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Abstract

Aspect-based sentiment analysis (ABSA) iden-
tifies sentiment information related to specific
aspects and provides deeper market insights to
businesses and organizations. With the emer-
gence of large language models (LMs), recent
studies have proposed using fixed examples for
instruction tuning to reformulate ABSA as a
generation task. However, the performance is
sensitive to the selection of in-context exam-
ples; several retrieval methods are based on sur-
face similarity and are independent of the LM
generative objective. This study proposes an in-
struction learning method with retrieval-based
example ranking for ABSA tasks. For each tar-
get sample, an LM was applied as a scorer to
estimate the likelihood of the output given the
input and a candidate example as the prompt,
and training examples were labeled as positive
or negative by ranking the scores. An alternat-
ing training schema is proposed to train both
the retriever and LM. Instructional prompts
can be constructed using high-quality exam-
ples. The LM is used for both scoring and infer-
ence, improving the generation efficiency with-
out incurring additional computational costs
or training difficulties. Extensive experiments
on three ABSA subtasks verified the effec-
tiveness of the proposed method, demonstrat-
ing its superiority over various strong base-
line models. Code and data are released at
https://github.com/zgMin/IT-RER-ABSA.

1 Introduction

Aspect-based sentiment analysis (ABSA) (Zhang
and Liu, 2017) is a fine-grained text sentiment anal-
ysis technique that identifies sentiment informa-
tion related to specific aspects, and provides deeper
market insights for businesses and organizations.
ABSA consists of three subtasks: aspect term ex-
traction (ATE), aspect term sentiment classifica-
tion (ATSC), and aspect sentiment pair extraction
(ASPE). ATE identifies the aspects mentioned in
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the text, and ATSC determines the sentiment po-
larity associated with each aspect. Furthermore,
ASPE jointly performs ATE and ASPE to extract
sentiment tuples, including aspect terms and their
associated sentiments.

For ABSA tasks, most previous methods have
used transformer-based language models (LMs) in
either a pipeline or end-to-end framework (Chen
and Qian, 2020; Luo et al., 2020; Mao et al.,
2021; Marcacini and Silva, 2021; Yang and Li,
2021). By adding task-specific layers to the top
of the model, these models are typically initial-
ized from the pretrained checkpoint and then fine-
tuned on the downstream samples. Recently, gener-
ative models (Hosseini-Asl et al., 2022; Yan et al.,
2021; Zhang et al., 2021) have emerged to refor-
mulate ABSA tasks as generation tasks to pro-
duce a sequence with a special pattern, for exam-
ple, restaurant#positive and food#negative.
Based on the instruction-tuning paradigm (Mishra
et al., 2022), several studies (Scaria et al., 2023;
Varia et al., 2022) have further improved the gener-
ative approach using several predefined instruction
prompts (Scaria et al., 2023). Instruction tuning
allows generative models to tune themselves on a
few input-output examples.

The quality of the output generated by the
instruction-tuning model is highly dependent on
the quality of in-context examples. Well-crafted
instructions can help the model generate more accu-
rate and relevant outputs(Luo et al., 2024), whereas
poorly crafted instructions can lead to incoherent
or irrelevant results. Nevertheless, previous stud-
ies typically adopted a fixed strategy to use two or
more unchanged examples to generate the instruc-
tion template. If the examples are unrepresentative
of the target task, the model may be unable to learn
effectively.

For a target sample, for example, The falafel
was slightly overcooked and dry, but the chicken
was satisfactory, the example The price was too
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high, but the cab was amazing can be appropriate.
They share a similar syntactic structure, which can
contribute to imitation and generation. However,
such an example is unsuitable for another sample,
for example, The staff displays arrogance, and the
prices are considerably high for Brooklyn stan-
dards. Because the opinion of high in the example
may finally impact the judgment of the aspect price
of the target. Furthermore, the sample We enjoyed
our visit and utilized buses and cabs for transporta-
tion seems to have little relevance to the example
above. However, the aspect cab may be incorrectly
considered an aspect term based on the prompt of
the word cab in the example.

Empirical studies have demonstrated the use of
an additional language model as a scorer to produce
off-the-shelf sentence embeddings, for example,
BM25 (Robertson and Zaragoza, 2009), EPR (Ru-
bin et al., 2021) and LLM-R (Wang et al., 2023), for
similarity calculations to retrieve examples from
the training set. Several works explored training
a prompt retriever to select examples by measur-
ing surface similarity (Li et al., 2022; Liu et al.,
2022; Zhang et al., 2022). These methods have
two limitations: (i) the similarity calculation typ-
ically measures the distance in the latent space,
which is independent of the generation target in
instruction learning, and (ii) additional encoders
are necessary to obtain the representation used for
similarity calculations, which also incurs additional
computational costs and training difficulties.

