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Abstract

Although Retrieval-Augmented Large Lan-
guage Models (RALMs) demonstrate their su-
periority in terms of factuality, they do not
consistently outperform the original retrieval-
free Language Models (LMs). Our experi-
ments reveal that this example-level perfor-
mance inconsistency exists not only between
retrieval-augmented and retrieval-free LM but
also among different retrievers. To understand
this phenomenon, we investigate the degenera-
tion behavior of RALMs and theoretically de-
compose it into four categories. Further analy-
sis based on our decomposition reveals that the
innate difference in knowledge sources and the
unpredictable degeneration of the reader model
contribute most to the inconsistency. Drawing
from our analysis, we introduce Ensemble of
Retrievers (EoR), a trainable framework that
can adaptively retrieve from different knowl-
edge sources and effectively decrease unpre-
dictable reader errors. Our experiments on
Open Domain Question Answering show that
EoR substantially improves performance over
the RALM with a single retriever by consider-
ably reducing inconsistent behaviors.1

1 Introduction

Although Large Language Models (LLMs) have
shown their superiority in many NLP tasks (Ope-
nAI, 2023; Touvron et al., 2023), they are known to
struggle with factual hallucinations (Mallen et al.,
2023; Bang et al., 2023) and outdated parametric
knowledge (Dhingra et al., 2022; Vu et al., 2023).
Retrieval-Augmented Language Models (RALMs)
as an ad-hoc technique have been proven to effec-
tively alleviate these problems (Ram et al., 2023;
Vu et al., 2023). In most RALM systems, a re-
triever takes the responsibility to retrieve relevant
information from some external knowledge sources
(e.g., Wikipedia dump (Lewis et al., 2020), search

1Our code and data are available at https://github.
com/mingdali6717/Ensemble-of-Retrievers

Figure 1: Retriever-to-Retriever Relative Win Ratio
heatmap on Natural Questions with ChatGPT as LM.
Each cell’s number represents the proportion of ques-
tions answered incorrectly by the column retriever that
was correctly answered by the row retriever. 0 represents
all questions correctly answered by the row retriever can
be correctly answered by the column retriever, which
implies the column retriever consistently outperform the
row retriever. See equation 1 for formal definition.

engine (Nakano et al., 2021), parametric knowl-
edge (Yu et al., 2023)) and process them into text
chunks to extract the most pertinent content for
subsequent generation with a reader model (e.g.,
filtering, reranking (Liu et al., 2023b), compression
(Xu et al., 2023)).

Although RALMs show their effectiveness at
the corpus level (Gao et al., 2023b), retrieval-
augmentation does not consistently promote the
original retrieval-free LM but sometimes hurts
its performance at the individual example level
(Mallen et al., 2023; Yoran et al., 2023; Asai et al.,
2023). In this work, we observe that variability in
example-level performance exists not only between
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retrieval-augmented and retrieval-free LMs, but ac-
tually among different retrievers2 (e.g. Figure 1).
We call this observed phenomenon as retriever
inconsistency. Specifically, we use open-domain
question answering (ODQA;Chen et al., 2017) as
our benchmark task and build 15 different retriev-
ers by retrieving from different knowledge sources
(search engine, Wikipedia dump and parametric
knowledge) and implementing diverse processing
methods (truncation, concatenation, reranking and
compression). Our experiment reveals that, on av-
erage, more than 16% of questions incorrectly an-
swered by one retriever can be corrected by an
alternative retriever, and this result holds for all
testing models and datasets.

To further investigate the reasons behind re-
triever inconsistency, we theoretically show that
RALM’s degenerate behaviors on ODQA under
regular conditions can be divided into four cate-
gories: Retriever Error, Extraction Error, Halluci-
nation Error, and Lucky Guess. We further em-
pirically investigate the example-level error occur-
rence behaviors of these four types of errors and
the results indicate a ubiquitous inconsistent pat-
tern across retrievers for every error type, which
collectively contributes to the retriever inconsis-
tency.

Our further analysis reveals that the innate differ-
ence in knowledge sources, such as the absence of
post-2018 information in the 2018 Wiki dump or
search engine’s deficiency in understanding tricky
queries, and the inevitable and unpredictable de-
generated behavior of the reader model, such as
hallucination or the weak robustness to irrelevant
context, serve as the main reason of retriever incon-
sistency.

Inspired by our analysis, we propose Ensemble
of Retrievers (EoR), a trainable framework that
first samples from RALM with different retrievers
and then rejects based on a voting mechanism that
measures similarity between answers. Not only can
EoR reduce retriever errors by adaptively retrieving
from the most appropriate knowledge source, but
effectively reduce errors caused by unpredictable
degradation of the reader model by comparing an-
swers from different retrievers, based on our ob-
servation of inconsistent model error behavior and

2We distinguish different retrievers by their knowledge
sources and text processing methods. We consider two retriev-
ers equal if and only if their retrieved text chunks are exactly
the same for the same query. Retrieval-free could be thought
of a singular retriever which reads the query and outputs an
empty set.

the intuition that incorrect answers vary while cor-
rect answers are always similar. By introducing
controlling parameters in our framework, we can
easily construct an optimization problem which
can be solved by a heuristic search algorithm, and
automatically search for the optimal retriever pool
used for sampling. Our framework is compatible
with any LLM and does not require any training on
them. Experiment shows that EoR can effectively
improve the performance consistency compared to
RALM with a single retriever, thereby improving
the corpus performance on ODQA.

