviathan et al., 2023;
Chen et al., 2023) that rely on auxiliary models,
SPACE streamlines the process by using the same
LLM for generation and subsequent verification of
candidate tokens. To enhance inference efficiency,
we have developed an algorithm that enables this
unified LLM to concurrently verify tokens from the
current step and generate new candidates for the
next step within a single forward pass.

Algorithm 1 outlines the auto-correct decoding
algorithm employed in SPACE, with Figure 2 pro-
viding an illustrative example. When presented
with an initial prompt (e.g., “LLMs are”) along-
side k candidate tokens (e.g., “auto” and “model”),
the algorithm begins by constructing an input to-
ken sequence. This is achieved by augmenting the
original prompt with k + 1 groups of mask tokens,
interspersed with the k candidate tokens, as de-
picted in Figure 2. Specialized attention masks and
positional indices are devised to constrain the in-
fluence of the mask tokens, allowing them to “see”
only preceding non-mask tokens and other mask

Algorithm 1 The auto-correct decoding algorithm

Input: A sequence of input tokens T , number of
mask tokens k, large language model M

Output: A sequence of generated tokens O
1: O = T , Lc = [0]× k, Pc = [+∞]× k
2: while True do
3: l = len(O)
4: Get I, Ā, P̄ according to equation (4)-(5)
5: P = M(I, Ā, P̄) ▷ Get the output logits
6: idx = l + 1
7: Q = P [l] ▷ The logit of the l-th token
8: for i = 1 to k do
9: r ∼ U(0, 1)

10: if r ≤ Q(Lc[i])/Pc[i] then
11: O.append(Lc[i])
12: idx = idx+ k + 1
13: Q = P [l + i ∗ (k + 1)]
14: else
15: break
16: end if
17: end for
18: a ∼ Q ▷ Sample one extra token
19: O.append(a)
20: if <EOS> in O then
21: return O[:eos_index]
22: end if
23: Lc ∼ P [idx : idx+ k] ▷ New candidates
24: Pc = P [idx : idx+ k](Lc) ▷ Probability
25: end while

5288

tokens within their respective groups. Following a
forward pass through the LLM, a verification step
is applied to the candidate tokens. If i∗ tokens
(where 0 ≤ i∗ ≤ k) pass this check, the algorithm
proceeds to generate k new candidate tokens (e.g.,
“model” and “<s>”) from the (i∗+1)-th mask group
and one extra token from the i∗-th candidate token
(e.g., “regressive”). In this case, i∗ + 1 new tokens
are generated from a single LLM forward step.

In the following, we introduce the auto-correct
decoding algorithm in details. Given a sequence
of input prompt tokens T = {x1, x2, · · · , xl} and
a list of k candidate tokens Lc = {c1, c2, · · · , ck}
generated from the previous decoding step, we first
construct a sequence of input tokens I as follows:

I = {x1, · · · , xl, Lk
m, c1, L

k
m, · · · , ck, Lk

m}, (4)

where Lk
m = [M], · · · , [M]︸ ︷︷ ︸

×k

represents a group of

k mask tokens and there are k + 1 groups of them
in I. The sequence T is expanded by k · (k +
2) additional tokens, resulting in a total length of
|I| = l + k · (k + 2). These k + 1 groups of mask
tokens are designated for the generation of new
candidate tokens.

Since LLM decoding is primarily bounded by
memory bandwidth, we can merge the generation
and verification in the same forward step, leverag-
ing GPU’s parallel processing power to hide over-
heads. We achieve this by designing special atten-
tion mask Ā ∈ {0, 1}|I|×|I| as follow:

Āij =





1 i ≥ j, I[j] ̸= M

1 i ≥ j, i− j < k, I[i] = I[j] = M

0 otherwise
(5)

An illustrative example of the attention mask con-
figuration is depicted in Figure 7 in Appendix A.3.
The positional indices for positional encoding can
be computed as P̄i =

∑|I|
j=1 Āij − 1.

Following the input construction phase, we pro-
ceed with the inference process using the LLM,
from which we derive the normalized output logits,
denoted as P . The candidate tokens are then veri-
fied through rejection sampling, which is detailed
from Line 6 to Line 22 in Algorithm 1. Denote
Pc as the list of semi-autoregressive probability of
candidate tokens obtained from the previous step.
Formally Pc[i] is defined as:

Pc[i] = P (ci|x1, · · · , xl−1, [M], · · · , [M]︸ ︷︷ ︸
×i

) (6)

Denote Qc as the list of autoregressive probability
of candidate tokens from the current step 1.

