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Abstract

Large language models have been widely
adopted in natural language processing, yet
they face the challenge of generating unreliable
content. Recent works aim to reduce misin-
formation and hallucinations by resorting to
attribution as a means to provide evidence (i.e.,
citations). However, current attribution meth-
ods usually focus on the retrieval stage and
automatic evaluation that neglect mirroring the
citation mechanisms in human scholarly writ-
ing to bolster credibility. In this paper, we
address these challenges by modeling the at-
tribution task as preference learning and intro-
ducing an Automatic Preference Optimization
(APO) framework. First, we create a curated
collection for post-training with 6,330 exam-
ples by collecting and filtering from existing
datasets. Second, considering the high cost of
labeling preference data, we further propose
an automatic method to synthesize attribution
preference data resulting in 95,263 pairs. More-
over, inspired by the human citation process,
we further propose a progressive preference op-
timization method by leveraging fine-grained
information. Extensive experiments on three
datasets (i.e., ASQA, StrategyQA, and ELI5)
demonstrate that APO achieves state-of-the-art
citation F1 with higher answer quality. 1

1 Introduction

Large Language Models (LLMs) have demon-
strated emergent abilities and have gained
widespread application in Natural Language Pro-
cessing (NLP) (Brown et al., 2020; Wei et al., 2022;
OpenAI, 2022; Anil et al., 2023). For example,
LLMs have shown remarkable in-context learn-
ing capabilities across a variety of domains and
tasks (Dong et al., 2023). Although LLMs have
been widely adopted, a prominent issue is that they

*Corresponding author.
1Code is released in https://github.com/HITsz-TMG/

ATG-PO

produce hallucinations in certain situations (Ye
et al., 2023a; Zhang et al., 2023). In other words,
they generate information that sounds plausible but
is nonfactual, thereby limiting their applicability
in the real world. To mitigate hallucinations, re-
searchers have resorted to grounding statements
in responses generated by LLMs to supported evi-
dence, either by providing rationales or by adding
citations to the statements (Li et al., 2023a; Liu
et al., 2023).

Recent works have utilized external knowledge
sources such as retrieved documents and knowl-
edge graphs for attribution (Shuster et al., 2021; Li
et al., 2023c). Generally, these works are divided
into two types: 1) the model generates an answer
with citations based on the retrieved documents (Li
et al., 2023b); 2) an answer is first generated, then
modified again to add attribution references by re-
trieving with query and initial answer (Gao et al.,
2023a). However, these works focus mainly on the
retrieval stage (Ye et al., 2023b) and the evaluation
process (Yue et al., 2023). Considering the selec-
tion of the model’s desired responses and behavior
from its very broad knowledge and capabilities, it is
more necessary to optimize the generation process,
not only reducing the hallucination of the original
answer but also avoiding the hallucination of the
attribution process. On the other hand, fine-tuning
LLMs after pre-training can also significantly im-
prove performance for users’ downstream tasks.
First, given positive examples of correct behav-
ior, supervised fine-tuning can be performed using
standard likelihood-based training. Secondly, given
positive and negative examples (binary feedback
or pairwise feedback), methods such as unlikeli-
hood training on negative examples (Welleck et al.,
2020) or RLHF-PPO (Ziegler et al., 2019) can be
used for learning. However, these methods usu-
ally suffer from expensive data collection process,
reward model training, sparse reward and text de-
generation problems, making them difficult to use
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in practical applications (Azar et al., 2023).
In this paper, inspired by the citation mecha-

nisms in human scholarly writing (Brooks, 1986;
Teplitskiy et al., 2022), we address these chal-
lenges by conceptualizing the attribution task for
LLMs as preference learning and proposing an
Automatic Preference Optimization (APO) frame-
work, as shown in Figure 1. Initially, we assem-
ble a curated dataset comprising 6,330 examples
sourced and refined from existing datasets for post-
training. This step makes the LLMs know the ba-
sic format and requirements of attribution. Con-
sidering the substantial cost and extremely time-
consuming of preference pair annotations, we thus
introduce an automated approach to generate at-
tribution preference data, yielding 95,263 pairs.
Furthermore, drawing inspiration from the human
process of citation and direct preference optimiza-
tion (Rafailov et al., 2023), we propose a progres-
sive preference optimization method with experi-
ence replay bypassing the need for explicit reward
modeling or reinforcement learning. We conduct
the extensive experiment on three datasets (i.e.,
ASQA, StrategyQA, and ELI5). The experiment
results demonstrate that APO surpasses compared
baselines across all datasets with improved cita-
tion F1 along with higher response quality. Our
contributions are summarized as follows:

• To the best of our knowledge, we are the first
to apply preference learning for attribution
tasks. We also show that our method can be
applied under synthesized preference scenar-
ios.

• We establish a full data collection pipeline
for attribution tasks and will open-source our
all authorized data after publication for future
research.

• We propose a progressive preference optimiza-
tion method to alleviate the sparse reward
problem by leveraging fine-grained informa-
tion. We further benchmark existing direct
preference optimization methods and provide
insights for attribution tasks.

2 Related Work

2.1 Text Generation for Verification
Prior works have studied methods and evaluations
for verification that identify supporting sources for
model outputs. For instance, Rashkin et al. (2021)
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Critic
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Figure 1: A brief overview of our APO framework. For
some given question, model first generates an answer
with several statements. Then for each statement, we
regenerate two parallel statements (the positive one and
the negative one, given a specific error type). Then we
preform preference optimization in the statement level.
The "2_chosen" means it’s the second statement in the
answer that be selected to construct preference pairs.
We show APO in more detail in Figure 2.

introduce the concept of Attributable to Identified
Sources (AIS) which transforms model outputs
into standalone, interpretable propositions. The re-
sponse s can be attributed to a source P if they meet
the intuitive criterion “According to P, s”. Bohnet
et al. (2022) adapt the AIS framework for QA sce-
narios. Further, Gao et al. (2023b) extrapolate AIS
to evaluate generated text of LLMs with citations.
Additionally, several works focus on building and
using automated AIS evaluations (Honovich et al.,
2022; Gao et al., 2023a; Liu et al., 2023). For a
comprehensive overview, please refer to Li et al.
(2023a). In contrast to existing approaches, our
work broadens the scope of attribution beyond just
verifiable text generation and devises a methodol-
ogy to enhance these attributions which frames it
as a preference learning problem.

2.2 Preference Optimization Methods
Preference Optimization (PO) methods signifi-
cantly improve generate quality to align with hu-
man values (Christiano et al., 2017; Ziegler et al.,
2019; Stiennon et al., 2020; Bai et al., 2022). It
usually first collects pairs of generations under the
same context and a pairwise human preference
to indicate which generation is better. Then the
PO is used to optimize generating policy to gen-
erate better candidates from the pair. For exam-
ple, Reinforcement Learning from Human Feed-
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back (RLHF) is a model-based algorithm to opti-
mize preference learning (Ouyang et al., 2022).
However, the RLHF process is complex, time-
consuming, and unstable. The direct PO uses an
off-policy algorithm to directly optimize the gen-
erating policy, eliminating the need for a reward
model (Rafailov et al., 2023; An et al., 2023; Kang
et al., 2023; Zhao et al., 2023). These approach are
more data-efficient and stable. For example, DPO
uses the Bradley-Terry model (Bradley and Terry,
1952) and log-loss, which can lead to over-fitting
to the preference data, especially when preference
is deterministic and ignores the KL-regularization
term. The IPO algorithm (Azar et al., 2023) ad-
dresses this issue by using a root-finding MSE loss
to solve the problem of ignoring KL-regularization
when preference is deterministic. However, these
methods fail to fully account for more fine-grained
preferences and that is exactly what we want to do.

