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Abstract
Syntactic Language Models (SLMs) can be
trained efficiently to reach relatively high per-
formance; however, they have trouble with in-
ference efficiency due to the explicit genera-
tion of syntactic structures. In this paper, we
propose a new method dubbed tree-planting:
instead of explicitly generating syntactic struc-
tures, we “plant” trees into attention weights
of unidirectional Transformer LMs to implic-
itly reflect syntactic structures of natural lan-
guage. Specifically, unidirectional Transformer
LMs trained with tree-planting will be called
Tree-Planted Transformers (TPT), which in-
herit the training efficiency from SLMs with-
out changing the inference efficiency of their
underlying Transformer LMs. Targeted syntac-
tic evaluations on the SyntaxGym benchmark
demonstrated that TPTs, despite the lack of
explicit generation of syntactic structures, sig-
nificantly outperformed not only vanilla Trans-
former LMs but also various SLMs that gener-
ate hundreds of syntactic structures in parallel.
This result suggests that TPTs can learn human-
like syntactic knowledge as data-efficiently as
SLMs while maintaining the modeling space
of Transformer LMs unchanged.

� https://github.com/osekilab/TPT

1 Introduction

Recent years have witnessed remarkable success
in Large Language Models (LLMs) based on
Transformer LMs (Vaswani et al., 2017). How-
ever, despite their success, Transformer LMs have
some drawback in training efficiency—especially
when compared with humans. For example, GPT-
3 (Brown et al., 2020) is trained on around 2, 000×
larger data than a 12-year-old human would have
experienced (Warstadt et al., 2023), indicating that
Transformer LMs lack sufficient inductive bias for
language acquisition.

On another strand, previous work has revealed
that Syntactic Language Models (SLMs), defined

Transformer LM
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Inference efficiency

Training efficiency

Tree-Planted 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Figure 1: Two types of efficiency: training efficiency
and inference efficiency. Our Tree-Planted Transform-
ers (TPT) inherit the training efficiency from Syntactic
LMs without changing the inference efficiency of their
underlying Transformer LMs.

as a generative models of a token sequence and
its syntactic structures, can achieve high syntactic
performance under data-constrained settings (Dyer
et al., 2016; Noji and Oseki, 2021; Qian et al.,
2021; Sartran et al., 2022; Yoshida and Oseki,
2022; Murty et al., 2023). For example, Sartran
et al. (2022) showed that some SLMs can achieve
comparable syntactic performance to an LLM-like
model1 that is trained with medium—around 250×
larger—data, suggesting that syntactic supervision
is essential for LMs to achieve high training effi-
ciency. However, despite their training efficiency,
SLMs have trouble with inference efficiency—they
require hundreds of syntactic structures generated
via beam search (Stern et al., 2017; Crabbé et al.,
2019) or an external parser to precisely approxi-
mate marginal distribution over a token sequence,
which naturally incurs the costs hundreds of times
higher than their underlying sequential models.

In this paper, we propose a new method dubbed
tree-planting: instead of explicitly generating syn-

1Due to the rapid advances in recent years, what were once
considered LLMs are no longer deemed “large” by current
standards. We will refer to Transformer LMs larger than or
equal to GPT-2 (Radford et al., 2018) as LLM-like models.
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tactic structures, we “plant” trees into attention
weights of unidirectional Transformer LMs to im-
plicitly reflect syntactic structures of natural lan-
guage.2 Specifically, unidirectional Transformer
LMs trained with tree-planting will be called Tree-
Planted Transformers (TPT), which inherit the
training efficiency from SLMs without changing
the inference efficiency of their underlying Trans-
former LMs (Figure 1).

Previous studies have also explored the syntac-
tic supervision of attention weights, mainly tar-
geting bidirectional Transformer Encoders (Wu
et al., 2018; Nguyen et al., 2020; Bugliarello and
Okazaki, 2020; Bai et al., 2021; Sachan et al., 2021;
Slobodkin et al., 2022; inter alia) (§2). These
encoder-oriented approaches assume the entire sen-
tence as input and typically aim to reflect the syntac-
tic relationship between input words in a bottom-up
manner. In contrast, tree-planting is uniquely de-
signed for unidirectional Transformer LMs that can
be used for text generation—and they have recently
increased prevalence because of their compatibility
with instruct tuning (Zhang et al., 2024) or Rein-
forcement Learning from Human Feedback (RLHF,
Ouyang et al., 2022). Specifically, tree-planting
considers syntactic structures involving the next
word to be generated, by focusing on the syntactic
distance (Shen et al., 2018, 2019; Du et al., 2020)
between the next word and the previous words in
the context (§3).

Targeted syntactic evaluations on the Syntax-
Gym benchmark (Gauthier et al., 2020) demon-
strated that TPTs, despite the lack of explicit gen-
eration of syntactic structures, significantly outper-
formed not only vanilla Transformer LMs but also
various SLMs that generate hundreds of syntac-
tic structures in parallel. This result suggests that
TPTs can learn human-like syntactic knowledge
as data-efficiently as SLMs while maintaining the
modeling space of Transformer LMs unchanged.
Furthermore, closer inspection of syntactic phe-
nomena implied that tree-planting shows high com-
patibility with dependency structures (§4).

