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Abstract

Existing methods for incorporating entities into
EAE rely on prompts or NER. They typically
fail to explicitly explore the role of entity types,
which results in shallow argument compre-
hension and often encounter three issues: (1)
weak semantic associations due to missing role-
entity correspondence cues; (2) compromised
semantic integrity from abandoning context af-
ter recognizing entities regardless of their types;
(3) one-sided semantic understanding relying
solely on argument role semantics. To tackle
these issues, we propose Scented-EAE, an EAE
model with stage-customized entity type em-
bedding to explicitly underscore and explore
the role of entity types, thus intervening in argu-
ment selection. Specifically, at the input stage,
we strengthen semantic associations by prompt-
ing role-entity correspondence after extending
a non-autoregressive decoder as part of the en-
coder. At the intermediate stage, we preserve
semantic integrity by optimizing our proposed
BIO-aware NER and EAE via a novel IPE joint
learning. At the output stage, we expand se-
mantic understanding dimensions by determin-
ing arguments using span selectors from argu-
ment roles and entity types. Experiments show
that our model achieves state-of-the-art perfor-
mance on mainstream benchmarks. In addition,
it also exhibits robustness in low-resource set-
tings with the help of prompts and entity types.1

1 Introduction

Event Extraction (EE) is a vital task in natural lan-
guage processing (NLP), which usually consists
of two main subtasks: Event Detection (ED) and
Event Argument Extraction (EAE) (Peng et al.,
2023). Given that significant progress has been
made in ED through prior research (Liu et al., 2022;
Guan et al., 2023; Liu et al., 2023b), this paper aims
to address the enduring challenges in EAE.

*These authors contributed equally to this work.
†Correponding author.
1https://github.com/yy-degit/Scented-EAE

Figure 1: Examples of events where red boxes denote
triggers and arrows denote role-entity correspondence.

EAE focuses on extracting arguments for each
argument role in the event from the text. As can be
observed in Figure 1, in the Movement.Transport
event triggered by land, the Agent is "bozos,"
the Artifact is "Cubans," and the Destination is
"shores." Recent studies (Wang et al., 2022; Hsu
et al., 2022; Liu et al., 2023a; Zhang et al., 2023)
indicate that incorporating entity knowledge into
EAE can improve its performance, which is pri-
marily achieved through prompts or Named Entity
Recognition (NER) techniques. However, it is cru-
cial to highlight that both prompts and NER fail to
explicitly underscore and explore the role of entity
types, causing a lack of in-depth perception of en-
tity type semantics. This deficiency often leads to a
shallow and inadequately enriched comprehension
of arguments, ultimately reducing the accuracy and
generalization of argument extraction.

Hence, we consider explicitly introducing entity
types into each stage of EAE to direct the model’s
attention towards content that aligns with entity
type semantics related to argument roles. This in-
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tervention helps filter out more plausible results
from the outset, thus mitigating potential errors and
simplifying the selection process. To maximize the
effectiveness of this introduction, we focus on the
existing issues at each stage due to the insufficient
incorporation of entity types. Specifically, (1) At
the input stage, prompts fail to include genuine en-
tity type labels and role-entity correspondence in
argument slots, often resulting in weak semantic
associations between labels; (2) At the interme-
diate stage, NER tends to discontinue attention to
complete context after determining candidate argu-
ment spans, usually leading to compromised con-
textual semantic integrity; (3) At the output stage,
general argument selection solely relies on under-
standing argument role semantics while neglecting
the comprehension in entity type dimension, bring-
ing about one-sided semantic understanding of
decisions. The above issues eventually hinder EAE
models from reaching better performance.

In this paper, we propose Scented-EAE, an
EAE model with Stage-Customized Entity Type
Embedding. Based on the characteristics of each
stage in EAE, our model customizes the integration
of entity types to solve the aforementioned three
problems, respectively. Concretely, at the input
stage, we aim to strengthen semantic associations
through event-specific prompts with argument role
labels, entity type labels, and role-entity correspon-
dence. The intuition behind this is that prompting
these labels and correspondence in argument slots
can enrich argument semantics and enhance the
interaction between roles and entities. For instance,
when matching arguments for the "Destination"
role, entities of the "Location" type are more suit-
able than those of the "Person" type. Additionally,
to further capture the relationship between context
and prompts when encoding the inputs, we extend
a non-autoregressive decoder as part of the encoder
to reinforce feature awareness.

At the intermediate stage, we optimize a BIO-
aware NER and EAE via "Implicit Plus Explicit
(IPE)" joint learning to preserve semantic integrity.
"Implicit" refers to regular multi-task knowledge
sharing, while "Explicit" involves co-learning spe-
cific BIO tag parameters for both BIO-aware NER
and EAE. Through IPE joint learning, our model
enables each token to sense its BIO tag semantics,
thus enlarging semantic gaps and dilimiting bound-
aries between arguments of different entity types.