3 Preliminary

The main pipeline of preference learning usually
consists of: 1) pretraining and Supervised Fine-
Tuning (SFT), where SFT is not a must; 2) prefer-
ence data collection; 3) preference optimization.

Pretraining and SFT Phase Preference learning
typically starts with a pretrained LLMs or LLMs
fine-tuned on high-quality data using maximum
likelihood estimation. The final policy πref after
this phase is represented as

πref ≈ argmax
π

Ex,y∼Dref log π(x) log(y|x), (1)

where Dref denotes the training data distribution.

Preference Data Collection Phase After pre-
training and SFT phase, πref is prompted by context
x, and generate two responses yw, yl ∼ πref(·|x).
Then x, yw, yl is labeled by humans to judge which
response is preferred and denote yw ≻ yl|x if yw
is preferred, and yl ≻ yw|x if yl is preferred. We
define a new symbol I = I[yw ≻ yl|x], and all
<x, yw, yl, I> consist the preference dataset Dp:

⟨x, yw, yl, I⟩ ∼ Dp. (2)

Preference Optimization Phase In the final
phase, the prevailing method uses reinforcement
learning algorithm to learn an explicit or implicit
reward from the preference data, and then using
on-policy or off-policy policy gradient algorithm
to maximize the reward. Recently, some methods

have derived the optimal policy using reward maxi-
mization under KL-regularization and also derive a
loss with optimal policy as its solution, then learn
the optimal policy by minimizing the derived loss
on empirical dataset.

Reinforcement Learning from Human Feedback
(RLHF) The RLHF uses standard two-phase re-
ward model-based reinforcement learning to maxi-
mize the reward. It contains two steps: 1) reward
estimation from preference data 2) reward maxi-
mization using PPO algorithm. It aims to maximize
reward with a KL constraint on the reference model
πref (inputs x omitted):

π∗ = argmax
π

Ey∼π

[
r(y)− β log

π(y)

πref(y)

]
, (3)

where β is the regularization weight and r(y) is the
reward function learned using the Bradley-Terry
model on the preference dataset of generating y.

Direct Preference Optimization (DPO) DPO
eliminates the training of reward model. It derives
a loss on the current policy πθ (yw, yl omitted):

Ldpo = − log σ

(
β log

πθ(yw)

πref(yw)
− β log

πθ(yl)

πref(yl)

)
, (4)

i.e., the binary cross entropy with

p̂θ(yw ≻ yl) = σ

(
β log

πθ(yw)

πref(yw)
− β log

πθ(yl)

πref(yl)

)
,

(5)

and target p(yw ≻ yl) = 1. We describe more PO
methods in details in Appendix B.

4 Methodology

4.1 Problem Formulation
Formally, consider a query q and a corpus of text
documents D. The goal is to produce an output S,
where S is a collection of n distinct statements:
s1, s2, . . . , sn. Each statement si is associated
with a set of citations Ci. This set Ci is defined
as Ci = {ci,1, ci,2, . . .}, where each ci,j is a doc-
ument from the corpus D. For application pur-
poses, the output from LLMs can be divided into
individual statements using sentence boundaries.
This approach is utilized because a single sentence
typically encapsulates a coherent statement while
maintaining brevity, facilitating easy verification.
Regarding the citation format, citations are typi-
cally presented in square brackets, e.g., The sun is
formed approximately 4.6 billion years ago [1][2].
However, it should be noted that these citations can
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Dataset Source # Examples

Post-training
EVIGSE Internet 3508
ExpertQA Internet 906
HAGRID Wiki 1301+615(dev)

Preference Optimization
stanford_alpaca Wiki 7741
oasst1 Wiki 2478
asqa Wiki 2333
sharegpt Wiki 2490
wow Wiki 3689
gpt4_alpaca Wiki 6679
flan_v2 Wiki 1693

Test
ASQA Wiki 948
StrategyQA Wiki 490
ELI5 Sphere 1000

Table 1: Statistics of data collections used at different
stages in the APO framework.

be attributed to specific phrases as well, not just at
the end of sentences.

Moreover, in this paper, we define generation
hallucination refers to a situation where the model
generates content that is not based on factual infor-
mation and attribution hallucination means that the
statement corresponding to one citation is unfaith-
ful or not supported by the referred source content.

4.2 Overall Framework
As shown in Figure 2, we introduce the APO frame-
work to apply preference learning for attribution
task. The APO framework consists of the post-
training procedure to ground the base model for
attribution (§4.3), and the preference optimization
procedure to address both generation hallucination
and attribution hallucination (§4.4).

4.3 Post-training
The goal of post-training procedure is to ensure that
given a specific question q and a corpus of text doc-
uments D, the model can be successfully instructed
to generate answer S and add citation Ci for each
statement si in its response when necessary.

Data Collection We construct the post-training
data from training sets using existing attribution
datasets including EVIGSE (Liu et al., 2023), Ex-
pertQA (Malaviya et al., 2023) and HARGID (Ka-
malloo et al., 2023). We select these datasets be-
cause they are high-quality attribution datasets with
diverse domains and sources annotated by human
experts or powerful LLMs. After preprocessing
and formatting, the final post-training data collec-
tion includes 6,330 samples. The pre-processing

Algorithm 1 Preference data sampling and labeling
1: Input Queries Q, Critic Mc, Generator Mg , Retriever R
2: Output Output initialized preference dataset Pinit

3: Pinit = {}
4: for q ∈ Q do
5: Retrieve top-k passages D using R given q
6: Predicts relevant label Lrel ∈ {0, 1} using critic Mc

for each d in D given q, d
7: Generate S constructed by statements {s1, s2, .., sn},

using generator Mg given (Ipost, q,D).
8: for si ∈ S do
9: Predicts supported label Lsup ∈ {0, 1} for each

ci,j using critic Mc given q, d ↔ ci,j , si
10: end for
11: Add augmented (q,D,S, C,Lrel,Lsup) to Pinit

12: end for

details are shown in Appendices C and E, and the
statistics of training data are shown in Table 1.

Training After that, instruction Ipost, documents
D and question q are formatted to be the input
while answer S composed of multiple statements
is formatted as output. We tune the model using
autoregressive language modeling objectives, re-
sulting in initial generator Mg.

4.4 Preference Optimization
In this section, we describe our preference opti-
mization procedure to enable a model-agnostic ap-
proach for improving the quality of generated re-
sponses. First, considering the cost of labeling pref-
erence data, we devise an automatic data collection
algorithm motivated by errors where previous mod-
els may have misattributed. Second, we propose
a progressive preference optimization approach to
amplify the preference signal by using synthesized
preference pairs. We further apply the experience
replay to alleviate the over-fitting and text degra-
dation phenomenon due to the distribution shift
introduced by automatic data generation.

Automatic Data Collection In general, at-
tributed text generation should be both relevant
and supported (Asai et al., 2023b). Being rele-
vant needs the reference document in the answer
to be helpful in handling the question. It is used to
measure whether C provides useful information to
solve q. Being supported asks the generated text
be grounded on the reference documents. It is used
to measure whether all of the verification-worthy
statements in S are supported by C.

Following the requirements above, we first get
initial responses and related labels for each query
with the Algorithm 1. The query comes from mul-
tiple open domain tasks or high-quality instruc-
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tion data sets shown in Table 1. The source of
retrieved documents is English Wikipedia. The
retriever R we use here is gtr-t5-large2. The
objective is to generate the attributed text with rel-
evant and supported labels for related documents
using the critic model Mc. Here, we use pre-trained
selfrag_llama2_7b3 as Mc in Asai et al. (2023b)
because it can give fine-grained feedback using
reflection tokens.