This study proposes an instruction-tuning
method with retrieval-based example ranking for
ABSA tasks, comprising a retriever and infer-
ence LM. The LM is a T5 model (Raffel et al.,
2019) with an encoder-decoder structure and sev-
eral instruction-tuned versions (Chung et al., 2022;
Wang et al., 2022). The retriever returns the most
appropriate examples to form the instruction tem-
plate. Meanwhile, the LM scores the examples for
the retriever and generates the final results.

To achieve the training of LM and retriever si-
multaneously, an alternating training schema is pro-
posed. For each target sample, the candidates can
be divided into positive and negative examples ac-
cording to the log-likelihood provided by the LM.
Then, contrastive learning is applied to force the
sample to be near positive examples but distant
from negative examples. After composing high-
quality instructions, the LM can be finetuned using
a generative objective.

Unlike the previously proposed similarity calcu-
lation, the retriever evaluates the importance of can-
didate examples based on the log-likelihood of the
LM. This retrieval goal is consistent with the gen-
erative objective of the LM. In addition, the LM is
used for both scoring and inference, improving the
generation performance with tolerable additional
computational costs or training difficulties.

Extensive experiments were conducted on ATE,
ATSC, and ASPE tasks to verify the effectiveness
of the proposed method. The results show that the
proposed model substantially improves the perfor-
mance compared with several strong baselines.

The remainder of this paper is organized as fol-
lows. Section 2 briefly reviews the related studies.
Section 3 describes the proposed retrieval-based
example mining method for instruction learning
in ABSA. Section 4 summarizes the experiment
settings and empirical results. Finally, Section 5
concludes the paper.

2 Related Work

2.1 Aspect-Based Sentiment Analysis

Aspect-based sentiment analysis (Zhang and Liu,
2017) aims to analyze sentiment polarities toward
the specific aspects of a given text. In ABSA, text
is decomposed into several aspects, and sentiment
polarity, which is typically positive, neutral, or neg-
ative, is analyzed for each aspect. This approach
provides fine-grained, in-depth sentiment insights,
enabling businesses and organizations to better un-
derstand market and consumer perspectives.

Most approaches have focused on using encoder
structures to accomplish aspect extraction and senti-
ment identification, such as improved text encoding
using attention mechanisms (Marcacini and Silva,
2021; Yuan et al., 2020, 2022), multitask learn-
ing (Chen and Qian, 2020), and approaches based
on machine reading comprehension (Mao et al.,
2021). Some studies (Yan et al., 2021; Zhang et al.,
2021) introduced decoders to unify ABSA’s previ-
ous extraction and classification tasks into genera-
tive tasks. Recently, instruction prompts have been
introduced into generative methods (Varia et al.,
2022), achieve a solid few-shot performance by
making the model perform the correct action with
an apparent task description. Furthermore, fixed
examples were added to the instructions to sup-
plement the task description with more accurate
information, yielding significant performance im-
provements in the ABSA subtasks (Scaria et al.,
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2ŷ

3ŷ

ˆ
my

...

...

0.9

0.5

0.23

0.1

...

...

...
...

Negative Candidate (C-)

Postive Candidate (C+)

CL

Gradient

Top-k

Template (T) ys

Output

sy NLL

Gradient

1. Example Retrieval

2. Task Inference

Top-k

Bottom-k

1̂x

ˆ
kx

ˆ
m kx

ˆ
mx ˆ

my

ˆ
m ky

ˆ
ky

1ŷ

Figure 1: Overall architecture of the proposed instruction tuning with retrieval-based examples ranking for ABSA.

2023).
However, the adaptability of the fixed examples

to different review texts is difficult to guarantee.
Liu et al. (2022) demonstrate that selecting contex-
tual examples significantly affects the downstream
performance. The intricate relationship between se-
lected examples and diverse review contexts under-
scores the need for a nuanced approach to ensure
robust and effective adaptation in various scenarios.

2.2 Prompt Retrieval

With the development of deep learning techniques,
dense retrieval (Karpukhin et al., 2020) has become
a widely used information retrieval method that
utilizes dense vectors to semantically match queries
and documents in the latent space. Compared with
sparse retrieval methods, dense retrieval exploits
the powerful modeling capabilities of pretrained
language models (PLMs) and may overcome the
linguistic mismatch problem. Therefore, dense
retrieval has become popular in current retrieval
technology.