2 Retrievers Are Inconsistent

To investigate the example-level inconsistent behav-
ior across retrievers and the reasons behind it, we
adopt the single-hot short-form ODQA task, which
consists of factual questions with short and clear
answers, as our benchmark task. The straightfor-
ward task format and reliable automatic evaluation
metrics (Kamalloo et al., 2023) enable us to quickly
and accurately evaluate the correctness of model
responses and retrieved documents, facilitating in-
depth theoretical and empirical analysis.

2.1 Experimental Setup

We adopt the zero-shot in-context RALM (Ram
et al., 2023) which directly prepends the retrieved
documents to the input query based on the prompt
template (see Appendix C.2). This naive yet effi-
cient framework have been widely used in recent
works (Gao et al., 2023b). We employ Llama2-
chat7B, 13B (Touvron et al., 2023) and ChatGPT3

as our base LM and perform greedy-search on all
response generations to reduce the hallucination
brought by sampling and guarantee reproducibility.

Retrievers: We characterize retrievers by their
individual knowledge sources and the diverse
knowledge processing methods. We adopt three
different knowledge sources: Search Engine (SE),
Wikipedia (Wiki) and model generated parametric
knowledge (PK). Specifically, we choose Google
as our search engine and directly forward the orig-
inal query to the Google Search API;4 We imple-
ment DPR (Karpukhin et al., 2020), which use
English Wikipedia dump from Dec. 20, 2018 as
the documents source, to retrieve from Wikipedia;
For parametric knowledge, we follow GenRead
(Yu et al., 2023) to directly prompt the base LM

3gpt-3.5-turbo-instruct
4https://serper.dev/
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to generate background documents to answer the
query.

As for knowledge processing methods, we adopt
four main operations: truncation, concatenation,
reranking and compression. Truncation here partic-
ularly refer to select top-k text chunks from sorted
text list,5 denoted by "@k"; Concatenation here
specifically refers to concatenate text from differ-
ent sources, denoted by "&". Particularly, we use
Hybrid (HB) to represent the concatenation of text
chunks from all three original knowledge sources;
For reranking (denoted by "@RR"), We adopt We-
bGLM’s (Liu et al., 2023b) reranking model, a
Contriever (Izacard et al., 2022) model re-trained
with model extracted data. It is reported with better
performance than vanilla Contriever; In the case
of Compression (denoted by "@CP"), we directly
prompt the base LM to summarize the input text,
as LLM have demonstrated notable capabilities in
extracting information (Yang et al., 2023; Liu et al.,
2023b).

It is intractable to exhaust all retriever combi-
nations, hence we manually design eight typical
retrievers (we try to keep their output documents
in similar length) and the compressed version of
them except for parametric knowledge,6 for a to-
tal of 15 retrievers. We also regard retrieval-free
(denoted by ReFree) as a special singular retriever.
Full retrievers list and processing details could be
found in Appendix C.1. We use the combination of
operation abbreviations to represent the retriever,
the operation priority order follows @RR >@k>&
>@CP. For example, SE@RR@5&Wiki@5 stands
for first reranking the search engine results and then
concatenating the top-5 reranked search engine text
chunks and the top-5 wiki chunks.

Datasets: We experiment on three English
ODQA datasets: Natural Questions (NQ;
Kwiatkowski et al., 2019), Web Questions (WebQ;
Berant et al., 2013) and TriviaQA (Joshi et al.,
2017), details refer to Appendix C.3. We evaluate
Llama2-chat7B, 13B on the full validation split,7

whereas for ChatGPT, we randomly sample 500
questions from each split for evaluation because of
budget limitation.

Evaluation Metrics: We need two kinds of met-

5Some knowledge sources embrace innate ranking prop-
erty such as google and DPR.

6Model generated documents are generally in short length,
hence we do not compress them.

7The validation set of WebQ contains only 300 questions,
hence we use the train split instead.

Figure 2: Boxplot displaying the distribution of MRLR
of 15 different retrievers across different dataset and
models.

rics, one to evaluate the correctness of answers and
one to evaluate the example-level inconsistency.
Following Kamalloo et al. (2023), we adopt BEM
score (Bulian et al., 2022), a semantic similarity
metric specifically developed for QA tasks, to eval-
uate QA accuracy with threshold 0.8.8 It is reported
to have good correlation with humans and cope
with syntactical variation of answers.

As for measuring example-level inconsistency,
we propose two naive metrics: Mean Relative Win
Ratio (MRWR) and Mean Relative Lose Ratio
(MRLR). Assuming we have M different retrievers
R = {r1, r2, ..., rM} and a dataset with N samples
D = {< qn, an >}Nn=1. For retriever rm, we can
evaluate the correctness of model response for each
sample sn =< qn, an >, denoted by Im(n) = 1
if rm answers correctly on sample sn otherwise
0. Then we can calculate the Relative Win Ra-
tio (RWR) of retriever ri over another retriever rj ,
which is defined as:

RWR(i, j) =
∑N

n=1 I
i(n) ∗ (1− Ij(n))

∑N
n=1 1− Ij(n)

(1)

Clearly, RWR(i, j) represents the proportion of
questions answered incorrectly by retriever rj that
were correctly answered by retriever ri. The
MRWR and MRLR are calculated by respectively
averaging RWR across rows and columns:

MRWR(i) =
1

M − 1

∑

j ̸=i

RWR(i, j) (2)

MRLR(i) =
1

M − 1

∑

j ̸=i

RWR(j, i) (3)

8We also tried Exact Match, the results are similar.
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Figure 3: Corpus-level performance of different retrievers evaluated by BEM Accuracy on different datasets with
ChatGPT as base LM. The order of retrievers is sorted by performance on NQ.