After that, we generate preference pairs using
an automatic collection algorithm. Specifically, we
determine whether the citations Ci of each state-
ment si of query q are all related to it based on the
relevant tags. If it is all relevant, we add the cur-
rent statement and its preceding statements Si to
the set Ptmp for subsequent processing. For exam-
ple, if s2 meets the requirement, we add {s1, s2}
to Ptmp. The motivation here is that we want to
select the statements that can answer the question
based on the document as the initial set. Then, for
each entry in Ptmp, we first retrieve another top-
m (m ≫ k) documents and filter them into 10
irrelevant documents Dir scored by relevant logits
predicted by Mc. If all documents in Dir are rele-
vant, we use the last 10 documents as Dir. After
that, we generate the positive and negative pair for
each statement si ∈ Ptmp. There are two situa-
tions: the statement si is fully supported by Ci and
otherwise. For the first situation, we first expand
Ci with supported document by second judgment
in D using Mc. Then, we generate one positive
statement using q, Si−1 and new Ci and two nega-
tive statements using q, Si−1, Dir and q, Si−1, new
Ci, error instruction e respectively. Thus, there are
two preference pairs in this context. For the second
situation, we generate one positive statement using
q, Si−1 and new Ci and one negative statement us-
ing q, Si−1, D − Ci, error instruction e. The full
procedure is shown in Algorithm 2.

In the generation of negative samples, we use
the error instruction e ∈ E , which defines two
types: irrelevant but supported means the gener-
ated text si is grounded on unhelpful reference
documents Ci, while relevant but unsupported fur-
ther has three fine-grained subtypes: 1) fabricated
statement refers to the generated text contains facts
or information that cannot be derived from refer-
ence documents; 2) mistaken synthesis means that
several reference documents are used, but facts or

2huggingface.co/sentence-transformers/
gtr-t5-large

3huggingface.co/selfrag/selfrag_llama2_7b

logics are mistakenly intermingled. The generated
text thus contains factual error or logic error; 3)
unintentional omission means that reference docu-
ments are used, but the key points are incomplete.
There are no factual errors in generated text, but
some information is omitted. The irrelevant but
supported error derives from attribution hallucina-
tion, whereas the relevant but unsupported error
is the result of generation hallucination. Note that
irrelevant and unsupported errors are not included,
since it is more like easy negatives. The details of
error instructions are in Appendix F.

Progressive Preference Optimization To rein-
force the preference feature and alleviate sparse re-
ward problem (Zheng et al., 2023; Lightman et al.,
2023), we propose a progressive preference opti-
mization method. Considering generations can be
separated into several consecutive statements, each
statement may contain hallucinations at all. The
entire response-level reward preference modeling
performs in the global context and potentially over-
sights the fine-grained deterministic preferences we
constructed. Hence, we use fine-grained statement-
level reward to perform preference optimization
to update the model in a more effective and effi-
cient way. Formally, assuming that deterministic
preference is performed at statement-level, we can
rewrite the preference optimization loss in Eqn. (4)
as follows (− log σ omitted):

L ≜ β log
πθ(yw)

πref (yw)
− β log

πθ(yl)

πθ(yw)

= β log

∑
i πθ(s

w
i |sw:i−1)∑

i πref (swi |sw:i−1)
− β log

∑
j πθ(s

l
j |sl:j−1)∑

j πref (slj |sl:j−1)

= β
∑

i

log
πθ(s

w
i |sw:i−1)

πref (swi |sw:i−1)
− β

∑

j

log
πθ(s

l
j |sl:j−1)

πref (slj |sl:j−1)

= β
∑

i

(
log

πθ(s
w
i |sw:i−1)

πref (swi |sw:i−1)
− log

πθ(s
l
i|sl:i−1)

πref (sli|sl:i−1)

)
.

(6)

The progressive preference optimization loss can
be further written as follows (− log σ omitted):

L ≜ E
(swi ,sli∼D)

(
β log

πθ(s
w
i )

πref (swi )
− β log

πθ(s
l
i)

πref (sli)

)

= E
(yw,yl∼D)

1

n

∑

i

(
β log

πθ(s
w
i )

πref (swi )
− β log

πθ(s
l
i)

πref (sli)

)
.

(7)

The main difference between vanilla preference
optimization in Eqn. (4) and progressive preference
optimization is that the latter contains an implicit
mean pooling procedure when implementing the
preference optimization loss.
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Furthermore, the directed preference optimiza-
tion may face the challenges of overfitting to some
deterministic preference due to weak KL con-
straint (Azar et al., 2023). Hence, we propose to
leverage experience replay (Rolnick et al., 2019) as
learning with rehearsal to alleviate the over-fitting
phenomenon. The idea of replaying experience
typically stores a few old training samples within
a small memory buffer. Therefore, we iteratively
add post-training autoregressive language model-
ing loss to the preference optimization procedure
in a fixed interval, resulting in final generator Mp.

4.5 Inference and Refinement
During inference, for query q, D is first retrieved
and then sent to Mp output to the final answer
Sinit consists of n statements. As there may not be
all statements correctly attributing documents, we
additionally perform the post-hoc refinement after
the original generation. We maintain a collection of
citations Ctmp. Starting from the last statement of
Sinit, if the current si has the citations, update the
Ctmp to the citations of the current si; if the current
si does not have a citation, add the current citation
set Ctmp to this statement until all n statements
have been traversed. Then we concatenate these n
statements together as the final answer S.

5 Setup

5.1 Datasets and Evaluation Metrics
Dataset We mainly focus on attributable long-
form question-answering (QA) task using ASQA
dataset and ELI5 subsets from Gao et al. (2023b).
In addition to these factoid long-form QA tasks,
we test the generation quality on StrategyQA
dataset (Geva et al., 2021) which focuses on open-
domain QA where the required reasoning steps are
implicit in the question. We use the official test set
as our evaluation set.

Metrics Following Gao et al. (2023b), we re-
port citation recall, precision, and F1 which uses
TRUE (Honovich et al., 2022) as the attribu-
tion evaluation model ϕ to automatically examine
whether the cited documents entail the model gen-
eration. For ASQA dataset, we report the recall
of correct short answers (EM-R) by checking
whether the short answers (provided by the dataset)
are exact substrings of the generation. For ELI5
dataset, we report the claim recall (Claim) to check
whether the model output entails the sub-claims,
that are generated by text-davinci-003 (Ouyang

et al., 2022). For StrategyQA dataset, we report the
accuracy for task performance.

5.2 Competitive Methods

We compare APO with several baselines. For each
baseline, we use gtr-t5-large as our retriever.

In-Context Learning (ICLCITE): We prompt
LLMs with few-shot examples, each consisting of
a query, a set of retrieved documents and an answer
with inline citations. The LLMs can in-context
learn from the examples and generate grounded re-
sponses for the test query and retrieved documents.

Post-Hoc Cite (POSTCITE): Given query q, we
first instruct LLMs to answer q without retrieved
documents. Then, we use the attribution evaluation
model ϕ to link each statement to the most relevant
document retrieved by the query.

Post-Hoc Attribute (POSTATTR): Instead of cit-
ing the most relevant document, for each statement,
we further retrieve a set of k documents and then
use the ϕ to link to the document that maximally
supports the statement by threshold.