Qc[i] = P (ci|x1, · · · , xl, c1, · · · , ci−1) (7)

Starting from i = 1, we accept token ci with prob-
ability min(1, Qc[i]

Pc[i]
). Upon acceptance of token ci,

the algorithm output ci and proceeds to validate
the subsequent token ci+1 using the same criterion;
conversely, if ci is rejected, the verification pro-
cess terminates immediately and one extra token
is generated from the output logit of the last ac-
cepted candidate token, as shown in Line 18 in
Algorithm 1. It is important to observe that dur-
ing each decoding step, the number of generated
tokens ranges from a minimum of one to a maxi-
mum of k + 1. By employing rejection sampling,
it can be proved that the distribution of the output
token sequence matches that of the AR inference
process in the LLM. For a more comprehensive
explanation of this claim, readers can refer to prior
research (Leviathan et al., 2023; Chen et al., 2023).

4 Experiments

4.1 Experimental Settings

Training We conduct experiments on LLMs with
various sizes, including ChatGLM3-6B-Base (Du
et al., 2022), LLaMA-2 (7B, 13B, 70B) (Tou-
vron et al., 2023), Qwen-14B (Bai et al., 2023),
InternLM-20B (Team, 2023), Falcon-40B (Al-
mazrouei et al., 2023). To ensure reproducibil-
ity, we finetune the models using publicly avail-
able SFT datasets, including Alpaca-GPT4 (Peng
et al., 2023), Lima (Zhou et al., 2023), Oaast-
SFT (LAION-AI, 2023), CodeAlpaca (Chaudhary,
2023), and OpenPlatypus (Lee et al., 2023). The
details of these datasets are listed in Table 5 in Ap-
pendix A.1. There are in total 166,993 training
samples. We add the mask token as a special token
and initialize its embedding with normal distribu-
tion. Unless otherwise specified, we set the number
of mask tokens k = 5 and par = 0.5. The training
details can be found in Appendix A.1.

Inference In our assessment of SPACE, we em-
ploy four distinct datasets: Chatbot Instruction
Prompt (CIP) (Palla, 2023), MT-Bench (Zheng
et al., 2023a), HumanEval-X (Zheng et al., 2023b)
and XSum (Narayan et al., 2018). For inference
baseline, we train LLMs with SFT under the same

1By definition, Qc[i] is equivalent to Q(Lc[i]) in Line 10
of Algorithm 1.

5289

datasets and training configuration used for SAR-
SFT. We adopt the generation algorithm provided
by the Huggingface Transformers library (Wolf
et al., 2020), executing it in an autoregressive fash-
ion on the SFT model. We conduct the experiments
on a server with eight A800 (80GB) GPUs. By de-
fault, we set the batch size to 1 during inference.
To evaluate the inference efficiency of SPACE, we
employ two metrics: speedup and average accepted
tokens. The speedup metric is defined as the ratio
of the inference speed of the baseline method (mea-
sured in tokens per second) to the inference speed
achieved using SPACE. The second metric, aver-
age accepted tokens, is computed as the ratio of
the total number of tokens generated to the num-
ber of inference steps performed by the LLM. The
evalutation details can be found in Appendix A.2.

4.2 Experimental Results

4.2.1 Inference Efficiency

The experimental results on XSum, HumanEval-X
and CIP under greedy sampling setting are shown
in Table 1. We observe that SPACE predominantly
corresponds closely with baseline performance lev-
els in both the XSum and HumanEval-X bench-
marks. Moreover, SPACE demonstrably realizes a
speedup in the range of 1.5 to 4.0, depending on
the models and datasets. The maximal acceleration,
seen in LLaMA-2-70B on HumanEval-X, clocks
in at an impressive 4.04. More experimental results
of SPACE under random sampling can be found in
Appendix A.4.

From the above results, we have the follow-
ing three observations: First, SPACE consis-
tently achieves speedup while maintaining perfor-
mance comparable to the baseline across models
of varying sizes, showcasing its broad applicability.
Specifically, the results attained by SPACE in tasks
such as XSum and HumanEval-X closely mirror
those achieved by the baseline method, as indicated
by the comparable performance metrics listed in
parentheses in Table 1.

Second, the magnitude of speedup experienced
is model-specific, indicating that the efficiency ben-
efits of SPACE can differ in models. This variance
might stem from several factors: (1) the models’
vocabularies vary, with less efficient vocabularies
possibly leading to greater predictability and thus
higher speedup; and (2) models with more param-
eters often enjoy more substantial speedup, likely
owing to their superior predictive capabilities that

facilitate earlier anticipation of forthcoming tokens.
Lastly, when applying SPACE to different tasks,

the same model can exhibit dramatically different
speedup ratios. In particular, tasks that involve
programming, such as those in the HumanEval-X
benchmark, exhibit the most significant speedup,
achieving an average rate of 3.33 using greedy sam-
pling. This observation aligns with the results in
previous research (Chen et al., 2023), and could
be attributed to the inherently structured and pre-
dictable nature of programming code.