MRLR and MRWR represent the degree of re-
triever inconsistency. Particularly, MRLR equals
zero represents retriever ri consistently outper-
forms all other retrievers.

2.2 Experimental Results

Figure 1 shows the RWR between different retriev-
ers on NQ with ChatGPT as the base LM. We can
observe significant inconsistency between any two
different retrievers. Even for the top-performing
retriever, Wiki@10 (62.2% BEM Acc), 26% of its
failed questions can be correctly answered by the
losest-ranked retriever, SE@1 (54.0% BEM Acc).
In Figure 2, we compare the MRLR of all 15 re-
trievers across different datasets and models. The
result indicates that, on average, more than 16% of
questions incorrectly answered by one retriever can
be addressed by an alternative retriever. This phe-
nomenon is prevalent across different base models
and datasets, and no evident pattern is observed
that larger model can alleviate this phenomenon.
The example-level inconsistency also results in the
corpus-level performance inconsistency, see Figure
3, the performance curve of different retrievers on
TriviaQA and WebQ do not consistently show a
monotonic trend as the sorted NQ curve.

3 Why Dose Retriever Inconsistency
Happen?

Before delving into the reasons behind retriever
inconsistency, we firstly formulate the single-hop
short-form ODQA problem and the RALM model.
Let q ∈ Q denote the factoid question from the
ODQA task and a ∈ A denote an answer to q
(can be correct or wrong). We use Aq(a) ⊂ A to
denote the semantic equivalence class of the answer
a to the question q and A∗

q ⊂ A for the set of all

correct answers to q. We assume the existence and
uniqueness of A∗

q for simplicity.9

We consider a vanilla RALM M consisting
of a probabilistic Retriever R and a probabilis-
tic Reader G. The Retriever R takes in a query
q and return a text string d ∼ R(q) ∈ P(D). We
call d document and use D to denote the set of
all available documents, P(D) to denote the set
of all probability measures over D. The Reader
G reads the document d and generate a response
y ∼ G(q, d) ∈ P(A) based on query q.10 We
use random variable M(q) to represent the answer
generated by the RALM and the event, RALM cor-
rectly answers the query q, can be formally written
by M(q) ∈ A∗

q . We use Aq(a) ∈ d to denote
that the document d contains a syntactical varia-
tion of the answer a for query q, then we define
D∗

q = {d |A∗
q ∈ d}, i.e. the set of documents that

contains the correct answer for q.

3.1 Error Decomposition
We now proceed to introduce three key errors con-
tributing to the failures of the RALM.

Retriever Error Er: Given a query q and a
retriever R, Retriever Error, denoted by Er, repre-
sents the circumstance in which the document re-
turned by Retriever R does not contain the ground-
truth answer for a query q, formally defined by:

Er(q,R) := {d /∈ D∗
q , given d ∼ R(q)}

Hallucination Error Eh: Given a query q, a
document d and a Reader G, Hallucination Er-

9Existence means A∗
q is not empty and Uniqueness means

that for any a ∈ A∗
q ,A(a) = A∗

q . This assumption is reason-
able for single-hop short-form ODQA because of its simple
task format.

10For deterministic retriever and reader, R(q) and G(q, d)
collapse to the one-point distribution.
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ror, denoted by Eh, stands for the case where the
Reader G generates an answer y that is not present
in the document d, i.e.

Eh(q, d,G) := {A(y) /∈ d, given y ∼ G(q, d)}

which shares a similar definition to the Grounding
Error in Baek et al. (2023).

Extraction Error Ee: Given a query q, a docu-
ment d and a Reader G , Extraction Error, denoted
by Ee, stands for the situation where the Reader
G extracts the wrong portion from a correctly re-
trieved document, formally defined by:

Ee(q, d,G) := {y /∈ A∗
q and A(y) ∈ d,

given d ∈ D∗
q , y ∼ G(q, d)}

The probability that these three errors occur for
given q and RALM M can be written by:

Eq,R
r := Pd∼R(q)(d /∈ D∗

q)

Eq,G
h (d) := Py∼G(q,d)(A(y) /∈ d

∣∣ d)
Eq,G
e (d) := Py∼G(q,d)(y /∈ A∗

q ,A(y) ∈ d
∣∣ d ∈ D∗

q)

Following above definition, we are able to show
that the probability of RALM M failing on the
query q, EM(q) := P(M(q) /∈ A∗

q), can be de-
composed into:11

EM(q) = Ed∼R(q)

[
I{d∈D∗

q} ·
(
Eq,G
h (d) + Eq,G

e (d)
)
+

I{d/∈D∗
q} ·

(
1− Eq,G

luck(d) · E
q,G
h (d)

)]
(4)

where Eq,G
luck := P(y ∈ A∗

q

∣∣A(y) /∈ d, d /∈ D∗
q)

represents the probability that M luckily ‘halluci-
nate’ the correct answer given an incorrect retrieved
document, we call this event Lucky Guess and de-
note it by Eluck. Details of the derivation can be
found in Appendix A.