Additionally, we analyzed the two hyperparam-
eters introduced by tree-planting: (i) the number
of heads where the tree-planting loss is applied,

2The term “tree-planting” coincidentally bears a resem-
blance to the term used in Mueller and Linzen (2023), but
this work diverges from ours in its motivation. Specifically,
Mueller and Linzen (2023) investigated biases that enable
syntactic generalization in Transformer LMs, from the per-
spectives of architectural features (depth, width, and number
of parameters), as well as the genre and size of training corpus.

and (ii) the balance between the next-word predic-
tion loss and the tree-planting loss. Our results
demonstrated that the highest accuracy was gener-
ally achieved when a single head was adopted as
a tree-planted head while the balancing parameter
emerged as a crucial hyperparameter; excessively
high and low weights on the tree-planting loss both
led to ineffective outcomes (§5).

2 Related work

2.1 Syntactic Language Model
Syntactic Language Models (SLMs) are a genera-
tive model of a token sequence x and its syntactic
structure y. Formally, SLMs are defined as:

p(x,y) = p(z) =

n∏

t=1

p(zt|z<t), (1)

where z denotes the sequence of actions to gener-
ate both the token sequence and syntactic structure.
For example, in top-down and left-to-right SLMs,
each zt could be either generating a token or open-
ing/closing a constituent.

Recently, several SLMs based on the Trans-
former architecture have been proposed, achieving
higher syntactic performance than medium LLM-
like models (Qian et al., 2021; Sartran et al., 2022;
Murty et al., 2023). However, because SLMs gen-
erate both a syntactic structure and token sequence,
they cannot be directly utilized as LMs, or a gen-
erative model of a token sequence. To precisely
approximate the marginal distribution over a token
sequence, i.e., p(x) =

∑
y∈Y p(x,y) (where Y

represents the set of possible syntactic structures
behind x), they require hundreds of syntactic struc-
tures generated via beam search (Stern et al., 2017;
Crabbé et al., 2019) or an external parser. Although
actual costs would depend on the hardware and met-
rics, the calculation of p(x,y) for each structure
in Y naturally multiplies inference costs by |Y|
compared to the sequential models that directly cal-
culates p(x). Furthermore, additional costs would
be incurred by the beam search procedure or the
external parser itself.

2.2 Constraints on attention weights
As discussed in §2.1, the bottleneck that impairs
SLMs’ inference efficiency is their modeling space
of the joint probability. To achieve the architec-
ture that inherits the training efficiency of SLMs
without changing the inference efficiency of their
underlying Transformer LMs, it is necessary to
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Parser-free
inference

Syntactic
supervision

Unidirectional
LM

Parallel
computation

Wu et al. (2018);Nguyen et al. (2020);
Bugliarello and Okazaki (2020);Bai et al. (2021);
Sachan et al. (2021);Slobodkin et al. (2022)

✓ ✓

Wang et al. (2019) ✓ ✓
Strubell et al. (2018);Chen et al. (2023) ✓ ✓ ✓
Peng et al. (2019) ✓ ✓ ✓
Tree-planting (ours) ✓ ✓ ✓ ✓

Table 1: Comparison of our tree-planting with the previous work that constrains attention weights according to
syntactic structures, based on the requirements for the architecture that inherits the training efficiency of SLMs
without changing the inference efficiency of their underlying Transformer LMs: (i) parser-free inference, (ii)
syntactic supervision, (iii) unidirectional LM, and (iv) parallel computation.

introduce syntactic supervision without changing
the modeling space of the sequential models. For
our goal, we will build upon another line of ap-
proach that constrains attention weights according
to syntactic structures—mainly targeting bidirec-
tional Transformer Encoders like BERT (Devlin
et al., 2019).3 Table 1 summarizes the previous
work in this line of approach, comparing our tree-
planting (§3) against others based on the require-
ments for our goal: (i) parser-free inference, (ii)
syntactic supervision, (iii) unidirectional LM, and
(iv) parallel computation.

First, the majority of these approaches are purely
motivated to explicitly restrict attention weights
with syntactic structures from external parsers, un-
der the assumption that these parsers would be
available during inference (Wu et al., 2018; Nguyen
et al., 2020; Bugliarello and Okazaki, 2020; Bai
et al., 2021; Sachan et al., 2021; Slobodkin et al.,
2022). These studies achieved successful perfor-
mance in their respective downstream tasks, but
not only are their approaches all not directly ap-
plicable to unidirectional LMs, they also require
external parsers during inference, rendering them
not aligned with our goal of the inference efficient
architecture.

Second, several approaches have been proposed
that eliminate the need for external parsers during
inference, but they still fall short of meeting all
the requirements. Wang et al. (2019) aimed at
an unsupervised approach, where a hierarchical
architectural bias widens the range of neighboring
tokens eligible to attend from lower to upper layers,
yet this method is still not aligned with our goal of

3Beyond studies that constrain attention weights accord-
ing to syntactic structures, there are also investigations that
aimed at incorporating various types of information, such
as word alignment, into the attention mechanisms (e.g., Yin
et al., 2021). This subsection, however, specifically focuses
on studies that target syntactic biases.

achieving higher training efficiency via syntactic
supervision. Additionally, Strubell et al. (2018)
and Chen et al. (2023) designed the loss functions
that implicitly encourage the attention to syntactic
parents or children for each token, satisfying the
3/4 requirements for our goal.4 However, these
approaches are potentially encoder-oriented and
not suitable for unidirectional LMs; they assume
the entire sentence as input and reflect the syntactic
relationship between input words in a bottom-up
manner.