To ensure a fair and unbiased comparison, we
have reproduced several accelerating methods,
such as self-speculative decoding (Zhang et al.,
2023), look-ahead decoding (Fu et al., 2023), as-
sistant generation from HF (Joao Gante, 2023)
and speculative decoding (Leviathan et al., 2023).
All experiments were executed on the MT-Bench
dataset using identical hardware configurations in
conjunction with the LLaMA-2-70B model. Ac-
cording to the outcomes presented in Table 2,
SPACE outperforms other methods by achieving
the highest speedup. This demonstrates the com-
petitiveness of SPACE in inference acceleration.

4.2.2 Impact of SAR-SFT on Model Quality

While SPACE accelerates inference speed, it is
imperative to explore whether LLMs trained with
SAR-SFT suffer performance degradation com-
pared to those trained with the conventional SFT
approach. To this end, we train LLMs with SFT
under the same datasets and training configuration
used for SAR-SFT. Note that by setting par = 1,
SAR-SFT effectively becomes equivalent to SFT.

0 20 40 60 80 100

ChatGLM-3-6B

LLaMA-2-7B

LLaMA-2-13B

Qwen-14B

InternLM-20B

Falcon-40B

LLaMA-2-70B

SAR-SFT win tie SAR-SFT loss

Figure 3: Win rate comparison in MT-Bench: SAR-SFT
versus SFT judged by GPT-4. Best viewed in color.

5290

Model XSum HumanEval-X CIP

ROUGE-L
Avg.

Tokens
Speed-

up
Pass@10

Avg.
Tokens

Speed-
up

Avg.
Tokens

Speed-
up

ChatGLM-3-6B 14.5 (14.3) 2.04 1.48 18.3 (18.3) 3.34 2.71 1.80 1.52
LLaMA-2-7B 16.0 (16.1) 2.23 1.92 18.9 (18.9) 3.54 3.18 1.85 1.72

LLaMA-2-13B 15.1 (15.0) 2.36 2.08 20.1 (20.1) 3.76 3.43 1.99 1.82
Qwen-14B 17.2 (17.2) 2.15 1.94 26.8 (26.8) 3.51 3.19 1.85 1.68

InternLM-20B 16.4 (16.3) 2.15 1.99 21.3 (21.3) 3.31 3.16 1.80 1.63
Falcon-40B 15.7 (15.8) 2.17 2.03 20.7 (20.7) 3.58 3.58 1.96 2.02

LLaMA-2-70B 16.4 (16.3) 2.54 2.34 28.0 (28.0) 4.32 4.04 2.09 1.89

Table 1: The experimental results on XSum, HumanEval-X and CIP under greedy sampling setting. We show
the average accepted tokens (Avg. Tokens) and inference speedup (Speedup) for each datasets. The number in
parentheses shows the corresponding results of the baseline method.

Method Speedup
Self-SpecDec (Zhang et al., 2023) 1.15
Look-ahead (Fu et al., 2023) 1.22
HF AssistGen (Joao Gante, 2023) 1.53
SpecDec (Leviathan et al., 2023) 1.79
SPACE (ours) 2.26

Table 2: Comparison of speedup for various acceleration
methods with LLaMA-2-70B on MT-Bench dataset.

coding

extraction

hum
anities

m
ath

reasoning

roleplay

stem
w
riting

overall

0

0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

Figure 4: The mean and standard deviation of speedup
for all models under greedy sampling setting in MT-
Bench.

For a comprehensive comparison, MT-Bench
was employed with GPT-4 serving as the evaluator
to measure the performance disparity between the
LLMs trained with the two training schemes. The
results are presented in Figure 3. We can observe
that models trained with SAR-SFT scheme have
comparable performance as compared to their SFT
counterparts. Specifically, the majority of questions
assessed in MT-Bench ended in a deadlock across
all models, implying that training an LLM with
SAR-SFT does not deteriorate the model’s quality.

Additionally, SAR-SFT-trained models have exhib-
ited advantages in speed. The mean and standard
deviation of the speedup for all models in various
tasks within MT-Bench are shown in Figure 4. It
becomes evident that the speedup ratios vary con-
siderably across different tasks, with the highest
gains observed in tasks related to extraction, math,
and coding. On average, all the models achieved
a speedup ratio of 2.3 in MT-Bench dataset. More
details can be found in Table 6 in the appendix.

To further validate that SAR-SFT does not com-
promise the model’s effectiveness, a comprehen-
sive evaluation was conducted using a suite of
widely adopted benchmarks, including MMLU,
BoolQ, and others. More detailed can be found
in Appendix A.5.

