
Findings of the Association for Computational Linguistics: ACL 2024, pages 4590–4611
August 11-16, 2024 ©2024 Association for Computational Linguistics

Tell Me What’s Next: Textual Foresight for Generic UI Representations

Andrea Burns Kate Saenko Bryan A. Plummer
Boston University

{aburns4,saenko,bplum}@bu.edu
https://github.com/aburns4/textualforesight

Abstract

Mobile app user interfaces (UIs) are rich with
action, text, structure, and image content that
can be utilized to learn generic UI representa-
tions for tasks like automating user commands,
summarizing content, and evaluating the ac-
cessibility of user interfaces. Prior work has
learned strong visual representations with local
or global captioning losses, but fails to retain
both granularities. To combat this, we propose
Textual Foresight, a novel pretraining objective
for learning UI screen representations. Textual
Foresight generates global text descriptions of
future UI states given a current UI and local ac-
tion taken. Our approach requires joint reason-
ing over elements and entire screens, resulting
in improved UI features: on generation tasks,
UI agents trained with Textual Foresight out-
perform state-of-the-art by 2% with 28x fewer
images. We train with our newly constructed
mobile app dataset, OpenApp, which results in
the first public dataset for app UI representa-
tion learning. OpenApp enables new baselines,
and we find Textual Foresight improves aver-
age task performance over them by 5.7% while
having access to 2x less data.

1 Introduction

People use mobile apps every day to browse news
articles, shop online, book appointments, and learn
from educational platforms (Dogruer et al., 2011;
Zhao et al., 2016). AI agents can help to perform
these real-life tasks for those who cannot or prefer
not to view or touch the app screen (e.g., users who
are blind, low-vision, or busy driving) (Vtyurina
et al., 2019). To build such AI models, a key ques-
tion is which modalities should be used to represent
the app UI, as it consists of not only the rendered
screen, but also metadata, text, and structural fea-
tures (i.e., the underlying app view hierarchy).

Recent work Spotlight learns UI features with
only the rendered screen image (Li and Li, 2023),
as the view hierarchy is not always available, and

Figure 1: Textual Foresight vs. Element Captioning.
While both Element Captioning and Textual Foresight
pretraining aim to preserve the semantics of individual
UI objects, Textual Foresight also requires understand-
ing global UI semantics of the current screen and how
an action on the UI will change it, as the objective is to
generate the global description of the following screen.
We highlight in red the UI object associated with the
input bounding box coordinates.

when it is, it often contains generic, noisy, or miss-
ing fields (Li et al., 2022a; Burns et al., 2022).
Spotlight proposed UI representation learning via
element captioning, and is state-of-the-art on four
downstream UI tasks.

While element captioning avoids the disadvan-
tages of other UI modalities, it only enforces lo-
cal UI understanding. As shown in Figure 1(left),
this objective trains a model to map an image and
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bounding box coordinates to an element-level cap-
tion like “options.” However “options” is a limited
representation of what this element can do, as it
lacks context from the global UI screen or what
action it affords. If we enlarge the visual context
to the entire screen, we see that it contains differ-
ent songs in a streaming application like Spotify.
Yet only when seeing the screen that appears upon
clicking the “options” element, Figure 1(right), we
finally understand that it provides the means to like,
hide, or share a particular song.

Our goal is to better balance local element and
global screen features, and we find that UI actions
can serve as the bridge between them. An action
performed on a UI informs the semantics of the
next UI state. Following this intuition, we pro-
pose Textual Foresight: a representation learning
objective that generates global screen captions of a
future UI, given a current UI image and a localized
action. This task requires understanding both the
local semantics (options icon) and global semantics
(a Spotify music playlist) of the current input UI
to be able to decode the caption “song information
and options for playing, saving, sharing, report-
ing explicit content, and viewing credits.” It also
benefits from (state, action) examples, implicitly
teaching element affordance.

To study Textual Foresight, we build OpenApp,
the first publicly available dataset for representa-
tion learning in apps. State-of-the-art Spotlight
did not make their pretraining data available, and
does not benchmark on a fully open-source evalu-
ate suite, either. We curate OpenApp with multiple
element- and screen-level caption sets, which we
use to reproduce Spotlight and train other baselines
like screen captioning which have never been stud-
ied before. We design our framework on top of
BLIP-2 (Li et al., 2023), making all code publicly
available, unlike Spotlight, which also did not open
source model code nor checkpoints.

Our experiments show that Textual Foresight is
able to better balance the granularity of features
learned: it reaches the best average performance
for screen summarization and element captioning
tasks, which require global and local UI features, re-
spectively. Importantly, Textual Foresight reaches
better performance while having 28x less pretrain-
ing data than Spotlight, and 2x less than our new
baselines. Textual Foresight consistently performs
best among our open-source baselines, resulting in
a 5.7% average task performance boost.

In summary, our contributions include:

Figure 2: Prior Work Comparison. We divide pretrain-
ing objectives by loss type (prediction vs. generation)
and use of interaction (includes UI actions or only con-
cern static UIs in isolation). We bold Textual Foresight
and Element Captioning as they only use the rendered
screen to represent the UI.

• A novel pretraining objective, Textual Foresight,
which learns UI representations by describing
future UI states given the current screen and a
localized action. Textual Foresight outperforms
SoTA Spotlight for generation-style tasks with
28x less data.

• A new mobile app dataset for UI representation
learning, OpenApp, which further annotates and
post-processes prior work to make four differ-
ent pretraining approaches possible. The data is
publicly available for download on GitHub.

• The first standardized benchmark for generic
UI representations that consists strictly of pub-
lic datasets for both pretraining and finetuning.
We evaluate on element captioning, screen sum-
marization, tappability prediction, and language
grounding tasks. All model code and the best
checkpoints can be accessed on GitHub.

2 Related Work

While there are several prior methods for learning
UI representations, all either use proprietary data
and/or evaluate on different tasks, making down-
stream comparison challenging. Figure 2 compares
Textual Foresight to ActionBERT (He et al., 2021),
Screen2Vec (Li et al., 2021a), UIBERT (Bai et al.,
2021), and Spotlight (Li and Li, 2023). We com-
pare the type of loss (predictive or generative) and
if the loss utilizes action data from the UI. As we
see in the upper right quadrant, Textual Foresight is
the first generation style loss to incorporate action.
Textual Foresight and Spotlight are bolded, as they
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Figure 3: Textual Foresight. We illustrate how app states from action sequences are used in (current screen, current
action, next screen) triplets to pretrain a vision-language model for UI representations. We only use the app screen
to represent the UI, and additionally feed in an action question which asks what would we expect to see at the next
state if we interact with a particular UI element. Our model decodes a text description of the following screen, using
action to bridge local element and global screen features. More Textual Foresight examples are in Appendix B.

only input the screen image to represent the UI.