At the output stage, we extend semantic under-
standing dimensions by using argument span selec-

tors in two dimensions: argument roles and entity
types. Sparked by the empirical evidence that mul-
tiple model voting outperforms a single one (Gou
et al., 2023), we make a joint decision on argument
answers from both comprehension dimensions to
enhance their accuracy.

Experiments show that Scented-EAE achieves
state-of-the-art performance on three mainstream
benchmarks. Our base model reaches an improve-
ment of +2.9%, +3%, and +2% F1 score over other
base-scale models, while our large model obtains
+1.8%, +2.2%, and +0.9% F1 gains over other
large-scale ones. It also exhibits robustness in low-
resource settings due to prompts and entity types.

In summary, our contributions are as follows:
• We propose Scented-EAE, an EAE model with

stage-customized entity type embedding to ex-
plicitly underscore and explore the role of entity
types. This integration enriches the comprehen-
sion of arguments, thus optimizing the argument
selection process and mitigating potential errors.

• We present a novel IPE joint learning to co-train
a BIO-aware NER and EAE in an "Implicit Plus
Explicit" manner, facilitating argument boundary
division and contextual integrity preservation.

• Experiments show that our model achieves state-
of-the-art performance on three benchmarks and
exhibits robustness in low-resource settings with
the help of prompts and entity types.

2 Methodology

As illustrated in Figure 2, our model is transformer-
based (Vaswani et al., 2017) and consists of three
core modules: context-template encoding, IPE joint
learning, and span selector decoding. Details of
each module will be provided sequentially.

2.1 Context-Template Encoding
To begin with, we define our dataset on EAE tasks
as D = {(Ci, Ei, eti, tri,Ai)|1 ≤ i ≤ |D|}, where
Ci = {cij |1 ≤ j ≤ |Ci|} denotes the context, Ei =
{(eij , spanij)|1 ≤ j ≤ |Ei|} denotes the entities
(eij is the entity type and spanij is the entity off-
set), eti denotes the event type, tri denotes the trig-
ger word, and Ai = {(rij , spanij)|1 ≤ j ≤ |Ai|}
denotes the arguments (rij is the argument role and
spanij is the argument offset).

2.1.1 Template Design
For each instance (C, E , et, tr,A) ∈ D, we design
an appropriate template T to prompt the semantic
relationship between components of the event. As
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Figure 2: The architecture of Scented-EAE. At the input stage, our model encodes the concatenation of context and
template using a composite encoder, generating two parts of embeddings. Then context embeddings are used for
IPE joint learning, while template embeddings play a role in acquiring span selectors and decoding arguments.

depicted in Figure 2, our template usually contains
four main parts: event type, trigger word, argument
role labels, and corresponding entity type labels.
To represent the interaction between argument slots
in the template, we follow the approach of Ma et al.
(2022), utilizing event-specific natural language
to connect all argument role labels. For semantic
enrichment of slots, we append explanations after
each argument role to indicate its corresponding
entity types, which are connected by “or” and en-
closed in parentheses. This enables the enhanced
perception of role-entity correspondence without
disrupting dependencies among distinct slots and
approaches to natural language expression. Then a
concise sentence structure is employed to link the
event type and trigger word. The final template for
the input in Figure 2 is as follows:

In the Life.Injure event triggered by injuring,
Agent (Person or Organization) injured Victim
(Person) with Instrument (Vehicle or Weapon) at
Place (Location).
Each underlined string works as a part of the event.
More templates can be found in Appendix A.1.

It is noteworthy that in our template, each argu-
ment role appears only once, and a single argument
slot can pay attention to multiple entity types. Un-
like Ma et al. (2022), which matches only one ar-
gument per slot, we can extract multiple arguments
simultaneously using just one slot with the help of
threshold tuning. Moreover, our one-to-many ties
between argument roles and entity types facilitate
the expansion of argument semantics, contributing

to a relatively precise understanding. Details about
role-entity mapping are shown in Appendix A.2.
Additionally, we provide several examples of di-
verse template designs in Table 1, and associated
analysis can be found in Section 4.1.

