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Abstract

Large language models (LLMs) should benefit
everyone, including a global majority of non-
English speakers. However, most LLMs today,
and open LLMs in particular, are often intended
for use in just English (e.g. Llama2, Mistral)
or a small handful of high-resource languages
(e.g. Mixtral, Qwen). Recent research shows
that, despite limits in their intended use, peo-
ple prompt LLMs in many different languages.
Therefore, in this paper, we investigate the ba-
sic multilingual capabilities of state-of-the-art
open LLMs beyond their intended use. For this
purpose, we introduce MULTIQ, a new silver
standard benchmark for basic open-ended ques-
tion answering with 27.4k test questions across
a typologically diverse set of 137 languages.
With MULTIQ, we evaluate language fidelity,
i.e. whether models respond in the prompted
language, and question answering accuracy.
All LLMs we test respond faithfully and/or ac-
curately for at least some languages beyond
their intended use. Most models are more ac-
curate when they respond faithfully. However,
differences across models are large, and there
is a long tail of languages where models are
neither accurate nor faithful. We explore differ-
ences in tokenization as a potential explanation
for our findings, identifying possible correla-
tions that warrant further investigation.

1 Introduction

Languages other than English remain underrepre-
sented and underserved by state-of-the-art language
technologies, posing a barrier to equal and inclu-
sive AI (Bender, 2011; Joshi et al., 2020). While
proprietary large language models (LLMs) like
GPT-4 (OpenAI, 2023) may answer questions and
follow instructions in many different languages,
even the best and most popular open LLMs are
much more restricted in their language coverage:
Llama2-chat (Touvron et al., 2023), for example,
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Figure 1: The 137 languages covered in our MULTIQ
question dataset. We show their geographic location
according to the WALS database and indicate their cor-
responding language family through colors.

is “intended for commercial and research use in
English”.1 Yi is “bilingual” in English and Chi-
nese2, and Mistral-7b-instruct (Jiang et al., 2023)

“only works in English”.3

Even though most open LLMs are restricted in
their intended use to one or a handful of languages,
datasets of real-world LLM usage show that people
prompt LLMs in many different languages, often
beyond their intended use (Ouyang et al., 2023;
Zhao et al., 2024; Zheng et al., 2024). This has mo-
tivated initial research into the multilingual capa-
bilities of monolingual models (Armengol-Estapé
et al., 2022; Lai et al., 2023). However, this re-
search has mostly focused on older proprietary
LLMs and on a relatively small number of lan-
guages and/or specific tasks.

In this paper, we investigate the basic multilin-
gual capabilities of a variety of state-of-the-art chat-
optimized open LLMs across a typologically di-
verse set of 137 languages. Specifically, we ask

1https://huggingface.co/meta-llama/
Llama-2-7b-hf

2https://huggingface.co/01-ai/Yi-34B-Chat
3https://mistral.ai/news/la-plateforme/
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two main research questions that correspond to
two dimensions of multilingual capability: 1) What
is the multilingual language fidelity of current
chat-optimized open LLMs, and 2) What is the
multilingual question answering (QA) accuracy
of current chat-optimised open LLMs? Language
fidelity describes the ability to respond to prompts
in the prompted language. QA accuracy describes
the ability to give correct answers to open-ended
questions, in the prompted language or any other.
An ideal multilingual model would give answers
that are both faithful and correct.

To answer our two research questions, we intro-
duce MULTIQ, a new silver standard benchmark
for basic open-ended question answering compris-
ing 27,400 test prompts across 137 typologically di-
verse languages. We create MULTIQ by compiling
200 English questions that are simple yet realistic
and diverse, and translating them automatically to
136 other languages. We evaluate QA accuracy on
MULTIQ using a GPT-4 classifier and language fi-
delity using GlotLID (Kargaran et al., 2023). MUL-
TIQ is a silver standard because automated transla-
tion and evaluation introduce some noise into the re-
sults. However, we validate through expert annota-
tion that this noise is likely small, thus demonstrat-
ing that MULTIQ can provide valuable evidence on
basic multilingual capabilities. Concretely, we use
MULTIQ to make four main findings:

1. Language Fidelity: While some open mod-
els (e.g. Llama2) mostly respond in English
regardless of the input language, other models
(e.g. Mistral) respond faithfully despite their
intended use being monolingual.