In context learning, retrieval enhancement aims
to improve the performance of LMs in downstream
tasks by retrieving information-rich examples (Li
et al., 2023; Luo et al., 2023). In previous stud-
ies, unsupervised sentence encoders have often en-
coded training examples and retrieved their nearest
neighbors for each test instance (Liu et al., 2022).
In some studies (Das et al., 2021), a supervised
prompt retriever was trained to answer questions
on a knowledge base. This retriever relies on the
surface similarity to perform queries when it re-

ceives supervised training tailored to knowledge-
based queries. However, these methods tap only
into text associations, ignoring how the language
model understands these texts.

To address this problem, some researchers (Ru-
bin et al., 2021; Wang et al., 2023) have proposed
using the LM to score examples to train retrievers.
Unfortunately, these methods are limited because
they are only applicable to frozen large language
models. This constraint underscores the need for
more versatile methodologies that can extend be-
yond the confines of frozen LMs to enhance the
flexibility and generalizability of retriever training
strategies.

3 Retrieval-Based Instruction Tuning

Figure 1 shows the overall framework of the pro-
posed instruction-tuning method with retrieval-
based example ranking for ABSA. The training
process comprises two phases: example retrieval
and task inference. For example retrieval, a re-
triever is used to select several candidates for a
given sample. The inference LM was then used to
measure the likelihood of ranking the target and
candidates as scores. To train the retriever, we
selected the top-k candidates as positive samples
and the others as negative samples. Subsequently,
contrastive learning is performed to propagate the
gradients and update the retriever. For task infer-
ence, the retriever returns the most suitable exam-
ples and forms input instructions according to a
predefined template. The negative log-likelihood
of the generative results will train the LM.
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Figure 2: Template of instruction prompts. <DEF>
is the definition of the task; <ID>, the identity of the
examples; <x̂i> and <ŷi>, the input and output of the
examples, respectively; k , the total number of examples;
and <xs>, the input text.

3.1 Instruction Template
Figure 2 shows the instruction prompt template,
which comprises a task definition, examples, and
input text. In particular, a task <DEF> is avail-
able for different subtasks. For a given input text
<xs>, examples <E> = {(x̂i, ŷi)}ki=1 are selected
for instruction tuning, and the output conforms to
the formats of the different subtasks. Thus, the
instruction template for xs can be formally denoted
as Tmpl(DEF, {x̂i, ŷi}ki=1, xs).

Figure 3 shows the instruction prompts gener-
ated using the ATE, ATSC, and ASPE templates.
For ATSC, the aspect term is spliced together with
the review text as input through the fixed prompt
The aspect is, as shown in the underlined portion
of Figure 3.

3.2 Example Retrieval
Candidate Generation. Training set D consists of
several input-output pairs, i.e. D = {(xi, yi)}ni=1,
where x is the text, and y is the label. For a tar-
get sample (xs, ys), retriever R returns the top-m
candidates from the training set,

C = R((xs, ys), D) = {(x̂j , ŷj)}mj=1 (1)

Sample (xs, ys) should be excluded from the re-
trieval results.

The LM adopted the encoder-decoder architec-
ture of T5, which scores each candidate indepen-
dently. The scoring function is the log-likelihood of
output ys, which is consistent with the autoregres-
sive decoding objective of the LM, and is denoted
as

∆i = log p(ys|DEF, x̂i, ŷi, xs)

=

L∑

l=1

logp(yls | DEF, x̂i, ŷi, xs, y
<l
s ) (2)

where p(ys|DEF, x̂i, ŷi, xs) is the conditional
probability of y given task definition <DEF>, in-
put xs, and i-th candidate (x̂i, ŷi).

The candidate set is sorted in descending order
according to the score ∆i. The top-k candidates
form the set of positive samples C+, whereas the
bottom-k candidates form the set of negative sam-
ples C−. Contrastive learning is then applied to
train the retriever, allowing the retrieved results to
be scored as high as possible.

To reduce the computational cost of the scoring
function, only a portion of the training set with ratio
r is extracted to select the positive and negative
examples for the training of the retriever.
Retriever Training. A contrastive learning objec-
tive trains the retriever. The input is (Input: <x̂i
> Output: <ŷi>) for the candidates ci = (x̂i, ŷi) ,
and (Input: <xs>) for the target sample. Besides,
we followed Sentence-T5 (Ni et al., 2022) to aver-
age the encoder output as the representation for the
candidates and target sample,

hi = Mean(Enc(x̂i, ŷi)) (3)

hs = Mean(Enc(xs)) (4)

where hi and hs are the hidden representations of
the i-th candidate and target sample, respectively.
The distance for contrastive learning measures their
inner products, and is denoted as

Sim(xs, ci) = h⊤
s hi (5)

For the target sample, one positive example c+i is
randomly selected from the set of positive samples
C+, one negative example from the set of nega-
tive samples C−, and the other negative examples
come from B − 1 positive and B − 1 negative ex-
amples sampled for the other samples in the same
batch, where B is the batch size. The objective
function minimizes the negative log-likelihood of
the positive example for the target sample.