2.1.2 Interaction-Enhanced Encoding
At the input stage, given the context C and template
T , we initially concatenate them into a sequence
following the specific format:

X = [< s >; C;< s >;< /s >; T ;< /s >] (1)

where < s > and < /s > are start and end symbols
of BART (Lewis et al., 2020). Using them in pairs
helps to seperate the two input parts. Then we feed
X into a composite encoder comprising a classic
encoder and a non-autoregressive decoder for one-
step encoding, obtaining context embeddings C
and template embeddings T as shown below:

C, T = CompositeEncoder(X ) (2)

In the composite encoder, X is concurrently
input into both the BART Encoder and the non-
autoregressive BART Decoder. This practice aims
to reinforce the interaction between context and
template through various attention mechanisms, in-
cluding self-attention, masked-attention, and cross-
attention. In contrast to the conventional approach
of supplying templates to an autoregressive de-
coder, our method avoids error propagation during
inference and establishes bidirectional dependen-
cies between context and template. A comparative
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Type Example

Scented-EAE
In the Life.Injure event triggered by injuring,

Agent (Person or Organization) injured Victim (Person) with Instrument (Vehicle or Weapon) at Place (Location).
ET1 The event type is Life.Injure, the trigger word is injuring, and the role template is ...
ET2 Event: Life.Injure; Trigger: injuring; Role Template: ...
AE1 Person or Organization (Agent) injured Person (Victim) with Vehicle or Weapon (Instrument) at Location (Place).
AE2 Agent, Person or Organization injured Victim, Person with Instrument, Vehicle or Weapon at Place, Location.

Table 1: Variants of templates. Scented-EAE: default template. ETx: modified templates for concatenating event
type and trigger word. AEx: modified templates for concatenating argument roles and entity types.

analysis of other encoding strategies will be pre-
sented in Section 4.1.

2.2 IPE Joint Learning
Directly querying the context for arguments often
leads to inaccuracies in identifying span bound-
aries, while determining argument boundaries via
pipelined NER introduces error accumulation and
compromises contextual integrity. To solve these
problems, we propose IPE joint leaning at the in-
termediate stage.

2.2.1 BIO-Aware NER
Existing joint learning typically achieves implicit
knowledge sharing through multi-task optimization
of losses. Building upon this, we augment the joint
learning of NER and EAE by explicitly training
specific parameters related to entity types. At first,
we refine NER with a unique sequence labeling
method to learn entity type semantics after obtain-
ing the context embeddings C. By adopting the
cross attention mechanism on a BIO tag embed-
ding matrix M , our BIO-aware NER can realize
closer semantic alignment between each contextual
token and its golden BIO tag. The resulting context
embeddings Cabio, which incorporate awareness of
all BIO tags, are as follows:

Cabio = CrossAttention(C,M,M) (3)

where M ∈ R|{BIO tags}|×dm and dm is the hidden
size of the model.

In order to retain the original information in the
context, we merge C and Cabio into Csl, which acts
as the input of sequence labeling:

Csl = GELU([C;Cabio;C ◦ Cabio]W1)W2 (4)

where ◦ represents the element-wise multiplication,
W1 ∈ R3dm×dm and W2 ∈ Rdm×|{BIO tags}| are
two learnable matrices, and GELU (Hendrycks
and Gimpel, 2016) is an activation function. We
adopt a Conditional Random Field (CRF) (Lafferty

et al., 2001) layer on Csl to search for the highest-
scoring label sequence. During training, we opti-
mize BIO-aware NER with the standard CRF loss
function (Chiu and Nichols, 2016), which is de-
noted as Lner.

2.2.2 Argument Boundary Marking
In EAE with pipelined NER, once candidate argu-
ment spans are determined, the remaining context
will be treated as irrelevant content and discarded.
It causes a loss of complete contextual information.
To ensure contextual integrity while partitioning
argument boundaries, we explicitly integrating the
BIO tag matrix from BIO-aware NER, which repre-
sents entity type semantics, into the context of EAE.
This integration helps to widen semantic gaps be-
tween arguments of different entity types, indirectly
marking and distinguishing argument boundaries.

For each token, we retrieve its corresponding
BIO tag embeddings from matrix M and aggre-
gate them into a sequence called Cpbio. By shar-
ing M between Cabio in NER and Cpbio in EAE,
our model can discern the semantic distinctions
among arguments with different BIO tags during
sequence labeling and amplify their discrepancies
in argument extraction. Upon embedding BIO tags
into the context, we obtain the context embeddings
Centity that are aware of entity types:

Centity = GELU([C;Cpbio]W3)W4 (5)

where W3 ∈ R2dm×dm and W4 ∈ Rdm×dm are
learnable matrices.

2.3 Span Selector Decoding
At the output stage, we make a joint decision on ar-
gument selection from the semantic understanding
dimensions of argument roles and entity types for
more precise decoding.