2. QA Accuracy: On MULTIQ, all models tend
to perform best in English, with some perform-
ing similarly well in up to 20 other languages
(e.g. Mixtral). Across models, there is a long
tail of languages with very poor accuracy.

3. Positive Interaction: Increased language fi-
delity appears to positively impact answer ac-
curacy, since model answers that match the
prompt language tend to be more accurate.

4. Tokenization as (Partial) Explanation:
Models tend to achieve higher accuracy on
languages they can tokenize into subwords
instead of characters or ASCII tokens.

We publish all data and code at https://
github.com/paul-rottger/multiq

2 The MULTIQ Dataset

MULTIQ is a collection of 27,400 simple open-
ended questions across 137 typologically diverse
languages. The questions cover different topics
ranging from algebra to geography to astronomy.
Questions in each language are parallel to each
other. The open-ended question format is consis-
tent with real-world LLM usage. Additionally, the
open-endedness minimizes the likelihood of cor-
rect answers given by chance.

2.1 Dataset Creation
We created MULTIQ in two steps. First, we com-
piled an initial set of English questions. Second,
we automatically translated these prompts into 136
typologically diverse languages.

For the initial English questions, we used
two different sources to increase question diver-
sity. a) We collected 100 questions from the
LMSYS-Chat-1M dataset (Zheng et al., 2024),
which catalogs real-world user interactions with
LLMs. Specifically, we sampled all single-sentence
English-language and sorted them by frequency.
Then, we manually selected from the top until we
reached 100 questions. This portion of our data
directly reflects real-world LLM usage. b) We man-
ually created another set of 100 questions evenly
spread across 10 different subjects at elementary to
middle school level (e.g. mathematics and geogra-
phy). To maximize the diversity of the questions,
we prompted GPT-4 to provide us with a set of
simple and clear questions with simple and clear
answers for each of the subjects. We then iterated
and manually selected questions until we reached
10 questions per subject. This portion of our data
expands MULTIQ’s topical coverage.

In both the LMSYS and the GPT-4 portions of
our data, we manually selected only questions that
are simple, factual, and target common knowledge.
This is because with MULTIQ we want to test basic
multilingual capabilities, not complex reasoning.
Questions must also have unambiguous answers
that are culturally and temporally invariant. This
is to minimize discrepancies introduced by transla-
tion as well as temporal degradation of our dataset.
Table 1 shows English example prompts.

To translate our English questions into other
languages, we used the v3 Google Translate API.4

Specifically, we translated the 200 initial English
questions into all 136 other languages covered by

4https://translation.googleapis.com/v3/
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Source Example Prompts

LMSYS
Was the year 2000 a leap year?
What is 2 + 2 * 3?
How many feet does a chicken have?

GPT-4
What is the chemical formula for water?
Who was the first Emperor of China?
What is a galaxy?

Table 1: Examples of English questions covered in
MULTIQ. We present three prompts from each source
(LMSYS and GPT-4) covering different domains.

the API as of February 2024, resulting in a total
of 27,400 parallel questions in MULTIQ. The de-
cision to use automated translation was driven by
the constraints of our research budget, which made
manual translation infeasible. The benefit of auto-
mated translation is that we can cover many more
languages. Next, we discuss how we validated the
quality of the translations, and demonstrate the ty-
pological diversity of the 137 languages we cover.