In addition to Textual Foresight and element cap-
tioning, global image captioning has been used to
learn representations of natural RGB images. E.g.,
it is one loss within BLIP-2 (Li et al., 2023), which
is SoTA on visual question answering, image-text
retrieval, and captioning. It has also been used to
learn features for vision-only tasks, matching or
outperforming SoTA for image classification, ob-
ject detection, and instance segmentation, while
using 10x fewer images during training (Desai and
Johnson, 2021). Image captioning has never before
been studied as a method to learn UI representa-
tions due to a lack of available screen caption data.

We also consider how foresight has been used in
prior work. Visual foresight was first introduced to
improve robot motion planning (Finn and Levine,
2017) and has since been incorporated in numerous
works in robotics (Hoque et al., 2020; Yen-Chen
et al., 2020), reinforcement learning (Nair et al.,
2018, 2020; Nair and Finn, 2019) and vision lan-
guage navigation (Koh et al., 2021; Wang et al.,
2018). Differing from Textual Foresight, which pre-
dicts language descriptions of future states, these
prior works predict raw images (Finn and Levine,
2017) or intermediary visual features (Lee et al.,
2018; Babaeizadeh et al., 2017; Wang et al., 2018).

Finally, we note that there are several prior works
on multimodal UI tasks, datasets, and pretraining
approaches in the context of webpage understand-
ing. These works have studied multimodal web
agents (Koh et al., 2024; Yao et al., preprint), mul-

timodal web summarization (Burns et al., 2023),
and web captioning (Srinivasan et al., 2021).

3 UI Representation Learning with
Textual Foresight

We aim to learn strong generic UI representations
that can be used across many downstream UI tasks.
Given a UI screen image st, the goal of Textual
Foresight is to describe what follows from taking
action at on it. By training a Vision-Language
Model (VLM) with Textual Foresight, a single loss
can encourage the visual representations to retain
both local and global features over the UI screen.

In Figure 3, we show how we can learn meaning-
ful features over the input screen image by asking
a foresight question. We input a single UI from a
longer action sequence, like the Chrome browser
state with options opened, and ask what is expected
from clicking on “new tab.” Visually understanding
the new tab element in isolation does not tell us
much about the current screen or how interacting
with the element would be useful. Yet to be able
to describe the future UI as “a search engine app
with various popular website shorted and suggested
articles,” it requires learning a UI representation
that captures not only the semantics of “New Tab,”
but also the global visual context that the input UI
contained a search engine result screen.

In Section 3.1 we define the training loss for
Textual Foresight, and then detail model pretraining
and finetuning in Section 3.2 and 3.3, respectively.
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3.1 Textual Foresight Definition
Formally, given a current UI screen state st and
an action performed on it at, the task of Textual
Foresight is to generate a caption cst+1 describing
the next screen, st+1. We train the VLM to decode
a foresight caption cst+1 given the prior screen’s
image st. To be able to reason about the follow-
ing UI, we additionally input a question Q which
guides the model by asking what is expected after
acting upon a particular element:

Q = “What does the screen show if the UI object

found at [x1, y1, x2, y2] is interacted with?”

The [x1, y1, x2, y2] element bounding box contains
the normalized screen coordinates that fall between
[0, 1]. We include this bounding box as a part of
Q, which is ultimately embedded by a language
model. This differs from Spotlight, which learns a
separate element coordinate embedding. Note that
we do not describe an element by its text in Q to
ensure the model utilizes the visual context, instead
of cheating by only using the element text to infer
what might be seen in the future app state.

The model is trained to maximize the probability
of the target foresight caption with a cross entropy
(xe) language modeling loss, similar to many prior
captioning approaches (Vinyals et al., 2015; Raf-
fel et al., 2020; Li et al., 2023). Specifically, we
minimize the negative log likelihood of the correct
word from a vocabulary V at each decoding step i.
Thus, the Textual Foresight loss can be defined as

Lforesight = Lxe(cst+1 , ĉst+1)

for target caption cst+1 and predicted caption ĉst+1 :

cst+1 = (w0, w1, ...wn)

ĉst+1 = V LM(Q, st)

where the ground truth caption consists of words wi

and the predicted caption is generated by the VLM
with the foresight question Q and the screen state
st as inputs. Given the target distribution p and the
VLM learned distribution p̂ over the vocabulary,
the cross entropy language modeling loss becomes

Lxe(cst+1 , ĉst+1) = −p(cst+1)log(p̂(cst+1))

= −
n∑

i=0

|V |∑

j=0

p(wij)log(p̂(wij))

= −
n∑

i=0

log(p̂(wi|w<i))

The probability distribution p̂ over the vocabulary
is determined by Softmax outputs from the VLM.

Textual Foresight differs from standard image
captioning in two keys ways. First, instead of pre-
dicting a caption about the input image st, we pre-
dict a caption about an unseen future image st+1.
Despite captioning the future screen st+1, we ul-
timately are refining the features of the input im-
age screen st; to describe the next UI, the visual
representations of the input UI must capture its
high-level global semantics and the semantics of
the action taken on it.

Second, as our task requires a question Q with
localized action information, Textual Foresight is
in some ways similar to a visual question answer-
ing task. While both Textual Foresight and ele-
ment captioning require grounded UI understand-
ing, Textual Foresight aims to generate (future)
global screen captions. This has the advantage of
learning from (st, at, st+1) samples where at cor-
responds to elements with noisy text or no text at
all, which would otherwise be unusable for element
captioning.

3.2 Pretraining Model
When learning generic representations, a VLM can
first be pretrained with different data and learning
objectives than those used to model specific down-
stream tasks. We apply the BLIP-2 framework (Li
et al., 2023) for our UI representation learning pre-
training and finetuning strategy.

BLIP-2 was originally pretrained in two stages,
with the first stage focused on learning to query im-
age representations from a frozen ViT model (Doso-
vitskiy et al., 2021). The query embeddings are
learned with an intermediate Transformer, i.e., Q-
Former, (Vaswani et al., 2017) with image caption-
ing, image-text contrastive, and image-text match-
ing losses. The second stage of pretraining contin-
ues to train the Q-Former with an image captioning
objective while the language model is frozen, adapt-
ing the visual queries to useful LLM inputs.

These learned queries are ultimately used as the
visual features input to the language model dur-
ing downstream task finetuning. We only pretrain
the second stage of BLIP-2 (similar to Instruct-
BLIP (Dai et al., 2023)). In stage two pretraining,
we replace the image captioning objective with
our Textual Foresight loss. As a result, our repre-
sentation learning pipeline refines the Q-Former
to obtain better visual query embeddings. These
improved embeddings serve as our visual repre-
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sentations to the language model when modeling
different downstream UI tasks.

