Your Co-Workers Matter: Evaluating Collaborative Capabilities of
Language Models in Blocks World

Guande Wu!, Chen Zhao'?, Claudio Silva', He He!
'New York University, 2NYU Shanghai
{guandewu, cz1285, csilva, hhe} @nyu.edu

Abstract

Language agents that interact with the world
on their own have great potential for automat-
ing digital tasks. While large language model
(LLM) agents have made progress in under-
standing and executing tasks such as textual
games and webpage control, many real-world
tasks also require collaboration with humans or
other LLMs in equal roles, which involves in-
tent understanding, task coordination, and com-
munication. To test LLM’s ability to collab-
orate, we design a blocks-world environment,
where two agents, each having unique goals
and skills, build a target structure together. To
complete the goals, they can act in the world
and communicate in natural language. Under
this environment, we design increasingly chal-
lenging settings to evaluate different collabo-
ration perspectives, from independent to more
complex, dependent tasks. We further adopt
chain-of-thought prompts that include interme-
diate reasoning steps to model the partner’s
state and identify and correct execution errors.
Both human-machine and machine-machine ex-
periments show that LLM agents have strong
grounding capacities, and our approach signifi-
cantly improves the evaluation metric.

1 Introduction

As large language models (LLMs) evolve, they
are increasingly expected to collaborate closely
with humans or other LLM agents, emphasizing
the importance of coordination and communica-
tion (Radford et al., 2019). For instance, an LLM
assistant might need to work alongside human pro-
fessionals to plan tasks, manage projects, and en-
sure efficient execution. While multi-agent col-
laboration is not a new area (Leibo et al., 2021;
Carroll et al., 2019; He et al., 2017), there is lim-
ited study on how LLM agents collaborate with
humans in equal roles, rather than passively follow-
ing human’s instructions. Furthermore, existing
studies often evaluate the collaboration results of

Task Setting

Skill Goal
Target Structure
10 N/A m
Skill Goal l '
g 10 Sa
Q Chat and Place:

Sample Task Process
Time
Amy, | need to build a tower-alike structure with a
1x3 yellow pillar with a green L-shape on it.

| need to build two 1x3 rectangles of red and blue
on the two ends of L. You can start with yellow.

Stage 1: Understanding and communicating the goals
Place:

Stage 2: Exucuting the place actions to fuilfill the goal

Q Bob, can you build the left two green blocks as
| only have three green blocks.

&g '

Can you build a 1x3 red rectangle at right end for
Q me because | do not have red?

& Q

Stage 3: Coordinating the task by assigning the actions

Amy Place: & &,
Bob Place: ©,®,

Figure 1: Task Setting: A human agent (Amy) and
an LLM agent (Bob) collaborate on building the block
structure with diverse goals and inventories. Task Ex-
ecution: In this task, Amy’s goal relies on Bob’s, so
they have to coordinate. To succeed on this task, Amy
and Bob have to 1) communicate their goals and figure
out the immediate plan to complete; 2) Amy place the
yellow blocks to complete the immediate plan; 3) Amy
and Bob coordinate to complete the remaining part of
their goals.

4941

Findings of the Association for Computational Linguistics: ACL 2024, pages 4941-4957
August 11-16, 2024 ©2024 Association for Computational Linguistics

LLMs as a whole (Li et al., 2023; Wu et al., 2023;
Hong et al., 2023; Team, 2023), while ignoring
specific collaboration abilities of LL.Ms, such as
coordinating diverse goals or seeking assistance.

To fill this gap, we propose a collaborative
blocks world environment (COBLOCK), to evaluate
the collaboration ability of LLMs. In COBLOCK,
two agents (either human or LLM), each equipped
with complementary goals and skills, collaborate to
build a target structure without a designated leader.
For example, as shown in Figure 1, Amy is respon-
sible for the top part, which must be built on top of
the base structure that Bob needs to build first.

We design three scenarios to progressively in-
crease the level of interaction and coordination re-
quired between the two agents, moving from in-
dependent tasks to more complex, interdependent
tasks (Figure 2).

* Independent tasks: Each agent can complete
its assigned partial structure without the part-
ner’s participation.

* Skill-dependent tasks: One agent relies on
the other’s “skill” or resources to complete the
task. For instance, Bob needs Amy’s help to
build the yellow bar because he doesn’t have
any yellow blocks.

* Goal-dependent tasks: This scenario in-
volves dependence between the agents’ as-
signed partial structure (i.e. goal), requiring
more advanced planning and coordination.

To ground LLMs in COBLOCK and enable them
to complete the tasks, we prompt GPT series mod-
els (GPT-3.5 and GPT-4) to make decisions about
the next action given the current observation. At
each round, our basic prompt describes the agent’s
goal (the color and position of every block), the cur-
rent state (the structure built so far, the action and
message history), and candidate actions to choose
from (place a block, send a message, wait or termi-
nate the task).

To guide the model in choosing the right action,
we additionally include chain-of-thought prompts
(CoT) (Wei et al., 2022) to go through intermedi-
ate reasoning steps: (1) analysis of the currently
built structure and the agent’s goal; (2) partner-state
modeling to predict the current intent and state of
the partner; and (3) self-reflection that identifies
and corrects any execution error, and adjusts com-
munication style accordingly.

We evaluate the LLM agents in COBLOCK un-
der both machine-machine and human-machine
settings, measured by task success rate, total steps,
and workload balance. First, we find that LLM
agents have a high success rate when building
the structure independently, demonstrating strong
grounding ability even without multi-modal train-
ing. Second, adding partner-state modeling and
self-reflection prompting results in a 30% absolute
increase in task completion rate and leads to better
workload balance. Finally, while human-machine
collaboration has a slightly higher success rate than
machine-machine collaboration, humans often take
on more responsibility in challenging scenarios
when the LLM agent struggles. We hope our find-
ings and the evaluation environment will support
future studies on communication and coordination
in multi-agent collaboration. '

2 The Collaborative Blocks World

In this section, we describe the collaborative blocks
world environment COBLOCK (Section 2.1) and
the three types of collaboration tasks (Section 2.2).

2.1 The CoBLOCK Environment

As shown in Figure 1, in each task, two agents
work together to build a target structure by taking
actions in the COBLOCK. Specifically, either agent
takes one action in each round, we move to the next
round after actions from both agents are executed.
The task is terminated when the target structure is
completed or either agent takes the end_task action.

Structure. A structure G consists of a set of
blocks B = {by,ba, -, by}, where each block
b is specified by a color ¢ from a set of colors C'
(we use a total of six colors), and a 3D position
given by coordinates (z,y, z). To simulate real-
world conditions, a structure must adhere to the
gravity restriction, where each block must be adja-
cent to at least one other block or be on the ground
plane (i.e. y = 0). A sub-structure of G is a smaller
structure formed from a subset of G’s blocks.