LCL(DEF, xs, c
+, c−1 , . . . e

−
2B−1) =

− log
eSim(xs,c+)

eSim(xs,c+) +
∑2B−1

j=1 eSim(xs,e
−
j )

(6)

3.3 Task Inference
We obtain the instruction template for inference by
retrieving the top-k examples using the retriever.
The LM predicts the probability of generating a
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Definition: The output will be the aspects (both implicit 

and explicit) which have an associated opinion that are 

extracted from the input text. In cases where there are no 

aspects the output should be noaspectterm.

Example 1-

Input: With the great variety on the menu , I eat here 

often and never get bored.

Output: menu

Example 2-

Input: They did not have mayonnaise, forgot our toast, 

left out ingredients (ie cheese in an omelet), below hot 

temperatures and the bacon was so over cooked it 

crumbled on the plate when you touched it.

Output: toast, mayonnaise, bacon, ingredients, plate

Now complete the following example-

Input: Boot time is super fast, around anywhere from 35 

seconds to 1 minute. 

Output:

Definition: The output will be the aspects (both implicit 

and explicit) which have an associated opinion that are 

extracted from the input text. In cases where there are no 

aspects the output should be noaspectterm.

Example 1-

Input: With the great variety on the menu , I eat here 

often and never get bored.

Output: menu

Example 2-

Input: They did not have mayonnaise, forgot our toast, 

left out ingredients (ie cheese in an omelet), below hot 

temperatures and the bacon was so over cooked it 

crumbled on the plate when you touched it.

Output: toast, mayonnaise, bacon, ingredients, plate

Now complete the following example-

Input: Boot time is super fast, around anywhere from 35 

seconds to 1 minute. 

Output:

(a) ATE

Definition: The output will be 'positive' if the aspect 

identified in the sentence contains a positive sentiment. If 

the sentiment of the identified aspect in the input is 

negative the answer will be 'negative'. Otherwise, the 

output should be 'neutral'. For aspects which are 

classified as noaspectterm, the sentiment is none.

Example 1-

Input: It is fast booting up , shutting down, and 

connection with the internet. The aspect is connection 

with the internet.

Output: positive

Example 2-

Input: And the ram (the thing that makes it faster) comes 

sporting 2 gigs for high performance to handle more stuff 

at once and surf the web a whole lot faster than before. 

The aspect is performance.

Output: positive

Now complete the following example-

Input: Boot time is super fast, around anywhere from 35 

seconds to 1 minute. The aspect is  Boot time.

Output:

Definition: The output will be 'positive' if the aspect 

identified in the sentence contains a positive sentiment. If 

the sentiment of the identified aspect in the input is 

negative the answer will be 'negative'. Otherwise, the 

output should be 'neutral'. For aspects which are 

classified as noaspectterm, the sentiment is none.

Example 1-

Input: It is fast booting up , shutting down, and 

connection with the internet. The aspect is connection 

with the internet.

Output: positive

Example 2-

Input: And the ram (the thing that makes it faster) comes 

sporting 2 gigs for high performance to handle more stuff 

at once and surf the web a whole lot faster than before. 

The aspect is performance.

Output: positive

Now complete the following example-

Input: Boot time is super fast, around anywhere from 35 

seconds to 1 minute. The aspect is  Boot time.

Output:

(b) ATSC

Definition: The output will be the aspects (both implicit 

and explicit) and the aspects sentiment polarity. In cases 

where there are no aspects the output should be 

noaspectterm: none.

Example 1-

Input: Great food, good size menu, great service and an 

unpretensious setting.

Output: food: positive, menu: positive, service: positive, 

setting: positive

Example 2-

Input: They did not have mayonnaise, forgot our toast, 

left out ingredients (ie cheese in an omelet), below hot 

temperatures and the bacon was so over cooked it 

crumbled on the plate when you touched it.

Output: toast: negative, mayonnaise: negative, bacon: 

negative, ingredients: negative, plate: negative

Now complete the following example-

Input: Boot time is super fast, around anywhere from 35 

seconds to 1 minute. 

Output:

Definition: The output will be the aspects (both implicit 

and explicit) and the aspects sentiment polarity. In cases 

where there are no aspects the output should be 

noaspectterm: none.

Example 1-

Input: Great food, good size menu, great service and an 

unpretensious setting.