Self-RAG (Asai et al., 2023b): Self-RAG is the
state-of-the-art (SoTA) method that adaptively re-
trieves documents on-demand. It generates with
reflection on retrieved documents and its genera-
tions by special token control.

AGREE (Ye et al., 2023b): AGREE leverages
test-time adaptation to reinforce unverified state-
ments which iteratively improves the responses of
LLMs. It tunes a pre-trained LLM to self-ground
its response in retrieved documents using automati-
cally collected data.

5.3 Implementation Details

If not specified, we retrieve the top 5 documents
as the related documents to q and we set the de-
coding temperature to 0.01 during inference. For
the post-training, we tune the model for 2 epochs
with a learning rate of 5e-5. For the preference
optimization, we tune the model with LoRA (Hu
et al., 2022) for 1 epoch, and we set alpha to
2 and lora ranks to 16. We set m to 100. We
use llama-2-13b-base (Touvron et al., 2023) for
fair comparison. We run all the experiments on
NVIDIA A100 80G GPUs.

6 Results

6.1 Main Result

Table 2 shows the comparison results of APO with
other baselines on three datasets. In terms of cor-
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Dataset & Metrics
ASQA StrategyQA ELI5

Correct Citation Correct Citation Correct Citation

EM-R Rec Prec F1 ACC Rec Prec F1 Claim Rec Prec F1

ICLCITE (Gao et al., 2023b) 35.2 38.4 39.4 38.9 65.5 20.6 33.1 25.4 13.4 17.3 15.8 16.5
POSTCITE (Gao et al., 2023b) 25.0 23.6 23.6 23.6 64.3 8.7 8.7 8.7 7.1 5.7 5.8 5.8
POSTATTR (Ye et al., 2023b) 25.0 33.6 33.6 33.6 64.3 12.5 12.5 12.5 7.1 12.2 12.2 12.2
Self-RAG (Asai et al., 2023b) 31.7 70.3 71.3 70.8 62.1 31.4 36.5 33.8 10.7 20.8 22.5 21.6
AGREE (Ye et al., 2023b) 39.4 64.0 66.8 65.4 64.6 30.2 37.2 33.3 9.4 21.6 16.0 18.4

APO (only post-training) 36.6 65.0 62.1 63.5 62.5 30.7 30.1 30.4 13.0 18.5 17.9 18.2
APO (our method) 40.5 72.8 69.6 71.2 61.8 40.0 39.1 39.6 13.5 26.0 24.5 25.2

Table 2: The performance comparison between our method and extensive baselines. Experiments are evaluated
on ASQA (Stelmakh et al., 2022), StrategyQA (Geva et al., 2021) and ELI5 dataset (Fan et al., 2019). For most
baselines, we use the results of previous works (Gao et al., 2023b; Ye et al., 2023b).

Method EM-R Rec Prec F1

Our Method 36.6 65.0 62.1 63.5
w/o asqa 38.8 71.7 67.2 69.4
w/o hallucinated statement 40.4 69.3 65.3 67.3
w/o mistaken synthesis 40.2 73.4 69.2 71.2
w/o unintentional omission 39.1 72.7 68.2 70.4
w/ response-level PO 38.9 69.1 65.1 67.1
w/ statement-level PO 40.5 72.8 69.6 71.2

Table 3: Ablation study on the ASQA dataset. We ablate
not only the source and predefined error type used to
construct PO data, but also the training strategy.

rectness and citation quality, our method outper-
forms the baselines on all three datasets. It shows
that APO has better overall generation performance
in various scenarios. Specifically, our method out-
performs Self-RAG by 8.8 points on the EM-R
metric. We speculate that this inconsistency stems
from the difference between coherent generation
and step-wise generation in Self-RAG. Our method
also shows consistent improvements over AGREE
across multiple benchmarks which suggests that
APO can more effectively exploit the power of
LLM to enhance retrieval. APO can be used to
complement these active or adaptive retrieval-based
methods and we leave it for future work. Compared
to the post-training baseline, the preference opti-
mization shows further improvement with an 8.0
average increased citation F1. Furthermore, we ob-
serve a trade-off between correctness and citation
quality in several baselines including Self-RAG
and AGREE, possibly due to the generation hal-
lucination and attribution hallucination defined in
§4.1. In contrast, APO helps to deal with these
hallucinations and performs well in terms of both
correctness and citation quality.

6.2 Ablation Study

We evaluate the effectiveness of each predefined
error type and the results are shown in Table 3.
Specifically, we perform progressive PO on the
model after post-training and remove data corre-
sponding to a predefined type. We observe that
without data corresponding to hallucinated state-
ment error, citation F1 drops significantly which
suggests that our approach improves the grounded-
ness of the model. Mistaken synthesis error seems
to contribute little to performance improvement,
but we observe that it can help improve ground-
edness under human evaluation (§6.5). Without
unintentional omission error, the model shows poor
generation quality. This means that the model may
generate incomplete answers.

Moreover, we perform an ablation study on
the training strategy of preference optimization.
We find that the model can also be improved
under the response-level preference optimization
method such as vanilla DPO, but the improvement
is slightly less. In addition, we ablate the PO by
removing the ASQA questions from our preference
data. Note that we construct the preference data
based on the training set of ASQA, and use its test
set for evaluation. We have verified and guaranteed
that there is no data overlap between the two. We
find that the generation quality and citation quality
have decreased. We attribute it to high-quality in-
domain questions in ASQA as a long-form question
answering dataset.

6.3 Different Prompting Strategy

We explore applying APO to four prompting strate-
gies (Gao et al., 2023b): 1) VANILLA that provides
the top-5 retrieved documents for each question.
It is our default setting. 2) SUMM that provides
summaries instead of the full text of the top-10
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Method & Metrics ASQA

Correct Rec Prec F1

llama-2-13b-chat

VANILLA(5-psg) 32.6 60.0 52.1 55.8
SUMM(10-psg) 42.9 58.7 50.4 54.2
SNIPPET(10-psg) 41.3 57.4 52.1 54.6
ORACLE(5-psg) 41.4 54.5 52.9 53.7

Our method

VANILLA(5-psg) 40.5 72.8 69.6 71.2
SUMM(10-psg) 42.7 60.9 53.4 56.9
SNIPPET(10-psg) 42.3 57.8 51.6 54.5
ORACLE(5-psg) 52.4 70.5 66.2 68.3

Method & Metrics ELI5

Correct Rec Prec F1

llama-2-13b-chat

VANILLA(5-psg) 12.1 16.4 19.7 17.9
SUMM(10-psg) 6.1 9.9 14.3 11.7
SNIPPET(10-psg) 11.9 29.4 28.6 29.0
ORACLE(5-psg) 16.9 21.4 27.3 24.0

Our method

VANILLA(5-psg) 13.5 26.0 24.5 25.2
SUMM(10-psg) 12.7 37.8 35.7 36.7
SNIPPET(10-psg) 14.2 37.6 34.8 36.1
ORACLE(5-psg) 21.7 32.6 30.8 31.7

Table 4: Comparisons with different retrieval context.

retrieved documents for each question. 3) SNIP-
PET that provides snippets instead of the full text
of the top 10 retrieved documents for each ques-
tion. 4) ORACLE that provides 5 gold documents
for each question. We use llama-2-13b-chat as
the comparison method because it has impressive
instruction following ability and moderate size. As
shown in Table 4, we find that in most cases, APO
achieves better performance than baseline. For ex-
ample, APO under VANILLA and ORACLE settings
performs best in Citation F1 on ASQA, while it
under SUMM and SNIPPET settings in ELI5 has
improved Citation F1. It shows that the format of
the context has an impact on attribution task.