4.2.3 Ablation Study

Our ablation study investigates the impact of vary-
ing the number of masked tokens, denoted as k, on
the speedup ratio of the LLaMA-2-7B model using
the MT-Bench dataset. The results of this analysis
are presented in Figure 5. Our findings indicate
that a setting of k = 5 achieves an optimal balance
for the model’s performance. During the SAR-SFT
phase, the LLM is tasked with concurrently predict-
ing a sequence of k subsequent tokens. Increasing
the value of k elevates the complexity of the predic-
tion task and introduces computational overhead
during inference, which may inversely correlate
with the acceleration of the decoding process. Con-
versely, setting too low a value for k leads to an
underutilization of the model’s capacity for parallel
decoding, potentially resulting in a less pronounced
improvement in decoding speed.

5291

1 2 3 4 5 6 7 8

1.6

1.7

1.8

1.9

2

2.1

2.2

Number of mask tokens (k)

S
p
e
e
d
u
p

Figure 5: Ablation study on number of mask tokens
based on LLaMA-2-7B. The speedup is evaluated under
greedy sampling setting on MT-Bench dataset.

4.3 Integration with TGI

When deploying LLMs for production use, it’s com-
mon to leverage advanced LLM serving engines de-
signed to enhance the efficiency of text generation
tasks. The Text Generation Inference (TGI) (Hug-
gingFace, 2023) framework is one such example,
widely recognized for its support for a suite of ac-
celeration techniques such as flash attention, tensor
parallelism, and continuous batching.

We have integrated SPACE with the TGI frame-
work. The primary objective of this integration
is to ascertain whether SPACE can yield acceler-
ation gains even when combined with other ad-
vanced inference-optimizing techniques presented
in TGI. The results shown in Figure 6 were encour-
aging: with SPACE, TGI achieved a speed increase
ranging from 1.5x to 3.4x across various model
sizes. Remarkably, the incorporation of SPACE
enabled LLaMA-2-13B model to reach inference
speeds comparable to, if not surpassing, those of a 7
billion-parameter model without SPACE supports.

To assess SPACE’s efficacy with larger batch
sizes, we carried out experiments on the MT-Bench
dataset using the LLaMA-2-70B model through
TGI. The results in Table 3 suggest a reduced
speedup from SPACE as batch sizes grow. No-
tablely, SPACE with five masks (k = 5) achieves
only a 1.39x improvement with a batch size of
16. This diminishing speedup is due to the com-
putational overhead introduced by the additional
tokens during the inference phase, an effect that
is magnified as batch size escalates. Additionally,
our findings indicate that decreasing the number of
masks enhances SPACE performance. Specifically

2.4x

2.5x

3.4x

LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B
0

50

100

150

200

250

1.5x

1.7x

2.0x

LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B
0

50

100

150

TGI TGI+SPACE

T
o
k
e
n
s
/s

T
o
k
e
n
s
/s

HumanEval-X

MT-Bench

Figure 6: Token generation speed (Tokens/s) and
speedup for LLaMA-2 (7B, 13B, 70B) with TGI and
SPACE integration on HumanEval-X and MT-Bench
datasets under greedy sampling setting.

Method Batch Size
2 4 8 16

AR 22.8 22.1 21.1 19.5
SPACE
(k=5)

56.0
(2.46)

49.2
(2.23)

38.4
(1.82)

27.2
(1.39)

SPACE
(k=2)

51.8
(2.27)

48.3
(2.19)

41.4
(1.96)

33.9
(1.74)

Table 3: The inference speed in tokens/s per request and
speedup for AR and SPACE on MT-Bench dataset. The
number in parentheses shows the speedup.

with batches over 8, SPACE with two masks are
more efficient than those with five. This is intuitive
as a smaller value of k introduces fewer additional
tokens, thereby saving computational resources.
More comparisons on AR and SPACE with large
batch size can be found in Appendix A.6.

5 Conclusion

In this paper, we introduce SPACE, an innovative
approach to accelerate inference of LLMs. SPACE
is distinguished by 1) its ability to transform an AR
LLM into a SAR LLM utilizing SAR-SFT, which is
easy to implement as it only requires minor modifi-
cations to the dataloader in SFT setup; 2) its unique
auto-correct decoding algorithm that enables the
same model for both token generation and veri-
fication. Experimental results on various LLMs
show SPACE can achieve 2.7x-4.0x speedup on
HumanEval-X while still preserving model quality.