3.2 Retriever Inconsistency Stems From
Irregular Error Patterns

As shown in equation 4, RALM’s failure on the
single-hop short-form ODQA problem can be fully
described by three errors, Retriever Error Er, Hal-
lucination Error Eh and Extraction Error Ee, and a
special scenario, Lucky Guess Eluck. As a result,
irregular example-level occurrence of any of these

11For deterministic RALM, the decomposition can be writ-
ten more concisely: P(M(q) /∈ A∗

q) = (1−Er) (Eh + Ee)+
Er (1− EluckEh)

Figure 4: Error Relative Win Ratio between different
Retrievers with ChatGPT as base LM, evaluated on NQ
validation set. 0 represents the column retriever consis-
tently outperforms the row retriever concerning error
occurrence and -1 means at least one of the retrievers
is free of this error. We only show part of the result be-
cause of space limitation, but the finding is same, more
graphs please refer to Appendix D.

four types of errors12 will contribute to the incon-
sistent behavior of the whole RALM. To quantita-
tively measure the irregular pattern of each error
across different retrievers, we follow the similar
definition of Relative Win Ratio in section 2.1 to
define the RWR for error E, RWRE , as:

RWRE(i, j) =

∑N
n=1(1− IiE(n)) ∗ I

j
E(n)∑N

n=1 I
j
E(n)

(5)

where IiE(n) = 1 if error E occurs for sample sn
and retriever ri, more details refer to Appendix B.
Therefore, RWRE(i, j) represents the proportion
of Retriever Errors made by retriever rj that are
avoided by ri, and RWRE(i, j) = 0 implies that
rj consistently outperform ri.

In Figure 4, we show the results of different er-
rors, where the retrievers are sorted in descending
order by their corpus-level performance (Figure 3).
For Retriever Error, we observe significant bidi-
rectional RWREr between retrievers with different
sources (such as 0.62/0.36 for Wiki@10 versus PK)
which indicates the innate differences of knowl-
edge sources serve as a main reason for the incon-
sistency of retrieval errors. As a result, retrievers

12We still use the term ’error’ to represent the Lucky Guess
event for simplicity.
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with hybrid sources (containing concatenation op-
eration "&") witnessed more consistent behaviors
over other retrieves, see the low column RWREr

values of them, although still suffer from a small
portion of unpredictable errors caused by different
processing methods.

As for Extraction Error, we observe a widespread
inconsistency across all retrievers. In particular,
even SE@RR@5&Wiki@5 and SE@2&wiki@5,
which share a large portion of contents and
both contain the correct answer,13 obtain non-
neglectable bidirectional RWREe (0.31/0.27). We
believe these ubiquitous inconsistent behaviors
stem from Reader G’s weak robustness to long and
irrelevant contexts (Liu et al., 2023a; Shi et al.,
2023). A similar phenomenon is observed in Hal-
lucination Error, but with more severe randomness.
Kalai and Vempala (2023) demonstrate that hallu-
cination is inevitable for a statistical reason.

Therefore, the inconsistent occurrence patterns
of three errors collectively contribute to unpre-
dictable RALM’s degeneration. Furthermore,
Lucky Guess, which compensate the mistakes
made by retriever error, also demonstrate an in-
consistent behavior and the irregular occurrence
will further exacerbating retriever inconsistency.

4 Ensemble of Retrievers

Our analysis provides a strong rationale for adopt-
ing an ensemble of retrievers, which can retrieve
from different sources, and leverage the irregular
error behavior to reduce the degeneration of the
reader model. In fact, we can calculate the the-
oretical upper bound of the ensemble of retriev-
ers by assuming a perfect voting mechanism that
will always select the correct answer as long as
one retriever outputs the correct one, see figure 5.
It demonstrates an obvious monotonic increasing
trend implying the great potential of the ensemble
of retrievers. However, the variability in perfor-
mance within models with the same retriever pool
size underscores the importance of understanding
both what to include in the ensemble and how to
effectively combine them.

4.1 Our Method

We propose EoR, a trainable generate-then-rerank
framework that can dynamically determine what
to retrieve and how to retrieve. Formally, suppose

13This comes from our constructing and Extraction Error
estimation methods, see Appendix B and C.1

Figure 5: The upper bound of BEM Accuracy by en-
sembling different retrievers on NQ with ChatGPT as
base LM. Each boxplot represents the distribution of the
upper bound for different retriever combinations with
the same pool size. The dashed line shows the best sin-
gle retriever performance.

we have M different retrievers R = {ri}Mi=1 and
a reader model G. EoR accepts an input query q
and first generates M responses based on different
retrievers, written as ym = G(q, rm(q)), ym ∈
A, m ∈ {1, 2, ...,M}, then the voter module
Svoter : AM → RM takes in the responses and
calculates a score sm for each response ym, i.e.
Svoter(y1, y2, ..., yM ) = [s1, s2, ..., sm].

The voter module comprises two functions, sim-
ilarity function Ssim : A × A → R and pooling
function Spool : RM−1 → R. The similarity func-
tion measures the semantic similarity between two
responses. Specifically, we consider a weighted
sum of multiple similarity measurement metrics,
written as:

Ssim(ym, yn
∣∣ωs) =

K∑

i

ωs
i · simi(ym, yn) (6)

where each sim(·, ·) represents a distinct semantic
similarity metric, such as EM, BERTScore (Zhang
et al., 2020), or the entailment score of a Natural
Language Inference (NLI; Bowman et al., 2015)
model, and K represents the total number of dif-
ferent metrics. The metric weight ωs can be prede-
fined or learned as parameters. As a result, each re-
sponse ym corresponds to M − 1 similarity scores,
and the pooling function is responsible for com-
pressing these scores into a single one. Typical
pooling functions can be mean, maximum, plural-
ity voting (Zhou, 2012) or majority voting (Wang
et al., 2023a), detailed formula refer to Appendix
C.4. Then the voter score sm can be formally writ-
ten as:

sm = ωr
m · Spool({Ssim(ym, yn

∣∣ωs)}n̸=m) (7)
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where ωr is preset or trainable parameters repre-
senting the confidence in different retrievers. The
final response is selected with the highest score:

MEoR(q) = ym∗

where m∗ = argmaxm Svoter({ym}
∣∣ωs, ωr)

4.2 Ensemble by Learning

Like the Stacking methods (Wolpert, 1992), we
can use our EoR model to generate data to train
the controlling parameters ωs and ωr. Specifi-
cally, assuming we have a training dataset Dtrain =
{< qi, ai >}Ni=1. We pass each query qi through
our model MEoR and get the corresponding re-
sponse yim for each retriever and the similarity
score simk(y

i
m, yin) for each answer pair yim, yin

under the k-th similarity metric. We can further
calculate the correctness of each response yim to the
ground truth answer ai with some evaluation met-
ric g, written as g(yim, ai). The evaluation metric g
can be EM, BEM, or even human annotation.