Agent. Each agent is given a goal g, which is a
sub-structure of the target structure (G. The union
of the sub-structures forms the target structure. For
example, in Figure 1, Amy is given the upper part
of the target structure while Bob is given the lower
pillar. Additionally, each agent has an inventory

"The code and data are available at

https://github.com/jnzs1836/coblocks.

4942

Independent Task

] 10

€ 10

D 10
9, 10

g 10

Can you help me
build blue blocks

AN Fal Fan
n.®.v -.®; |.®4 eoe

Target Structure

I need you to build Can you build
bottom part first the blue blocks e e e

)

Figure 2: Three different collaboration tasks with increasing levels of coordination. Top: The independent tasks that
require little coordination between agents; Middle: The skill-dependent tasks that at least one goal requires both
agents to complete; Bottom: The goal-dependent tasks that one agent’s goal depends on prior completion of the

partner’s goal.

e = {(c1,n1), -, (ck,nk)}, where n; denotes
the number of blocks of color ¢;. Each inventory
contains a subset of colors present in GG. The goal
and inventory of each agent are private so they must
communicate to figure out who needs what.

State. The state of the world consists of all public
information, including the structure built so far, and
the history of the agents’ utterances and actions.

Actions. An agent can take one of the following
actions: place a block from its inventory at spe-
cific coordinates; remove a block that was placed at
specific coordinates (the block will not be used any-
more); send messages to its partner; wait without
performing any action; and terminate the task.

2.2 Collaboration Tasks

To evaluate different aspects of collaboration, we
design three types of tasks with increasing levels of
dependence between two agents. We ensure there
exists at least one solution to complete the task.
Examples of the tasks are shown in Figure 2.

Independent tasks. These tasks require minimal
coordination, as two agents can build their goals
separately to complete the target structure. How-
ever, the agents still need to communicate initially
to determine that they can each build their substruc-
tures independently.

Skill-dependent tasks. An agent cannot com-
plete its goal without assistance from its partner,
as it lacks certain colors of blocks. For example,
in Figure 2, Amy needs to describe the green sub-
structure to Bob so that Bob can build it using
his green blocks. To succeed in these tasks, an
agent must communicate its needs, understand the
partner’s needs, and then coordinate the actions
accordingly.

Goal-dependent tasks. In these tasks, in addi-
tion to the dependence between agents’ skills, an
agent’s ability to complete their goal may depend
on prior completion of the partner’s goal due to
the gravity restriction. For example, in Figure 2,
Amy must build her sub-structure first (which re-
quires Bob’s help with the yellow blocks), so that
Bob can build his sub-structure on top of it later.
These tasks are the most challenging, as there are
complex dependencies among the steps to finish
the target structure.

3 Building Collaborative Agents based on
LLMs

We use an LLM as the base agent and query it
at each round to predict the next action given the
current world state (e.g., the structure built so far
and the agent’s goal).

4943

* Input: The input consists of descriptions of
the state of the world described in XML (Fig-
ure 3 left), including the goal of each agent,
the structure built so far, the dialogue, and ac-
tion histories. We use a sequence of blocks
(with color and 3D position) to represent the
structures.

* Output: The output is the next action (place,
break, send message, wait or terminate). We
instruct the model to use a specific format
(e.g., send_message(message="Hello")) to
ensure that it can be parsed for execution in
the environment.

To help the LLM agent decide the next action,
we use CoT prompting to guide the LLLM agent
through several intermediate steps designed to an-
ticipate the partner’s needs and adjust the construc-
tion plan given new observations. We describe each
step below and show examples in Figure 3.

Step 1: understanding the world state. The
world state is represented using the XML format.
Therefore, we prompt the LLM agent to first parse
the state and describe it in natural language. For ex-
ample, given the <goal> and <built structure>
field, the agent infers that it should build the yellow
blocks next.

Step 2: modeling the partner’s state. Effective
collaboration requires an agent to understand the
partner’s needs and coordinate with them to strike
a balance between assisting others and fulfilling
their own goal. For example, in skill- and goal-
dependent tasks, the agent must identify which
sub-structures their partner needs help with and in-
tegrate it into the planning of their goals. Therefore,
we incorporate partner-state modeling (Boutilier,
1996; Chalkiadakis and Boutilier, 2003) into our
prompts as an intermediate step. As shown in Fig-
ure 3, based on the dialogue and action history, the
agent predicts the intent and state of its partner,
including the goal, the inventory set, the immediate
next plan (e.g., building the green sub-structure),
and whether the plan has been executed.

Step 3: reflecting on past actions and dialogue.
Misunderstandings in collaboration can lead to in-
correct actions, and if these errors aren’t corrected
promptly, they may result in higher expenses to rec-
tify them later. For instance, an agent might place a
block of the wrong color at a specified position. If
this error isn’t corrected in the subsequent round, it

could take multiple backtracking actions to correct
the mistake. To address this issue, we adopt the
self-reflection mechanism (Fu et al., 2023) to help
the agent review the currently built structure and
correct low-level construction errors and high-level
communication strategies.

Specifically, we compare the built structure and
the agent’s goal to check if there is an error using
an external program (i.e. whether the built struc-
ture is exactly a partial structure of the goal). The
feedback is then sent to the agent to correct the
potential error. In addition, we instruct the agent
to adjust their communication strategies (Hovland
et al., 1953) based on the feedback along three di-
mensions: team role (whether to take the lead and
assign tasks to the partner), altruism/egoism bal-
ance (whether to pursue their own goals or assist
the partner), and persuasion strategy (whether to be
more proactive and persuasive in communication).

Step 4: predicting the next action. The final
step generates the next action based on the world
state, partner state, and the reflection result in the
previous steps.

Our final prompt starts with a general descrip-
tion of the game and the input/output format for the
model to understand the XML and the action func-
tions. To guide the LLM agent to decide the next
action through the above reasoning steps, we then
provide a CoT prompt that consists of a sequence of
reasoning examples, where each example consists
of the current world state and the four reasoning
steps. A full prompt is shown in Appendix B.

4 Experiments

Successfully completing tasks in COBLOCK re-
quires both grounding and collaboration abilities.
Therefore, we first assess whether LLMs are able
to execute instructions in COBLOCK correctly
through a single-agent experiment (Section 4.2).
Next, we evaluate whether LLM agents can effec-
tively collaborate with other LLM or human agents
through communication and coordination using a
multi-agent experiment (Section 4.3 and 4.4).