2.3.1 Role Span Selector
Scented-EAE decodes argument spans through
queries from templates like Ma et al. (2022). Given
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the template embeddings T , we construct span se-
lectors Sstart

r and Send
r for each role r to identify

the start and end positions of arguments. Acquiring
the role embeddings ϕr in the template, we have:

Sstart
r = ϕr ◦Wstart1 (6)

Send
r = ϕr ◦Wend1 (7)

where Wstart1 ∈ R1×dm and Wend1 ∈ R1×dm are
learnable matrices shared among all roles. Given
Centity, we can calculate the probability distribu-
tion for selecting each token as the start/end point
of argument spans corresponding to role r:

logitstartr = σ(Sstart
r · CT

entity) (8)

logitendr = σ(Send
r · CT

entity) (9)

where T represents the transpose operation and σ
denotes the sigmoid function.

2.3.2 Entity Type Span Selector
Similarly, we design entity type span selectors
Sstart
e(r) and Send

e(r) using ϕe(r), which are the average
embeddings of all tokens within the entity types
e(r) corresponding to role r in the template:

Sstart
e(r) = ϕe(r) ◦Wstart2 (10)

Send
e(r) = ϕe(r) ◦Wend2 (11)

where Wstart2 ∈ R1×dm and Wend2 ∈ R1×dm are
learnable matrices. Entity type span selectors are
also used to calculate the probability distribution
for selecting spans:

logitstarte(r) = σ(Sstart
e(r) · CT

entity) (12)

logitende(r) = σ(Send
e(r) · CT

entity) (13)

The final distribution of argument span selection
is computed by combining the results of role span
selectors and entity type span selectors:

logitstart = logitstartr ◦ logitstarte(r) (14)

logitend = logitendr ◦ logitende(r) (15)

Then we define the loss function in EAE as:

Leae =

|D|∑

i=1

|Ri|∑

j=1

|Ci|∑

k=1

(
Lbce

(
logitstartj (k), ystartk

)

+Lbce

(
logitendj (k), yendk

))
(16)

Lbce(x, y) = −(ylogx+(1−y)log(1−x)) (17)

where D is the dataset, R is the role set, C is the
context, logitstart and logitend are final distribu-
tions for span selection, ystart and yend are golden
labels of argument start and end positions, and Lbce

is the standard BCEloss, where x represents the
score and y represents the golden label. Above all,
the final loss function of Scented-EAE is:

LScented-EAE = Lner + Leae (18)

During inference, we predict legitimate and nearest
argument spans that exceed the start/end thresholds
for all roles in parallel.

3 Experiment

In this section, we conduct experiments to evaluate
the performance of Scented-EAE.

3.1 Experimental Setup

Datasets We conduct experiments on ACE05-E,
ACE05-E+ (Doddington et al., 2004), and ERE2

(Song et al., 2015), which offer event and entity
annotations suitable for evaluating sentence-level
EAE tasks. Following the approaches of Wadden
et al. (2019) and Lin et al. (2020), we preprocess
ERE and transform ACE2005 into two variants:
ACE05-E and ACE05-E+. ACE2005 contains 33
event types and 22 argument roles, while ERE in-
cludes 38 event types and 21 argument roles. More
dataset details are provided in Appendix A.3.

Baselines We compare Scented-EAE with the
following competitive models: (1) EEQA (Du and
Cardie, 2020) sets dynamic thresholds to extract
arguments based on QA. (2) OneIE (Lin et al.,
2020) utilizes global features to perform joint in-
formation extraction. (3) PAIE (Ma et al., 2022)
chooses the best argument spans via prompt tun-
ing. (4) DEGREE (Hsu et al., 2022) leverages
weak supervision signals for strong performance in
low-resource settings. (5) TabEAE (Multi-Single)
(He et al., 2023) realizes single-event argument
inference through multi-event training. (6) AM-
PERE (RoBERTa) (Hsu et al., 2023) introduces
Abstract Meaning Representation (AMR) into pre-
fix encoded by RoBERTa (Liu et al., 2019) in gener-
ative models. We create fitting templates for ERE
in EEQA, PAIE, and TabEAE. Official codes of
all baselines except for OneIE are trained with de-
fault parameters. OneIE is modified to be a version
suitable for EAE tasks.