3.3 Finetuning Model

After pretraining the upstream BLIP-2 model with
Textual Foresight, we train a different downstream
BLIP-2 model for each UI task (e.g., element cap-
tioning or tappability prediction). We follow the
finetuning procedure as defined in BLIP-2: the ViT
model and Q-Former weights are trainable during
finetuning, allowing for task-specific representa-
tion updates. The LLM (either a FlanT5 (Chung
et al., 2022) encoder-decoder or OPT (Zhang et al.,
2022) decoder-only model) is kept frozen.

4 OpenApp Dataset

As shown in Figure 3, Textual Foresight requires
mobile app action sequences. In addition to need-
ing data for our new method, other baselines have
never been explored due to data limitations (e.g.,
large scale screen captioning data did not exist) or
only studied in a proprietary setting (e.g., element
captioning data used in Spotlight).

To curate pretraining data for Textual Foresight
and important baselines, we combine and generate
new data for existing app datasets MoTIF (Burns
et al., 2022), one snapshot from the longitudinal
study by Fok et al. (2022), and Android in the
Wild (Rawles et al., 2023, AITW). We refer to the
merged data source that we further annotate and
post process as OpenApp. The raw OpenApp data
consists of app action sequences, with each time
step having an action annotation and a correspond-
ing UI screenshot and view hierarchy; we now de-
tail the new annotations and data post-processing.
Appendix B contains examples of each resulting
caption set, additional processing details, and a
discussion on potential dataset noise.

4.1 Element-Level Captions

Element captioning requires UI images with ele-
ment bounding boxes and associated element cap-
tions. To obtain such pretraining samples, we pro-
cess the raw OpenApp view hierarchy data to ob-
tain every element’s associated text and bounding
box per image. We follow the preprocessing as
detailed by Li and Li (2023), as we hope these an-
notations will approximate their work, albeit in a
much smaller data regime (see Table 1 for sample
count comparison). Element captions are obtained
from all text, content description, or resource ID

Pretraining
Captioning Objective

Pretraining Data
# Images # Samples

Element (Spotlight) 82.5M 2.65B
Element (ours) 5,578,978 23,578,155
Element List (ours) 5,578,978
Screen (ours) 5,727,906
Textual Foresight (ours) 2,900,572

Table 1: Pretraining Data. We report the number of im-
ages and samples for four datasets: element captioning,
as used by Spotlight (Li and Li, 2023), reproducing ele-
ment captioning data with OpenApp, a screen caption-
ing dataset built on OpenApp, and, lastly, the Textual
Foresight dataset which contains the subset of screen
captions which can serve as valid foresight captions.
Numbers reported for Spotlight are approximate as Li
and Li (2023) reported values with shortened notation.

elements from the app view hierarchy which meet
the following criteria:
1. Contains text more than one character in length,

is not a URL, consists of only alphabetical char-
acters and does not only consist of “generic”
words (see Appendix A), and occurs at least 5
times within the respective originating dataset.

2. Is visible, has a valid bounding box within im-
age boundaries, and does not consist of a single
pixel color (i.e., is not a color block).

Note that we do not use an OCR model to ob-
tain additional annotations like Spotlight did, but
the AITW dataset annotations were obtained via
OCR (no view hierarchy is provided for AITW).
We deduplicate the resulting (app, element caption,
bbox) triplets to obtain a set of unique samples.

We also include element list captions, which op-
erate the same way as screen captioning, but instead
of having human-like natural language captions, a
screen caption consists of a list of the element de-
scriptions. For this formulation, we concatenate
the processed element captions per screen image.

4.2 Screen-Level Captions

Screen captioning and Textual Foresight require
(image, caption) pairs, where the caption describes
the entire screen. However, to date there has been
no large scale image captioning dataset for the UI
domain (Screen2Words proposed by Wang et al.
(2021) is used as a downstream task dataset). To
address this, we curate new OpenApp annotations
with Large Language Models (LLMs). We obtain
captions for all screens by utilizing the element
text available from the raw app view hierarchies.
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Specifically, we query GPT-3.5 Turbo (OpenAI,
2022) to obtain summaries over the elements with
the following prompt:

If an [app package name] app screen
consisted of the following elements:
e0 | e1 | ... | ek, how would you sum-
marize the screen? Provide a single
sentence description that focuses on the
functionality and category of the app
given these elements. Do not repeat the
app name and do not include too many
specifics.

and input text elements ek from each screen. In
total, annotation with GPT-3.5 cost $1,184.66 USD.
These captions are then finally used as either screen
captioning samples (static (st, cst) pairs) or as Tex-
tual Foresight examples (interactive (st, at, cst+1)
triplets). The latter are obtained by processing valid
(st, at, st+1) triplets from the interactive data in
OpenApp. The number of images and samples for
each resulting dataset is reported in Table 1.

Note that the number of samples available for
screen captioning is ultimately fewer than element
list captioning due to different data processing (de-
tails in Appendix A). The number of samples avail-
able for Textual Foresight is almost 2x less, which
is the result of numerous factors: first, we only
use screens with tap actions performed and require
st ̸= st+1 with respect to image ID or text elements
to ensure the current and next state are distinct.
Second, we cannot use the final state in an action
sequence as there is no following state to provide a
foresight caption. Lastly, we remove samples for
which we were unable to map a user interaction to
a bounding box in the screen, which has been an
issue in prior work as well (Li et al., 2022a).

5 Experimental Setup

We now describe the new baselines made possi-
ble with the OpenApp dataset and pretraining and
finetuning experimental settings.

5.1 Baselines
OpenApp contains several element and screen level
caption sets that can be used to define different pre-
training objectives. In addition to training Textual
Foresight, we include two open-source baselines to
compare to given the OpenApp data: element list
captioning and screen captioning. While the Ope-
nApp dataset includes annotations for element cap-
tioning (aiming to reproduce Spotlight with public

data), it caused optimization issues with the BLIP-
2 framework, possibly due to the short length of the
target element captions or catastrophic forgetting.
We instead compare directly to the prior published
results, but still open-source these annotations for
others to use, as it took substantial time to generate.

We define target captions cst for each pretrain-
ing objective (element list captioning, screen cap-
tioning, and textual foresight) below given the UI
screens in OpenApp.

cst =

{
CAT (est) for Lelem_list

GPT (est) for Lscreen, Lforesight

As previously described, target captions cst+1 for
future screens are used to train Textual Foresight.
A benefit of our approach is that we can re-use the
data from screen captioning in a new formulation,
and do not require additional annotations.

Screen and element list captioning objectives can
both be defined as a “static” loss over the current
screen st:

ĉst = V LM(st)

Lstatic = Lxe(cst , ĉst)

Note that we do not input a question Q to our VLM
when pretraining global objectives like screen and
element list captioning.

5.2 Pretraining Settings

We use the same parameters as BLIP-2 and do not
parameter tune the upstream models. Models are
trained with a batch size of 100 for five epochs. The
stage 2 BLIP-2 pipeline can use various LLMs; we
ablated using OPT2.7, OPT6.7 (Zhang et al., 2022)
and FlanT5XL (Chung et al., 2022), and found
early on that FlanT5 was the best language model.
All results reported are with FlanT5 but additional
ablations with OPT can be found in Appendix F.2.