4.1 Implementation Details

Environment. We implement the COBLOCK en-
vironment using a web interface based on Re-
act.js (Facebook Inc., 2023), and render the 3D
world through THREE.js (Danchilla and Danchilla,
2012). To generate target structures, we follow five

4944

World State

<Goal>
<Block type="blue” pos=(0, 0, 1)
<Block type="blue” pos=(0, 0, 2)
<Block type="blue” pos=(0, 0, 3)

f

</Goal>

| <Structure>

<Block type="green” pos=(0, 1, 3)

= . <Block type="blue” pos=(0, 0, 1)

. m . <Block type="blue” pos=(0, 0, 2) 1
Built ' </Structure> :
Structure

<Dialogue>
<M sender="Amy” content="Hello"/>
<M sender="Bob” content="Hi"/>
</Dialogue>
<Actions>
<place agent="Amy” type="yellow"/>
<place agent="Bob” type="blue™/>
</Actions>

Output

Step 1: Consuming the XML world state.

Since the world lacks the yellow block in around
(0, 0, 0), | need to build it. | do not have the

yellow blocks in the inventory. Thus | need to

ask for help. Since the world lacks the yellow

block in around (0, 0, 0)...

Step 2: Modeling the partner’s state.

Since the partner has communicated his needs...
Partner: Goal: Green; Status: Helped

Step 3: Reflecting on past actions and dialogue

Based on the history, the current world status is

consistent with the final structure.

So | do need to correct any error.

However, my partner is not quite active. So |

should take the leadership and give thecommand.

1ybnoy3-jo-ureyd

Step 4: Predicting the next action

Based on the partner state and my role, | need to
chat("Please build the yellow block at (0, 0, 0)”)

Figure 3: World State consists of the agent’s goal, currently built structure, dialogue, and action history. Prompt
Text consists of four steps: 1) Analyze the XML world state and summarize the useful information; 2) Infer both the
agent and the partner’s state; 3) Self-reflection which identifies the errors and adjusts the communication strategies;

4) Predict the action. We use the CoT prompts in all steps.

common structures used in (Narayan-Chen et al.,
2019): symbol, bridge, arch, tower, and rectangle.
We then use a depth-first search to find a combi-
nation of these common structures and manually
adjust them if needed. To generate the goals and
skills for each agent, we manually split the target
structures into two sub-structures and assign inven-
tories to make sure that the tasks can be completed
collaboratively. In total, we create 24 collaboration
tasks in COBLOCK. The details of task creation
can be found in Appendix A.1.

Agents. We recruit human participants with ex-
perience playing Minecraft (which is similar to
COBLOCK) via Amazon Mechanical Turk. Partici-
pants must complete a tutorial and pass a qualifica-
tion exam to perform the tasks. We pay participants
with an hourly rate of $18. Based on our pilot study,
the tasks are usually completed within thirty min-
utes. For LLM agents, we provide eight in-context
CoT examples covering three types of tasks: two
independent tasks, three skill-dependent tasks, and
three goal-dependent tasks. we also include a base-
line LLM agent, using CoT prompts but without
partner-state modeling (Step 2) and self-reflection
mechanism (Step 3).

4.2 Single-Agent Experiment

We propose three single-agent tasks to evalu-
ate the grounding abilities of LLM agents (Fig-

ure 4): 1) Generate textual descriptions from XML-
represented structures; We manually evaluate these
descriptions to verify the LLM agent’s ability to de-
scribe the target structure. 2) Generate a sequence
of actions given the XML structures; This task
measures the agent’s ability for task planning. 3)
Generate the action sequence from the textual de-
scriptions. This task combines the first two tasks
and therefore requires both grounding and planning
capacities.

Evaluation Metrics. We use success rate to eval-
uate the proportion of tasks completed by agents
successfully (i.e. generate the correct description
in task 1 and the action plan in tasks 2 and 3):

Number of Success

S Rate = !
uceess Rate = T tal Number of Tasks W

Results. According to Figure 5, both GPT-4 and
GPT-3.5 agents successfully complete almost all
three tasks, which indicates that LLM agents have
sufficient grounding and planning skills for the
collaborative blocks world. Therefore, the ob-
served failures in the collaboration tasks (which
we present next) should not mainly come from the
grounding and planning capacities of agents.

4.3 Multi-Agent Experiment Setup

We propose two multi-agent task settings: Human-
machine collaboration that a human agent and
an LLM agent build the structures. This setting

4945

<Structure>
<block block_type="yellow" pos=(0, 0, 0)/>
<block block_type="yellow" pos=(0, 1, 0)/>
<block block_type="red" pos=(0, 2, 0)/>
<block block_type="green" pos=(0, 3, 0)/>
<block block_type="green" pos=(0, 3, 1)/>
<block block_type="green" pos=
<block block_type="green" pos=
<block block_type="green" pos=(-1,

</Structure>

Structure

XML Representation

Textual Description

A tower-alike structure with a base of two yellow blocks at ground level (y=0). EE—

Above these, there's a red block, followed by a z-axis column of three

green blocks (z=0 to z=2). Two additional green blocks extend x-axis (x=1/-1).

Part I: Textual Description

> “A stack of blocks with a base of two yellow
blocks at ground level (y=0). Above these ..
Part II: Action Plan
Place(block_type="yellow’, pos=(0, 0, 0))
—

Place(block_type="yellow’, pos=(0, 1, 0))
Place(block_type="red’, pos=(0, 2, 0))

Part Ill: Action Plan
Place(block_type="yellow’, pos=(0, 0, 0))
Place(block_type="yellow”, pos=(0, 1, 0))
Place(block_type="red’, pos=(0, 2, 0))

Figure 4: Single-agent experiment settings including three parts. We represent the blocks by the XML structure and
the textual description. Part I: describe the given XML into textual descriptions. Part II: convert the XML into a
sequence of commands. Part III: directly convert the textual description into a sequence of commands.

aims to evaluate the ability of LLM agents to act as
proactive collaborators that fulfill their own goals
while assisting human partners; Machine-machine
collaboration that two LLM agents build the struc-
tures, primarily evaluates the collaboration behav-
iors between two LLM agents.

Evaluation Metrics. Similar to the single-agent
setting, we use success rate (See Equation 1) to
measure whether agent(s) can complete the target
structure. We propose two additional metrics tar-
geting the effectiveness of collaboration (McEwan
et al., 2017) during task execution:

Workload Balance measures how tasks are dis-
tributed evenly between two agents. Since the
agents have varying goals and skills, even optimal
task assignments result in different action numbers.
Therefore, we normalize the number of actions by
comparing them with the optimal action number

N, - N}
a1 = ——2L:b=N,. (2)

Ny 7
where the N, and IV, refer to the numbers of ac-
tions and IV and IV, are the numbers of optimal
actions. The final workload balance «y is computed

as
ax*xb

a? +b%’
The optimal value of 7y is 0.5.

Task Completion Timesteps is defined as the total
number of actions required to complete the task.
2 The task timesteps reflect the effectiveness of

V= €))

2We do not use wallclock time because it can be affected
by the network latency and the participant’s response time.

communication between the LLM agents, as the
fewer steps indicate less time wasted on unneces-
sary actions and messages.