Finally, another approach also closely aligned
with the spirit of this research is a hybrid Parser
and neural Language Model (PaLM; Peng et al.,
2019). PaLM is the integration of an unidirec-
tional RNN LM with an additional attention layer,
which would be supervised to attend the con-
stituent spans among the spans ending at time
t − 1: {w1, · · · , wt−1}, · · · , {wt−2, wt−1}. Al-
though PaLM also meets the 3/4 requirements, it
was by nature proposed for RNN LMs. The chal-
lenge arises when adapting PaLM to Transformer
LMs; the generation of embeddings for the spans
cannot be parallelized in a manner that is compati-
ble with a self-attention mechanism of Transformer
LMs.

To sum up, none of the previous approaches fully
satisfy the requirements for our goal, highlighting
the necessity for new methodologies.

3 Proposed method: tree-planting

In this paper, we propose a new method dubbed
tree-planting: we “plant” trees into attention
weights of unidirectional Transformer LMs to re-

4Other than the approach to constrain attention weights,
Tziafas et al. (2023) proposed a method to train Transformer
Encoders in a multi-task setting of masked language model-
ing and categorial grammar supertagging. As an anonymous
reviewer correctly pointed out, this method also satisfied the
3/4 requirements: (i), (ii), and (iv).
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Figure 2: Overview of the proposed method: tree-planting

flect syntactic structures of natural language (Fig-
ure 2). Specifically, unidirectional Transformer
LMs trained with tree-planting will be called Tree-
Planted Transformers (TPT), which inherit the
training efficiency from SLMs without changing
the inference efficiency of their underlying Trans-
former LMs. Tree-planting is uniquely designed
for unidirectional Transformer LMs, satisfying all
the requirements discussed in §2.2: (i) parser-free
inference, (ii) syntactic supervision, (iii) unidirec-
tional LM, and (iv) parallel computation.

3.1 Supervision of attention weights
A self-attention mechanism of unidirectional Trans-
former LMs computes a representation for predict-
ing the next token through a weighted sum of each
token in the context. Specifically, when predicting
the i+ 1-th token, the attention weights from the
i-th token to the j-th token is computed as follows:

Aij =

exp

(
QiK

T
j√

dK

)

∑i
k=1 exp

(
QiKT

k√
dK

) , (2)

where Qi and Kj represent the query vector of
the i-th token and the key vector of the j-th token,
respectively, and dK denotes the dimension of the
key vector. As Equation 2 shows, the computation
for the i+ 1-th token prediction does not depend
on any computation for the 1, · · · , i-th token pre-
dictions, which enables parallel computation.

In producing the supervision of attention
weights, we extend the notion of syntactic distance
array (Shen et al., 2018, 2019; Du et al., 2020),
a 1D array of the number of edges on syntactic
structures between two consecutive words, to a 2D
matrix between all pairs of words:

Dij = CountEdge(wi, wj), (3)

where wi and wj represent the i-th and j-th words,
respectively, and CountEdge is the function that
maps a pair of words to the number of edges on

syntactic structures between them. This notion of
syntactic distance matrix could be applied to any
kind of syntactic structure, as long as the number
of edges can be counted on it.5

Then, the syntactic distance matrix D is con-
verted to the supervision of attention weights S as
follows:

Sij =

{ exp(−Di+1,j)∑i
k=1 exp(−Di+1,k)

(i ≥ j)

0 (i < j)
, (4)

where Sij represents the supervision of the atten-
tion weight from the i-th word to the j-th word
when predicting the i + 1-th word. In short, this
supervision expects the attention weight of each
word to decrease exponentially with the number of
edges between the predicted word.6

This supervision design is highly oriented to-
wards unidirectional Transformer LMs; it consid-
ers syntactic structures involving the next word to
be generated in a manner compatible with parallel
computation of the self-attention mechanism. This
only successfully satisfies the 3/4 requirements for
our purpose: (ii) syntactic supervision, (iii) unidi-
rectional LM, and (iv) parallel computation. To
fulfill the remaining requirement of (i) parser-free
inference, we adopt a strategy similar to that of
Strubell et al. (2018); Chen et al. (2023), designing
the loss function to implicitly supervise attention.

3.2 Loss function

The supervision in §3.1 is produced at the word
level but Transformer LMs typically take their input
at the subword level. To bridge this gap, we first

5Note importantly that compatibility with the syntactic dis-
tance matrix varies across types of syntactic structures because
some kind of information would be lost during the conversion
from syntactic structures to the matrix. For example, when
applied to dependency structures, the information on the di-
rection of syntactic dependency will be lost.