Finding the optimal ωs and ωr is equivalent to
solve the following optimization problem:

max
1

N

N∑

i=1

g(ym∗
i
, ai)

s.t. m∗
i = argmax

m
Svoter({yim}

∣∣ωs, ωr)

For given ωs and ωr, Svoter({yim}
∣∣ωs, ωr) can be

quickly evaluated by equation 6 and 7. Therefore,
we can solve this problem with a heuristic search
algorithm, which searches the feasible region by
continuously evaluating the objective function. To
conduct automatic retriever selection, we can sim-
ply replace ωr

m with ωr
m ·Iωr

m>t, where t is a hyper-
parameter. During searching, retrievers with small
weights will be directly ignored.

4.3 Experimental Setting

Same as section 2.1, we use NQ, WebQ and Triv-
iaQA as our experiment datasets and Llama2-
chat7B, 13B and ChatGPT as our base LM. We
search parameters on the validation split (train split
for WebQ) and report performance on the test split.
For ChatGPT, we randomly sample 500 questions
from each split same as Section 2.1. We use BEM
accuracy, EM and MRLR as evaluation metrics.

For EoR, we use the 15 retrievers introduced
in section 2.1 and ReFree, in a total of 16 retriev-
ers, as our initial retriever pool. We choose EM,

Figure 6: Visualization of Retriever weight ωr learned
with different base LM and datasets. Each row repre-
sents the weights from the same EoR model. A larger
circle with darker color implies a higher weight on the
corresponding retriever.

BertScore, and NLI14 as our base similarity metrics
in equation 6, and mean pooling for the pooling
function.15 We choose the Nelder-Mead method as
the heuristic search method and implement it with
SciPy. An upper bound of 0.6 is set for ωs and ωr

to prevent overreliance on a single retriever. We set
ωr filtering threshold t to 0.1.

4.4 Results and Analysis

EoR exhibits more consistent behavior than sin-
gle retriever models. Table 1 presents the re-
sults. EoR has a large reduction in MRLR com-
pared to the best-performed single retriever model
across all datasets and models except for one ex-
ception, which also results in a general corpus-
level performance increase. The only exception is
Llama2-chat13B’s performance on WebQ, which re-
sults from the discrepancy in retriever performance
between the train and test set, see Table 2. EoR
trained on the train set is prone to rely on Wiki@10
which suffers from a significant performance drop
in the test set.

EoR adaptively learns what to retrieve. Fig-
ure 6 visualizes the retriever weights learned by our
training methods. Almost every row demonstrates
a sparse weight distribution and the remaining re-
trievers with large weights all performed well on
the corresponding training dataset, which implies
that EoR can effectively filter out redundant or un-
reliable retrievers. We can also observe that EoR
with Llama-13b trained with WebQ indeed puts

14https://huggingface.co/microsoft/
deberta-xlarge-mnli

15Actually we can search for the optimal pooling methods
by transforming to a categorical variable, but our preliminary
experiments found that mean pooling is effective enough.
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Base R NQ WebQ TriviaQA
Models BEM EM MRLR BEM EM MRLR BEM EM MRLR

Llama2-chat7B

ReFree 34.35 26.70 23.64 51.82 38.34 24.47 55.57 51.29 48.84
Top R 55.57 46.32 16.33 56.25 43.16 15.66 77.34 72.50 20.11
EoR 58.92 50.22 12.36 59.45 46.16 10.66 80.62 75.85 10.62

Llama2-chat13B

ReFree 46.43 35.84 32.84 58.76 44.88 19.44 66.36 60.54 47.92
Top R 62.30 50.94 15.40 62.20 49.11 11.48 82.37 75.99 18.69
EoR 64.24 53.07 12.05 60.63 47.19 12.86 83.80 77.77 11.68

ChatGPT
ReFree 52.40 44.60 25.46 59.20 46.00 20.69 81.60 76.8 37.90
Top R 60.20 49.60 16.15 61.00 49.20 18.63 84.40 80.60 23.08
EoR 63.00 52.80 12.97 61.60 50.60 13.38 87.40 83.00 12.00

Table 1: Main results on the test split of NQ, WebQ and TriviaQA. Top R represents the best-performed single
retrieval model on the corresponding test set. Bold number indicates the best performance across retrievers with the
same base model and test set.

Retrievers Train Test

Wiki@10 62.10 58.17
SE@2&Wiki@5 61.90 60.97

SE@RR@5&Wiki@5 61.24 62.20
EoR 63.02 60.63

Table 2: comparison of Llama2-chat13B’s performance
with different retrievers on WebQ. Bold number repre-
sents the best-performed single retriever on the corre-
sponding split.

most of its weight on Wiki@10, while EoR with
Llama-7b and ChatGPT overcome the performance
deduction brought by distribution shift by spread-
ing the weight to more retrievers.