2.2 Validation of Translations

We asked native speakers to annotate the correct-
ness of the 200 translated MULTIQ questions for 19
languages: Arabic, Catalan, Chinese, Farsi, French,
German, Hindi, Indonesian, Italian, Japanese, Ko-
rean, Spanish, Tagalog, Russian, Spanish, Quechua,
Ukrain, Urdu and Xhosa. Across these languages,
annotators marked an average of 91.6% of transla-
tions as correct. Translations were least accurate
for Tagalog at 60.0% and Arabic at 82.2%, while
the translations for Italian and German were the
most accurate, at 99.0%. We present the full results
in the Appendix A. Qualitatively, several annota-
tors stated that some translations, while accurate in
content, tended to be literal, word-for-word transla-
tions rather than natural expressions. Overall, the
automated translation introduces some noise into
MULTIQ, but our validation results suggest that the
amount of noise is limited. This is why we frame
MULTIQ as a silver standard benchmark that can
provide meaningful insights into basic multilingual
capabilities, even if exact results on individual test
cases may not be perfectly reliable.

2.3 Typological Diversity

MULTIQ covers a total of 137 languages. To
demonstrate their typological diversity, we follow
best practices suggested by Ploeger et al. (2024),
analyzing both between-language distances as well
as overall typological feature coverage.
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Figure 2: Distributions of the pairwise lang2vec dis-
tances for each language pair present in MULTIQ.

To estimate language distances, we use the
lang2vec toolkit (Littell et al., 2017) which con-
tains precomputed language distances based on the
typological language information queried from the
URIEL knowledge base.5 Following Ploeger et al.
(2024), we calculate the distances between all pairs
of languages in our dataset that have at least 5%
coverage in the URIEL vectors. Figure 2 shows the
distribution of pairwise geographic, syntactic, and
genetic distances of all covered languages. We find
that the languages in MULTIQ cover a wide range
of typologically similar and distant language pairs
with an expected high skewness of genetic distance
complementing previous research (Ploeger et al.,
2024). We can therefore confidently speak of a
high typological diversity of our dataset.

Next, we calculate the typological feature cov-
erage of the 137 languages in MULTIQ, using lan-
guage features provided in the Grambank database
(Skirgård et al., 2023). For this purpose, we map
the language IDs in MULTIQ (obtained from the
Google Translate API) to the Glottoids used by
Grambank.6 Taken together, the languages in MUL-
TIQ cover at least 95.4% of the typological features
recoded in Grambank. This underlines the typolog-
ical diversity of our dataset.

Finally, we classify each language by its lan-
guage family using the World Atlas of Language
Structure (WALS).7 In total, the 137 languages
in MULTIQ belong to 20 different language fami-

5https://www.cs.cmu.edu/~dmortens/projects/7_
project/

6For 14 languages in our dataset there is no matching
entry in Grambank. To avoid incorrect mapping, we do not
assign them manually and exclude these languages from the
calculation

7https://wals.info/languoid
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lies.8 For additional details on the languages in our
dataset, see Appendix A.

3 Experiments and Results

Using MULTIQ, we can now answer our two main
research questions regarding the multilingual lan-
guage fidelity and multilingual QA accuracy of
current chat-optimized open LLMs. We first sepa-
rately assess fidelity and accuracy, and then evalu-
ate their relationship.

3.1 Overall Experimental Setup

Models We test six open-access LLMs that are
both popular and competitive in performance with
other state-of-the-art models as measured on stan-
dard (English-language) benchmarks such as the
LMSys Leaderboard9 and AlpacaEval.10 Specif-
ically, the 7B, 13B and 70B versions of Llama2-
Chat (Touvron et al., 2023), the 7B Mistral-Instruct-
v0.1 (Jiang et al., 2023), the 8x7B Mixtral-Instruct-
v0.1 (Jiang et al., 2024) and the 7B Qwen1.5-Chat
model (Bai et al., 2023). We test three sizes of
Llama2 to evaluate scaling on MULTIQ. Llama2
and Mistral are explicitly intended for English use
only, whereas Mixtral and Qwen are explicitly mul-
tilingual: Mixtral “handles English, French, Ital-
ian, German and Spanish”, while Qwen offers
unspecified “multilingual support”.