Part | Part Il Part Il

100 Model

GPT-3.5
GPT-4

Success Rate (%)

GPT-3.5-
GPT-4-|
GPT-3.5-
GPT-4-|
GPT-3.5-
GPT-4-|

Model Model Model

Figure 5: Experiment results on single-agent experi-
ments (Part I, II, III). LLM agents successfully complete
almost all tasks.

4.4 Multi-Agent Experiment Results

We present the human-machine experiment results
in Figure 6 and machine-machine results in Fig-
ure 7. In addition to quantitative results, we con-
duct an error analysis by manually collecting all
failure instances (73 in total) from both human-
machine and machine-machine experiments.

Baseline LLM agents struggle to complete the
task. According to Figure 6 (A) and Figure 7
(A), the baseline agents suffer from a low task suc-
cess rate in the skill-dependent and goal-dependent
tasks. The contrast with single-agent experiment
results suggests that collaboration presents signif-
icant challenges. We find that LLM agents often
prioritize assisting their partners and neglecting

4946

Q Independent Skill-Dependent Goal-Dependentg Independent Skill-Dependent GoaI-Dependent@Independent Skill-Dependent Goal-Dependent
05

3
8

|

b

2
8
b

2
8
@

\
i

Ours

s
&

Success Rate (%)

i

@
e

8

c
Workload Balance
8

GPT-35
GPT-4
GPT-4

GPT35
GPT-4

GPT-35
GPT-4

&
S

Method Baseline

|

GPT-35

20
15

\ll

\Ili

3

L
bk B

Completion Timesteps

o

GPT4
GPT-35
GPT-4
GPT-35
GPT-4
GPT-35
GPT-4
GPT-35
GPT-4

Figure 6: Human-machine experiment results. The experiments are conducted on the independent, skill-dependent,
and goal-dependent tasks with both GPT-3.5 and GPT-4. We include both LLM agents and baseline LLM agents

without partner-state modeling and reflection.

100

_
o\o 80 ’ ‘ ® 0.4
~ o
[} c
- ©
© = 0.
T 60 8 03
1]
3 B
8 40 2 0.2
3 =
(22 2 o
0 0.0
o ¥ o v o v o 5
5 B 5 B s B e r
b b G b 6 E o
o o [C} (G}
Method Baseline Ours Ours without Reflection Mechanism

GPT-3.5

Q Independent Skill-Dependent Goal-Dependent elndependent Skill-Dependent GoaI-Dependem@Independent Skill-Dependent Goal-Dependent
05

@

10|’|||| ’||’| ’|‘|
|

Completion Timesteps
&

=

GPT-4
GPT-35
GPT-4
GPT-3.5
GPT-4
GPT-3.5
GPT-4
GPT-35
GPT-4

Figure 7: Machine-machine experiment results. Similar to human-machine experiments, we include independent,
skill-dependent, and goal-dependent tasks with both GPT-3.5 and GPT-4. We include LLM agents, LLM agents
without reflection, and baseline LLM agents without both partner-state modeling and reflection.

their own goals (55.6% errors in the goal-dependent
tasks and 37.5% errors in the skill-dependent tasks).
In addition, LLLM agents lack initiative in seeking
additional information from the partner (11.1% er-
rors in the skill-dependent tasks and 25.0% errors
in the goal-dependent tasks). For instance, in Fig-
ure 8, when a human’s intention (build blue blocks)
conflicts with the LLM agent (build green blocks),
the LLM agent stops executing its own goal but
decides to help the human instead.

Both partner-state modeling and reflection en-
hance collaboration. First, partner-state modeling
significantly improves agents in the skill-dependent
and goal-dependent tasks in all metrics, as LLM
agents are more adept at negotiating with partners
to achieve their own goals. The reflection mecha-
nism further helps adjust the communication strat-
egy, especially when human partners are less col-
laborative. In 33% skill-dependent tasks and 17%
goal-dependent tasks, human participants have a
low engagement, and the LL.M agents change the
communication strategy accordingly. For instance,

one human participant continuously works on his
goal even when the LLM agent asks for assistance.
The LLM agent then prompts with a message that

“Please build the yellow blocks from (0, 0, 2) to (0,
3, 2), so I can proceed with the task.”.

LLM agents actively communicate with part-
ners. According to Figure 6 (B, C) and Figure 7
(B, ©), LLM agents outperform baseline agents
on task workload balance and timesteps. This is
mainly due to more proactive communication. For
example, in Figure 9, the baseline LLM agent stops
after its goal is fulfilled (observed in 56% skill-
dependent tasks and 42% goal-dependent tasks).
However, our LLM agent continues to engage,
and asks, "I have finished my sub-structure. What
should we do next?".

Humans are smarter, but sometimes less col-
laborative. In the human-machine experiment,
a majority of humans are smarter than LLM
agents—humans can actively identify and rectify
LLM agents’ errors. However, a small portion
of human collaborators (14.6%) are not collabora-

4947

Hi partner, | need to build a structure consisting
of the red, yellow and green blocks.

I need to build a structre with the blue and yellow

2 blocks. Can you build 3 blue on top of the yellow.
Q Place:

Sure.

*

Q Finished the task [® s goal has not been fulfilled.

Place: & @ ® &

Figure 8: A human-machine example in the skill-
dependent task. Our baseline LLM agents fail to com-
plete their own goals due to the priority of assisting the
partner. Intermediate steps are omitted for clarity.

g1 ¢

() NO COMMUNICATION

Q [ACTIONS] l E

| have finished my sub-structure.
How can | help you?

Q Can you build the yellow blocks Place:
at (2, 0, 0) and (3, 0, 0) for me? 2.9
Place: Place: $
ge §-0 ‘

Our Approach Baseline

Figure 9: A human-machine example in the goal-
dependent task. We show our LLM agent on the left and
the baseline LLM agent on the right. Our LLM agent
actively helps the partner to complete the task when the
baseline keeps waiting.

tive. In these scenarios, our reflection mechanism
pushes the LLM agents to adopt a more active role
in engaging with human partners.