6.4 Different PO Methods
Table 5 illustrates the results of different direct pref-
erence optimization methods adopted by Mp. We
include a SFT baseline to tune the Mg using the
positive part in the chosen preference pairs that
we created. We observe that our method can be
transferred to several different preference optimiza-
tion methods, but the performance swings in sev-
eral metrics. All preference optimization methods
have performance boosts compared with the post-
training baseline and the SFT baseline. It shows
that preference optimization can help improve the

Method & Metrics ASQA

Correct Rec Prec F1

APO (only post-training) 36.6 65.0 62.1 63.5
w/ Positive statement SFT 29.0 66.7 56.8 61.4
w/ IPO (Azar et al., 2023) 39.9 72.7 69.2 70.9
w/ SLiC (Zhao et al., 2023) 40.1 72.5 69.1 70.8
w/ KTO (Kawin et al., 2023) 39.8 72.5 68.7 70.5
w/ Progressive PO 40.5 72.8 69.6 71.2

Method & Metrics ELI5

Correct Rec Prec F1

APO (only post-training) 13.0 18.5 17.9 18.2
w/ Positive statement SFT 10.6 34.5 30.8 32.5
w/ IPO (Azar et al., 2023) 13.5 26.5 24.8 25.6
w/ SLiC (Zhao et al., 2023) 13.7 30.7 22.0 25.6
w/ KTO (Kawin et al., 2023) 14.3 24.7 26.5 25.6
w/ Progressive PO 13.5 26.0 24.5 25.2

Table 5: Comparisons with different preference method.

Error Type # Proportion (%)

Attribution hallucination 26.4
Generation hallucination

- Fabrication 48.4
- Omission 18.7
- Synthesis 6.5

Table 6: Error types of the proposed methods.

generation quality to some extent.

6.5 Error Analysis

We conduct human evaluation of model response
on ASQA dataset. Specifically, we collect 50 sam-
ples that contain errors judged by the attribution
evaluation model ϕ. We then perform a detailed
manual review of these samples to identify error
types. Our evaluation results are shown in Table 6.
We find that nearly half of the errors are of fabrica-
tion error. We reveal that the model either gener-
ated text not supported by the reference documents
or incorrectly attributed information to irrelevant
documents. In certain instances, hallucinations
are due to the documents with low quality. For
example, some documents are truncated, and the
model attempts to complete or extrapolate the in-
complete text. Additionally, we notice omission
errors on both generated text and citation where the
model fails to generate necessary citations to sub-
stantiate its statements. Although synthesis errors
are less common, we observe some cases which
model conflated information from multiple doc-
uments and generated counterfactual statements.
The case study is shown in Appendix G.
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7 Conclusion

This paper introduces the APO framework for at-
tributed text generation. We treat attribution as
a preference learning task, utilizing curated post-
training collections and an automated synthesis
algorithm to reduce manual labeling costs. Experi-
ments on three datasets demonstrate the effective-
ness of APO which achieves leading citation F1
and improved response quality. Future work can
explore extending APO to real-world applications.

Limitation

We aim to improve the credibility and reliability of
content generated by LLMs using the APO frame-
work. However, it faces limitations such as the
narrow scope of datasets used, which may not
fully represent the diversity of real-world appli-
cations (Liu et al., 2023). The generalization ca-
pabilities of the model are also a concern, as the
automatic generated data may not cover all scenar-
ios of hallucination. While addressing the high cost
of data labeling, the scalability and economic fea-
sibility in larger datasets remain unexplored. The
approximation of human citation processes may not
capture all the complexities of scholarly writing,
and its reliance on external sources raises concerns
about the quality and availability of these sources.
Potential biases in training data and synthesized
data could lead to biased outputs (Wang et al., 2023;
Hu et al., 2015). The robustness of the framework
against deliberate hallucination and its adaptability
to rapidly evolving NLP fields are not fully as-
sessed, highlighting areas for future improvement
and research in enhancing LLM reliability.

Ethical Statement

The ethical considerations surrounding the use of
LLMs that generate citations encompass a range
of concerns, including the risk of increased trust
without verification, challenges in time-critical
decision-making, the assumption of inherent trust-
worthiness, and copyright issues. Ethically, it is
crucial to encourage users to critically engage with
and verify machine-generated content to mitigate
misinformation and hallucinations. Additionally,
recognizing the limitations and potential legal chal-
lenges related to copyright when using such attri-
butions is essential. Addressing these ethical is-
sues and educating users on the potential pitfalls
becomes increasingly important to ensure the re-

sponsible and informed use of text generated by
LLMs.
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A Further experiments

We preform the results on ASQA and ELI5 datasets
with more metrics across 3 seeds in Table7.

B Details about Preference Optimization
Methods

Reinforcement Learning form Human Feedback
(RLHF) (Ouyang et al., 2022) uses reward-
model-based reinforcement learning algorithm to
learn the optimal policy. It first learns a reward
model from the preference data, then uses an on-
policy PPO algorithm (Schulman et al., 2017)
to maximize the learned reward. The reward is
learned to use Bradley-Terry model (Bradley and
Terry, 1952), which assumes the preference score
can be approximated by substituted with point-wise
reward. This assumption may lead to an approxi-
mation error when preference is deterministic. The
PPO algorithm is used on data sampled from gener-
ating policy, which may have a different support or
distribution drift from preference data, the learned
reward model inference on the out-of-distribution
data may reduce the accuracy. The process of
RLHF needs to train reward model and on-policy
PPO algorithm which is complex, time-consuming,
and unstable.

Direct Preference Optimization (DPO)
(Rafailov et al., 2023) combines off-policy algo-
rithm and Bradley-Terry model to directly learn
the generating policy from preference data. The
off-policy algorithm is based on KL-regularization
reward maximization from off-RL community,
which is data efficient, stable and eliminating
the need for a reward model. When preference
is deterministic which occurs in most cases, the
reward of Bradley-Terry model is undefined, which
leads to ignoring the KL-regularization term and
overfitting the preference dataset.

Identity-mapping Preference Optimization
(IPO) (Azar et al., 2023) claims when pref-
erences are deterministic or near deterministic,
DPO will lead over-fitting to the preference dataset
at the expense of ignoring the KL-regularation
term. To optimize the objective, IPO derives an
off-policy loss on empirical dataset:

hπθ
yw,yl

= log
πθ(yw)

πref(yw)
− log

πθ(yl)

πref(yl)
, (8)

LIPO(θ, yw, yl) =

(
hπyw,yl

− 1

2β

)2

. (9)

That means IPO loss will always regularize πθ to-
wards πref by controlling the gap between the log-
likelihood ratios log πθ(yw|x)

πθ(yl|x) and log πref(yw|x)
πref(yl|x) .

Kahneman-Tversky Optimization (KTO)
(Kawin et al., 2023) directly maximizes the utility
of LLM generations instead of maximizing the
log-likelihood of preferences by introducing a
Kahneman-Tversky Optimization loss. KTO does
not need preference pairs and only knowledge of
whether output is desirable or undesirable for a
given input.

Sequence Likelihood Calibration (SLiC)
(Zhao et al., 2023) uses calibrated likelihood of
model-generated sequences to better align with
reference sequences in the model’s latent space.
It tries to alleviate the problem of MLE that
gives probability mass to sparsely observed target
sequences, which is used to calculate reward in
DPO.