Inference We run all models on two A100 GPUs
using the simplegen Python library (Attanasio,
2023). We use default generation parameters from
the transformers library, except for temperature,
which we set to 0 to make completions determin-
istic. The maximum length of generations is 256
tokens. We do not use any system prompts. When
prompting models with MULTIQ questions, we do
not provide any additional context or examples.

3.2 Language Fidelity

We gather responses from all six models described
above on the 27,400 questions in MULTIQ and
then use GlotLID (Kargaran et al., 2023) to identify
the response language. GlotLID is an open-source
language identification model that supports more
than 1,600 languages. GlotLID returns iso_636_9
language codes, which we manually map to the

8For languages that cannot be found in WALS (e.g. Corsi-
can), we manually look up the language family in Grambank.

9https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

10https://tatsu-lab.github.io/alpaca_eval/

0 20 40 60 80 100
Qwen1.5-7B  

Mixtral-8x7B-v0.1  

Mistral-7B-v0.1  

Llama-2-70B  

Llama-2-13B  

Llama-2-7B  

Figure 3: Overall language fidelity. Proportion of
model responses (%) in the same language as the in-

put prompt, in English , or in another language . We
evaluate the responses of six models for 200 prompts in
135 languages (excl. Dogri & Meiteilon).

language codes in MULTIQ.11 Two languages in
MULTIQ, namely Meiteilon (Manipuri) and Dogri,
are not supported by GlotLID, so we exclude them
from our language fidelity analysis. Figure 3 shows
high-level results on language fidelity, split by how
often models responded in the language of the input
prompt, in English, or another language.

We find that the Llama2 models show a very
low language fidelity, responding predominantly
in English, matching its intended use for English
only. Fidelity increases with scale, but even Llama2
70b, which gives 21.4% answers in the prompt lan-
guage, is much less faithful than the other mod-
els. Surprisingly, Mistral, also intended for En-
glish use only, shows the greatest language fidelity,
giving 62.3% of answers in the prompt language.
Mistral is closely followed by Mixtral (60.6%) and
Qwen (50.4%), which are advertised as having mul-
tilingual capabilities. Interestingly, compared to
Llama2, the other models more frequently opt nei-
ther for English nor the prompt language, but some
other language in their response. This effect ap-
pears most evident for Qwen.

To confirm the robustness of our findings, we
investigate the impact of brief and numerical re-
sponses from the models on our results. To this
end, we excluded all questions from the MULTIQ
dataset that required a numerical answer, specif-
ically removing the 10 curated questions of the
domain “math” as well as 16 questions that were
drawn from the LMSYS dataset. We then analyzed
the character length of the model responses, noting
an average length of 270-670 characters across dif-
ferent models. We also exclude responses shorter
than 10 characters from the language fidelity calcu-
lation. The overall language fidelity of the models

11For 13 languages, several language codes in MULTIQ
map to just one iso_636_9 code. For details see Appendix B.
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Figure 4: Granular language fidelity. Correlation matri-
ces illustrating the relationship between input prompt
and model response languages, shown as percentages.
Axis ticks are selectively labeled for better visualization.

showed only marginal changes in response to these
changes, underscoring the minimal influence of
brief or numerical responses on our analysis.

Next, we conduct a more fine-grained analysis of
model answers in “another language”, i.e. neither
the input language nor English. For this, we focus
on the three models responding in another language
more than 10% of the time (Qwen, Mistral, Mix-
tral). Of these, Mistral demonstrates the highest
level of diversity among the languages it responds
in. GlotLID identifies more than 360 distinct lan-
guages in Mistral’s responses, compared to around
240 languages for Mixtral and Qwen. We also ex-
amine the correspondence between the language
family of input and output language. While Mixtral
provides a response in the same language family
at least 68.7% of the time, if not in an exact match
or responding in English, Qwen demonstrates this
behavior only 60.6% of the time, while Mistral
does so for 54.6% of prompts. Note, however, that
for 6% of the answers of Mistral and 7% of the
answers of Mixtral, the language family of the re-
sponse languages could not be determined and is
thus classified as ’unknown’. Additionally, the dis-