6We adopt an exponential function as Lin and Tegmark
(2017) reported that the mutual information between words
would decay exponentially with respect to the number of edges
on the syntactic structure between them.
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convert the subword-level attention weight matrix
A from a targeted Transformer LM to the word-
level attention weight matrix W as follows:

Wij =
Cij∑i
k=1Cik

, (5)

Cij =

END(wi+1)∑

l=START(wi+1)

END(wj)∑

m=START(wj)

Alm, (6)

where Wij represents the word-level attention
weight from the i-th word to the j-th word. Cij is
defined as the sum of the subword-level attention
weights over the subword inside wj when predict-
ing the subword inside wi+1, with Alm represent-
ing the subword-level attention weight from the
l-th subword to the m-th subword and START
and END being the functions that map words to
their start and end subword index, respectively. We
employ A from specific attention heads called tree-
planted heads.7

To implicitly supervise the word-level attention
weight matrix W with the supervision S, we in-
troduce a tree-planting loss LTREE employing a
Kullback–Leibler (KL) Divergence loss DKL:8

LTREE =

∑n−1
i=1 DKL(Si||Wi)

n− 1
, (7)

where n represents the length of a word sequence
w. In short, the tree-planting loss is the average
KL Divergence loss in predicting each word except
the beginning of w.

During the training, LTREE is averaged over
tree-planted heads and balanced with the next word
prediction loss LNWP:

L = LNWP + λ

∑
h∈H L(h)

TREE

H
, (8)

where L(h)
TREE represents a tree-planting loss for

each tree-planted head h, H is the total number of
tree-planted heads, and λ is a weight that balances

7Qian et al. (2021) also proposed the architecture which
constrains some attention heads based on syntactic structures,
or PLM-mask. PLM-mask and our tree-planting are simi-
lar in spirit, but they are quite different in their implemen-
tation: PLM-mask is a type of SLM that jointly generates a
word sequence and its syntactic structure, but tree-planting
builds TPTs, a type of LM. Furthermore, PLM-mask explicitly
masks the attention weights based on the local parser state but
tree-planting implicitly guides attention weights to reflect the
whole syntactic structure.

8This loss function is inspired by Ma et al. (2023), which
guides attention weights to focus on relevant texts in a
document-level relation extraction task.

the importance of the next word prediction loss
and the average tree-planting loss. Unidirectional
Transformer LMs trained with this loss function
will be called Tree-Planted Transformers (TPT).

4 Experiment

To investigate whether TPTs can learn human-like
syntactic knowledge as data-efficiently as SLMs
while maintaining the modeling space of Trans-
former LMs unchanged, we conduct training on a
small treebank and targeted syntactic evaluations
on a syntactic knowledge benchmark.

4.1 Settings

Training data We used LG dataset of Hu et al.
(2020), which comprises approximately 1.8M sen-
tences from BLLIP corpus (Charniak et al., 2000).
Implicit syntactic supervision with each of three
types of syntactic structures was investigated: (i)
dependency structures ([dep.]), (ii) constituency
structures ([cons.]), and (iii) binarized con-
stituency structures ([bin.]). The (i) dependency
structures were parsed with the en_core_web_sm
model from the spacy library (Montani et al.,
2023).9 The (ii) constituency structures were re-
parsed with the Berkeley Neural Parser (Kitaev and
Klein, 2018)10 by Hu et al. (2020). The (iii) bi-
narized constituency structures were obtained by
the binarization of the (ii) constituency structures
with the chomsky_normal_form function from the
nltk library (Bird et al., 2009).11 We removed
43,986 sentences that the dependency parser ana-
lyzed as multiple sentences, but the constituency
parser analyzed as a single sentence.

Models We used the same architecture and BPE
tokenizer as GPT-2 small (124M; Radford et al.,
2018). The implementation of GPT2LMHeadModel
and GPT2Tokenizer from the transformers li-
brary (Wolf et al., 2020)12 were employed but all
parameters of GPT2LMHeadModel were randomly
initialized. For the tree-planted head and the weight
of the tree-planting loss, we adopted a single atten-
tion head on the last layer and λ = 0.5, respec-
tively. The choice of the tree-planted head and the
weight was based on preliminary experiments and
the detailed effects of them will be described in §5.

9https://spacy.io
10https://github.com/nikitakit/

self-attentive-parser
11https://www.nltk.org
12https://huggingface.co/docs/transformers
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As baselines, we trained three models: (i) a
model with zero weight for the tree-planting loss
([zero]), (ii) a model supervised with random
syntactic distances that were generated from the
distribution same as the dependency structures
([rand.]), and (iii) a model supervised with se-
quential distances ([seq.]). Note importantly, (i)
is equivalent to a Transformer LM. Hyperparame-
ters are shown in Appendix A.

Evaluation data We evaluated syntactic knowl-
edge of the models via targeted syntactic eval-
uations on the SyntaxGym benchmark (Gau-
thier et al., 2020). The SyntaxGym bench-
mark comprises six syntactic circuits: Agreement,
Center Embedding, Garden-Path Effects,
Gross Syntactic States, Licensing, and
Long-Distance Dependencies. Each syntactic
circuit consists of 2–10 syntactic suites on a spe-
cific type of syntactic phenomenon; for example,
the Agreement circuit contains syntactic suites
such as “subject-verb number agreement with a
prepositional phrase”. Each syntactic suite con-
tains 20–30 syntactic items with different vocabu-
lary; for example, the “subject-verb number agree-
ment with a prepositional phrase” suite includes
syntactic items as follows:

(1) a. The author next to the senators is good.

b. *The author next to the senators are good.