C Details about Pre-processing

For ExpertQA dataset, we remove samples whose
1) citations attribute to empty references; 2) doc-
uments contain different document IDs but same
context. For EVIGSE dataset, we remove sam-
ples whose 1) citation attribute to “None” refer-
ences; 2) do not have reference documents. We
further normalize the “supported” label and the ci-
tation format for these datasets. The details of each
dataset we used for post-training procedure after
pre-processing are shown in Table 8.

D Details about Preference Data Creation

For each error type, we set the weight to be 1:1:1
to make sure the error samples are balanced. The
quantitative assessment about preference dataset is
shown in Table 9.

E Post-training Templates

The post-training template we used follows the
question answering template used by Gao et al.
(2023b) since we find that preposition question
before document can result in a performance boost
when trying ICLCITE method in the preliminary
experiments. The concrete templates are shown in
Table 10.

F Details about the Instruction

The templates employed for generating preference
data are detailed in Table 11 for positive instances,
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Method & Metrics ASQA

EM Rec Prec MAUVE rougeLSUM

APO (only post-training) 36.59(0.12) 65.57(0.17) 62.01(0.23) 77.68(0.53) 37.68(0.02)
APO (only preference optimization) 35.10(0.31) 50.57(1.74) 38.02(2.17) 74.68(0.40) 35.92(0.72)
APO (our method) 40.43(0.02) 73.01(0.16) 69.62(0.18) 73.24(1.74) 37.10(0.02)

Method & Metrics ELI5

Correct Rec Prec MAUVE rougeLSUM

APO (only post-training) 13.04(0.03) 18.47(0.04) 17.84(0.06) 34.84(2.53) 21.19(0.17)
APO (our method) 13.53(0.17) 26.40(0.09) 24.91(0.06) 24.91(0.06) 20.79(0.06)

Table 7: Experiment results on ASQA and ELI5 with more metrics across 3 seeds.

Dataset # Sample Avg. Query Length Avg. Response Length Avg. Statements Avg. Citations

EVIGSE 3508 51.03 379.05 4.32 3.19
ExpertQA 906 106.90 999.84 7.16 5.67
HARGID(train) 1301 38.55 368.22 4.62 2.85
HARGID(dev) 615 40.43 292.46 3.63 2.54

Table 8: Details for our post-training data after pre-processing.

Table 12 for statements exhibiting hallucination
errors, Table 13 for statements with synthesis er-
rors, and Table 14 for statements characterized by
omission errors.

G Case Study

In this section, we perform a detailed case study
and demonstrate several examples of each type of
error we defined. As shown in Table 15, we classify
it as a fabrication error since it uses an undefined
entity. In Table 16, we classify it as a synthesis
error since it mixes up facts from document 4 and
document 5, which results in a factual error. In
Table 17, we classify it as a omission error since it
used facts from document 4 and document 5, but
document 4 is not attributed.

H Related Works of Retrieval
Augmentation of LLMs

Retrieval augmentation has emerged as a prominent
technique aimed at enhancing the accuracy and
veracity of LLMs (Gao et al., 2023c; Asai et al.,
2023a). Specifically, Sun et al. (2023) couples
LLMs with long-term and short-term memories,
resulting in improved claim and citation generation.
Meanwhile, in order to effectively incorporate ex-
ternal knowledge into LLMs, SearChain proposes
a global reasoning chain strategy that facilitates re-
trieval augmentation generation at each node within
the chain (Xu et al., 2023). In another line of re-
search, the self-reflection is leveraged for retrieval

verification during the retrieval-augmented genera-
tion process (Li et al., 2023b; Asai et al., 2023b).
Despite these advancements, prior studies have not
adequately addressed the issue of attribution hal-
lucination (Zuccon et al., 2023). In contrast, we
focus on making the model better answer the query
and align with the reference.
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Type SubType num Avg. Citations Avg. Length

Supported & Relevant - 95,623 1.77 173.86
Supported & Irrelevant - 69,825 1.98 148.02
Unsupported & Relevant Fabrication 31,600 1.77 110.42
Unsupported & Relevant Omission 21,202 1.78 93.59
Unsupported & Relevant Synthesis 42,821 1.78 212.19

Table 9: Details for our preference data.

Algorithm 2 Automatic preference data collection algorithm

1: Input Input Pinit, Critic Mc, Generator Mg, Retriever R, Error instructions E
2: Output Output augmented preference dataset Psyn

3: Ptmp = {}
4: for (q,D,S, C,Lrel,Lsup) in Pinit do
5: for each statement si in S do
6: if the referenced passages Ci are all relevant to q then
7: add (q,D,S:i, C:i,Lrel,L:i,:

sup) to Ptmp

8: end if
9: end for

10: end for
11: for (q,D,S:i, C:i,Lrel,L:i,:

sup)in Ptmp do
12: Retrieve top-m passages Dir using retriever R given q.
13: Subsequently delete passage d from Dir, if di is predicted as relevant to q using critic Mc.
14: for each statement si in S and its relative attributed passages Ci do
15: if si is supported by Ci then
16: Predicts supported for si using critic Mc given q, di, si, where di ∈ D
17: Add supported passages to the relative attributed passages Ci of statement si.
18: Generate ss∧ri using Mg given q, s:i−1, new Ci.
19: Generate ss∧r̃i using Mg given q,s:i−1, Dir.
20: Generate ss̃∧ri using Mg given q, s:i−1, new Ci and pre-defined error type e.
21: add (q, ss∧ri , ss̃∧ri , D) and (q, ss∧ri , ss∧r̃i , D) to Psyn.
22: else
23: Generate ss∧ri using Mg given q, s:i−1, new Ci.
24: Generate ss̃∧ri using Mg given q, s:i−1, D− new Ci and pre-defined error type e.
25: add (q, ss∧ri , ss̃∧ri , D) to Psyn.
26: end if
27: end for
28: end for

5093



Input
Write an accurate, engaging, and concise answer for the given question using only the provided
documents (some of which might be irrelevant) and cite them properly. Use an unbiased and
journalistic tone. Always cite for any factual claim. When citing several search results, use
[1][2][3]. Cite at least one document and at most three documents in each sentence. If multiple
documents support the sentence, only cite a minimum sufficient subset of the documents.
Question: {{question}}
Document [1](Title: {{title 1}}): {{context 1}}
Document [2](Title: {{title 2}}): {{context 2}}
Document [3](Title: {{title 3}}): {{context 3}}
...
Document [n](Title: {{title n}}): {{context n}}
Answer:

Output
{{output}}

Table 10: Post-training Template with instruction Ipost

Input
Task: Your job is to write a high quality response with requirements as follows:
General: Given Request, incomplete response and evidence, continue write a single sentence as
the next sentence of the unfinished response. If text in unfinished response is “None”, you should
start the response(the first sentence).
Detail: You should always use the facts from the evidences to propuse your response. Your
response is correct and comprehensive, fully supported by the evidence we provided. **Don’t use
any evidence that can be directly retrieved from the evidences we provided**. No hallucinations,
no factual errors, no logic errors.

Request: {{request}}
Evidence:
Document [1](Title: {{title 1}}): {{context 1}}
Document [2](Title: {{title 2}}): {{context 2}}
Document [3](Title: {{title 3}}): {{context 3}}
...
Document [n](Title: {{title n}}): {{context n}}
Unfinished response: {{past statements}}
Next sentence(good):

Output
{{output}}

Table 11: Positive Template
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Input
Task: Your job is to write a low quality response with requirements as follows:
General: Given Request, incomplete response and evidence, continue write a single sentence as
the next sentence of the unfinished response. If text in unfinished response is “None”, you should
start the response(the first sentence).
Detail: You will always ignore the evidence. On one hand, you won’t follow the evidence we
provided, your response should be irrelevant to the evidence we provided. On the other hand, your
response should be relevant to the unfinished response.