Model Label P R F1

Mistral-7B Incorrect A. 0.97 1.00 0.98
Correct A. 0.98 0.87 0.92

Qwen1.5-7B Incorrect A. 0.88 0.99 0.93
Correct A. 0.94 0.61 0.74

Llama-2-7b Incorrect A. 0.92 1.00 0.96
Correct A. 1.00 0.74 0.85

Mixtral-8x7B Incorrect A. 0.82 0.98 0.89
Correct A. 0.97 0.71 0.82

Table 2: Evaluation of the GPT-4 classifier that we use to
assess answer accuracy on MULTIQ. We show Precision
(P), Recall (R), and F1-Score of GPT-4 judgments on
responses from four models to the same sample of 282
questions covering all languages, which were annotated
by humans for whether they are correct or not.

tribution of language families in MULTIQ is highly
skewed, with 45.3% of the languages belonging
to the ’Indo-European’ family, which spans a very
broad range of languages from Irish to Turkish.

Finally, we analyze the relationship between the
language of the prompt and the frequency of the
respective response language of the models. Figure
4 shows correlation matrices for Mistral and Qwen.
Corresponding matrices for the other models are
shown in Appendix C. We find that Hindi is the
most frequently selected language outside of the
input language or English, closely followed by In-
donesian. For Qwen, for example, these languages
make up 20.4% of the “another language” category.
This is visible by the thin yellow vertical lines lead-
ing to the axis ticks ind and hin in the Figure for
both models respectively. A potential explanation
may be that the models lack support for numerous
languages from India and Indonesia, thus treating
Hindi and Indonesian as some kind of ’fallback’
languages for the wider language area. For exam-
ple, the models often respond to languages such as
Malay and Javanese in Indonesian, and languages
such as Maithili, Konkani, and Bhojpuri in Hindi.
We also observe this phenomenon for smaller Eu-
ropean languages. For example, the three models
respond to questions in Croatian mostly in Italian,
to those in Luxembourgish mostly in German, and
those in Galician mostly in Portuguese. These ob-
servations underline the importance of improving
multilingual models in the language coverage of
low-resource languages.
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Model All EN ▲10 ▲20 ▲50

Qwen (7B) 16.6 84.0 61.6 50.2 34.3
Mistral (7B) 15.4 84.5 64.6 56.6 37.6
Mixtral (8x7B) 33.8 90.5 87.7 84.8 67.4
Llama2 (7B) 19.2 81.5 58.4 53.9 41.4
Llama2 (13B) 23.4 82.0 66.4 62.7 49.6
Llama2 (70B) 29.1 90.5 80.7 76.5 61.2

Table 3: QA accuracy on MULTIQ (%). We show accu-
racy overall, on English questions, and on the top(▲) 10,
20 and 50 best-performing languages for each model.
Highest accuracy across models is bold.

3.3 Question Answering Accuracy
Next, we assess how often models give correct
answers, regardless of whether the language of this
answer matches the input prompt or not.

Automated Evaluation Since questions in MUL-
TIQ are open-ended and answers can come in many
languages, we need a flexible method for evaluating
accuracy. We find that a carefully crafted prompt to
GPT-4, which checks a given model answer against
the English version of the question from MULTIQ,
serves this purpose well.12

To evaluate the reliability of our automated eval-
uation method, we tasked two independent human
annotators to label model responses from four of
our models for the same 282 randomly selected
prompts covering at least two questions per lan-
guage, as correct or incorrect.13 Disagreements be-
tween the annotators, which occurred for no more
than four responses per model, were resolved in
discussions with one of the authors. We find that
the accuracy of our automated evaluation, as mea-
sured against the human labels, is very high across
models (see Table 2). For all models, the automated
evaluation tends to be very precise on correct an-
swers, but less so on incorrect answers. This means
that the automated evaluation will likely underes-
timate the proportion of correct model answers
across languages. Overall, automated evaluation,
like automated translation, introduces noise to our
silver standard MULTIQ benchmark, but we find
the amount of noise to likely be small.