Images are input to ViT at a 224x224 resolution,
which is much smaller than prior work Spotlight,
which input 740x740 images. High image resolu-
tions have typically been used in prior task-specific
models as well, but are hard to utilize due to current
model size and memory constraints with GPUs.

5.3 Finetuning Settings

Downstream models are finetuned for five epochs
with a batch size of 16, and we hyperparameter tune
the learning rate and number of warmup steps. We
found the original learning rate 1e-5 from BLIP-2
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Figure 4: UI Downstream Task Examples. We illustrate samples from the Screen2Words screen summarization
benchmark (Wang et al., 2021), the Widget Caption element captioning task (Li et al., 2020), the Tappability
classification task (Schoop et al., 2022), and, lastly, the MUG language grounding benchmark (Li et al., 2022b).

to be most effective for the two downstream tasks
with larger downstream datasets (screen summa-
rization (Wang et al., 2021) and element caption-
ing (Li et al., 2020)) and 5e-5 to be the most effec-
tive for the smaller tappability prediction (Schoop
et al., 2022) and language grounding datasets (Li
et al., 2022b). We selected the learning rate and
number of warm up steps per downstream task via
performance on the validation set (see Appendix F
for more results). We use early stopping and re-
port downstream results from a single run. Slightly
larger image resolutions can fit into memory during
finetuning, so following BLIP-2 we use the larger
resolution of 364x364.

5.4 Downstream UI Tasks and Metrics

Our benchmark suite consists of four task datasets:
screen summarization (Wang et al., 2021), ele-

ment captioning (Li et al., 2020), tappability pre-
diction (Schoop et al., 2022), and language ground-
ing (Li et al., 2022b). The goal of screen summa-
rization is to provide a high level description of the
entire UI screen and element captioning aims to
generate captions for individual elements. Tappa-
bility prediction is the task of classifying if an ele-
ment is perceived to be interactive/tappable. Lastly,
the task of language grounding is to ground a single
step language instruction to a UI element. In Fig-
ure 4, we illustrate samples from each downstream
UI task dataset.

The primary difference from the downstream
tasks used by Spotlight (Li and Li, 2023) is the
language grounding dataset, which was not open-
sourced. We instead use the Multi-turn UI Ground-
ing (MUG; Li et al. (2022b)) dataset. While this
dataset was proposed for multi-turn commands, ap-

4596



Model
Task

Screen Element
Avg

Summ. Caption.
Screen2Words 61.3 – –
Widget Caption – 97.0 –
VUT 65.6 99.3 82.5
Spotlight 106.7 141.8 124.3
BLIP-2 (Original) 125.1 121.4 123.3

Screen Caption 125.7 118.9 121.2
Element List 127.9 121.6 124.8
Textual Foresight 125.4 128.0 126.7

Table 2: Finetuning Generative Task Results. Prior work
includes task specific methods Screen2Words (Wang
et al., 2021) and Widget Caption (Li et al., 2020), multi-
task model VUT (Li et al., 2021b), and representation
learning approach Spotlight (Li and Li, 2023). All of
our baselines and Textual Foresight are built upon BLIP-
2 (Li et al., 2023). CIDEr is reported; BERTScore and
BLEURT-D12 are in the Appendix.

proximately 80% is single turn, and we use the
full multi-turn instruction for the remaining 20%
of samples. We describe how we formulate tappa-
bility prediction and language grounding problems
as text generation tasks in Appendix D.2.

For screen captioning and element captioning,
we report CIDEr (Vedantam et al., 2015) to be con-
sistent with prior work, but include the more recent
metrics BERTScore (Hanna and Bojar, 2021) and
BLEURT-20-D12 (Sellam et al., 2020; Pu et al.,
2021) in Appendix F. For tappability prediction
and language grounding F1 score and accuracy is
reported, respectively.

6 Results

We now report results for generative tasks (screen
and element captioning) and prediction tasks (tap-
pability classification and language grounding).

6.1 Generative Tasks

In Table 2, we see the power of pretrained VLMs:
BLIP-2 outperforms Spotlight with a large perfor-
mance improvement on screen summarization with-
out any further app-specific pretraining (125.1 vs.
106.7 CIDEr points). However, it performs worse
on element captioning. This is expected, given
element captioning is more domain specific and
requires local understanding of the UI screen. As
a result, BLIP-2 without any further pretraining
trails behind Spotlight slightly on average (123.3
vs. 124.3). This already illustrates a trade-off, as

Spotlight, which was pretrained with element cap-
tioning, intuitively does much better on this local
task when evaluated downstream, while BLIP-2,
which was pretrained with image captioning, does
better downstream on global screen summarization.

Next, we evaluate screen captioning pretraining,
made possible with our new data from OpenApp.
Performance only slightly improves on screen sum-
marization compared to BLIP-2 directly, which is
surprising given the pretraining and downstream
task is nearly the same. This may be, in part, due to
the pretraining data: of the 5.7M unique OpenApp
images, we only obtain 3.4M unique captions with
GPT. I.e., there were only 3.4M unique (app, el-
ement list) pairs, and we did not collect captions
for duplicate queries. This may result in different
screens being condensed too closely in embedding
space, due to incomplete text information which
does not capture the ways the screens actually dif-
fer.

In the future, querying GPT multiple times to
have more unique captions may help increase cap-
tion diversity and improve performance. Another
potential factor in the small performance differ-
ences could be the continued pretraining of BLIP-2
with a smaller caption dataset, which may require
more careful optimization with methods like LoRA
to avoid catastrophic forgetting (Hu et al., 2021).
Unsurprisingly, we have more evidence that global
captioning harms local task performance, as screen
captioning actually worsens performance on ele-
ment captioning compared to the baseline BLIP-2
(118.9 vs. 121.4).

Interestingly, the element list captioning objec-
tive, in which the global caption we aim to gen-
erate is simply the concatenated list of text ele-
ments, improves upon BLIP-2 for both tasks, and
actually is the most performant on screen summa-
rization across all pretraining objectives (bolded in
the penultimate row of Table, 127.9). If the GPT-
generated global screen captions were noisy or lost
too much information, the raw element informa-
tion may be more useful to the model. Moreover,
this result demonstrates that local element infor-
mation is also important to global reasoning tasks
over the UI. It is surprising that list like captions
proved better than natural language style sentences,
suggesting quality of information retained is more
crucial than style of information. The element list
captioning baseline is now the first to outperform
Spotlight on average across the two tasks.