Request: {{request}}
Evidence:
Document [1](Title: {{title 1}}): {{context 1}}
Document [2](Title: {{title 2}}): {{context 2}}
Document [3](Title: {{title 3}}): {{context 3}}
...
Document [n](Title: {{title n}}): {{context n}}
Unfinished response: {{past statements}}
Raw sentence(good): {{positive statement}}
Worse sentence(bad, ignore the evidence):

Output
{{output}}

Table 12: Negative, fabrication template
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Input
Task: Your job is to write a low quality response with requirements as follows:
General: Given Request, incomplete response and evidence, continue write a single sentence as
the next sentence of the unfinished response. If text in unfinished response is “None”, you should
start the response(the first sentence).
Detail: You should first, identify the relationships and entities in evidence; second, continue
writing the next sentence of the response span with regard to the evidence. In your response, the
relationships and entities should be mistakenly intermingled(you are making negative samples, we
need low-quality data).

Request: {{request}}
Evidence:
Document [1](Title: {{title 1}}): {{context 1}}
Document [2](Title: {{title 2}}): {{context 2}}
Document [3](Title: {{title 3}}): {{context 3}}
...
Document [n](Title: {{title n}}): {{context n}}
Unfinished response: {{past statements}}
Raw sentence(good): {{positive statement}}
Worse sentence(bad, entities in evidences mistakenly intermingled):

Output
{{output}}

Table 13: Negative, synthesis template
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Input
Task: Your job is to write a low quality response with requirements as follows:
General: Given Request, unfinished response and next sentence, omit some important points from
the next sentence(good) and convert it into a worse response. Your converted worse response
should be consistent with the unfinished response.

Request: List the ingredients needed to make a peanut butter and jelly sandwich
Unfinished response:
Raw sentence(good): To make a peanut butter and jelly sandwich, you will need peanut butter,
jelly or jam of your choice, and bread.
Worse sentence(bad, omit the evidence): To make a peanut butter and jelly sandwich, you will
need peanut butter and bread.

Request: What are the three features of a cloud-based Database-as-a-Service (DBaaS)?
Unfinished response: The three main features of a cloud-based DBaaS are scalability, cost ef-
ficiency, and backups. Scalability allows you to increase or decrease the resources used by the
DBaaS with ease.
Raw sentence(good): Cost efficiency is another important feature of a cloud-based DBaaS, as it
allows you to pay for only the resources you need and eliminates the need for upfront hardware
investments.
Worse sentence(bad, omit the evidence): Cost efficiency is another important feature of a
cloud-based DBaaS, as it allows you to pay for only the resources you need.

Request: {{request}}
Unfinished response: {{past statements}}
Raw sentence(good): {{positive statement}}
Worse sentence(bad, omit the evidence):

Output
{{output}}

Table 14: Negative, omission template
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Question
When did the rams go to st louis?
Documents
Document [1](Title: History of St. Louis): 2011, with performances by Jay Leno and Aretha
Franklin. In January 1995, Georgia Frontiere, the owner of the National Football League team
known as the Los Angeles Rams (now St. Louis Rams), announced she would move that team to
St. Louis. The team replaced the St. Louis Cardinals (now Arizona Cardinals), an NFL franchise
that had moved to St. Louis in 1960 but departed for Arizona in 1988. The Rams played their first
game in their St. Louis stadium, the Edward Jones Dome, on October 22, 1996. Starting in the
early 1980s, more rehabilitation and construction projects began, some of
Document [2](Title: History of the St. Louis Rams): History of the St. Louis Rams The
professional American football franchise now known as the Los Angeles Rams played in St. Louis,
Missouri, as the St. Louis Rams from the 1995 through the 2015 seasons before relocating back
to Los Angeles where the team had played from the 1946 season to the 1994 season. The Rams
franchise relocated from Los Angeles to St. Louis in 1995, which had been without a National
Football League (NFL) team since the Cardinals moved to Phoenix, Arizona in 1988. The Rams’
first home game in St. Louis was at Busch Memorial Stadium against the
Document [3](Title: History of the St. Louis Rams): History of the St. Louis Rams The
professional American football franchise now known as the Los Angeles Rams played in St. Louis,
Missouri, as the St. Louis Rams from the 1995 through the 2015 seasons before relocating back
to Los Angeles where the team had played from the 1946 season to the 1994 season. The Rams
franchise relocated from Los Angeles to St. Louis in 1995, which had been without a National
Football League (NFL) team since the Cardinals moved to Phoenix, Arizona in 1988. The Rams’
first home game in St. Louis was at Busch Memorial Stadium against the
Document [4](Title: Los Angeles Rams): in 1980. After the 1994 NFL season, the Rams left
California and moved east to St. Louis, Missouri. Five seasons after relocating, the team won
Super Bowl XXXIV in a 23–16 victory over the Tennessee Titans. They appeared again in Super
Bowl XXXVI, where they lost 20–17 to the New England Patriots. The Rams continued to play in
Edward Jones Dome in St. Louis until the end of the 2015 NFL season, when the team filed notice
with the NFL of its intent to pursue a relocation back to Los Angeles. The move was approved by
a 30–2 margin at
Document [5](Title: 1994 Los Angeles Rams season): 1994 Los Angeles Rams season The 1994
Los Angeles Rams season was the franchise’s 57th year with the National Football League and
the 49th and last season in the Greater Los Angeles Area until their 2016 relocation back to
Los Angeles. After nearly 50 years in the Greater Los Angeles Area, owner Georgia Frontiere
announced that the team would relocate to St. Louis, Missouri on January 15, 1995. While the
owners initially rejected the move, permission was eventually granted therefore bringing an end to
Southern California’s first major professional sports franchise until 2016. The threat of relocation
dominated talk about

Output
...Their first home game in St. Louis was at Busch Memorial Stadium against the Chicago Bears
on October 22,1996 [1]....