Results Based on our automated evaluation, we
calculate the proportion of correctly answered ques-
tions for each model across all 137 languages. Ta-
ble 3 shows overall results, and Figure 5 shows

12See Appendix B for the prompt template.
13We exclude the 13B and 70B versions of Llama2 from

the QA accuracy analysis for reasons of clarity, and because
they resemble the results of Llama2 7B.

Model Same English Other

Qwen (7B) 21.5 11.4 11.7
Mistral (7B) 17.1 14.6 11.8
Mixtral (8x7B) 35.0 37.0 26.7
Llama2 (7B) 44.7 14.9 46.5
Llama2 (13B) 51.6 15.1 49.6
Llama2 (70B) 61.4 17.3 48.2

Table 4: QA accuracy on MULTIQ (%) split by language
fidelity, i.e. which language models answered in (see
Figure 3). Highest accuracy per model is bold.

a breakdown across all languages. We find that
Mixtral is most accurate overall, but also across
most individual languages covered in MULTIQ.
Mistral shows the lowest overall accuracy across
all languages, with a long tail distribution starting
to decrease after the best-performing 20 languages.
Moreover, a direct comparison between the results
of Mixtral and Qwen shows that they achieve very
similar results on Chinese, although only Qwen
was explicitly trained in Chinese (Bai et al., 2023).

3.4 Language Fidelity vs Answer Accuracy

Finally, we combine the results of §3.2 and §3.3 to
assess the relationship between language fidelity
and QA accuracy. Table 4 shows the mean accu-
racy grouped by response language category. We
find that Llama2, despite its overall low language fi-
delity, shows strong QA accuracy. Especially when
answering in the same language as prompted, it
gives a correct answer in almost half of the cases
(44.7%). Scaling the model further improves ac-
curacy, with the 13B and 70B variants achieving
higher correct answer rates of 51.6% and 61.4%,
respectively, when answering in the same language
as prompted. Qwen and Mistral show a similar pat-
tern, i.e. higher answering accuracy when answer-
ing in the prompt language with 21.5% and 17.1%.
However, their overall accuracy is quite low, espe-
cially when compared to their initial high language
fidelity. Strikingly, we find significant differences
across models that ought to be similar due to their
intended use for English, i.e. Llama2 demonstrat-
ing low fidelity yet high accuracy, in contrast to
Mistral, which exhibits the reverse pattern. A quali-
tative analysis of Mistral’s answers reveals that the
model often merely repeats the questions it was
asked, which is technically faithful but never an
accurate answer (see Table 11). Only for Mixtral is
this pattern not apparent, with the highest accuracy
of 37% being achieved for responses in English.
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Figure 5: Answer accuracy on MULTIQ in proportion (%) of correctly answered questions per language. We
compare four models of the same size across 137 languages and sort the results by median accuracy.

Overall, we find that if models answer in the same
language as the prompted language, they tend to be
more accurate than if they respond in English. The
only exception of this pattern is Mixtral. Therefore,
our results suggest that increased language fidelity
may positively impact QA accuracy.

4 Tokenization and Multilinguality

Our results show significant variations in terms of
language fidelity, QA accuracy, and the relation-
ship between them, across the models we test with
MULTIQ. This prompts us to investigate what fac-
tors may explain these differences. We focus on the
differences between Mistral and Llama2 7B, which
are particularly surprising given that both models
are intended for use in English only. Prior research
highlights the significant roles of tokenization and
training data in multilingual capability (Dufter and
Schütze, 2020; Clark et al., 2022; Petrov et al.,
2023). Since there is little to no public information
on the training data of the models that we test, we
focus on their tokenizers.

Background: Byte Pair Encoding Both Llama2
and Mistral employ a tokenizer that uses byte pair
encoding (BPE, Sennrich et al., 2016), stream-
lining sequence encoding by minimizing token
count through identifying common subwords. This
allows for frequent sequences to be represented
through subword tokens, whereas rare or unseen
sequences make the model default to individual
characters or, failing that, ASCII code tokens.