5 Related Work

Multi-Agent Collaboration with Reinforcement
Learning. Several approaches have been pro-
posed to use reinforcement learning for multi-agent
collaboration (Bloembergen et al., 2015), includ-
ing both value-based (Chhogyal et al., 2019) and

policy-based methods (Lowe et al., 2017). These
methods aim to estimate the expected value for ev-
ery decision-making turn by considering both the
agent itself and partner agents (Bloembergen et al.,
2015). Unlike existing approaches that model in-
formation exchange over a predetermined set of
primitives, we focus on a more generic scenario
where agents communicate in natural language.
Agents based on LLMs. Existing research for
agents based on LLMs mainly focuses on text-
based, single-agent settings, such as web navi-
gation and text games (Furuta et al., 2023; Yao
et al., 2022; Zhou et al., 2023b; Kim et al., 2023;
Xi et al., 2023). Methods have been proposed to
improve the planning and reasoning capacities of
these agents, including chain-of-thought (Wei et al.,
2022; Kim et al., 2023; Zhang et al., 2023), self-
consistency decoding (Wang et al., 2023), task de-
composition (Zhou et al., 2023a), and error reflec-
tion (Yao et al., 2023). Concurrent studies extend
LLM agents into multi-agent settings, but they are
mainly constrained to multiple LLM agents (Zhou
et al., 2023c; Gong et al., 2023), or only evalu-
ate the overall task performance, which may be
biased by LLMs’ task planning and reasoning abil-
ities (Wu et al., 2023; Hong et al., 2023; Team,
2023). By comparison, our study prioritizes the
collaborative capabilities of LLM agents from dif-
ferent perspectives and designs distinct task types
for evaluation.

Theory of Mind Agents. Effective collaboration
requires agents to infer the intents of partner agents.
Theory of Mind (ToM) refers to the agent’s ability
to impute mental states to the agent itself and other
agents. With the help of LLMs, there are a signifi-
cant amount of discussions about whether ToM has
emerged by LLM agents (Ma et al., 2023; Jamali
et al., 2023; Kosinski, 2023). We follow the idea of
ToM and propose to incorporate the partner-state
modeling approach into chain-of-thought prompts
to build LLM agents.

6 Conclusion

In this paper, we introduce a new collaborative
blocks environment (COBLOCK), where human
or LLLM agents collaborate to complete a target
structure. We prompt LLM agents to make de-
cisions about the next action in COBLOCK, and
further propose to enhance collaborative abilities
by modeling partner agents’ state and intention
and correcting errors and communication strategies

4948

from feedback. Both human-machine and machine-
machine experiments indicate the effectiveness of
our agents, especially on more challenging tasks
that require more advanced collaboration. We be-
lieve this work provides resources and insights for
future work in advancing multi-agent collabora-
tion for social good that requires different levels of
collaboration strategies.

Limitations

Multi-Agent Collaboration. A primary limitation
of our study is that we focus on a two-agent setting.
While our framework serves as an initial study,
it may not fully capture the dynamics of multi-
agent collaboration (Wilsker, 1996). Future work
should aim to expand our platform to accommodate
more than two agents and involve multiple human
participants.

Generalizability of Agent-State Modeling. Our
agent-state modeling approach mainly focuses on
information specific to the blocks world. To extend
our approach to other domains, we should reconfig-
ure the agent-state format to include more diverse
information about agents’ states. Additionally, our
design overlooks the aspect of memory, which is
crucial for long-term collaboration. Incorporating a
partner’s memory status into decision-making can
be helpful during collaboration.

Agents Capability. We define the agent’s capabili-
ties primarily in terms of block inventory. However,
there are various other capabilities, such as break-
ing, placing, or picking up resources, which could
significantly enrich the collaborative process. Fu-
ture research should explore more diverse capabili-
ties to provide a better understanding of multi-agent
collaboration.

Evaluation Settings We focus on bi-agent settings
to study collaboration between agents while sim-
plifying other factors. However, incorporating a
larger number of agents is necessary to examine
collaboration in more complex environments. We
believe our environment and some of our findings
can be generalized to settings with more than two
agents. For example, the partner modeling remains
significant as additional partners require the agent
to carefully consider the statuses of multiple part-
ners.

Ethical Consideration

We conduct a human-machine experiment, recruit-
ing participants through Amazon Mechanical Turk.

Our study is supervised by NYU’s Institutional Re-
view Board (IRB-FY2023-6865), ensuring no per-
sonal information from participants was recorded.
We check the collected data to ensure it contains
no hate speech or personal information. We im-
plement our blocks world in the web portal with
the 3D blocks world, therefore we require that no
participant suffers from 3D motion sickness and
would be harmed by the experiments.

There is a risk that the LLM agents might be
assigned ethically questionable or unjust goals by
stakeholders. In our current platform that is cen-
tered around block-building tasks, the possibility
of assigning harmful goals is greatly minimized.
However, we recognize that our proposed agents
could raise ethical concerns if applied into more re-
alistic settings like violence investigation (Hu et al.,
2022). Therefore, we emphasize the importance of
designing LLM agents to be ethically responsible
regarding their assigned goals.

Acknowledgement

We would like to thank the anonymous reviewers
and area chairs for constructive discussions and
feedback. Chen Zhao is supported by Shanghai
Frontiers Science Center of Artificial Intelligence
and Deep Learning, NYU Shanghai. This work
was supported by the DARPA PTG program. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the
authors and do not necessarily reflect the views of
DARPA.

References

Daan Bloembergen, Karl Tuyls, Daniel Hennes, and
Michael Kaisers. 2015. Evolutionary dynamics of
multi-agent learning: A survey. J. Artif. Intell. Res.,
53:659-697.

Craig Boutilier. 1996. Learning conventions in multia-
gent stochastic domains using likelihood estimates.
In UAI *96: Proceedings of the Twelfth Annual Con-
ference on Uncertainty in Artificial Intelligence, Reed
College, Portland, Oregon, USA, August 1-4, 1996,
pages 106—114. Morgan Kaufmann.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L.
Griffiths, Sanjit A. Seshia, P. Abbeel, and Anca D.
Dragan. 2019. On the utility of learning about hu-
mans for human-ai coordination. In Neural Informa-
tion Processing Systems.

Georgios Chalkiadakis and Craig Boutilier. 2003. Co-
ordination in multiagent reinforcement learning: a
bayesian approach. In The Second International

4949

https://doi.org/10.1613/JAIR.4818
https://doi.org/10.1613/JAIR.4818
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=358&proceeding_id=12
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=358&proceeding_id=12
https://api.semanticscholar.org/CorpusID:202770731
https://api.semanticscholar.org/CorpusID:202770731
https://doi.org/10.1145/860575.860689
https://doi.org/10.1145/860575.860689
https://doi.org/10.1145/860575.860689

Joint Conference on Autonomous Agents & Multi-
agent Systems, AAMAS 2003, July 14-18, 2003, Mel-
bourne, Victoria, Australia, Proceedings, pages 709—
716. ACM.

Kinzang Chhogyal, Abhaya C. Nayak, Aditya Ghose,
and Hoa Khanh Dam. 2019. A value-based trust
assessment model for multi-agent systems. In Pro-
ceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019, pages 194-200.
ijcai.org.

Brian Danchilla and Brian Danchilla. 2012. Three. js
framework. Beginning WebGL for HTMLS, pages
173-203.

Facebook Inc. 2023. React - a javascript library for
building user interfaces. Accessed: 2023-04-01.

Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata.
2023. Improving language model negotiation with

self-play and in-context learning from Al feedback.
CoRR, abs/2305.10142.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yu-
taka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. 2023. Multimodal web navigation with
instruction-finetuned foundation models. CoRR,
abs/2305.11854.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane
Durante, Yusuke Noda, Zilong Zheng, Song-Chun
Zhu, Demetri Terzopoulos, Li Fei-Fei, and Jianfeng
Gao. 2023. Mindagent: Emergent gaming interaction.
CoRR, abs/2309.09971.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative dia-
logue agents with dynamic knowledge graph embed-
dings. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1766—1776. Association for
Computational Linguistics.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jiirgen Schmidhuber. 2023. Metagpt: Meta pro-
gramming for a multi-agent collaborative framework.

Carl Iver Hovland, Irving Lester Janis, and Harold H
Kelley. 1953. Communication and persuasion. Yale
University Press.

Yibo Hu, MohammadSaleh Hosseini, Erick Skorupa
Parolin, Javier Osorio, Latifur Khan, Patrick T.
Brandt, and Vito D’Orazio. 2022. Conflibert: A
pre-trained language model for political conflict and
violence. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL 2022, Seattle, WA, United States,
July 10-15, 2022, pages 5469-5482. Association for
Computational Linguistics.

Mohsen Jamali, Ziv M. Williams, and Jing Cai. 2023.
Unveiling theory of mind in large language mod-
els: A parallel to single neurons in the human brain.
CoRR, abs/2309.01660.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
CoRR, abs/2303.17491.

Michal Kosinski. 2023. Theory of mind might have
spontaneously emerged in large language models.

Joel Z. Leibo, Edgar A. Duéiiez-Guzman, Alexander
Vezhnevets, John P. Agapiou, Peter Sunehag, Raphael
Koster, Jayd Matyas, Charlie Beattie, [gor Mordatch,
and Thore Graepel. 2021. Scalable evaluation of
multi-agent reinforcement learning with melting pot.
In Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 6187-6199. PMLR.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. CAMEL.:
communicative agents for "mind" exploration of large
language model society. In Advances in Neural In-
formation Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurlIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter
Abbeel, and Igor Mordatch. 2017. Multi-agent
actor-critic for mixed cooperative-competitive envi-
ronments. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 6379—6390.

Zigiao Ma, Jacob Sansom, Run Peng, and Joyce Chai.
2023. Towards A holistic landscape of situated the-
ory of mind in large language models. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, Singapore, December 6-10, 2023,
pages 1011-1031. Association for Computational
Linguistics.

Desmond McEwan, Geralyn R Ruissen, Mark A Eys,
Bruno D Zumbo, and Mark R Beauchamp. 2017.
The effectiveness of teamwork training on teamwork
behaviors and team performance: a systematic review

and meta-analysis of controlled interventions. PloS
one, 12(1):0169604.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
minecraft. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 5405-5415. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

4950

https://doi.org/10.24963/IJCAI.2019/28
https://doi.org/10.24963/IJCAI.2019/28
https://threejs.org
https://threejs.org
https://reactjs.org/
https://reactjs.org/
https://doi.org/10.48550/ARXIV.2305.10142
https://doi.org/10.48550/ARXIV.2305.10142
https://doi.org/10.48550/ARXIV.2305.11854
https://doi.org/10.48550/ARXIV.2305.11854
https://doi.org/10.48550/ARXIV.2309.09971
https://doi.org/10.18653/V1/P17-1162
https://doi.org/10.18653/V1/P17-1162
https://doi.org/10.18653/V1/P17-1162
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
https://psycnet.apa.org/record/1953-15071-000
https://doi.org/10.18653/V1/2022.NAACL-MAIN.400
https://doi.org/10.18653/V1/2022.NAACL-MAIN.400
https://doi.org/10.18653/V1/2022.NAACL-MAIN.400
https://doi.org/10.48550/ARXIV.2309.01660
https://doi.org/10.48550/ARXIV.2309.01660
https://doi.org/10.48550/ARXIV.2303.17491
http://arxiv.org/abs/2302.02083
http://arxiv.org/abs/2302.02083
http://proceedings.mlr.press/v139/leibo21a.html
http://proceedings.mlr.press/v139/leibo21a.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://aclanthology.org/2023.findings-emnlp.72
https://aclanthology.org/2023.findings-emnlp.72
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169604
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169604
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169604
https://doi.org/10.18653/V1/P19-1537
https://doi.org/10.18653/V1/P19-1537
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Burt Wilsker. 1996. A study of multi-agent collabo-
ration theories. University of Southern California,
Information Sciences Institute.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Autogen: En-
abling next-gen LLM applications via multi-agent
conversation framework. CoRR, abs/2308.08155.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huan, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. CoRR, abs/2309.07864.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
In NeurlIPS.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jintian Zhang, Xin Xu, and Shumin Deng. 2023. Ex-
ploring collaboration mechanisms for LLM agents:
A social psychology view. CoRR, abs/2310.02124.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023a. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May I-5,
2023. OpenReview.net.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, and Graham Neubig.

2023b. Webarena: A realistic web environment for
building autonomous agents. CoRR, abs/2307.13854.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang,
Haofei Yu, Zhengyang Qi, Louis-Philippe Morency,
Yonatan Bisk, Daniel Fried, Graham Neubig, and
Maarten Sap. 2023c. SOTOPIA: interactive evalua-
tion for social intelligence in language agents. CoRR,
abs/2310.11667.

A Experiment Setting Details

A.1 Structure Preparation

Symbol

Arch Tower

Rectangle

Table 1: Common base structures.

We prepare the structures based on a semi-
automatic pipeline. We first identify five types
of common structures: symbol, bridge, arch, tower,
and rectangle (Table 1). Then, we manually cre-
ate rules for the structure types. For example, the
arch’s rule is <TWO PILLARS: HEIGHT > 3 and
width < 2; TWO PILLARS DISTANCE > 3 AND
WIDTH < 3>; We model each surface in the target
structure as the graph node and use the adjacency
as the edges. Then, we represent the complexity
of the structure by the number of graph-spanning
trees. To generate the structures, we randomly ini-
tialize the structure with 3 blocks. Then, we run a
depth-first search following the pre-defined rules
and the complexity constraint. For the independent
tasks, we use 24 structures, 16 are manually cre-
ated and 8 are created based on the pipeline. The
skill-dependent structures share the same structures

4951

https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://apps.dtic.mil/sti/pdfs/ADA327506.pdf
https://apps.dtic.mil/sti/pdfs/ADA327506.pdf
https://doi.org/10.48550/ARXIV.2308.08155
https://doi.org/10.48550/ARXIV.2308.08155
https://doi.org/10.48550/ARXIV.2308.08155
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://doi.org/10.48550/ARXIV.2310.02124
https://doi.org/10.48550/ARXIV.2310.02124
https://doi.org/10.48550/ARXIV.2310.02124
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://doi.org/10.48550/ARXIV.2307.13854
https://doi.org/10.48550/ARXIV.2307.13854
https://doi.org/10.48550/ARXIV.2310.11667
https://doi.org/10.48550/ARXIV.2310.11667

but with different inventories; For goal-dependent
tasks, we use 24 structures, 16 are manually created
and 8 are created based on the pipeline.