LMs’ predictions are evaluated against success cri-
terion, which specifies the inequality between con-
ditions within an item; for example, the underlined
position of the grammatical sentence (1a) should
be assigned the higher conditional probability than
the ungrammatical one (1b).

All models were trained and evaluated two times
with different random seeds. We report average
accuracies with a standard deviation, along with
word-level perplexity on the BLLIP test set.

4.2 Overall accuracies
Table 2 shows the overall accuracies of TPTs and
their baselines on the SyntaxGym benchmark (SG),
along with word-level perplexity on the BLLIP test
set (PPL). The overall accuracies were calculated
across the syntactic suites. We also report the accu-
racies of several SLMs that were also trained on the
same BLLIP-LG dataset: PLM, PLM-mask (Qian
et al., 2021), and TG (Sartran et al., 2022). Only un-
marked PLM and PLM-mask can be fairly compa-
rable with TPTs as their evaluation was conducted

SG (↑) PPL (↓)
Baselines:
TPT[zero] 71.7 ± 0.3 47.5 ± 0.1♠
TPT[rand.] 69.0 ± 1.0 47.4 ± 0.1♠
TPT[seq.] 70.1 ± 3.5 47.3 ± 0.2♠
TPTs (ours):
TPT[dep.] 77.1 ± 0.2 47.7 ± 0.1♠
TPT[cons.] 75.8 ± 0.0 45.5 ± 0.0♡
TPT[bin.] 73.0 ± 1.8 45.6 ± 0.2♡
SLMs (comparable):
PLM 42.2 ± 1.2 -
PLM-mask 42.5 ± 1.5 -
SLMs (reference):
PLM† 73.2 ± 0.6 49.3 ± 0.3♡
PLM-mask† 74.6 ± 1.0 49.1 ± 0.3♡
TG‡ 82.5 ± 1.6 30.3 ± 0.5♡
LLM-like models (reference):
GPT-2¶ 78.4 -
Gopher¶ 79.5 -
Chinchilla¶ 79.7 -

Table 2: Overall accuracies of TPTs and their baselines
on the SyntaxGym benchmark (SG), along with word-
level perplexity on the BLLIP test set (PPL). The overall
accuracies were calculated across the syntactic suites. †
and ‡ represent the reference points as their inference
methods are more costly than TPTs. ¶ are also the
reference points as they were trained on significantly
larger corpora than TPTs. Perplexity can be directly
comparable only within the same mark, either ♠ or ♡,
due to differences in the tokenization of the constituency
parser and dependency parser.

generating a single syntactic structure via greedy
search, to align inference costs with TPTs.13 † and
‡ represent the reference points from Sartran et al.
(2022) as their inference methods are more costly
than TPTs: † and ‡ employed word-synchronous
beam search (Stern et al., 2017) of action beam size
10014 and the external parser (Dyer et al., 2016)
to generate 300 candidate structures, respectively.
The accuracies of several LLM-like models are also
reported from Sartran et al. (2022): GPT-2 (Rad-
ford et al., 2018), Gopher (Rae et al., 2022), and
Chinchilla (Hoffmann et al., 2022). They are also
the reference points as these LLM-like models were
trained on 250× to 1000× larger corpora (denoted
by ¶). Perplexity can be directly comparable only
within the same mark, either ♠ or ♡, due to differ-

13The fair comparison of TG was not performed because
their trained parameters were not publicly available.

14Word beam size was 10 and fast track size was 5.
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ences in the tokenization of the dependency parser
and constituency parser.

There are some important observations in the
overall accuracies on the SyntaxGym benchmark:

• TPT[zero], which is equivalent to a Trans-
former LM, underperformed all TPTs with
some implicit syntactic supervision, suggest-
ing that tree-planting can induce data-efficient
syntactic generalization.

• TPTs[rand.][seq.] also underperformed
all TPTs with some implicit syntactic supervi-
sion, indicating that not KL Divergence loss
itself but the loss based on syntactic structures
is necessary.

• Among TPTs with some implicit syntactic su-
pervision, TPT[dep.] achieved the best per-
formance. We further investigate this point in
§4.3.

• Most importantly, despite the lack of ex-
plicit generation of syntactic structures,
TPTs[dep.][cons.] significantly outper-
formed not only the comparable SLMs (un-
marked PLM and PLM-mask) but also the
various SLMs that generate hundreds of syn-
tactic structures in parallel (PLM† and PLM-
mask†).

Even though the best TPT[dep.] underperformed
the reference points of TG, which consumed at
least 300× higher inference cost, and LLM-like
models, which were trained on at least 250× larger
data, these observations adequately suggest that
TPTs can learn human-like syntactic knowledge
as data-efficiently as SLMs while maintaining the
modeling space of Transformer LMs unchanged.