Unique Tokens in MultiQ First, we evaluate
how different tokenization strategies impact prompt
tokenization in MULTIQ. We observe a significant

deviation in the number of unique tokens used to
represent all prompts in MULTIQ: Mistral uses
9,933 unique tokens, contrasting with Llama2’s
10,676. This suggests that Llama2 may be less effi-
cient at segmenting the typologically diverse MUL-
TIQ dataset into a smaller number of subwords.

Tokenization Strategies For each model, we
group languages into three categories depending on
the model’s tokenization strategy for the respective
language. We develop a heuristic that allows us
to classify languages into three tokenization cate-
gories: “ASCII”, “character” or “subword”. We do
so by compiling the model’s 20 most commonly
used tokens for representing each language in MUL-
TIQ, removing noise tokens (e.g. sentence start)
from the list, and then quantifying the prevalence
of ASCII tokens and characters based on the token-
id ranges they usually occupy. Languages with over
70% of tokens in the ASCII or character categories
were classified accordingly. For Llama2, out of
137 languages, we find 89 subword, 36 character
and 12 ASCII languages. Mistral has 37 character
and 9 ASCII languages. The models differ in the
tokenization of some symbolic languages such as
Chinese (ZH, see Figure 6): while Mistral mostly
uses individual character tokens, Llama2 more fre-
quently resorts to ASCII tokens due to its limited
Chinese token vocabulary, which limits its ability
to effectively tokenize Chinese language prompts.

Tokenization vs. QA Accuracy We evaluate the
models’ average QA accuracy across tokeniza-
tion categories, finding a clear hierarchy (see Ta-
ble 5): Subword encoding outperforms character
and ASCII encodings, with Mistral and Llama2 re-
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Figure 6: Tokenization analysis. Distribution of the
most used unique tokens across all n=200 MULTIQ
prompts in Chinese (ZH), when using the tokenizers of
Llama2 (7B) and Mistral (7B).

Model Subword Character ASCII

Llama2 (7B) 24.0 11.2 8.0
Mistral (7B) 20.4 6.4 2.1

Table 5: QA accuracy (%) on MULTIQ split by tok-
enization strategy. Highest accuracy per model is bold.

spectively achieving 20.4% and 24.0% accuracy on
subword-encoded languages compared to just 6.4%
and 11.4% on character-encoded languages. Even
though our heuristic may introduce some noise in
classifying tokenization strategies, we believe that
exploring tokenization optimization is a promis-
ing direction for multilingual research, which also
aligns with the broader discourse on the impact
of tokenization on model capabilities. We hope
our insights can help motivate further research into
alternative language representation strategies (e.g.
pixel-based models, Salesky et al., 2023).

5 Related Work

We discuss the related literature with respect to
(i) large multilingual benchmarks, (ii) explicitly
multilingual models, and (iii) multilingual studies
of monolingual models.

Multilingual Benchmarks Existing multilingual
benchmarks primarily target the performance of
fully or partially supervised models on collec-
tions of standard NLP tasks, like XNLI (Con-
neau et al., 2018). Popular examples are the
XTREME benchmarks (e.g. Ruder et al., 2021,
2023), and XGLUE (Liang et al., 2020). Simi-
larly, researchers also presented benchmarks de-
signed for languages spoken in particular regions,
e.g. IndicXTREME (Doddapaneni et al., 2023) for
Indic languages, Masakhan-NER (Adelani et al.,