A.2 Steps in User Manual
@ Ssucoess
perment -5
Experiment ID: 344
@ Thanks for your partcipation! The hit code is -

Step 1 Step 2
=
=
=
=
]

Step 3 Step 4

Table 2: Selected steps in the user manual.

The following steps are outlined in the user man-
ual. We also attach the figures of the steps in ta-
ble 2.

1. Users are assigned a unique participant ID and
a general web URL for access. Upon opening
the website, they should enter their assigned
participant code to begin the experiments. The
webpage will display the assigned tasks.

2. Users can then click on each task displayed
on the page to start. In these tasks, users are
required to collaborate with LLM agents to
complete structure-building activities.

3. Upon task completion, COBLOCK will au-
tomatically notify the user, who then closes
the page to proceed to the next task. If the
user claims a task is impossible to complete
(possibly due to issues with the LLM agent),
they can click the submit button and provide
a reason for the task’s incompletion.

4. After finishing a task, the rightmost icon on
the page will turn green, indicating comple-
tion. Once all tasks are completed, a success
code will appear. Users should copy this code
and submit it to Amazon Mechanical Turk for
payment.

A.3 Institutional Review Board

Our study is conducted under the approval of our
university’s Institutional Review Board (IRB). We
did not collect any identity or demographic infor-
mation about the crowd-sourcing workers. We will
disclose the IRB information after the paper is ac-
cepted.

A.4 Workload Balance Evaluation

To evaluate the workload balance, we need first to
compute the optimal assignment of the workload
balance. Shown in Algorithm 1, we first identify
the mutual blocks (") shared between the two
agents’ inventories (e! and e?). Unique blocks
for each agent are then determined by subtracting
these mutual blocks from their respective invento-
ries, resulting in e,,,,;.,. and €2, ... These unique
blocks are directly assigned to the corresponding
agent. The core of the algorithm focuses on the
equitable distribution of mutual blocks. Blocks are
assigned from e™ to the agent with the lesser total
block count, ensuring a balanced workload. This
process continues until all mutual blocks are evenly
distributed or depleted. The algorithm thus opti-
mizes task allocation by balancing the number of
blocks each agent is responsible for, in alignment to
achieve an optimal workload balance (y) between
the agents in constructing the target structure (G).

4952

Algorithm 1 Compute Optimal Workload Assign-
ment

1:

10:
11:
12:

13:
14:
15:

16:
17:
18:

19:

1 e?; Target struc-

Input: Agent inventories e
ture G
Output: Optimal assignment of blocks to
agents
procedure OPTIMALASSIGNMENT(e!, €2, G)
e™ « el Ne? v Identify mutual blocks
e}mique +el\ e™ > Unique blocks for
Agent 1
e?mique < e\ e™ > Unique blocks for
Agent 2
Assign e
ing agents
while €™ is not empty do
Calculate count® and count? >
Current block count for each agent
if count! < count? then
Assign block from ™ to Agent 1

Remove the assigned block from

1

2
unique and e

unique 1O correspond-

else if count? < count' then
Assign block from e™ to Agent 2
Remove the assigned block from

end if
end while
return Assignment of e
and balanced e to agents
end procedure

1 62
unique® “-unique’

B

Prompt Text

In this appendix, we present the prompt used in
our study. It is important to note that the concepts
included in our actual prompt vary from those dis-
cussed in the main paper. To clarify these differ-
ences, we have outlined the relationships between
the concepts used in the actual prompt and those in
the paper in Table 3.

B.1 Task Description Prompt

The task description is presented to all LLM agents
of both the baseline prompt and our approach. It
details the environment input/output formats to en-
sure the LLM agents understand our COBLOCK
environment. The task description consists of the
task summary, world state, inventory, message, and
goal formats.

Task Summary

I want you to act as a Minecraft player collab-
orating with another agent to build a structure
with a blueprint. You need to use the follow-
ing commands to interact with the Minecraft
world:

Place a red block at the position of (0, 1, 1).
place_block(block_type=red, pos=(0,1,1))

chat with your partner
send_message(message=“Hello, partner”)

destroy the block at the position of (3, 1, 3)
break_block(pos=(3, 1, 3))

World State Format

At each turn, you will receive the following
information:

World state: You will get the position of all
blocks in the world in the following format:
Please note that the ground is the y=1 plane.
<World>

<block block_type =“red”, pos=(0, 1, 2)>
<block block_type =“yellow”, pos=(0, 1, 3)>
<block block_type = “purple”, pos=(0, 1, 4)>
<World>

Inventory Format

You will get your inventory in the following
format: (each time you place a block from the
inventory in the world, you will lose it in the
inventory)

<Inventory>

<block block_type =“red”, count=3>
<block block_type =“yellow”, count=3>
<Inventory>

Message Format

You will get the message history between
you (ChatGPT) and your partner in the
following format:

<Dialogue>

<sender=“ChatGPT”, message=“Hello!”>
<sender="“Partner”, message=“Hi, I am your
partner!”>

<Dialogue>

The goal is represented through a list of blocks
that need to be constructed. In our system develop-

4953

Prompt Paper

Explanation

Minecraft CoBlock World

Initially, CoBlock was designed to mimic the
Minecraft-styled blocks world, therefore, we
use Minecraft to help LLM agents to under-
stand our environment.

Motive Goal

The motive is identical to the goal used in the
paper.

Visual Motive N/A

During the early phase of the design, we aim
to support the visual and textual description
of the goals. Therefore, we also prompt LLM
agents to understand the textual goals. How-
ever, in the experiments, we did not use the
textual description, which will be explored in
the future.

Textual Motive N/A

Theory-of-mind Modeling

Partner-State Modeling

The theory-of-mind modeling refers to partner-
state modeling and the understanding of the
self status. In the paper, we highlight the
partner-state modeling because the self-status
modeling obviously exists in the first step of
the prompt and the baseline prompt.

Table 3: Concept comparison in the prompt text and paper.

ment, we aim to represent goals using both textual
and visual modalities. However, this paper focuses
on the visual representation of goals. The goal is
articulated as a motive in our prompts. The visual
motive is delineated by an optional description of
the target structure and a comprehensive list of the
blocks constituting that structure. It is important
to note that although the structure’s shape must
adhere to specified guidelines, its location can be
decided by the agent.