Regarding perplexity, although TPT[dep.] nu-
merically underperformed its comparable baselines,
they all achieved similar perplexity with no signifi-
cant differences.

4.3 Circuit accuracies

In this subsection, we investigate the reason for
the high compatibility between tree-planting and
dependency structures through the lens of circuit
accuracies. Figure 3 shows the circuit accuracies of
TPTs with some implicit syntactic supervision and
the baseline model with zero weight for the tree-
planting loss on the SyntaxGym benchmark. The
circuit accuracies calculated across the syntactic

Figure 3: Circuit accuracies of TPTs with some implicit
syntactic supervision and the baseline model with zero
weight for the tree-planting loss on the SyntaxGym
benchmark. The circuit accuracies calculated across the
syntactic suites (the vertical axis) are plotted against the
models (the horizontal axis), with each dot representing
the accuracy of a specific seed.

suites (the vertical axis) are plotted against the mod-
els (the horizontal axis), with each dot denoting the
accuracy of a specific seed.

vs. zero supervision TPT[dep.] outperformed
TPT[zero] on 5/6 circuits, suggesting that tree-
planting with dependency structures is generally
advantageous over zero supervision. However, the
Garden-Path Effects circuit presents an excep-
tion, where LMs are evaluated for the ability to be
surprised in a human-like manner, through compar-
isons between sentences minimally different not in
grammaticality but in local ambiguity (Hu et al.,
2020). The underperformance of TPT[dep.] may
suggest that due to the syntactic knowledge intro-
duced by tree-planting with dependency structures,
TPT[dep.] was no longer surprised by locally
ambiguous but grammatical sentences. We further
investigate this point in Appendix B.

vs. constituency structures Surprisingly, on 5/6
circuits, TPT[dep.] outperformed TPT[cons.].
The only exception is the Garden-Path Effects
circuit, where the potential disadvantage of tree-
planting with dependency structures exists, as men-
tioned above. Specifically, TPT[dep.] most
significantly outperformed TPT[cons.] on the
Agreement circuit, which includes the syntactic
items such as (1) from §4.1: “The author next
to the senator is/*are good”. For these syntactic
items, only the head of the subject NP (author) is
always nearest to the main verb (is/*are) on de-
pendency structures, but the same does not hold
on constituency structures: in constituency struc-
tures, the determiner of the subject NP (the) and
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the head of the post-modifying PP (to) are as near-
est to the main verb as the head of the subject NP
(cf. Appendix C). Given that tree-planting utilizes
the number of edges as implicit syntactic supervi-
sion, the property of dependency structures may
potentially be more desirable for tree-planting than
constituency structures.

vs. binarized constituency structures
TPT[dep.] outperformed TPT[bin.] on
3/6 circuits, with similar performance (a differ-
ence less than −1.0%) on the other 3 circuits.
Notably, TPT[dep.] achieved significantly better
performance (a difference more than +5.0%)
on the Agreement and Licensing circuits. Noji
and Oseki (2023) reported that deep syntactic
supervision is not always optimal; rather mild
syntactic supervision is sufficient for addressing
long-distance dependencies between elements
within and outside complex NP subjects. Given
that (i) the Agreement and Licensing circuits
consist only of syntactic suites that exemplify
this condition15 and (ii) the average syntactic
distance in the training data is significantly
shorter for dependency structures (4.8) than
binarized constituency structures (13.1), it could
be argued that tree-planting would be more “good
enough” syntactic supervision with dependency
structures, rather than with binarized constituency
structures.16

5 Analysis

In this section, we report the effects of (i) the num-
ber of tree-planted heads and (ii) the weight of a
tree-planting loss, using TPT[dep.].

5.1 Number of tree-planted heads
Our TPTs are based on a 12-layer, 12-head Trans-
former LM. In §4, out of 12×12 heads, we adopted
a single attention head on the last layer as a tree-
planted head. In this subsection, we explore two
alternatives: (i) head-direction extension and (ii)
layer-direction extension. For the head-direction
extension, H = 0, 1, 3, 6, 9, 12 heads on the last
layer were adopted as tree-planted heads. For the

15Among the other syntactic circuits, the Center
Embedding circuit also consist only of syntactic suites that
exemplify this condition.

16The average syntactic distance of constituency structures
is 10.0. This suggests that tree-planting would also be more
“good enough” syntactic supervision with dependency struc-
tures rather than with constituency structures, besides the
points discussed in the “vs. constituency structures” para-
graph.

layer-direction extension, one attention head from
each of the bottom H = 0, 1, 3, 6, 9, 12 layers was
adopted as tree-planted heads.

In the left two columns of Figure 4, the results of
the head-direction and layer-direction extension are
shown: the overall accuracies on the SyntaxGym
benchmark (SG) and the word-level perplexity on
the BLLIP test set (PPL) (the vertical axis) are
plotted against the number of tree-planted heads
(the horizontal axis). Each dot denotes the accu-
racy or perplexity of a specific seed. For both set-
tings, H = 0, 1 are equivalent to TPT[zero] and
TPT[dep.], respectively.