5292

6 Limitations

While SPACE has demonstrated potential in ac-
celerating the inference of LLMs, it also brings
about certain limitations that must be acknowl-
edged: First, the primary advantage offered by
SPACE is the acceleration of the inference process
through the introduction of additional input tokens
during decoding, which has the potential to reduce
the number of forward passes that LLMs require.
However, the presence of these additional tokens
inevitably leads to increased computation overhead,
notably in terms of FLOPs, when compared to con-
ventional autoregressive decoding. Therefore, it
becomes crucial to conduct an exhaustive study on
the energy consumption of methods like SPACE, to
fully understand and mitigate their ecological im-
pact. The sustainability of deploying such accelera-
tion techniques, considering long-term environmen-
tal implications, must factor into the development
of responsible AI technologies.

Furthermore, it is important to recognize that
the gain in inference speed facilitated by SPACE
is variable across different tasks. Our empirical
observations suggest that the speedup is inconsis-
tent, and the limited datasets examined in this study
could contribute to skewed outcomes. Besides, our
evaluations for SPACE were conducted exclusively
on English datasets; consequently, the extent to
which SPACE can accelerate inference in other
languages has not yet been investigated. It is plau-
sible that there are specific datasets where SPACE
exhibits a significantly lower degree of accelera-
tion—a scenario not captured within the confines
of our experimental array.

Lastly, we leveraged MT-Bench along with a
collection of well-established benchmarks, such
as MMLU, PIQA, AGIEval, and others, to gauge
model performance when trained with SAR-SFT as
opposed to traditional SFT methodologies. Despite
this extensive set of evaluations, it is critical to
emphasize that benchmarking the comprehensive
capabilities of LLMs remains a challenge, and the
datasets engaged in this research fall short of en-
abling a definitive judgment. To this end, we advo-
cate for the application of SPACE in diverse down-
stream tasks by the research community, which will
offer a more rounded understanding of its practical
utility and limitations.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, et al. 2023.
Falcon-40b: an open large language model with state-
of-the-art performance. Findings of the Association
for Computational Linguistics: ACL, 2023:10755–
10773.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In AAAI, pages 7432–
7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv: 2401.10774.

Sahil Chaudhary. 2023. Code alpaca: An
instruction-following llama model for code genera-
tion. https://github.com/sahil280114/
codealpaca.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

5293

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936.

OpenCompass Contributors. 2023. Opencompass: A
universal evaluation platform for foundation models.
https://github.com/open-compass/
opencompass.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2023. Breaking the sequential dependency of llm
inference using lookahead decoding.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6112–6121.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

hiyouga. 2023. Llama factory. https://github.
com/hiyouga/LLaMA-Factory.

HuggingFace. 2023. Large language model
text generation inference. https:
//github.com/huggingface/
text-generation-inference.

Joao Gante. 2023. Assisted generation: a new direction
toward low-latency text generation.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-
tendra Malik, Michael W Mahoney, Amir Gholami,
and Kurt Keutzer. 2023. Speculative decoding with
big little decoder. In Thirty-seventh Conference on
Neural Information Processing Systems.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794.

LAION-AI. 2023. Open-assistant. https://
github.com/LAION-AI/Open-Assistant.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. 2023.
Platypus: Quick, cheap, and powerful refinement of
llms. arXiv preprint arXiv:2308.07317.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Feng Lin, Hanling Yi, Hongbin Li, Yifan Yang, Xiaotian
Yu, Guangming Lu, and Rong Xiao. 2024. Bita: Bi-
directional tuning for lossless acceleration in large
language models. arXiv preprint arXiv:2401.12522.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
2023. Online speculative decoding. arXiv preprint
arXiv:2310.07177.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and
Zhihao Jia. 2023. Specinfer: Accelerating generative
llm serving with speculative inference and token tree
verification. arXiv preprint arXiv:2305.09781.

Giovanni Monea, Armand Joulin, and Edouard Grave.
2023. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581.

Shashi Narayan, Shay Cohen, and Maria Lapata. 2018.
Don’t give me the details, just the summary! topic-
aware convolutional neural networks for extreme
summarization. In 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1797–1807. Association for Computational Linguis-
tics.

Alessandro Palla. 2023. chatbot instruction prompts.
https://huggingface.co/datasets/
alespalla/chatbot_instruction_
prompts.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Benjamin Frederick Spector and Christopher Ré. 2023.
Accelerating llm inference with staged speculative
decoding. In Workshop on Efficient Systems for Foun-
dation Models@ ICML2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.

5294

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/LLaMA-Factory
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://doi.org/10.57967/hf/0638
https://doi.org/10.57967/hf/0638
https://github.com/LAION-AI/Open-Assistant
https://github.com/LAION-AI/Open-Assistant
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah-
mad Beirami, Himanshu Jain, Felix Yu, Michael Ri-
ley, and Sanjiv Kumar. 2023. Spectr: Fast speculative
decoding via optimal transport. In Workshop on Effi-
cient Systems for Foundation Models@ ICML2023.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158.