2https://catalog.ldc.upenn.edu/LDC2023T04
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Model PLM ACE05-E ACE05-E+ ERE
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

EEQA
(Du and Cardie, 2020)

BERT-b 68.2 65.4 66.5 64.5 72.8 66.4
BERT-l 70.5 68.9 67.1 65.2 72.4 67.6

OneIE
(Lin et al., 2020)

BERT-b 65.9 59.2 63.9 60.0 66.8 58.3
BERT-l 73.2 69.3 73.3 70.6 68.2 64.2

PAIE
(Ma et al., 2022)

BART-b 73.0 70.6 74.1 69.2 76.2 69.6
BART-l 75.7 73.3 75.9 72.5 78.4 71.2

DEGREE
(Hsu et al., 2022)

BART-b 73.5 69.0 72.0 67.9 75.6 70.0
BART-l 76.0 73.5 75.2 73.0 76.2 73.2

TabEAE (Multi-Single)
(He et al., 2023)

RoBERTa-b 72.9 69.6 71.2 68.1 76.5 70.8
RoBERTa-l 76.3 73.5 75.5 72.6 78.8 73.2

AMPERE (RoBERTa)
(Hsu et al., 2023)

BART-b 73.7 70.9 74.6 70.5 75.2 70.1
BART-l 76.2 73.8 76.0 73.0 76.4 72.1

Scented-EAE
BART-b 76.3 73.8 76.9 73.5 76.0 72.8
BART-l 77.1 75.6 77.4 75.2 79.7 74.1

Table 2: F1 scores of Scented-EAE and all baselines on EAE tasks. We bold the best result and underline the second
best. b in column PLM denotes base models and l denotes large models.

Evaluation Metrics Dominant evaluation met-
rics are adopted: (1) Arg-I: An argument is cor-
rectly identified if the predicted span matches with
a golden span. (2) Arg-C: An argument is cor-
rectly classified if it is correctly identified and the
predicted role matches with a golden role.

Implementation Details We initialize the com-
posite encoder using BART-base and BART-large,
respectively. The learning rate of parameters ranges
from 1e-5 to 1e-4. The selection thresholds for ar-
gument start/end positions vary from 0 to 1. We
optimize our model on NVIDIA RTX 3090 GPU
by AdamW (Loshchilov and Hutter, 2017). More
hyperparameter details are shown in Appendix A.4.

3.2 Main Results

From Table 2, we can observe that Scented-EAE
outperforms all the other baselines across three
benchmarks. Concretely, our base model reaches
an improvement of +2.9%, +3%, and +2% in Arg-
C F1 score over other base-scale models, while
our large model obtains +1.8%, +2.2%, and +0.9%
Arg-C F1 gains over other large-scale ones. This
indicates that our model consistently demonstrates
superior performance across all fair comparison
scenarios with other methods.

We also find that the performance of our base
model even surpasses that of most large baselines.
This phenomenon suggests that our designs em-
power base scaled-parameter models to achieve
comparable efficacy to larger ones, thereby con-

Figure 3: Arg-C F1 in low-resource settings.

serving computational resources. We attribute this
capability to the comprehensive exploitation of lim-
ited entity type knowledge by Scented-EAE. Fur-
thermore, it should be pointed out that baselines
relying on prompts (PAIE and TabEAE) or exter-
nal knowledge (DEGREE and AMPERE) often
yield suboptimal results. However, in contrast to
their superficial incorporation of various prompts
or external information, thoroughly exploring the
effectiveness of entity types can lead to superior
performance.

3.3 Low-resource Settings

To assess the proficiency of Scented-EAE in scenar-
ios with a scarcity of data annotations, we conduct
low-resource experiments by randomly selecting
5%-50% samples for training. Then we compare
the results of Scented-EAE, PAIE, and DEGREE
on the complete test set. Notably, from this point
on, all subsequent experiments are conducted us-
ing the BART-base pre-trained language model.
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Template ACE05-E ACE05-E+ ERE

Scented-EAE 73.8 73.5 72.8
ET1 72.4 72.8 70.9
ET2 73.5 72.3 70.4
AE1 73.5 72.9 71.2
AE2 73.4 72.8 71.1
PREFIX 71.3 70.8 71.0

Table 3: Arg-C F1 with different template designs.

Method ACE05-E ACE05-E+ ERE

Scented-EAE 73.8 73.5 72.8
BART-S 72.2 71.6 71.9
BERT-C 70.6 69.7 70.2
BERT-S 63.1 62.4 63.6

Table 4: Arg-C F1 with different encoding mechanisms.

Figure 3 illustrates that Scented-EAE outperforms
the other two models comprehensively, revealing
its capability to learn well even with limited train-
ing data under conditions where both prompts and
entity types act as weak supervision signals.

4 Ablation and Analysis

In this section, we analyze the effect of different
proposed techniques in Scented-EAE.

4.1 Model Variable Substitution

Template Design We consider template concate-
nation designs from three aspects: (1) Event type
and trigger word: ET1 and ET2. (2) Argument
roles and entity types: AE1 and AE2. (3) Template
and context: PREFIX and Scented-EAE. Among
them, Scented-EAE, (1), and (2) are exemplified in
Table 1. PREFIX and Scented-EAE in (3) represent
the concatenation methods of placing the template
before and after context. Table 3 demonstrates that
PREFIX degrades the model performance. We ar-
gue that when placing the template before context,
the model start symbol is farther away from con-
text, leading to insufficient perception of overall
contextual information and decreased effect. Be-
sides, Scented-EAE is the best due to its close re-
semblance to natural language expressions. This is
also verified by the fact that the design for exchang-
ing positions of argument roles and entity types
yields suboptimal results.