Table 15: Sample containing fabrication error. In this sample, Chicago Bears does not appear in the reference
documents.
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Question
Who performed at the champions league final 2018?
Documents
Document [1](Title: 2016 UEFA Champions League Final): worldwide via UEFA.com from 1 to
14 March 2016 in four price categories: C440, C320, C160 and C70. The remaining tickets were
allocated to the local organising committee, UEFA and national associations, commercial partners
and broadcasters, and to serve the corporate hospitality programme. American singer Alicia Keys
performed in the opening ceremony prior to the match, the first time it has featured a live music
performance. Italian tenor Andrea Bocelli performed the UEFA Champions League Anthem. The
2016 UEFA Women’s Champions League Final was held two days prior, on 26 May 2016, at the
Mapei Stadium – Città del Tricolore
Document [2](Title: 2018 UEFA Champions League Final): Lipa performed at the opening
ceremony preceding the final. Jamaican rapper Sean Paul joined her as a special guest to perform
their collaborative song, N̈o Lie.̈ The 2018 UEFA Women’s Champions League Final was held two
days earlier, on 24 May 2018, at the Valeriy Lobanovskyi Dynamo Stadium between Wolfsburg
and Lyon, Lyon emerging victorious 4–1. This was also the last time that the host city for the
men’s Champions League final was also automatically assigned the Women’s Champions League
final. The annual UEFA Champions Festival was held between 24–27 May 2018 at the Kiev city
centre. In late May,
Document [3](Title: UEFA Champions League Anthem): the two teams are lined up, as well as at
the beginning and end of television broadcasts of the matches. Special vocal versions have been
performed live at the Champions League Final with lyrics in other languages, changing over to
the host country’s language for the chorus. These versions were performed by Andrea Bocelli
(Italian) (Rome 2009, Milan 2016 and Cardiff 2017), Juan Diego Flores (Spanish) (Madrid 2010),
All Angels (Wembley 2011), Jonas Kaufmann and David Garrett (Munich 2012), Mariza (Lisbon
2014, unlike the previous final performers, Mariza sang the main lyric of the anthem), and Nina
Maria Fischer and
Document [4](Title: 2018 UEFA Champions League Final): 2018 UEFA Champions League Final
The 2018 UEFA Champions League Final was the final match of the 2017–18 UEFA Champions
League, the 63rd season of Europe’s premier club football tournament organised by UEFA, and
the 26th season since it was renamed from the European Cup to the UEFA Champions League. It
was played at the NSC Olimpiyskiy Stadium in Kiev, Ukraine on 26 May 2018, between Spanish
side and defending champions Real Madrid, who had won the competition in each of the last two
seasons, and English side Liverpool. Real Madrid won the final 3–1 for their third consecutive and
Document [5](Title: 2017 UEFA Champions League Final): 2017 UEFA Champions League Final
The 2017 UEFA Champions League Final was the final match of the 2016–17 UEFA Champions
League, the 62nd season of Europe’s premier club football tournament organised by UEFA, and
the 25th season since it was renamed from the European Champion Clubs’ Cup to the UEFA
Champions League. It was played at the Millennium Stadium in Cardiff, Wales on 3 June 2017,
between Italian side Juventus and Spanish side and title holders Real Madrid, in a repeat of the
1998 final. Real Madrid won the match 4–1 to secure their 12th title in this competition. With

Output
...Real Madrid won the final 3-1 for their third consecutive and overall 12th title in this
competition[4]...

Table 16: Sample containing synthesis error. In this sample, document 4 and document 5 are mistakenly intermingled.
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Question
When was the 13th amendment ratified by the states?
Documents
Document [1](Title: Thirteenth Amendment to the United States Constitution): ratification did not
imply federal power to legislate on the status of former slaves. During the first week of December,
North Carolina and Georgia gave the amendment the final votes needed for it to become part of the
Constitution. The Thirteenth Amendment became part of the Constitution on December 6, 1865,
based on the following ratifications: Having been ratified by the legislatures of three-fourths of the
several states (27 of the 36 states, including those that had been ïn rebellion)̈, Secretary of State
Seward, on December 18, 1865, certified that the Thirteenth Amendment had become valid, to all
intents and
Document [2](Title: Thirteenth Amendment to the United States Constitution): Thirteenth Amend-
ment to the United States Constitution The Thirteenth Amendment (Amendment XIII) to the
United States Constitution abolished slavery and involuntary servitude, except as punishment for a
crime. In Congress, it was passed by the Senate on April 8, 1864, and by the House on January 31,
1865. The amendment was ratified by the required number of states on December 6, 1865. On
December 18, 1865, Secretary of State William H. Seward proclaimed its adoption. It was the first
of the three Reconstruction Amendments adopted following the American Civil War. Since the
American Revolution, states had divided into states that
Document [3](Title: Emancipation Proclamation): Winning re-election, Lincoln pressed the lame
duck 38th Congress to pass the proposed amendment immediately rather than wait for the incoming
39th Congress to convene. In January 1865, Congress sent to the state legislatures for ratification
what became the Thirteenth Amendment, banning slavery in all U.S. states and territories. The
amendment was ratified by the legislatures of enough states by December 6, 1865, and proclaimed
12 days later. There were about 40,000 slaves in Kentucky and 1,000 in Delaware who were
liberated then. As the years went on and American life continued to be deeply unfair towards
blacks, cynicism towards
Document [4](Title: Thirteenth Amendment to the United States Constitution): Enforcement,
and Contemporary Implications Thirteenth Amendment to the United States Constitution The
Thirteenth Amendment (Amendment XIII) to the United States Constitution abolished slavery
and involuntary servitude, except as punishment for a crime. In Congress, it was passed by the
Senate on April 8, 1864, and by the House on January 31, 1865. The amendment was ratified
by the required number of states on December 6, 1865. On December 18, 1865, Secretary of
State William H. Seward proclaimed its adoption. It was the first of the three Reconstruction
Amendments adopted following the American Civil War. Since the American Revolution, states
had
Document [5](Title: Thirteenth Amendment to the United States Constitution): joint resolution
was sent to Lincoln for his signature. Under the usual signatures of the Speaker of the House and
the President of the Senate, President Lincoln wrote the word Äpprovedänd added his signature to
the joint resolution on February 1, 1865. On February 7, Congress passed a resolution affirming
that the Presidential signature was unnecessary. The Thirteenth Amendment is the only ratified
amendment signed by a President, although James Buchanan had signed the Corwin Amendment
that the 36th Congress had adopted and sent to the states in March 1861. When the Thirteenth
Amendment was submitted to the states

Output
...The amendment was ratified by the required number of states on December 6,1865, and
President Lincoln signed the joint resolution on February 1,1865, after it was passed by Congress
on February 7,1865 [5]...

Table 17: Sample containing omission error. In this sample, document 4 is not attributed.5100



Step1: Preference Data Labeling Step2: Automatic Preference Data Collection

Step3: Preference Optimization 

Question When was the last time vikings played on thanksgiving?

the Vikings played their December 20 game vs the
Chicago Bears at TCF Bank Stadium. (2010).

Since 1978, the games have traditionally included 
one game hosted by the Dallas Cowboys, 

and its most recent contest came in 2017 and
knocked off the Detroit Lions 30-23.

Answer Since 1920, the NFL has played games on Thanksgiving
Day[1]. The last time the Vikings played on Thanksgiving was on
November 23, 2017, having played before both on November 24,
2016 and November 23, 2000[2][3].

Statement Since 1920, the NFL has played
games on Thanksgiving Day[1]. + Doc [1]

Irrelevant
Documents [1] [2] [k]

Relevant 
Documents [1] [2] [k]

+ Positive Prompt +

Statement The Vikings played against Chicago Bears at TCF
Bank Stadium, December 20, 2010.

+ Negative Prompt +

Statement The Vikings played against Chicago Bears at TCF
Bank Stadium, December 20, 2012.

Supported

Unupported

Statement The last time the Vikings
played on Thanksgiving was on November
23, 2017, having played before both on
November 24, 2016 and November 23,
2000[2][3].

+
Doc [2]

Supported

Relevant 
Documents [1] [2] [k]

+ Positive Prompt +

Statement  The last time the Vikings played on Thanksgiving
was in 2017 and knocked off the Detroit Lions 30-23.

+ Negative Prompt +

Statement  The last time the Vikings played on Thanksgiving
was in 2017 and knocked off the Chicago Bears 30-23.

Supported

Unupported

Doc [3]

+ Positive Prompt +

Statement  The first time the Vikings played on Thanksgiving
maybe since 1978, and with the Dallas Cowboys.

Supported

Question When was the last time vikings played on thanksgiving?
Unsupported

Question When was the last time vikings played on thanksgiving?

Positive Negative

Positive

Negative(1)

Negative(2)

Statement Statement Statement

Statement Statement Statement

Positive

Negative

Preference Data

Statement Since 1920, the NFL has played games on
Thanksgiving Day[1].

Statement The last time the Vikings played on Thanksgiving was
on November 23, 2017, having played before both on November
24, 2016 and November 23, 2000[2][3].

Preference Optimization

Figure 2: The overall framework of the APO.

5101