5 Related Work

Degeneration of RALMs: Many works have em-
pirically demonstrated that retrieval-augmentation
sometimes hurts LM’s performance (Ren et al.,
2023; Mallen et al., 2023; Yoran et al., 2023). Some
works attribute these failures to incorrect retrieval
(Mallen et al., 2023; Chen et al., 2022), while some
blame the degeneration on the weak robustness of
LM on irrelevant or long context (Ren et al., 2023;
Li et al., 2023; Gao et al., 2023a). Particularly,
Ren et al. (2023) found that a large portion of fail-
ure cases of ChatGPT come from extracting wrong
answers from the supporting documents. Li et al.
(2023) claimed that models are prone to ignore
noisy context, although sometimes they can gener-
ate correct answer with their parametric knowledge.
Liu et al. (2023a) showed that LM’s performance is
vulnerable to the position of relevant information

in a long context.
Relieving RALMs’s Degeneration: Some works
focus on improving retrieval recall (Izacard et al.,
2022; Trivedi et al., 2023; Ma et al., 2023), while
some works try to increase RALM’s robustness
on retrieved context by increasing reader model’s
ability to leverage context (Yoran et al., 2023; Liu
et al., 2023b) or increasing retriever precision (Xu
et al., 2023; Liu et al., 2023b). There are also
some works that try to solve this problem from a
system perspective, such as using rejection sam-
pling on the reader side to reduce the hallucination
(Menick et al., 2022; Asai et al., 2023), or dynam-
ically deciding whether to retrieve (Mallen et al.,
2023; Yoran et al., 2023; Asai et al., 2023; Wang
et al., 2023b; Jeong et al., 2024). However, all
these methods focus on improving the performance
of a single retriever-augmented LM, which makes
most of them compatible with our EoR framework
as long as they can be fitted into a retriever or a
reader.

6 Conclusion

This work focus on RALM’s performance inconsis-
tency across different retrievers. Our results show
that retriever inconsistency is ubiquitous across dif-
ferent retrievers and base models. To investigate
the reasons behind it, we theoretically decompose
RALM’s failure into four categories, which serve
as a basis for analyzing the degeneration behavior
of RALM. Our experiments based on our decom-
position reveal that innate differences in knowl-
edge sources and the unpredictable degeneration
of the reader model are the main causes for the
inconsistency behavior. We further propose En-
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semble of Retrievers (EoR), a trainable framework
compatible with any LLMs and retrievers. Our
experiments demonstrate that EoR can effectively
boost RALM’s performance by adaptively retriev-
ing from multiple knowledge sources and reducing
irregular errors made by the reader model.

7 Acknowledgements

We thank the HIT SCIR-DT group members for
their valuable discussions and insightful feed-
back. This research was supported by the Na-
tional Key Research and Development Program
(No. 2022YFF0902100) and Du Xiaoman (Bei-
jing) Science Technology Co., Ltd.

8 Limitation

Our theoretical derivation and empirical analysis
are all based on the naive singe-hop short-from
ODQA setting, whereas multi-hop reasoning and
long answer questions are quite common in real-
world. We do not choose the task under more com-
plex scenarios because of the absence of reliable
automatic evaluation metrics and costly human an-
notation fees, and we also believe that our con-
clusion and methods can be generalized to more
complex cases. This is because the retriever incon-
sistency comes from the irregular error occurrence
in RALM and intuitively more complex scenario
implies weaker robustness. Hence we hypothesize
that complex questions will not only exacerbate the
errors introduced in section 3.1 but introduce new
errors such as reasoning errors, which will result in
more severe inconsistent behaviors. But this need
further human evaluation to verify. Our EoR frame-
work can also work with more complex questions
by using reliable similarity metrics in the voting
mechanism and learning by human-annotated data.
Example-wise scoring functions (Asai et al., 2023)
can also be combined with the voter module by
some trainable parameters.

Another concern is the computational cost of
ensembling multiple retrievers. In fact, EoR can
leverage the batch inference of LLMs because
of the sharing of the reader model. Hence com-
pared with sampling on the reader side such as
self-consistency(Wang et al., 2023a), the additional
computational cost mainly comes from multiple re-
trievers and the answer similarity calculation with
smaller models. If we do not use parametric knowl-
edge from LLMs, most of them are computation-
ally efficient compared to LLMs and can be easily

parallelized.
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all possible answers. We use A∗
q to denote the set

of all correct answers to q and A(a) to denote the
semantic equivalent class of a. We assume the
uniqueness of the correct answers in the case of
equivalent class, i.e. for any y1, y2 ∈ A∗

q , we have
A(y1) = A(y2), hence A∗

q is an equivalent class
itself.

Now, let’s try to decompose the probability that
RALM M answers incorrectly given q.

P(M(q) /∈ A∗
q)

=Ed∼R(q)

[
Ey∼G(q,d)

[
I{y/∈A∗

q}
∣∣∣ d

] ]

=Ed

[
Ey

[
I{y/∈A∗

q} · I{d/∈D∗
q} + I{y/∈A∗

q} · I{d∈D∗
q}

∣∣ d
]]

=Ed

[
I{d∈D∗

q} · Ey

[
I{y/∈A∗

q}
∣∣ d /∈ D∗

q

]]
+

Ed

[
I{d/∈D∗

q} · Ey

[
I{y/∈A∗

q}
∣∣ d ∈ D∗

q

]]
(8)

Now, considering Ey∼G
[
I{y/∈A∗

q}
∣∣d /∈ D∗

q

]
:

Ey

[
I{y/∈A∗

q}
∣∣ d /∈ D∗

q

]