Encoding Mechanism We compare four encod-
ing mechanisms: (1) Scented-EAE: encoding the
concatenated context and template in our compos-
ite encoder. (2) BART-S: encoding context in en-
coder and decoding template in decoder. (3) BERT-
C: encoding the concatenated context and template

Method ACE05-E ACE05-E+ ERE

Scented-EAE 73.8 73.5 72.8
Implicit Joint Learning 72.8 71.9 71.5
Piepelind NER 71.6 70.8 69.5

Table 5: Arg-C F1 with different NER methods.

Model ACE05-E ACE05-E+ ERE

Scented-EAE 73.8 73.5 72.8
-w/o Entity Type Prompt 71.5 71.9 70.9
-w/o IPE Joint Learning 71.8 70.5 70.1
-w/o Entity Type Selector 72.5 71.5 70.7

Table 6: Ablation results.

in the encoder. (4) BERT-S: encoding context and
template sequentially in the encoder. (1) and (2) are
initialized by BART, yet (3) and (4) are initialized
by BERT (Devlin et al., 2019). We discover from
Table 4 that concatenated encoding is superior to
separate encoding, and encoder-decoder architec-
tures are better than encoder-only ones. It implies
the benefit of bidirectional interaction between con-
text and template and feature awareness through
various attention mechanisms. Our approach of ex-
tending a non-autoregressive decoder to be part of
the encoder works well with all these advantages.

NER Method To test the validity of our IPE joint
learning, we set up the following three compar-
isons: (1) Scented-EAE: "Implicit Plus Explicit"
joint learning. (2) Implicit Joint Learning: classi-
cal joint learning (Lin et al., 2020). (3) Pipelined
NER: NER for direct role matching after deter-
mining candidate argument sets. As can be seen
from Table 5, Pipelined NER that utilizes only en-
tity mentions regardless of contextual integrity suf-
fers from error accumulation and information loss,
causing poor results. While classical Implicit Joint
Learning does not destroy context integrity, the lack
of our explicit introduction of entity types to mark
argument boundaries also makes it deteriorates.

4.2 Core Component Ablation

We further examine the necessity of our critical
designs through ablation experiments, including:
(1) w/o Entity Type prompt: removing entity type
prompts from the template. (2) w/o IPE Joint
Learning: removing IPE Joint Learning with BIO-
aware NER. (3) w/o Entity Type Selector: remov-
ing entity type span selectors. The results of the
ablation experiments are summarized in Table 6.
We can find that each module of Scented-EAE that
customizes the integration of entity type knowledge
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into EAE contributes to notable performance im-
provements. These improvements are particularly
apparent in ACE05-E+ and ERE datasets, which
encompass complex arguments with a higher num-
ber of pronouns and lengthier texts. It can be gener-
alized that our model can also parse complex event
structures well by sensing entity type semantics.

Although different datasets exhibit varying sen-
sitivities to distinct designs, overall, IPE joint learn-
ing plays the most important role among all designs.
It enables the perception of entity type semantics
without contextual integrity loss during joint learn-
ing and helps enlarge semantic gaps between ar-
guments with different entity types to distinguish
argument boundaries. Additionally, by employing
argument role and entity type dual span selectors
to determine argument spans, we can obtain more
comprehensive and precise interpretations of argu-
ment expressions. Moreover, template prompts for
entity types and role-entity correspondence also
demonstrate great behaviors. Such prompts can be
aware of entity type semantics and capture role-
entity associations to enhance understanding and
dependencies of arguments.

4.3 Case Study
Figure 4 illustrates two test cases of PAIE and
Scented-EAE. In Example 1, PAIE incorrectly pre-
dicts "U.N." as the argument for the "Entity" role
in the "Contact.Meet" event, while Scented-EAE
accurately extracts the complete argument "U.N.
Security Council." This showcases the efficacy of
our entity type incorporation approach in distin-
guishing argument boundaries. In Example 2, PAIE
erroneously identifies "tribunal" as the argument
for the "Destination" role in the "Justice.Extradite"
event, despite it being an unreasonable "Organi-
zation" entity type. In contrast, Scented-EAE cir-
cumvents this issue by leveraging the prompt of
correspondence between the "Destination" role and
the "Location" entity type.