Output: food: positive, menu: positive, service: positive, 

setting: positive

Example 2-

Input: They did not have mayonnaise, forgot our toast, 

left out ingredients (ie cheese in an omelet), below hot 

temperatures and the bacon was so over cooked it 

crumbled on the plate when you touched it.

Output: toast: negative, mayonnaise: negative, bacon: 

negative, ingredients: negative, plate: negative

Now complete the following example-

Input: Boot time is super fast, around anywhere from 35 

seconds to 1 minute. 

Output:

(c) ASPE

Figure 3: Demonstrations of instruction prompts.
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Figure 4: Alternating training schema.

target ys, trained by minimizing the negative likeli-
hood loss:

LNLL =

−
L∑

l=1

logp(yls | DEF, {x̂i, ŷi}ki=1, xs, y
<l
s ) (7)

where L is the output length of the target sample.
The LM receives input only in the form of in-

structions. Examples can be converted into instruc-
tion prompts using ATE, ATSC, and ASPE tem-
plates. To train the LM, only the top-1 scoring
example is applied for fine-tuning,

ỹs = LM(Tmpl(DEF, x̂+1 , ŷ
+
1 , xs)) (8)

For inference, instruction prompts are con-
structed using the top-k examples. Upon receiving
instructions, the LM produces an output specific to
the current task and input xs,

ỹs = LM(Tmpl(DEF, {x̂i, ŷi}ki=1, xs)) (9)

3.4 Alternating Training Schema
The training of a retriever depends on the scor-
ing of the LM. However, the LM training requires

Dataset Split #Pos #Neg #Neu #No #T

Lap14 train 987 866 460 1557 3045
test 341 128 169 378 800

Rest14 train 2164 805 633 1020 3041
test 728 196 196 194 800

Rest15 train 912 256 36 482 1315
test 326 182 34 284 685

Rest16 train 1240 439 69 766 2000
test 468 117 30 256 676

Table 1: Statistics for experiment datasets. #Pos, #Neg,
and #Neu denote the number of aspects with positive,
negative, and neutral sentiments, respectively, #No de-
notes the number of aspect-free terms, and #T denotes
the total number of samples.

the retriever to form an instruction template. The
instruction tuning performance depends on the col-
laborative effort between the two models.

Thus, we adopted an alternating training schema
for the retriever and language models, as shown in
Figure 4. In particular, the finetuned LM in the t−1
step is used as a scoring model to train the retriever
in the t step. The LM in the t step is finetuned by
the instruction generated by the updated retriever.

4 Experiments

4.1 Datasets
Experiments were conducted on the Semeval-2014,
15, and 16 datasets (Pontiki et al., 2014, 2015,
2016), which are benchmark dataset for the ABSA
task. The benchmark comprises four datasets, in-
cluding customer reviews from two domains, lap-
tops (Lap14) and restaurants (Rest14, Rest15, and
Rest16). The model performance was measured
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using F1 scores for the ATE and ASPE tasks and
accuracy for the ATSC task. Table 1 provides the
details of the data distribution. Conflict labels were
ignored.

4.2 Implementation Details

The LM was initialized using the flan-t5-base1.
AdamW (Loshchilov and Hutter, 2019) was applied
to optimize the model with an initial learning rate of
5e-5. The training batch size was 2. The gradient
accumulation steps were set to 2. The number
of epochs was 4 for the retriever, and 2 for the
language model. The maximum sequence length
was 128. Data ratio r of the training retriever was
set to 0.1. The number of examples was one for
the training phase and from zero to seven for the
evaluation phase; in the comparative experiments,
k was set to 4. The step t of alternating training
schema was 3.

4.3 Baselines

The baseline models that emerged from the compar-
ative experiments were categorized into generative
and non-generative models,

• 1) Generative methods: GPT2med (Hosseini-
Asl et al., 2022), BARTABSA (Yan et al.,
2021), GAS (Zhang et al., 2021), IT-MTL
(Varia et al., 2022), InstructABSA (Scaria
et al., 2023);

• 2) Non-generative methods: SPAN (Hu
et al., 2019), GRACE (Luo et al., 2020),
ABSA-DeBERTa (Marcacini and Silva, 2021),
LSAT (Yang and Li, 2021), RACL-BERT
(Chen and Qian, 2020), Dual-MRC (Mao
et al., 2021), Seq2Path (Mao et al., 2022).

The number of paths k in Seq2Path is 4 and the
results are from Mao et al. (2022). The results
of other baselines are from Scaria et al. (2023).
A more detailed descriptions about baselines are
provided in Appendix A.

4.4 Comparative Results

Tables 2, 3, and 4 summarize the results of the
proposed method relative to those of the baseline
methods. The highest performance is in bold.