Goal (Motive) Format

<Motives>

You will get a list of motives you need to
fulfill. There can be two types of motives, i.e.
visual and textual.

<Motives>

<VisualMotive>

<Description> A simple two-layer structure
consisting of red and yellow blocks
</Description>

<block block_type =“red”, pos=(0, 1, 2)>
<block block_type =“red”, pos=(1, 1, 2)>
<block block_type =“red”, pos=(0, 1, 3)>
<block block_type =“red”, pos=(1, 1, 3)>
<block block_type =“yellow”, pos=(0, 2, 2)>
<block block_type =“yellow”, pos=(1, 2, 2)>
<block block_type =“red”, pos=(0, 2, 3)>
<block block_type =“yellow”, pos=(1, 2, 3)>
</VisualMotive>

B.2 In-Context Examples

Below, we present the in-context examples used
in our prompt. Since COBLOCK is a multi-round
game, our examples span three rounds, enabling

4954

LLM agents to plan across multiple rounds. Please
notice that the prompt will be provided after the

task description when querying LLMs.

Vs

Round 1 Input

<Input>

<Motive><TextualMotive text="Construct a
bridge with a span of 12 blocks using green
blocks. Place two green block pillars, each
consisting of 4 blocks. Add 4 yellow blocks as
the bridge surface. ” /> </Motive>
<World>

</World>

<Inventory>

<block block_type=“yellow”, count=20>
<block block_type=“green”, count=20>
<block block_type=“purple”, count=20>
</Inventory>

<Dialogue>

</Dialogue>

</Input>

Round 1 Expected Output

Partner Modelling

Long-term goal: Unknown

Short-term goal: Unknown

Partner inventory: Unknown

Explanation: I do not know anything about
my partner.

Self Modelling

Long-term goal:
structure

Short-term goal: Build the green pillars

My inventory: [yellow: 20, green: 20,
purple: 20]

Explanation: Since my long-term goal is to
build the bridge, I need to decompose it into
different small parts. The first part I can build
is the pillars.

Since I do not have any access to the
partner’s information, I need to let him know
my intention and inventory when asking for it.
send_message(message=“Hi, I need to build
a bridge with the yellow deck and green
pillars. I have green, yellow and purple. How
about you?”’)

creating the target

Round 2 Input
<Input>
<Motives>
<TextualMotive text=“Construct a bridge
with a span of 8 blocks and a width of 3
blocks using yellow blocks. Place two green
block pillars, each consisting of 4 blocks. Add
4 yellow blocks as the bridge surface.” />

</Motives>

<World>

<block block_type =“red”, pos=(0, 1, 2)>
<block block_type =“red”, pos=(1, 1, 2)>
<block block_type =“red”, pos=(0, 1, 3)>
<block block_type =“red”, pos=(1, 1, 3)>
</World>

<Inventory>

<block block_type =“yellow”, count=20>
<block block_type =“green”, count=20>
<block block_type = “purple”, count=20>
</Inventory>

<Dialogue> <chat sender=*“Agent 17,
message=“Hi, I need to build a bridge with
the yellow deck and green pillars. I have
green, yellow and purple. How about you?”/>
<chat sender=“Agent 27, message=“Hi, |
have red, green, and black. I need to build the
black fence upon your deck.”/> </Dialogue>
</Input>

4955

Round 2 Expected Output

Partner Modelling

Long-term goal: Build the fence on the deck
Short-term goal: Wait until the fence is built
Partner inventory: [red: unknown, green:
unknown, black: unknown]

Explanation: I have extracted the partner
information from the partner’s response.

Self Modelling

Long-term goal:
structure

Short-term goal: Build the green pillars.
Ask for the partner’s help with the pillars

My inventory: [green: 20, red: 20, purple:
20]

Explanation: Since my long-term goal is to
build the bridge, I need to decompose it into
different small parts. The first part I can build
is the pillars. I can ask for the partner’s help
because it has the green block in the inventory.

creating the target

send_message(message="Hi, I need to build
the two pillars first. My bridge spans 12 and
I need to have 2 pillars. So it would be rea-
sonable to put the two pillars at (4, 0, 0) and
(8, 0, 0). I will start with the (4, 0, 0) one and
could you please build the pillar at (8, 0, 0) ?")

Since the motive does not specify the
locations of the pillars, I need to first decide
them. Given the fact that the partner is
waiting and can help me build the pillar it is
also reasonable to ask for its help.

Build the yellow pillar on (4, 0, 0).

place_block(block_type="yellow", pos=(4,
0,0))

Round 3 Input

<Input>

<Motives>

<TextualMotive text="Construct a bridge with
a span of 8 blocks and a width of 3 blocks
using yellow blocks. Place two green block
pillars, each consisting of 4 blocks. Add 4
yellow blocks as the bridge surface. ” />
</Motives>

<World>

<block block_type =“yellow”, pos=(4, 0, 0)>
<block block_type =“yellow”, pos=(4, 1, 0)>
<block block_type =“yellow”, pos=(4, 2, 0)>
<block block_type =“yellow”, pos=(8, 1, 0)>
<block block_type =“yellow”, pos=(8, 2, 0)>
<block block_type =“yellow”, pos=(8, 3, 0)>

</World>

<Inventory>

<block block_type =“yellow”, count=20>
<block block_type =‘“green”, count=20>
<block block_type = “purple”, count=20>
</Inventory>

<Dialogue>

<chat sender=“Agent 1", message="Hi, I
need to build a bridge with the yellow deck
and green pillars. I have green, yellow and
purple. How about you?”/>

<chat sender=“Agent 2", message="Hi, I
have red, green and black. I need to build a
black fence upon your deck’/>

<chat sender=‘“Agent 3", message="Sure,
I will build the yellow pillar as you re-
quested.”/>

</Dialogue>

</Input>

4956

Round 3 Expected Output

Partner Modelling

Long-term goal: Build the fence on the deck
Short-term goal: Building the pillar at (8, 0,
0) as I requested.

Partner inventory: [red: unknown, green:
unknown, black: unknown]

Explanation: I have extracted the partner’s
information from the partner’s response.

Self Modelling

Long-term goal: creating the target
structure

Short-term goal: Build the yellow pillar on
(4, 0,0)

Explanation: Since the yellow pillar has not
been finished, I need to continue building it.

place_block(block_type= “yellow”, pos=(4,
4,0))

Build the last block of the pillar as it is my
short-term goal.

place_block(block_type= “yellow”, pos=(4,
0,0))

send_message(message “l have completed
my pillar. Then I will start building the green
deck.!”)

place_block(block_type=“green”, pos=(4,
3,0)

place_block(block_type=“green”, pos=(3,
3,0)

Since I have finished the pillar and can
assume my partner will finish his assigned
pillar. I can start building the green deck.

4957