Paul Tardy. 2023. Rouge. https://github.com/
pltrdy/rouge.

InternLM Team. 2023. Internlm: A multilingual
language model with progressively enhanced capa-
bilities. https://github.com/InternLM/
InternLM.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018. Semi-
autoregressive neural machine translation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 479–488.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Heming Xia, Tao Ge, Furu Wei, and Zhifang Sui. 2022.
Lossless speedup of autoregressive translation with
generalized aggressive decoding. arXiv preprint
arXiv:2203.16487.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min
Zhang, Tao Qin, and Tie-yan Liu. 2023. A survey
on non-autoregressive generation for neural machine
translation and beyond. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2023. Draft
& verify: Lossless large language model accelera-
tion via self-speculative decoding. arXiv preprint
arXiv:2309.08168.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023a.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.
Codegeex: A pre-trained model for code generation
with multilingual evaluations on humaneval-x.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

A Appendix

A.1 Training Details

We conduct all our experiments on a cluster of 4
servers, where each server is equipped with eight
A800 (80G) GPUs. We adopt distinct training
strategies based on the size of the models being
trained. For models with fewer than 14 billion pa-
rameters, we allocate our experiments to a single
server and employ the ZeRO-2 (Rasley et al., 2020)
optimization for distributed training. Conversely,
for models that exceed the 14 billion parameter
mark, we expand our setup to utilize all four servers
and implement the ZeRO-3 optimization to effec-
tively handle the increased computational demands.
We adopt LLaMA Factory (hiyouga, 2023) to fine-
tune the LLMs. The specific hyper-parameters uti-
lized for the SAR-SFT are documented and can be
referenced in Table 4.

Table 5 shows the statistics of SFT datasets used
to finetuned the models. Note that all the dataset
are publicly available. The fine-tuning duration for
LLMs can vary significantly based on the size of
the model and the computational resources avail-
able. For the LLaMA-2-7B model, the fine-tuning
process typically takes about 6 hours on a server
equipped with eight A800 (80GB) GPUs. For
the largest variant, the LLaMA-2-70B, the SAR-
SFT requires roughly 18 hours to complete using 4

5295

https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge
https://github.com/InternLM/InternLM
https://github.com/InternLM/InternLM
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/2303.17568
http://arxiv.org/abs/2303.17568
http://arxiv.org/abs/2304.06364
http://arxiv.org/abs/2304.06364

Hyper-parameters Value
max source tokens 2048
max target tokens 2048

learning rate 5e-5
scheduler cosine
Adam β1 0.9
Adam β2 0.999

epoch 2
per device batch size 4

gradient clip 1.0

Table 4: Hyper-parameters and training configurations
of SAR-SFT.

servers, each equipped with 8 A800 (80GB) GPUs
(totalling 32 GPUs).

We observe that the introduction of SAR-SFT
imposes negligible additional training costs when
compared to conventional SFT. This is largely due
to the minimal intervention in the training process:
we only inject k = 5 additional mask tokens dur-
ing SAR-SFT training. Specifically, the adapta-
tion concerns solely the dataloader—other compo-
nents are kept consistent with the standard SFT
approach. In this modified dataloader, each data
sample remains unchanged with a probability par.
Conversely, with a probability of 1− par, we ran-
domly select a position m in the input sequence
to replace k consecutive tokens with mask tokens,
while the label sequence is left intact. We then trun-
cate the input and label token sequences to keep the
first m+ k tokens. Compared to the standard SFT,
which does not employ truncation on the training
sample, the training cost of SAR-SFT is marginally
reduced, as tokens beyond the positions m+ k are
discarded during the training process in SAR-SFT.
Namely, SAR-SFT actually sees less tokens during
training than SFT. Empirical evidence from our ex-
periments supports this assertion, as we recorded
similar training durations for both SAR-SFT and
SFT under identical training configurations.

A.2 Evaluation Details

We performed our inference experiments on a
server equipepd with eight A800 (80GB) GPUs.
For models with fewer than 14 billion parameters,
inference is conducted using a single GPU. For
larger models, those with parameters exceeding
14B, we employ multiple GPUs and leverage tensor
parallelism to manage the increased computational
load effectively. During the inference process, we

configure our setup with a batch size of one to en-
sure precise measurement of inference latency on a
per-instance basis.

In our experiment, we employ four dis-
tinct datasets: Chatbot Instruction Prompt (CIP)
(Palla, 2023), MT-Bench (Zheng et al., 2023a),
HumanEval-X (Zheng et al., 2023b) and XSum
(Narayan et al., 2018). CIP is a conversational
dataset from which we utilize prompts to simu-
late realistic conversations. MT-Bench is a dataset
comprised of multi-turn questions, encompassing
a wide range of topics. HumanEval-X is a stan-
dard benchmark for Python code generation and
Pass@10 is used as the metric. Lastly, the XSum
dataset, which tasks models with summary genera-
tion, is evaluated using ROUGE-L.