4.4 Application to LLMs
To evaluate the effectiveness of our design on large
language models (LLMs), we conduct similar ex-
periments using T5-3B 3 and LLAMA3-8B 4. The
results in Appendix A.5 indicate that due to the cur-
rent limitations in the amount of training data, we
have not fully harnessed the capabilities of LLMs.

3https://huggingface.co/google/t5-v1_1-xl
4https://huggingface.co/meta-llama/

Meta-Llama-3-8B

Figure 4: Two test cases from ACE05-E+ where grey
words are entity types or argument roles (corresponding
entity types are in parentheses).

Consequently, LLM results decline somewhat com-
pared to traditional pre-trained language models.
However, we believe that with more extensive data,
there is substantial potential for improvement. In
addition, T5-3B with an encoder-decoder architec-
ture outperforms LLAMA3-8B with a decoder-only
architecture. This suggests that the various atten-
tion mechanisms in encoder-decoder architecture
help extract more precise embedding features.

5 Related Works

Template-Guided EAE: Whether for document-
level EAE tasks (Li et al., 2021) or sentence-level
ones (Ma et al., 2023), predicting arguments based
on templates is popular. Templates are designed
in various ways such as directly linking argument
slots (Wang et al., 2022) or connecting argument
role labels with natural language (Ma et al., 2022).
Argument slots are often denoted by placeholders
(Li et al., 2021), argument roles (Ma et al., 2022),
or related entity descriptions (Hsu et al., 2022). Be-
sides, some studies (Lu et al., 2021, 2022) have
proposed templates in forms of linearization rep-
resentations, which also achieve promising results.
Recent research has introduced Abstract Meaning
Representation (AMR) (Yang et al., 2023; Xu et al.,
2023), prefix tuning (Liu et al., 2022; Hsu et al.,
2023), and event co-occurrence knowledge (He
et al., 2023) into template-guided EAE, aiming to
enrich semantics and save parameters of models.
However, none of these templates provide entity
types and role-entity correspondence like Scented-
EAE, thus lacking partial semantic dependencies.

NER-Introduced EAE: Document-level EAE
(Zheng et al., 2019; Xu et al., 2021; Zhu et al.,
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2022) often performs NER first, followed by match-
ing entities with argument roles. For sentence-level
EAE, joint information extraction models (Wad-
den et al., 2019; Liu et al., 2022; Lin et al., 2020;
Nguyen et al., 2021) have achieved promising out-
comes through knowledge sharing. Recent stud-
ies (Zhang et al., 2023; Wang et al., 2023) have
made new attempts to introduce NER into EAE.
Zhang et al. (2023) proposes cross-dataset transfer
learning for pseudo-NER, generating event-related
entities before arguments. However, it pays atten-
tion solely to argument entities without learning
non-argument entity semantics. Wang et al. (2023)
employs in-context learning on Large Language
Models (LLMs) to infer arguments and entities
in forms of Python codes. Nevertheless, generat-
ing code-formed outputs through LLMs is time-
consuming and costly. Compared to these methods,
in our model, all entities in datasets can be notice-
able, and the training process costs low resources.

6 Conclusion

In this paper, we propose Scented-EAE, an EAE
model with stage-customized entity type embed-
ding to intervene in argument selection and miti-
gate potential errors. This model achieves state-of-
the-art performance on three benchmarks and also
shows robustness in low-resource settings. In the
future, from a strategic perspective, we anticipate
the potential for extending the concept of tailoring
integrated, domain-specific knowledge functional-
ities across various domains. At a granular level,
our focus lies in integrating additional attributes
of entities into EAE, including but not limited to
entity relationships.

Limitations

This paper aims to explore the efficacy of customiz-
ing the integration of entity types at each stage of
EAE. While our methods have demonstrated strong
performance in EAE, they still encounter certain
limitations. Specifically, we approach the EAE task
through a classification model without validating
the applicability of our designs on mainstream gen-
erative models. Moreover, our model, tailored for
sentence-level EAE tasks, has not been evaluated
for document-level performance. Yet, experiments
might be conducted with the help of proper seg-
mentation of document-level records. Furthermore,
the need for datasets with entity annotations places
a high demand on dataset quality. Our current se-

quence labeling method is not suitable for cases
of entity overlap, potentially resulting in reduced
effectiveness when a contextual span encompasses
multiple entity types.
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A Data and Training Details

A.1 Templates
Table 7 presents template designs for several events
in the ACE05-E, ACE05-E+, and ERE datasets.
The trigger words in these templates are related to
context and temporarily denoted by "xxx."

A.2 Role-Entity Mapping
Table 9 displays the correspondence between argu-
ment roles and entity types for certain events. This
correspondence is one-to-many and derived from
annotations in datasets.