Considering the overall accuracies on the Syn-
taxGym benchmark, in both the head-direction and
layer-direction extension, the highest accuracy was
achieved when only a single head was adopted as
a tree-planted head, while it is noteworthy that all
the models with tree-planted heads outperformed
the model without them. Incidentally, it should
be mentioned that the result of the layer-direction
extension exhibited significantly more variability.
Although the exact reason why a single tree-planted
head would work well is unclear, the adoption of
multi tree-planted heads inherently induces the han-
dling of redundant information across heads, which
might potentially hinder the management of non-
syntactic information of natural languages (e.g.,
lexical information). Regarding perplexity, no con-
sistent trend emerged.

5.2 Weight of a tree-planting loss
In §4, we adopted λ = 0.5 as the weight of the
tree-planting loss. Here, we extend λ to 0.0, 0.25,
0.50, 0.75, and 1.00. λ = 0, 0.50 are equivalent to
TPT[zero] and TPT[dep.], respectively.

The rightmost column of Figure 4 shows the
results of the weight extension. The overall ac-
curacies on the SyntaxGym benchmark display a
single-peaked pattern, with the maximum reached
for λ = 0.50. Interestingly, this result suggests that
by overtly focusing on reflecting syntactic struc-
tures, TPTs paradoxically become unable to learn
syntactic knowledge efficiently. On the other hand,
we observed that the perplexity got worse mono-
tonically as the weight increased. From these ob-
servations, we may deduce that to acquire syntac-
tic knowledge efficiently, TPTs should learn not
only to reflect syntactic structures in their atten-
tion weights but also to precisely predict the next
word. Therefore, the weight of the tree-planting
loss emerges as a critical hyperparameter, indicat-
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Figure 4: The results of the head-direction, layer-direction, and weight extension. For the head-direction and
layer-direction extension, the overall accuracies on the SyntaxGym benchmark and the perplexity on the BLLIP
test set (the vertical axis) are plotted against the number of tree-planted heads (the horizontal axis). For the weight
extension, the horizontal axis indicates the weight of the tree-planting loss.

ing that the search for the optimal balance between
the next-word prediction loss and tree-planting loss
is vital for developing more human-like TPTs.

6 Conclusion

In this paper, we propose a new method dubbed
tree-planting: instead of explicitly generating syn-
tactic structures, we “plant” trees into attention
weights of unidirectional Transformer LMs to im-
plicitly reflect syntactic structures of natural lan-
guage. Specifically, unidirectional Transformer
LMs trained with tree-planting will be called Tree-
Planted Transformers (TPT), which inherit the
training efficiency from SLMs without changing
the inference efficiency of their underlying Trans-
former LMs. Targeted syntactic evaluations on the
SyntaxGym benchmark demonstrated that TPTs,
despite the lack of explicit generation of syntac-
tic structures, significantly outperformed not only
vanilla Transformer LMs but also various SLMs
that generate hundreds of syntactic structures in
parallel. This result suggests that TPTs can learn
human-like syntactic knowledge as data-efficiently
as SLMs while maintaining the modeling space of
Transformer LMs unchanged.

Limitations

This paper has at least three limitations. First, we
only conducted sentence-level tree-planting. Typ-
ically, Transformer LMs are trained at the docu-
ment level, but SLMs are trained at the sentence
level (Dyer et al., 2016; Kuncoro et al., 2017; Noji
and Oseki, 2021; Yoshida and Oseki, 2022), be-
cause on treebanks the annotations are assigned
at the sentence level. Because of this constraint,
we also employed sentence-level experimental de-

sign and verified the effectiveness of the proposed
method first and foremost. Recent research in
SLMs, however, has begun to extend treebank an-
notations to the document level and train document-
level SLMs on them (Sartran et al., 2022; Murty
et al., 2023). When constructing TPTs for practical
use, it might be beneficial to follow these recent
studies and perform tree-planting with document-
level annotations.

Second, we only evaluated TPTs on the syntac-
tic knowledge benchmark and perplexity. Recently,
Murty et al. (2023) evaluated the performance of
SLMs on text classification tasks; to the best of
our knowledge, this is the first work that evaluated
SLMs on tasks other than the targeted syntactic
evaluations. More recently, Hu et al. (2024) evalu-
ated unsupervised SLMs on text generation tasks as
well as text classification tasks. Murty et al. (2023)
and Hu et al. (2024) both suggested that syntac-
tic supervision could also be beneficial to solving
them; this indicates that there is also room for a
broader evaluation of our methodology.