For the ATE task, the proposed method achieved
F1 scores of 79.93 and 83.85 on the Rest15 and

1https://huggingface.co/google/flan-t5-base

Model Lap14 Rest14 Rest15 Rest16

GRACE 87.93 85.45 - -
SPAN 83.35 82.38 - -

GPT2med 82.04 75.94 - -
BARTABSA 83.52 87.07 75.48 -

IT-MTL 76.93 - 74.03 79.41
InstructABSA1 91.40 92.76 75.23 81.48
InstructABSA2 92.30 92.10 76.64 80.32
Ours (k = 4) 90.05 90.72 79.93 83.85

Table 2: ATE subtask results in terms of the F1 scores
(%).

Model Lap14 Rest14 Rest15 Rest16

SPAN 81.39 89.95 - -
ABSA-DeBERTa 82.76 89.46 - -

LSAT 86.31 90.86 - -
RACL-BERT 73.91 81.61 74.91 -
Dual-MRC 75.97 82.04 73.59 -

InstructABSA1 80.62 86.25 83.02 89.1
InstructABSA2 81.56 85.17 84.5 89.43
Ours (k = 4) 91.47 90.44 94.31 97.47

Table 3: ATSC subtask results in terms of the accuracy
(%).

Rest16 datasets, respectively, exceeding the base-
lines by 3.29% and 2.37%, respectively. In ad-
dition, it achieved better scores on the Lap14
and Rest14 datasets but was approximately 2%
lower than InstructABSA, which used fixed ex-
amples. This might be related to the instruction
template and the pre-trained language model. In-
structABSA utilizes examples that distinguish be-
tween sentiment polarity and employs the pre-
trained language model tk-instruct-base-def-pos2,
which could contribute to the performance varia-
tion. Nevertheless, the proposed model only per-
forms worse than InstructABSA on the Rest14 and
Lap14 datasets for the ATE task. We speculate two
potential reasons for this:

1. The Rest14 and Lap14 datasets are larger thus
have more retrievable examples compared to
Rest15 and Rest16, resulting in increased un-
certainties in example variations. This might
lead the model to rely on the knowledge pro-
vided by the examples overly.

2. The ATE task might be relatively straightfor-
ward and offer limited knowledge for improve-
ment.

2https://huggingface.co/allenai/tk-instruct-base-def-pos
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Figure 5: The impact of the number of examples on performance (%) on Rest14.

Model Lap14 Rest14 Rest15 Rest16

GRACE 75.97 78.07 - -
SPAN 68.06 74.92 - -

GPT2med 53.55 60.07 - -
GAS 68.64 77.13 66.78 73.64

Seq2Path 70.00 77.01 68.35 75.87
BARTABSA 67.37 73.56 66.61 -

IT-MTL 66.07 - 67.06 74.07
InstructABSA1 78.89 76.16 69.02 74.24
InstructABSA2 79.34 79.47 69.39 73.06
Ours (k = 4) 81.49 80.73 73.41 78.64

Table 4: ASPE subtask results in terms of the F1 scores
(%).

For the ATSC task, the proposed method
achieved optimal performances on the Lap14,
Rest15, and Rest16 datasets, significantly outper-
forming the baselines (5-10% improvement) and
achieving a similar performance to that of LSAT
on the Rest14 dataset.

For the ASPE task, the proposed method sur-
passed the baselines on all four datasets, obtaining
F1 scores of 81.49, 80.73, 73.41, and 78.64.

Moreover, for the ATSC task, the model per-
formed better on smaller datasets (Rest15, Rest16)
than on larger datasets (Lap14 and Rest14).

4.5 Number of Examples

To explore the impact of the number of examples
on the performance, we used a retriever to extract
different numbers of examples for model inference.
The maximum number of examples was 7 to pre-
vent the input text from exceeding the maximum
sequence length of the model. Figure 5 shows the
results.

Overall, the performances show two trends as
the number of examples increases: (i) rising and
then falling or (ii) rising. The use of examples

allows the model to achieve a significant perfor-
mance gain. As the number of examples increases,
the model can acquire more knowledge from ben-
eficial examples. However, this performance en-
hancement trend is not always significant, and an
increase in the number of examples can harm the
model performance. Owing to the limited capacity
of the retriever and limited number of beneficial
examples for the query in the example pool, not all
retrieved examples were beneficial or harmful to
the query.

4.6 Ablation Study

Table 5 presents the results of the ablation study
used to investigate the effectiveness of each compo-
nent; w/o alternating training means that alternat-
ing training schema was not used; w/o retriever,
the retriever was removed and fixed examples were
used; w/o example, examples were not used; and
w/o instruction, instruction prompts were not used.
The results demonstrate the effectiveness of each
part of the proposed method.