Now, evaluating our proposed approach of Tex-
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tual Foresight, we see a significant improvement
on the element captioning task compared to our
other open-source baselines (+6.4 CIDEr points
compared to element list captioning, the best base-
line). This is notable given that our method uses
3M fewer samples than element list captioning, the
second best method. Textual Foresight also main-
tains screen summarization performance, an impor-
tant result that shows we can effectively blend local
and global information. Ideally, we want a method
which maintains the large gains on screen summa-
rization provided by the BLIP-2 framework, while
further pushing element captioning performance.
Screen captioning and element list captioning main-
tain or slightly outperform our BLIP-2 baseline on
screen summarization, but barely affect or even
worsen element captioning performance. On the
other hand, prior SoTA Spotlight performs the best
on element captioning, but significantly worse on
screen summarization, again highlighting the fea-
ture granularity trade-off.

Instead, Textual Foresight obtains SoTA screen
summarization performance. Its largest perfor-
mance impact is on element captioning, which
now outperforms Spotlight on average. In addi-
tion, our approach outperforms all other baselines
in the open-source setting. In terms of data effi-
ciency, Textual Foresight uses 28x fewer images
than Spotlight, making its gains even more impres-
sive. We hypothesize that additional improvements
could be met with our approach with access to more
pretraining data or greater diversity of captions.

6.2 Predictive Tasks
Now looking at classification or predictive style
tasks, we report results for tappability prediction
and language grounding. Textual Foresight con-
tinues to be the best open-sourced representation
learning method, with improvements of up to 10.3
F1 Score and 9.7 accuracy points for tappability
and grounding, respectively. Similar to our results
in Table 2, Textual Foresight is better than other
BLIP-2 variants trained with screen and element
list captioning, despite using almost half the data.

While Textual Foresight is the best in our open-
source setting, these variants are ultimately less
performant than prior approaches. These tasks are
more challenging, as they differ more greatly from
the original BLIP-2 setting of visual question an-
swering and image captioning with natural images.
Signaling the difficulty of tappability prediction
and language grounding, we find all of our base-

Model
Task

Tappability Grounding
(F1 Score) (Accuracy)

Taperception 85.5 –
Swearngin & Li 87.9 –
MUG – 58.6
VUT 88.3 –
Spotlight 88.4 –
BLIP-2 (Original) 63.9 29.8

Screen Caption 68.5 38.2
Element List 67.1 34.3
Textual Foresight 74.2 39.5

Table 3: Finetuning Predictive Task Results. Prior work
includes task specific methods Taperception (Schoop
et al., 2022), Swearngin and Li (2019), and MUG (Li
et al., 2022b), multitask model VUT (Li et al., 2021b),
and representation learning approach Spotlight (Li and
Li, 2023). All of our baselines and Textual Foresight
are built upon BLIP-2 (Li et al., 2023).

line objectives improve upon the BLIP-2 baseline
model which finetunes directly on the downstream
tasks. This differs from the generation-style tasks,
where screen captioning actually harmed perfor-
mance compared to the BLIP-2 baseline. A final
consideration is the finetuning dataset size, as tap-
pability contains 14k train samples and language
grounding contains 65k, which is significantly less
than the element and screen captioning datasets
(138k and 78k train samples, respectively).

7 Conclusion

In this work we have proposed using UI actions
as the bridge between local element semantics and
global screen context. Specifically, we introduced a
new pretraining objective, Textual Foresight, which
trains a model to describe a future screen image
given an action taken on the current viewed state.
To train our new model we contribute a new dataset,
OpenApp, which contains screen and element level
captions for 5.7M app images that can be used
for training several baselines. We are the first to
provide an open-source app dataset for UI repre-
sentation learning and evaluate on a standardized
downstream benchmark. Our Textual Foresight
approach can use only a subset of this data and
on average outperforms not only our open-source
benchmarks, but also prior state-of-the-art method
Spotlight on generation tasks, while using 2x less
data than open-source baselines, and 28x less data
than prior state-of-the-art.
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8 Limitations

In this work we curate new data for the proposed
OpenApp dataset in part with LLMs like GPT3.5
Turbo. As a result, our image captions do not neces-
sarily capture the full image content accurately, or
may lose information that would otherwise be help-
ful for representation learning. While other works
have utilized pseudo summaries or automatic sum-
marizations (Narasimhan et al., 2022; Burns et al.,
2023), it is important to note that human annota-
tion or verification of our dataset could improve its
quality in future work.

Additionally, as discussed in our results, all of
our baselines and Textual Foresight fall short for
prediction style tasks. Given how low BLIP-2
(Original) baseline performance is, it is possibly
a limitation of the model framework, along with
other factors like the scale of our pretraining data
or size of finetuning data. Currently, our work is
most effective for captioning and summarization
style tasks, but we hope our full benchmark will al-
low for fair comparison in future research and new
open source tools, as prior representation learning
approaches did not provide any resources for re-
producing their methods. We also did not try all
possible combinations of our pretraining objectives
due to computational and time constraints.

Lastly, while it is possible that the mobile app
UI data includes non-English content, they were
designed and built as English datasets. As a result,
the models trained for various tasks are only reli-
able for English as of now. In future work, it would
be important to both intentionally curate multilin-
gual UI data, as well as quantify how much data in
existing sources in already multilingual (e.g., there
may be spurious text or ads in other languages, for
example).

9 Ethics

Curating data and automating tasks in the UI do-
main requires consideration of user privacy and
safety, as well as user demographic. We do not col-
lect any new mobile app action sequences, as we
only build new annotations on top of existing open
source datasets. As a result, we do not introduce
any new ethical issues related to the data source.
However, when modeling downstream tasks, there
are inherent risks with models that perform tasks
on behalf of humans, such as language grounding
(in which a user instruction is automated on their
behalf). There are many situations in which a user

would not be able to double check the model out-
put, and for this reason additional work is needed
to provide explainable predictions and only auto-
mate tasks when there is high model confidence.
This concern is less applicable to captioning and
summarization UI problems.

With respect to privacy, people that use assis-
tive technology or human-in-the-loop tools already
expose P.I.I. information to be able to use mobile
apps (Akter et al., 2020; Ahmed et al., 2015). Still,
an ethical concern that persists is to ensure the
models we train do not retain any user-specific
information if they are finetuned or personalized
for individuals. This is out of scope for our work,
but we note that the UI data within OpenApp was
created with anonymous login credentials when
originally annotated.

Acknowledgements

This work is supported, in part, by the Google Ph.D.
Fellowship program.

References
Tousif Ahmed, Roberto Hoyle, Kay Connelly, David

Crandall, and Apu Kapadia. 2015. Privacy concerns
and behaviors of people with visual impairments. In
Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’15,
page 3523–3532, New York, NY, USA. Association
for Computing Machinery.

Taslima Akter, Bryan Dosono, Tousif Ahmed, Apu Ka-
padia, and Bryan Semaan. 2020. “i am uncomfort-
able sharing what i can’t see”: privacy concerns of
the visually impaired with camera based assistive
applications. In Proceedings of the 29th USENIX
Conference on Security Symposium, SEC’20, USA.
USENIX Association.