Finally, there might still be room for further
improvement of tree-planting and TPTs. For in-
stance, an in-depth comparison between TPT and
TG, which achieved much better accuracy on the
Center Embedding and Garden-Path Effects
circuits (cf. Sartran et al., 2022), could provide in-
sights for improving the design of tree-planting.
Additionally, since the modeling space of TPT is
identical to that of underlying Transformer LMs,
TPTs are theoretically capable of continual learn-
ing on standard text corpora. In future work, we
plan to develop a novel method to scale TPTs on
large text corpora without compromising syntactic
knowledge.
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Ethical considerations

A significant feature of TPT lies in the training
efficiency and inference efficiency, which can po-
tentially contribute to reducing computational re-
sources. One minor concern is the possibility of
bias in the models utilized in this paper, attributed
to the training data (i.e., the BLLIP corpus), al-
though this experimental setting follows conven-
tional practices in the literature on SLMs. We em-
ployed ChatGPT and Grammarly for writing as-
sistance and utilized ChatGPT and Copilot for the
development of experimental code. These tools
were used in compliance with the ACL 2023 Policy
on the Use of AI Writing Assistance.
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Optimizer AdamW
Learning rate 5e-5
Number of epochs 10
Dropout rate 0.1
Batch size 256

Table 3: Hyperparameters for our experiments

A Hyperparameters

Hyperparameters for our experiments are shown
in Table 3, which primarily followed default set-
tings. All models were trained and evaluated on 8×
NVIDIA V100 (16GB). The total computational
cost for all experiments in this paper amounted to
about 1,300 GPU hours.

B Further investigation of the
Garden-Path Effects circuit

In §4.3, we suggest the probability that syntactic
knowledge introduced by tree-planting with depen-
dency structures may prevent TPT[dep.] from
being surprised by locally ambiguous but gram-
matical sentences. To inspect this, we break down
the Garden-Path Effects circuit into the syntac-
tic suites: “main verb / reduced relative clause”
(MVRR) and “NP/Z garden-paths” (NP/Z).

Figure 5 shows the suite accuracies of TPTs with
some implicit syntactic supervision and the base-
line model with zero weight for the tree-planting
loss on the Garden-Path Effects circuit, with
the reference point of the more inference-costly
SLM, or PLM-mask† (Qian et al., 2021). We find
that the deficiency of TPT[dep.] is attributed to
its inadequate performance on the MVRR circuit,
which includes the syntactic items as follows:

(2) a. The dog seen on the beach chased
after a bird.

b. !The dog walked on the beach chased
after a bird.

The success criterion on these suites defines that
the underlined position of the unambiguous sen-
tence (2a) should be assigned a higher conditional
probability than the locally ambiguous one (2b).
We speculate that TPT[dep.] might lose its sen-
sitivity to the local ambiguity introduced by the
participle verb (seen/walked), as it is guided to fo-
cus more intently on the head of the subject NP
(dog) when predicting the main verb (chased), than
the unrestricted baseline.

Figure 5: Suite accuracies of TPTs with some implicit
syntactic supervision and the baseline model with zero
weight for the tree-planting loss on the Garden-Path
Effects circuit, with the reference point of the more
inference-costly SLM, or PLM-mask† (Qian et al.,
2021)

Conversely, TPT[cons.][bin.] did not un-
derperform TPT[zero.] on the MVRR suites.
This result could be straightforwardly understood,
given that on these structures, the participle verb
(seen/walked) and the head of the subject NP (dog)
are equidistant from the main verb (chased). How-
ever, it is worth noting that the determiner of the
subject NP (the) also shares this distance, which
may not always be a desirable property for tree-
planting (cf. §4.3).

Finally, PLM-mask†, the more inference-costly
SLM, also underperformed TPT[zero] on the
MVRR suites. This suggests that the models with
explicit syntactic supervision may also struggle
with losing sensitivity to the local ambiguity as
PLM[dep.].
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C Dependency/constituency structures of
(1) from §4.1

To assist the discussion in §4.3, the dependency and
constituency structures of (1) from §4.1 were dis-
played in Figure 6a and 6b, respectively. Numbers
below each word represent the number of edges
from the underlined position. To parse (1), the
parsers referenced in §4.1 were employed.

The author next to the senators is/*are good.
2 1 2 3 5 4 0 1

(a) Dependency structure

S

NP

NP

DT

The
7

NN

author
7

ADVP

JJ

next
7

PP

IN

to
8

NP

DT

the
9

NNS

senators
9

VP

VBZ

is/*are
0

ADJP

JJ

good.
5

(b) Constituency structure

Figure 6: Dependency/constituency structures of (1)
from §4.1

D Begin/End Of Sentence Tokens

Sentences in the BLLIP corpus do not include Be-
gin/End of Sentence (BOS/EOS) tokens, which are
essential for sequences processed by LMs. To inte-
grate these tokens, we implemented the following
modifications:

• For dependency structures, we introduced
BOS/EOS tokens by defining new edges from
the ROOT to these tokens.

• For constituency structures, we introduced
BOS/EOS tokens by modifying the tree struc-
ture to encapsulate the original structure
within a new root node, specifically by adding

a BOS token and an EOS token as the first and
the last child of this new root, respectively.

E License of the data/tools

We summarize the license of the data/tools em-
ployed in this paper in Table 4. All data and tools
were used under their respective license terms.

Data/tool License
BLLIP (Charniak et al., 2000) BLLIP 1987-89

WSJ Corpus Re-
lease 1 License
Agreement

SyntaxGym (Gauthier et al., 2020) MIT
spacy (Montani et al., 2023) MIT
nltk (Bird et al., 2009) Apache 2.0
transformers (Wolf et al., 2020) Apache 2.0
Berkeley Neural Parser (Kitaev and
Klein, 2018)

MIT

PLM/PLM-mask (Qian et al., 2021) MIT

Table 4: License of the data/tools
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