=P(y /∈ A∗
q

∣∣ d /∈ D∗
q)

=P(y /∈ A∗
q

∣∣A(y) /∈ d, d /∈ D∗
q) · P (Eh(q, d,G))+

P(y /∈ A∗
q

∣∣A(y) ∈ d, d /∈ D∗
q) · (1− P (Eh))

=
[
1− P(y ∈ A∗

q

∣∣A(y) /∈ d, d /∈ D∗
q)
]
· Eh(d)+

1 ·
(
1− Eh(d)

)

=1− P(y ∈ A∗
q

∣∣A(y) /∈ d, d /∈ D∗
q) · Eh(d)

=1− Eluck(d) · Eh(d) (9)

P(y /∈ A∗
q

∣∣A(y) ∈ d, d /∈ D∗
q) = 1 because if

y ∈ A∗
q , then A∗

q ∈ d by A(y) ∈ d. This is
contradicted to the definition of d /∈ D∗

q . Actually,
if the document d does not contain any semantic
variant of the ground-truth answer but contain a
semantic variant of y, then y can not be a semantic
variant of the ground-truth answer.

Similarly,

Ey

[
I{y/∈A∗

q}
∣∣ d ∈ D∗

q

]

=P(y /∈ A∗
q

∣∣A(y) /∈ d, d ∈ D∗
q) · P (Eh(q, d,G))+

P(y /∈ A∗
q , A(y) ∈ d

∣∣ d ∈ D∗
q)

=1 · P (Eh(q, d,G)) + P (Ee(q, d,G))
=Eh(d) + Ee(d) (10)

P(y /∈ A∗
q

∣∣A(y) /∈ d, d ∈ D∗
q) = 1 because if

y ∈ A∗
q , then A(y) = A∗

q by the uniqueness as-
sumption. Then A(y) /∈ d ⇒ A∗

q /∈ d which is
contradicted to the definition of d ∈ D∗

q .

Combing equation 4,5 and 6, we get:

P(M(q) /∈ A∗
q)

=Ed

[
I{d∈D∗

q} ·
(
Eh(d) + Ee(d)

)

+ I{d/∈D∗
q} ·

(
1− Eluck(d) · Eh(d)

)]
(11)

B Experiment Setting for Error Analysis

Assuming we have a dataset with N samples D =
{< qn, an >}Nn=1 and a RALM M with retriever
R. For certain example < qn, an >, we can calcu-
late the Answer Correctness Indicator,

IMA (n) = 1 if M(qn) = an,

the Retriever Error Occurrence Indicator,

IMEr
(n) = 1 if an /∈ R(qn)

and the Hallucination Error Occurrence Indicator,

IMEh
(n) = 1 if M(qn) /∈ R(qn)

for each query. We use BEM score with threshold
0.8 to evaluate the answer correctness and Exact
Match to evaluate whether a retrieved document
contains a certain piece of text, i.e. a ∈ d if a
normalized form of a is matched in d. We can then
evaluate the occurrence indicator for Extraction
Error and Lucky Guess:

IMEe
(n) = (1−IMEr

(n))·(1−IMEh
(n))·(1−IMA (n))

IMEluck
(n) = IMEr

(n) · IMEh
(n) · IMA (n)

Because of the training objective of LLM, it
tends to generate long answers, which affects the
EM accuracy on estimating whether a document
contain an answer. Although we have tried several
methods to shorten average answer length, such as
special instruction, there are still long answers with
unimportant content such as "Surely, the answer to
the question is". Therefore, before conducting error
analysis, we filter out the question with an answer
longer than 5 words generated by some retriever
and all answers to the same question generated by
other retrievers. We denote the filtered dataset as
D∗ with size N∗.

Following equation 5, we calculate the Relative
Win Ratio (RWR) for Retriever Error Er between
RALM Mi and Mj by:

RWREr(i, j) =

∑N∗
n=1(1− IMi

Er
(n)) ∗ IMj

Er
(n)

∑N∗
n=1 I

Mj

Er
(n)
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and the RWR for Hallucination Error Eh by:

RWREh
(i, j) =

∑N∗
n=1(1− IMi

Eh
(n)) ∗ IMj

Eh
(n)

∑N∗
n=1 I

Mj

Eh
(n)

As for the Extraction Error Ee, notably it is de-
fined under the condition that retriever returns the
correct documents. Therefore, when calculating
RWREh

(i, j), we only consider the circumstance
that both retriever in Mi and Mj return the correct
documents, i.e.

RWREe =

∑N∗
n=1(1− IMi

Ee
(n)) ∗ IMj

Ee
(n) ∗ I∗Ee

(n)
∑N∗

n=1 I
Mj

Ee
(n) ∗ I∗Ee

(n)

where I∗Ee
(n) = (1 − IMi

Er
(n)) ∗ (1 − I

Mj

Er
(n)).

Similarly, RWREluck
is defined by:

∑N∗
n=1(1− IMi

Eluck
(n)) ∗ IMj

Eluck
(n) ∗ I∗Eluck

(n)
∑N∗

n=1 I
Mj

Eluck
(n) ∗ I∗Eluck

(n)

where I∗Eluck
(n) = IM

i

Er
(n) ∗ IMi

Eh
(n) ∗ IMj

Er
(n) ∗

IM
j

Eh
(n).