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Er-
han, Roy H. Campbell, and Sergey Levine. 2017.
Stochastic variational video prediction. CoRR,
abs/1710.11252.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Aguera y Arcas. 2021. Uibert: Learning
generic multimodal representations for ui understand-
ing.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A. Plummer. 2022.
A dataset for interactive vision language navigation
with unknown command feasibility. In European
Conference on Computer Vision (ECCV).

Andrea Burns, Krishna Srinivasan, Joshua Ainslie, Ge-
off Brown, Bryan Plummer, Kate Saenko, Jianmo

4599

https://doi.org/10.1145/2702123.2702334
https://doi.org/10.1145/2702123.2702334
http://arxiv.org/abs/1710.11252
http://arxiv.org/abs/2107.13731
http://arxiv.org/abs/2107.13731
http://arxiv.org/abs/2107.13731


Ni, and Mandy Guo. 2023. A suite of generative
tasks for multi-level multimodal webpage understand-
ing. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1917–1947, Singapore. Association for Com-
putational Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. 2023. In-
structblip: Towards general-purpose vision-language
models with instruction tuning.

Karan Desai and Justin Johnson. 2021. VirTex: Learn-
ing Visual Representations from Textual Annotations.
In CVPR.

Nazan Dogruer, Ramadan Eyyam, and Ipek Menevis.
2011. The Use of the Internet for Educational Pur-
poses. In Procedia - Social and Behavioral Sciences.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. ICLR.

Chelsea Finn and Sergey Levine. 2017. Deep visual
foresight for planning robot motion. In International
Conference on Robotics and Automation (ICRA),
pages 2786–2793.

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross,
James Fogarty, and Jacob O. Wobbrock. 2022. A
large-scale longitudinal analysis of missing label ac-
cessibility failures in android apps. In ACM Confer-
ence on Human Factors in Computing Systems, CHI
’22, New York, NY, USA. Association for Computing
Machinery.
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A Data Processing Details

We include additional details for the data process-
ing used to obtain each OpenApp captioning sam-
ple set from the raw view hierarchy data. We re-
lease all of our code, including the data processing
pipelines, so others can reproduce our work or mod-
ify our pipeline as needed.

A.1 Element Captioning Data
As discussed in the main text, our aim in generat-
ing the element captioning data was to reproduce a
dataset as similar to Spotlight’s as possible. Thus,
we followed their same data processing rules. El-
ement captions are obtained from all text, content
description, or resource ID fields from the app view
hierarchy elements which meet the below criteria:

1. Contains text more than one character in
length, is not a URL, consists of only alpha-
betical characters and does not only consist of
“generic” words, and occurs at least 5 times
within the respective originating dataset.

2. Is visible, has a valid bounding box within
image boundaries, and does not consist of a
single pixel color (i.e., is not a color block).

The list of generic words is: action, bar, menu, title,
and, ans, app, icon, name, arg, background, ele-
ment, btn, but, bottom, button, content, desc, text,
item, empty, fab, image, grid, header, img, imgfile,
lbutton, label, letter, list, view, pic, placeholder,
random, row, single, raw, small, large, sub, tem-
plate, navbar, banner, test, textinput, error, texto,
todo, toolbar, tool, track, txt, unknown, stub, web,
left, right, tlb, nan, page, feature, menugrid, pic-
ture, tabs, number, node, iconimage, entity, web-
view, heading, logo, tbl, tab, primary, and footer per
Spotlight. Lastly, all fields were made lowercase.

These stringent processing rules are needed due
to potential noise and inaccuracies in the app view
hierarchy. In particular, ensuring the bounding
boxes lie within image boundaries is important
for any localized task like element captioning or
textual foresight.

A.2 Element List Captioning Data
Our element list captioning dataset concatenates
all of the element text per screen from the element
captioning dataset. The elements are joined by
commas. This results in a screen captioning-style
task where the captions to decode are element list
strings instead of natural language captions.

A.3 Screen Captioning Data

Both our screen captioning and textual foresight
captions are obtained in the same manner with the
GPT-3.5 Turbo API. As mentioned in the main
text, we generate text prompts for each screen in
OpenApp to obtain a screen caption. Specifically,
we input:

If an [app package name] app screen
consisted of the following elements:
e0 | e1 | ... | ek, how would you sum-
marize the screen? Provide a single
sentence description that focuses on the
functionality and category of the app
given these elements. Do not repeat the
app name and do not include too many
specifics.

and query GPT-3.5 with the set of unique samples.
This means if multiple different screens from the
same app had the same list of cleaned elements ek,
we only queried GPT-3.5 once for them. In the
future, augmentations of the same caption could be
obtained by re-querying the model again. There
currently is no way to “seed” the GPT models,
meaning that even for the exact same input and
model checkpoint, the output is often different
when the API is called more than once for a partic-
ular sample. Setting the temperature to zero does
not fully control the model output, either.

For the screen-level caption sets, we use a
slightly different set of processing steps to clean the
raw view hierarchy elements ek. First, we chose to
not use resource ID text fields as valid elements due
to them being noisy and more like generic meta-
data, proving less useful for reasoning about the
specific UI screen. We also retain upper case text
as this could be helpful to the GPT model.

A.4 Textual Foresight Data

The captions that are used for textual foresight
come from the same GPT-3.5 outputs as described
in the prior section. However, what differs is which
screens we can utilize. We choose to only use
screens that have tap actions performed on them,
as swiping and editing text fields on the UI may
not change the UI enough to warrant a foresight
caption which differs significantly from the current
screen’s caption.

In any mobile app dataset containing action se-
quences, a key part of using the user action anno-
tations is mapping the screen interactions to view
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hierarchy bounding boxes. The user actions and
view hierarchy elements exist in different scales
and must be normalized to be mapped to one an-
other. While an action should exactly match one
UI element, there are times when it matches zero.
This can occur due to a human’s click being located
slightly outside of the true bounding box. Addition-
ally, this occurs more often for the Android In The
Wild dataset within OpenApp, due to it using OCR.
Specifically, sometimes the OCR does not include
strictly visual elements or has other failure cases.

To address this, for the subset of actions that are
not initially within an element’s bounding box, we
try to enlarge the view hierarchy bounds by small
amounts until the action coordinate falls within one.
If this is ineffective at a certain threshold, we will
instead create a square box of 65x65 pixels cen-
tered around the user action location. This occurs
for various edge cases like keyboards, calculators,
icons, and the phone dialer, which correspond to no
known element in the view hierarchy or detected
OCR.

We also specially deal with other edge cases,
e.g., if we find an action is clicking back on the UI
banner, we do not include it. Additionally, there
are cases when an action location is within more
than one bounding box, as the bounding boxes can
be overlapping at times. Of the matching bounding
boxed, we will select the one with lowest euclidean
distance to its midpoint with the smallest area.