For generation tasks, we tailored specific prompt
templates to guide the model’s output. When work-
ing with the XSum dataset, we used the following
prompt template:“Document: {TEXT}\n Based on
the previous text, provide a brief single summary”.
Similarly, for the HumanEval-X dataset, which is
designed for code generation, we employed the
prompt template as follows: “Complete the fol-
lowing python code. Do not give any explana-
tion or testing examples, just complete the code.\n
{TEXT}”. For CIP and MT-Bench, we do not use
any prompt template.

To mesure the performance of LLMs on XSum
and HumanEval-X, we compute the ROUGE-L and
Pass@10, respectively. The ROUGE-L is calcu-
lated using python package rouge (Tardy, 2023)
and the pass@10 is computed using official evalua-
tion script (Zheng et al., 2023b).

The inference speedup for each task within the
MT-Bench benchmark under greedy sampling set-
ting across various models are shown in Table 6.

A.3 Attention Mask in SPACE
An illustrative example of the attention mask is
shown in Figure 7. The attention mask used in
SPACE is tailored such that masked tokens can
causally attend only to other mask tokens within the
same group and to preceding non-masked tokens.
Furthermore, all non-masked tokens are restricted
to causally attend to prior non-masked tokens, and
are unable to attend to any preceding masked to-
kens.

A.4 Random Sampling
To rigorously evaluate model performance on the
XSum and HumanEval-X datasets with random

5296

Dataset Language Sample
Numbers

Average
Input Tokens

Average
Output Tokens

Alpaca-GPT4-zh (Peng et al., 2023) zh 48,818 30.9 292.5
Alpaca-GPT4-en (Peng et al., 2023) en 52,002 21.6 162.6
LIMA (Zhou et al., 2023) en 1,029 74.2 639.1
Oaast-SFT (LAION-AI, 2023) multi 20,202 198.8 234.8
CodeAlpaca (Chaudhary, 2023) en 20,022 28.8 68.6
OpenPlatypus (Lee et al., 2023) en 24,926 159.6 225.3

Table 5: Statistics of SFT datasets used to finetuned the models. The average input tokens and output tokens are
calculated using LLaMA-2-7B tokenizer.

Model Code Extrac-
tion

Human-
ities Math Reason-

ing
Role-
play Stem Writ-

ing
Over-

all
ChatGLM-3-6B 2.83 3.35 1.91 2.54 1.87 1.98 2.03 2.43 2.32

LLaMA-2-7B 2.14 3.12 1.96 2.61 1.83 1.89 1.65 2.25 2.19
LLaMA-2-13B 2.89 3.66 2.20 2.99 2.29 2.03 2.27 2.68 2.53

Qwen-14B 2.88 3.76 2.18 2.85 2.04 1.86 2.05 2.55 2.43
InternLM-20B 2.50 3.28 2.05 3.55 1.89 2.00 2.02 2.05 2.36

Falcon-40B 2.02 2.90 1.72 2.22 1.69 1.53 1.69 1.76 2.17
LLaMA-2-70B 2.61 3.70 1.97 3.03 2.50 1.73 1.84 2.09 2.26

Table 6: The experimental results on MT-Bench under greedy sampling setting. We show the inference speedup for
each task in MT-Bench.

Figure 7: An illustrative example of the attention mask
used in SPACE. In this example, k = 2 and the input is
extended with 8 tokens. “LLMs are” are the input query,
“auto” and “model” are two candidate tokens that need
to be verified.

sampling enabled 2, we conducted ten runs of
the evaluation process to counteract the influence

2When using random sampling, we set top-p=0.95 and
top-k=10

of randomness. The mean and variance of these
runs are reported in Table 7. Under random sam-
pling setting, the performance metrics for SPACE
and the baseline are similar on both XSum and
HumanEval-X, as presented in Table 7. This con-
sistency across multiple evaluations confirms the
distributional alignment between SPACE and the
baseline model under the random sampling setting.

A.5 SAR-SFT versus SFT

To further demonstrate that SAR-SFT does not im-
pede the model’s performance, we compared the
performance of LLaMA-2 (with model sizes of 7B,
13B, and 70B parameters) trained with both SAR-
SFT and traditional SFT. The comparison spanned
a suite of widely used benchmarks, which we have
categorized into the following four groups:

• Academic. We report the average accuracy
of the model on the MMLU (Hendrycks
et al., 2020) and AGIEval (Zhong et al., 2023)
benchmarks.