C Implementation Details

C.1 Implementation Details of Retrievers

Following is the full list of 15 retrievers and
corresponding processing methods:
Wiki@10: We directly select the top-10 passages
returned from DPR (implement with pyserini) and
concatenate them. Each passage has an average
length of 100 words.
SE@1: We fetch and extract contents from the
top-1 URL returned by Google API and them
truncate it to 1000 words.
SE@4: We fetch and extract contents from the
top-4 URLs returned by Google API. For the
content in each URL, we select 250 words from
the beginning including the title. Then concatenate
them.
PK: We prompt the base LM to generate back-
ground documents to answer the query.
SE@RR@10: We fetch and extract contents
from all URLs returned by Google API. Then we
split all contents into chunks with an average of
100 words. We then use the reranking module
introduced, a retrained contriever model from
WebGLM, to encode the query and each chunk,
and select the top-10 chunks with highest cosines
similarity.

SE@2&Wiki@5: We concatenate the top-2
chunks from SE@4 and top-5 chunks from
Wiki@10.
SE@RR@5&Wiki@5: We concatenate the top-5
chunks from SE@RR@10 and top-5 chunks from
Wiki@10.
HB@RR@10: Similar to SE@RR@10, we fetch
and extract contents from all URLs returned by
Google API and then split all contents as long as
the document returned by PK into chunks with an
average of 100 words. We then put them with the
top-20 chunks returned by DPR and use reranking
module to rerank all chunks. We select the top-10
as the final result.
Wiki@10@CP: We summarize Wiki@10 with our
compression model.
SE@1@CP: We summarize SE@1 with our
compression model.
SE@4@CP: We summarize SE@4 with our
compression model.
SE@RR@10@CP: We summarize SE@RR@10
with our compression model.
SE@2&Wiki@5@CP: We summarize
SE@2&Wiki@5 with our compression model.
SE@RR@5&Wiki@5@CP: We summarize
SE@RR@5&Wiki@5 with our compression
model.
HB@RR@10@CP: We summarize HB@RR@10
with our compression model.

C.2 Prompt Templates
Template for generating Parametric Knoweldge
(PK):
we use {query} to represent the placeholder for
inserting the corresponding query. This template is
following (Yu et al., 2023).

Generate a background document to answer
the given question.
{query}.

Template for Compression (@CP):
we use {query} to represent the placeholder for
inserting the corresponding query and {document}
for the document to be compressed.

Please truthfully summarize the document
below, the summary should contain the most
important information relevant to answer the
query and be within 200 words:
query: {query}
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document: {document}

summary:

Template for Retrieval-free Generation:
we use {query} to represent the placeholder for in-
serting the corresponding query. We manually ex-
amine many different templates and select the one
with highest average validation set performance
with our automatic evaluation metrics.
Template for ChatGPT:

Please directly answer the following question
within 15 words:
{query}

Template for Llama2-chat, inspired by (Ren et al.,
2023):

Please directly answer the following question
with one or few words:
{query}

Template for Retrieval-Augmented Gener-
ation:
we use {query} to represent the placeholder for
inserting the corresponding query and {document}
for the document returned by retriever.
Template for ChatGPT:

Assuming the following paragraphs are true:

{document}

Please directly answer the following
question within 15 words:
{query}

Template for Llama2-chat:

Assuming the following paragraphs are true:

{document}

Please directly answer the following
question with one or few words:
{query}

C.3 Datasets

NQ (Kwiatkowski et al., 2019) consists of ques-
tions collected from real Google search queries and
the answers are extracted from Wikipedia by hu-
mans.

Datasets Train Valid Test
NQ 79,168 8,757 3,610

WebQ 3,478 300 2,032
TriviaQA 78,785 8,837 11,313

Table 3: Dataset statistics

WebQ (Berant et al., 2013) contains questions col-
lected from the Google Suggest API and answers
collected by AMT workers based on Freebase.
TriviaQA (Joshi et al., 2017) contains question-
answer pairs from several trivia and quiz-league
websites.
We use the same dataset splits as GenRead (Yu
et al., 2023). They unify the formats of all three
datasets and the datasets can be download from this
URL. Dataset statistics can be found in Table 3.

C.4 Pooling Functions

Assuming we have N similarity scores
s1, s2, ..., sN , then the pooling functions
Spool : RN → R are defined as follows:
Mean Pooling:

Spool(s1, s2, ..., sN ) =
1

N

N∑

i=1

si

Max Pooling:

Spool(s1, s2, ..., sN ) = max{s1, s2, ..., sN}

Majority Voting:

Spool(s1, s2, ..., sN ) = I{∑N
i I{si>s} ≥ N

2

}

where s is the threshold to identify semantic equiv-
alent answers. The majority voting pooling filters
out all answers with the number of semantic equiv-
alent answers less than N

2
Plurality Voting: Assume we have M answers,
for the i-th answer, we have calculated M-1 sim-
ilarity scores si,1, si,2, ..., si,M−1. We denote
c∗i =

∑M−1
j I{si,j>s} which represent the es-

timated number of semantic equivalent answers
given above similarity scores. Then the plurality
voting pooling score for the i-th answer is given
by:

Spool(si,1, si,2, ..., si,M−1) = I{
c∗i=maxk c∗k

}
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D Complete Figures

Figure 7, 8 and 9 show the Error RWR between all
retrievers on different combination of datasets and
models. We can see the findings are same as what
we discussed in section 3.2.
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Figure 7: Full Error Relative Win Ratio between different Retrievers with ChatGPT as base LM, evaluated on NQ
validation set.
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Figure 8: Full Error Relative Win Ratio between different Retrievers with Llama-chat 7b as base LM, evaluated on
WebQ train set.
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Figure 9: Full Error Relative Win Ratio between different Retrievers with Llama-chat 13b as base LM, evaluated on
TriviaQA validation set.
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