All of the code used to capture these edge cases
and process them is included in the GitHub reposi-
tory.

B Dataset Examples

In Figure 5 we include example images and cap-
tions for all caption sets in our OpenApp dataset:
element captioning, element list captioning, screen
captioning, and textual foresight. Element caption-
ing would result in separate samples for every text
element in the element list captions (each element
is comma separated). For example, for the user
choice page in blue (first row, second example of
Figure 5), the element list caption is simply “Stu-
dent, Parent, Teacher” and the corresponding ele-
ment level captions would be “Student,” “Parent,”
and “Teacher.” The screen captioning set are the
result of our separate element processing pipeline
and GPT3.5 Turbo querying.

Lastly, we illustrate four examples of textual
foresight. We show both the input image and se-

quential image (left and right respectively) for visu-
alization purposes; we only input the current screen
and our action question to generate the foresight
caption. We also highlight the action element in
red for clarity (i.e., these red bounding boxes are
not actually on the input images). We include fore-
sight captions underneath the next screen in Fig-
ure 5. Interestingly, even when foresight captions
do not extend greatly beyond the action element’s
semantics, they can serve as a proxy for a more
descriptive element caption (see the bottom right
Wikipedia example).

C Dataset Noise

In our OpenApp dataset, there are two potential
sources of noise. First, as partially discussed in
Appendix A, to have questions with local action
or element grounding information (for textual fore-
sight and element captioning objectives, respec-
tively), human actions on the UI screen have to be
matched with backend view hierarchy bounding
boxes. There are a subset of cases where there is
not an exact 1-1 mapping between the two, and we
either find a nearby bounding box or create a new
one around the action coordinate. This process is
imperfect, but we manually inspected around 100
processed samples per dataset in OpenApp to en-
sure reasonable quality. For our textual foresight
approach, a perfect localization on the screen is
also not always needed.

The second potential source of dataset noise
comes from using GPT-3.5 Turbo to generate cap-
tions and meaningfully aggregate view hierarchy
element text. While it is unlikely for the GPT to
generate something not related to the screen inputs,
it is possible that the resulting summary misses the
most salient screen details that should appear in an
image caption. This can happen as a result of many
distractor elements which obfuscate the true focus
of the screen.

While it is possible GPT-4 could better produce
captions, or that GPT-3.5 would do better by in-
putting the entire raw view hierarchy (such that all
structure and metadata is retained), this would be
prohibitively expensive. The GPT-4 API is signif-
icantly more expensive than earlier models, and
price is determined by both input and output text
length (i.e., number of tokens).

In Figure 6, we show an example failure. The
StubHub screen concerns E-Gift cards, but none
of the input element processing variants we tried
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Figure 5: Examples from the OpenApp dataset. We show example new captions we build for OpenApp from the
element captioning, element list captioning, screen captioning, and textual foresight sample sets.
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Figure 6: A GPT3.5 Turbo Failure Case. We illustrate a UI screen from the StubHub app that is selling gift cards.
Regardless of the degree of UI element text processing, no input is able to make GPT generate a caption which fully
captures the purpose of the screen.
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were able to correct the focus of the GPT output.
We tried several element processing variants which
include the most stringent processing (that of Spot-
light), the completely raw and unprocessed text,
and the in-between that results from our final pro-
cessing rules.

D Downstream UI Tasks

We now provide additional details concerning our
downstream benchmark tasks.

D.1 Finetuning Set Up
For all tasks other than screen summarization, we
input a question Q prompting the model during
finetuning. Below, we define the questions for each
task:

Qwidget = What describes the functionality of

the UI object found at [x1, y1, x2, y2]?”

Qtap = “Can the UI object found at

[x1, y1, x2, y2] be interacted with?”

Qground = “What command refers to the element

located at [x1, y1, x2, y2]?”

Note that for the tappability prediction task, there
is a class imbalance (approximately 1:3) of not-
tappable to tappable examples. Due to this and the
small dataset size, we upsample the not-tappable
class by 4x to ensure it is more highly weighted
during training and to try to minimize overfitting.

D.2 Formulating Prediction Tasks as Text
Generation

We train and evaluate two predictive tasks: tappa-
bility prediction and language command ground-
ing. We reformulate both to be possible as text
generation tasks, which was also done by Spotlight.
For tappability, we have the language model in
BLIP-2 decode a caption instead of a class. Specif-
ically, tappable is represented by the answer “yes
the object is interactive,” while not tappable is rep-
resented by “no the object is not interactive.” These
are answers to the questions posed in the above
Appendix section. These captions can then be con-
verted to classes for F1 score and accuracy compu-
tation.

For language command grounding, instead of
predicting an element (i.e., predicting which ele-
ment matches the command) during training, we

aim to decode the original complete command
given the target element. Then, at test time, we
generate instruction captions for all possible ele-
ments on the input UI. We perform classification by
selecting the element with the instruction caption
closest to the ground truth command. If the ground
truth element’s generated command is the highest
scoring, we consider it the prediction. Note that if
the score of the target element is equal to the score
of other non-target objects, we still consider it a
valid prediction (so long as they’re the highest).

This process is heavily dependent on the metric
used for caption similarity. Due to BLEURT being
more highly correlated with human judgement, we
use it for computing the similarity between the true
language grounding command and the generated
element instruction. We also include ablations for
which metric was used in Appendix F.

E Computational Details

We trained BLIP-2 models with 48GB GPU cards
(A100, A40, A6000, or L40 NVIDIA cards). Pre-
training required 3 days for larger datasets (ele-
ment list and screen captioning baselines) with 4
GPUs (using multi-GPU training). Training Tex-
tual Foresight took half of the time, at around 1.5
days. Finetuning time varies by dataset as well,
varying between 2-6 hours for each experiment.
We typically use the multi-GPU set up during fine-
tuning as well. We have the same parameter counts
as BLIP-2: 188M trainable parameters during pre-
training, and 1.2B parameters during finetuning.

Note that when we make training dataset com-
parisons to prior work Spotlight, we are consid-
ering the training data used for UI representation
learning. Both our work and Spotlight initialize
models with pretrained checkpoints (ours from pre-
trained BLIP-2, Spotlight from pretrained T5 and
ViT models).

F Ablations

We now report results from additional ablations
that were run, including more evaluation metrics,
results when using OPT in place of the FlanT5 lan-
guage model, performance with different learning
rate and warm up ablations, and results when train-
ing from a BLIP-2 checkpoint versus from scratch.

F.1 Additional Metrics

We report additional metrics for all downstream
UI tasks in Tables 4 and 5. For screen summariza-
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tion and element captioning tasks, we additionally
report BERTScore and BLEURT text similarity
metrics. We use the D-12 distilled version of the
latest BLEURT-20 variant due to computational
constraints, but found only small differences be-
tween the distilled and non-distilled models. Gen-
erally BERTScore and BLEURT are less sensitive
to changes in captions, but trends are consistent for
element captioning, and the metrics do not seem to
capture differences for screen summarization.