A.3 Datasets
Table 8 demonstrates the splits of the training, val-
idation, and test sets for the three datasets, along
with the statistics of sentences, entities, and argu-
ments for each split.

A.4 Hyperparameters
Table 10 shows the hyperparameter settings for
Scented-EAE on three benchmarks. The selection
of the optimal thresholds is determined through
numerous experimental attempts. In addition, our
code also facilitates the evaluation of multiple sets
of thresholds simultaneously.

A.5 LLM Results
Table 11 presents the experimental results of apply-
ing our design to the LLMs (T5-3B, LLAMA3-8B).
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Dataset Event Type Template

ACE05-E
Movement.Transport

In the Movement.Transport event triggered by xxx,
Agent (People or Organization) transported
Artifact (Vehicle or Facility) in
Vehicle (Vehicle or Facility) cost Price from
Origin (Location) place to
Destination (Location) place.

Personnel.Elect

In the Personnel.Elect event triggered by xxx,
Entity (People or Organization) elected
Person (People or Organization) at
Place (Location) for Position.

Contact.Phone-Write
In the Contact.Phone-Write event triggered by xxx,
Entity (People or Organization) communicated remotely at
Place (Location).

ACE05-E+
Life.Die

In the Life.Die event triggered by xxx,
Agent (People or Organization) killed
Victim (People) with
Instrument (Vehicle or Weapon) at
Place (Location).

Business.Merge-Org
In the Business.Merge-Org event triggered by xxx,
Org (Organization) merged at Place .

Justice.Convict

In the Justice.Convict event triggered by xxx,
Adjudicator (People or Organization) court or judge convicted
Defendant (People or Organization) at
Place (Location) for Crime.

ERE
Contact.Broadcast

In the Contact.Broadcast event triggered by xxx,
Entity (People or Organization) made announcement to
Audience (People or Organization) at
Place (Location).

Manufacture.Artifact

In the Manufacture.Artifact event triggered by xxx,
Agent (People or Organization) developed
Artifact (Vehicle or Facility) at
Place (Location).

Conflict.Demonstrate

In the Conflict.Demonstrate event triggered by xxx,
Attacker (People or Organization) attacked
Target (Object) hurting Victim using
Instrument (Vehicle or Weapon) at
Place (Location).

Table 7: Some examples of templates in three datasets.

Dataset Split #Sents #Entities #Args

ACE05-E
Train 17,172 20,006 4,859
Dev 923 2,451 605
Test 832 3,017 576

ACE05-E+
Train 19,216 47,554 6,607
Dev 901 3,423 759
Test 676 3,673 689

ERE
Train 8,886 22,831 4,372
Dev 720 1,949 378
Test 604 1,621 257

Table 8: Statistics of datasets.
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Dataset Event Type Role Entity Types

ACE05-E

Business.Start-Org
Agent People or Organization
Org People or Organization
Place Location

Life.Marry
Person People or Organization
Place Location

Transaction.Transfer-Ownership

Artifact Vehicle or Facility or Organization
Seller People or Organization
Beneficiary People or Organization
Buyer People or Organization
Place Location

ACE05-E+

Contact.Meet
Entity People or Organization
Place Location

Life.Injure

Victim People
Agent People or Organization
Place Location
Instrument Vehicle or Weapon

Business.Declare-Bankruptcy
Org People or Organization
Place Location

ERE

Movement.Transport-Person

Agent People or Organization
Destination Location
Person People
Origin Location
Instrument Vehicle

Contact.Correspondence
Entity People or Organization
Place Location

Personnel.Nominate
Agent People or Organization
Person People
Place Location

Table 9: Some examples of role-entity correspondence in three datasets.

Hyperparameter Value
ACE05-E ACE05-E+ ERE

Max Sequence Length 220 220 360
Bart Learning Rate [1e-5,1e-4] [1e-5,1e-4] [1e-5,1e-4]
Other Learning Rate [1e-5,1e-4] [1e-5,1e-4] [1e-5,1e-4]
Warm Up Ratio 0.1 0.1 0.1
Batch Size 16 16 8
Epoch 30(base)/50(large) 30(base)/50(large) 30(base)/50(large)
Maximum Gradient Norm 5 5 5
Weight Decay 0.01 0.01 0.01
Best Start Threshold 0.9(base)/0.50(large) 0.65(base)/0.9(large) 0.7(base)/0.35(large)
Best End Threshold 0.15(base)/0.85(large) 0.25(base)/0.6(large) 0.35(base)/0.2(large)

Table 10: Hyperparameters of training Scented-EAE.

LLM ACE05-E ACE05-E+ ERE

T5-3B 72.5 71.9 70.7
LLAMA3-8B 62.4 61.9 60.6

Table 11: Arg-C F1 of LLMs.
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