For further analysis, the performance decrease
in the term w/o alternating training suggests that
alternating training schema can better narrow the
gap between the retriever and LM. Additionally,
because the term w/o retriever outperforms the
term w/o example overall, although inferior to the
term w/o example in some cases, suggests that
the model can learn from the examples, but fixed
examples function differently for different target
samples and are not conducive to inference for
some extreme situations.

4.7 The Role of Fine-tuning Language Models

The Table 6 presents the results of our experiments.
For the ATSC task, phrases such as The pizza is
good and I think the pizza was good do not require
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Model ATE (F1) ATSC (Acc) ASPE (F1)
L14 R14 R15 R16 L14 R14 R15 R16 L14 R14 R15 R16

Ours (k = 4) 90.05 90.72 79.93 83.85 91.47 90.44 94.31 97.47 81.49 80.73 73.41 78.64
w/o alternating training 89.82 89.13 77.46 80.16 91.37 89.47 93.46 96.55 78.05 77.63 69.05 77.61
w/o retriever 89.77 88.34 75.59 80.06 87.11 87.87 91.64 96.09 79.16 78.11 70.78 77.55
w/o example 89.74 88.03 76.00 79.79 87.59 87.95 91.52 95.86 77.05 76.20 68.29 76.02
w/o instruction 88.68 87.56 74.08 79.58 87.30 86.60 90.67 95.75 76.66 74.97 68.62 76.01

Table 5: Ablation study (%). L14, R14, R15, and R16 denote the datasets Lap14, Rest14, Rest15, and Rest16,
respectively.

Model ATE (F1) ATSC (Acc) ASPE (F1)
L14 R14 R15 R16 L14 R14 R15 R16 L14 R14 R15 R16

Frozen LM (k = 4) 41.96 25.85 40.77 39.00 48.83 65.74 55.21 62.92 29.04 12.46 29.83 25.15
Ours (k = 4) 90.05 90.72 79.93 83.85 91.47 90.44 94.31 97.47 81.49 80.73 73.41 78.64

↑ (%) 46.60 28.49 51.01 46.51 53.38 72.69 58.54 64.55 35.64 15.43 40.63 31.98

Table 6: Exploring the improvement of fine-tuning language models. Frozen LM indicates that the parameters
of LM are not updated during the training phase, which is similar to the retrieval methods used on LLM. ↑ (%)
represents how much performance improvement ratio our method has compared to Frozen LM.

Model Size ATE ASTC ASPE

T5-base 223M 89.91 87.34 79.12
T5-large 738M 91.71 91.04 81.23

Flan-T5-base 248M 90.72 90.44 80.73
Flan-T5-large 783M 92.64 92.97 82.61

Table 7: Performance (%) with different language mod-
els on Rest14.

the LM to focus on semantic similarity or the con-
nection between aspects and opinions. The LM can
infer the result based on the retrieved example sen-
tence’s output: positive, resulting in decent perfor-
mance even without training. For the ATE task, the
performance is poorer due to the low overlap in out-
put results. For the more complex ASPE task, the
retrieved example sentences should provide diverse
assistance to the test sentences (including structural
assistance and overlapping aspects). However, an
untrained LM lacks this ability and tends to search
for answers from the context rather than making
inferences.

We further explored the retrieval results of the
method that only trains the retriever. Compared
to the proposed method, it favors retrieving exam-
ple sentences with overlapping results and rarely
retrieving other types of examples mentioned in
the Case Study section. This limitation may hin-
der its effectiveness in handling complex tasks that
require a deeper understanding of the context and
relationships between different aspects.

4.8 Effectiveness on Different Language
Models

The efficacy of our proposed method was examined
across various backbone language models. The per-
formance metrics for different variants in terms
of sizes and types are detailed in Table 7. The
results underscore the robust effectiveness of our
proposed method across commonly used backbone
models. Notably, employing larger models leads
to discernible performance improvements. Partic-
ularly, the instruction pre-training variant, flan-t5,
exhibits more substantial gains. This can be at-
tributed to the smaller gap between the pre-training
and fine-tuning phases.