For tappability prediction, we additionally in-
clude accuracy, which holds the same trend as our
results with F1 score. For language grounding, we
show how the metric we use to determine the best
generated instruction command impacts accuracy.
While it changes absolute values, the respective
trends between methods stay the same.

F.2 OPT and Learning Rate Ablations
Early on we tried different language models in
BLIP-2 and different finetuning learning rates. In
Table 6, we show the ablations ran for screen cap-
tioning when finetuning the original BLIP-2 model
with warmup steps set to 1000. We vary the initial
learning rate and try using the FlanT5, OPT2, and
OPT6 LLMs.

F.3 Pretrained Checkpoint and Warm Up
Ablations

In Tables 7-9 we include additional ablations vary-
ing the pretrained checkpoint and number of warm
up steps during finetuning. We either initialize from
a stage one BLIP-2 checkpoint or train the model
from scratch. Initializing the model consistently
performs better. Then, we try three different values
of warm up steps depending on the size of the fine-
tuning dataset: the number of steps for one epoch
with our batch size, roughly half of that, and 1000
steps. We include 1k warm up steps because that
was the default used for finetuning in the original
BLIP-2 model. The best number of warmup step
varies by pretrained model.
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Model
Task

Screen Summarization Element Captioning
CIDEr BERTScore BLEURT CIDEr BERTScore BLEURT

Screen2Words 61.3 – – – – –
Widget Caption – – – 97.0 – –
VUT 65.6 – – 99.3 – –
Spotlight 106.7 – – 141.8 – –
BLIP-2 (Original) 125.1 0.90 0.65 121.4 0.88 0.47

Screen Caption 125.7 0.90 0.65 118.9 0.88 0.46
Element List 127.9 0.90 0.65 121.6 0.88 0.47
Textual Foresight 125.4 0.90 0.64 128.0 0.89 0.49

Table 4: Finetuning Generative Task Results with Additional Metrics. Prior work includes task specific methods
Screen2Words (Wang et al., 2021) and Widget Caption (Li et al., 2020), multitask model VUT (Li et al., 2021b),
and representation learning approach Spotlight (Li and Li, 2023). All of our baselines and Textual Foresight are
built upon BLIP-2 (Li et al., 2023). CIDEr, BERTScore, and BLEURT-D12 are reported.

Model
Task

Tappability Language Grounding
F1 Acc. Acc. Acc. w/ CIDEr Acc. w/ BERTScore Acc. w/ BLEURT

Taperception 85.5 – – – – –
Swearngin & Li 87.9 – – – – –
MUG – – 58.6 – – –
VUT 88.3 – – – – –
Spotlight 88.4 – – – – –
BLIP-2 (Original) 63.9 69.3 – 29.3 21.7 29.8

Screen Caption 68.5 75.1 – 35.1 29.0 38.2
Element List 67.1 74.7 – 32.1 26.9 34.3
Textual Foresight 74.2 82.3 – 37.1 30.9 39.5

Table 5: Finetuning Predictive Task Results with Additional Metrics. Prior work includes task specific methods
Taperception (Schoop et al., 2022), Swearngin & Li (Swearngin and Li, 2019), MUG (Li et al., 2022b), multitask
model VUT (Li et al., 2021b), and representation learning approach Spotlight (Li and Li, 2023). All of our baselines
and Textual Foresight are built upon BLIP-2 (Li et al., 2023). F1 Score and Accuracy (Acc.) is reported for
tappability. We also report accuracy when using different text similarity metrics for our language grounding set up
with CIDEr, BERTScore, BLEURT-20-D12.

Model LLM Learning Rate Screen Summarization
Validation CIDEr

BLIP-2 (Original)

FlanT5
1e-5 124.4
1e-6 120.2

OPT2.7B
1e-5 122.0
1e-6 120.5

OPT6.7B
1e-5 121.6
1e-6 119.9

Table 6: Learning Rate and Language Model Ablations. We varied the LLM used as a part of the BLIP-2 framework,
trying FlanT5, OPT2, and OPT6 variants. We also tried different learning rates. Both the language model and
learning rate were evaluated on validation performance. We include a subset of the ablations here for the screen
summarization task.
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Model Initialization # Warm Up Steps Screen Summarization
Validation CIDEr

BLIP-2 (Original) BLIP-2
1000 124.4
2500 124.8
4919 124.6

Screen Caption

BLIP-2
1000 125.6
2500 124.3
4919 125.4

Scratch
1000 120.1
2500 117.4
4919 119.0

Element List

BLIP-2
1000 126.9
2500 127.4
4919 126.4

Scratch
1000 122.1
2500 117.2
4919 120.3

Textual Foresight

BLIP-2
1000 124.1
2500 125.0
4919 125.9

Scratch
1000 109.1
2500 108.6
4919 108.1

Table 7: Screen Summarization Pretrained Checkpoint and Warmup Ablations. We varied whether the pretrained
model was initialized with or without a BLIP-2 checkpoint. For each task, we also parameter tune the number of
warm up steps and select the best model based on validation performance.
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Model Initialization # Warm Up Steps Element Captioning
Validation CIDEr

BLIP-2 (Original) BLIP-2
1000 123.6
3500 124.5
6835 121.6

Screen Caption

BLIP-2
1000 122.6
3500 124.3
6835 121.4

Scratch
1000 112.2
3500 109.5
6835 110.3

Element List

BLIP-2
1000 126.9
3500 126.5
6835 123.9

Scratch
1000 127.6
3500 125.9
6835 126.1

Textual Foresight

BLIP-2
1000 133.3
3500 132.7
6835 131.4

Scratch
1000 119.1
3500 117.6
6835 117.3

Table 8: Element Captioning Pretrained Checkpoint and Warmup Ablations. We varied whether the pretrained
model was initialized with or without a BLIP-2 checkpoint. For each task, we also parameter tune the number of
warm up steps and select the best model based on validation performance.
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Model Initialization # Warm Up Steps Tappability Prediction
Validation F1

BLIP-2 (Original) BLIP-2
500 64.5

1000 59.9
1124 66.1

Screen Caption

BLIP-2
500 63.2

1000 59.4
1124 65.8

Scratch
500 68.2

1000 69.6
1124 68.6

Element List

BLIP-2
500 64.9

1000 63.4
1124 51.0

Scratch
500 68.5

1000 69.2
1124 67.9

Textual Foresight

BLIP-2
500 73.3

1000 69.9
1124 74.4

Scratch
500 69.0

1000 69.3
1124 69.0

Table 9: Tappability Prediction Pretrained Checkpoint and Warmup Ablations. We varied whether the pretrained
model was initialized with or without a BLIP-2 checkpoint. For each task, we also parameter tune the number of
warm up steps and select the best model based on validation performance.
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