• Knowledge. We evaluate the model on
CommonSenseQA (Talmor et al., 2019) and
BoolQ (Clark et al., 2019), reporting their av-
erage results.

5297

Model XSum HumanEval-X

ROUGE-L
Avg.

Tokens
Speedup Pass@10

Avg.
Tokens

Speedup

ChatGLM-3-6B
14.8± 0.2

(14.0± 0.4)
1.95± 0.01 1.47± 0.01

23.2
(22.8)

3.16± 0.04 2.09± 0.08

LLaMA-2-7B
15.1± 0.2

(15.3± 0.1)
2.14± 0.02 1.79± 0.04

18.9
(18.3)

3.56± 0.05 2.86± 0.04

LLaMA-2-13B
15.2± 0.2

(15.6± 0.2)
2.24± 0.01 1.86± 0.02

31.7
(32.3)

4.15± 0.02 3.81± 0.05

Qwen-14B
16.1± 0.3

(16.3± 0.3)
2.05± 0.01 1.91± 0.04

32.3
(31.7)

3.09± 0.04 2.86± 0.04

InternLM-20B
16.3± 0.2

(17.0± 0.2)
1.99± 0.01 1.73± 0.01

25.0
(23.7)

3.13± 0.03 2.67± 0.08

Falcon-40B
16.6± 0.2

(15.4± 0.3)
2.09± 0.04 2.08± 0.03

27.4
(28.0)

3.42± 0.03 2.88± 0.06

LLaMA-2-70B
16.1± 0.2

(16.2± 0.3)
2.40± 0.02 2.25± 0.02

36.6
(38.2)

4.15± 0.02 3.81± 0.05

Table 7: The experimental results on XSum and HumanEval-X using random sampling. We show the mean and
variance (over 10 runs) of the average accepted tokens (Avg. Tokens) and inference speedup (Speedup) for each
datasets. The number in parentheses shows the corresponding results of the baseline method.

• Reasoning. We assess the 5-shot performance
on PIQA (Bisk et al., 2020), RTE (Bentivogli
et al., 2009) and HellaSwag (Zellers et al.,
2019), reporting their mean performance.

• Understanding. We report the average
result on RACE (Lai et al., 2017) and
SQuAD2.0 (Rajpurkar et al., 2018).

The evaluations were conducted using OpenCom-
pass (Contributors, 2023), an opensource plat-
form designed for large language model evalua-
tion. Comparative performance results are detailed
in Table 8. Upon examination of the results, we
note small discrepancies between the models fine-
tuned with the two distinct training schemes across
different tasks.

A.6 Discussion on Large Batch Size

When operating at the same batch sizes, SPACE
consumes more GPU computational resources to
speed up inference in comparison to AR. Never-
theless, with an increase in batch size, the GPU
becomes compute-bound, effectively neutralizing
SPACE’s performance advantage. To provide a
fair assessment of SPACE and AR, we perform
experiments on the XSum dataset for both meth-
ods. Our focus is on evaluating their throughput,
defined as the number of output tokens per sec-
ond that an inference server can produce across all

requests, while experimenting with various batch
sizes. The findings, illustrated in Figure 8, reveal
that SPACE’s throughput significantly diminishes
when compared to AR at larger batch sizes. Specif-
ically, the throughput for SPACE plateaus when
the batch size reaches approximately 64, whereas
AR’s throughput does not saturate until around a
batch size of 128. However, SPACE remains com-
petitive at lower batch sizes. Notably, with batch
sizes smaller than 16, SPACE’s throughput exceeds
that of AR.

16 32 48 64 80 96 112 128

50

100

150

200

250

300

350

400

450

SPACE AR

Batch Size

T
h
r
o
u
g
h
p
u
t
 (

t
o
k
e
n
s
/s

)

Figure 8: Throughput of SPACE and AR under various
batch sizes on XSum dataset.

Furthermore, it is worth noting that many prac-
tical applications, especially those on edge de-
vices, often operate with a small batch size. In
such cases, the inference process remains memory-

5298

Model Scheme Academic Knowledge Reasoning Understanding

LLaMA-2-7B
SAR-SFT 35.4 66.1 62.3 37.2

SFT 36.0 65.9 64.1 38.6

LLaMA-2-13B
SAR-SFT 40.9 69.4 66.7 55.2

SFT 40.5 71.4 65.2 57.4

LLaMA-2-70B
SAR-SFT 50.6 76.7 68.4 64.7

SFT 51.7 77.2 68.0 66.7

Table 8: Performance comparison of LLaMA-2 (7B, 13B, 70B) with different training schemes.

bound rather than compute-bound. SPACE can ef-
fectively utilize the available computing resources
to enhance the inference speed in low batch size
scenarios, making it an attractive and valuable so-
lution for such use cases.

5299