4.9 Case Study

Table 8 provides an overview of the retrieval re-
sults for specific queries in the ASPE task. For
clarity, only the first result retrieved is presented
for each query. Notably, examples with IDs 1, 3,
and 4 exhibit a structural similarity to the query.
For instance, ID 2 mirrors the query’s aspects with
the same sentiment polarity. While these instances
showcase evidently favorable retrieval outcomes,
there are cases where the utility of results is unclear.
For instance, example ID 5 does not seem directly
related to the query; however, the prediction for that
particular query is accurate. Determining whether
this is due to the LM disregarding irrelevant exam-
ples or if the example somehow contributes to the
LM’s understanding remains an open question.
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ID Query Example

1 Green Tea creme
brulee is a must!

input: (The asparagus, truf-
fle oil, parmesan bruschetta
is a winner!)
output: asparagus, truf-
fle oil, parmesan bruschetta:
positive

2 Serves really good
sushi.

input: Best. Sushi. Ever.
output: Sushi: positive

3 AMAZING. input: Unbelievable.
output: noaspectterm: none

4 The food was al-
most always EX-
CELLENT.

input: The food was good.
output: food: positive

5 I never had an or-
ange donut before
so I gave it a shot.

input: this one is definintely
my least favorite.
output: noaspectterm: none

Table 8: Best retrieval results in the ASPE task.

5 Conclusion

In this study, we proposed a retrieval-based ex-
ample mining method for instructional learning in
ABSA tasks to improve the performance by select-
ing effective examples. The proposed method con-
ducts the alternating training of a retriever and LM
by employing a two-stage training framework and
iterative evolution training scheme. Experiments
validated its effectiveness across ATE, ATSC, and
ASPE tasks, outperforming existing baseline mod-
els.

Future work will extend the proposed method
to other tasks and models and refine the training
strategies to achieve further performance gains.

Limitations

There are three main limitations to our work com-
pared to previous efforts:

1. The mechanism of retrieval is based on the
likelihood score given by the language model,
however, this score only focuses on the im-
provement of the model’s performance, and
the syntactic mechanism of its work remains
to be explored.

2. The choice of the number k of examples con-
strains the performance of the model. Al-
though we explored the impact of using dif-
ferent numbers of examples on the overall
performance, it is undeniable that the optimal
number of examples varies for different test

inputs. Model performance would be further
improved if the appropriate number of exam-
ples could be customized for each input.

3. The proposed method is only experimented on
the English dataset. Whether it works equally
well and whether the retrieved examples have
commonalities is still unknown in other lan-
guages (e.g., Russian, French, Chinese, etc.).
It remains to be explored whether the method
will work on mixed language and multilingual
datasets.
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A Baseline Models

The baseline models that emerged from the compar-
ative experiments were categorized into generative
and non-generative models. This section describes
these baseline models in detail.
1) Generative methods:

• GPT2med (Hosseini-Asl et al., 2022) uti-
lizes unidirectional self-attention and lan-
guage modeling loss to capture contextual rep-
resentations and leverage supervision during
training.

• BARTABSA (Yan et al., 2021) formulates the
ABSA extraction and classification tasks as a
unified index generation problem.

• GAS (Zhang et al., 2021) formulates each task
as a generative problem and predictive nor-
malization strategy to optimize the generated
outputs.

• IT-MTL (Varia et al., 2022) treats ABSA as
a sequence-to-sequence modeling task based
on instruction tuning, achieving excellent per-
formance with a few shots.

• InstructABSA (Scaria et al., 2023) constructs
fixed instruction prompts for different tasks
to train the Tk-instruct model (Wang et al.,
2022), and the examples in the prompts are
obtained from combinations of sentiment-
positive, -negative, and -neutral examples.
InstructABSA1 includes two positive and
two negative sentiment examples, while In-
structABSA2 adds two neutral sentiment ex-
amples.

2) Non-generative methods:

• SPAN (Hu et al., 2019) use a span-based label-
ing scheme to find and classify opinion targets
in a sentence, which mitigates the problem of
sentimental inconsistencies at the span level.

• GRACE (Luo et al., 2020) employs cascade
labeling to enhance the interaction between
aspect terms and mitigates the labeling im-
balance through a gradient harmonization ap-
proach.

• ABSA-DeBERTa (Marcacini and Silva,
2021) uses a decoupled attention mechanism
to separate location and content vectors for
sentiment analysis.
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• LSAT (Yang and Li, 2021) introduces a lo-
cal sentiment aggregation paradigm that facil-
itates fine-grained sentiment consistency mod-
eling.

• RACL-BERT (Chen and Qian, 2020) allows
subtasks to work together in stacked multi-
layer networks via multitask learning and re-
lationship propagation mechanisms.

• Dual-MRC (Mao et al., 2021) converts the
original triplet extraction task into two ma-
chine reading comprehension (MRC) prob-
lems, and jointly trains multiple subtasks.

• Seq2Path (Mao et al., 2022) transforms the
generation order of sentiment tuples into tree
paths. This approach not only effectively ad-
dresses the issue of one aspect entity corre-
sponding to multiple opinion words, but also
ensures that the generation of each path is
independent.
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