2022), and TaTA (Gehrmann et al., 2023) cover-
ing African languages, as well as NusaX (Winata
et al., 2023) for Indonesian languages. Recently,
Ahuja et al. (2023) proposed MEGA for evaluat-
ing multilingual generative models, which they use
to evaluate LLMs like GPT-4 on a set of standard
tasks. In a similar vein, Asai et al. (2023) pre-
sented BUFFET and benchmark LLMs for few-
shot transfer. Another line of work focuses on
multilingual QA datasets for reading comprehen-
sion, such XQuaD Artetxe et al. (2020), TyDiQA
(Clark et al., 2020) and the Belebele benchmark
(Bandarkar et al., 2023) with up to 122 diverse
languages. Concurrent work proposes a new multi-
lingual instruction tuning dataset called Aya (Singh
et al., 2024), which also covers a range of open-
ended questions in 114 languages. By comparison,
MULTIQ contains parallel questions in a larger set
of 137 languages covering 95.4% of Grambank
features, which demonstrates its typological diver-
sity and allows the analysis of multilingual LLM
behavior at the margins of language coverage. Fur-
thermore, MULTIQ’s carefully selected short and
simple questions target basic LLM knowledge to
test only their multilingual capabilities and not an-
cillary factors such as complex reasoning.

Multilinguality in Monolingual LLMs Given
the limited availability of open multilingual chat
models, we are especially interested in assess-
ing the multilinguality of models intended for En-
glish use only. Blevins and Zettlemoyer (2022)
explained this behavior through data contamina-
tion: while the vast majority of the pre-training
data of those models is English (e.g. ~93% for
GPT-3 Brown et al., according to 2020, and ~90%
for Llama-2 according to Touvron et al., 2023)
there are also small portions of non-English con-
tent in the pre-training data. In such cases, it ap-
pears that the dominant language can help “un-
lock” the models’ capabilities for the underrepre-
sented languages (Gogoulou et al., 2022). Conse-
quently, recent research assesses the multilinguality
of several English-centric models, like GPT-3 and
ChatGPT (e.g. Zhang et al., 2023; Lai et al., 2023;
Armengol-Estapé et al., 2022; Winata et al., 2021).
However, these prior works focus on standard NLP
tasks such as text classification, just one or few
models, and on just a few major languages. By
contrast, we test the multilingual behavior of six
LLMs in a more natural open-ended QA setting.
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6 Conclusion

We introduced MULTIQ, a new silver standard
benchmark for open-ended question answering that
covers 137 typologically diverse languages. With
MULTIQ, we evaluated the basic multilingual capa-
bilities of six current, chat-optimized open LLMs,
which are restricted in their intended use to just
one or a small handful of languages. Our analysis
focused on two key dimensions of multilingual ca-
pability – language fidelity and QA accuracy – and
how they relate to each other. We found that all
LLMs we test respond faithfully and/or accurately
for at least some languages beyond their intended
use. Most models are more accurate when they
respond faithfully. However, we found that differ-
ences across models are large, and that there is a
long tail of languages where models are neither
accurate nor faithful. Finally, we indentified dif-
ferences in tokenization as a potential explanation
for our results. Overall, we hope that our findings
can motivate further research into improving the
multilingual capabilities of open LLMs, especially
for diverse and under-represented languages, so
that language technologies can benefit everyone,
regardless of which language they speak.

Limitations

Our work comes with several limitations, which
have already been partially discussed throughout
the paper. First, we automatically translate our
dataset, which introduces noise in the dataset. How-
ever, based on manual validation by native speakers,
translation quality is high. Second, the automated
evaluation of the models’ answering accuracy us-
ing GPT-4, as well as response language classifi-
cation using GlotLID, introduce some noise into
the results. Here, too, human validation assures
us that these factors minimally impact the results,
potentially leading to an underestimation of answer
accuracy. Third, mapping Google Translate IDs to
the ISO language codes of GlotLID was not always
directly possible, but we excluded possible inaccu-
racies from our calculations. Lastly, our analysis
intentionally concentrated on basic multilingual ca-
pabilities, excluding the assessment of advanced
reasoning or formulation skills.

Ethical Considerations

Intended Use As we emphasized throughout our
paper, MULTIQ is intended to test basic multilin-
gual capabilities. Therefore, good performance on

MULTIQ alone should not be used as evidence for
an LLM being suitable for specific languages.
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Appendix

A MultiQ

In total MULTIQ covers 10 different question do-
mains and 20 distinct language families.

Domains

• chemistry

• physics

• astronomy

• history

• maths

• geography

• art

• sports

• music

• animals

Language Families

• Afro-Asiatic (AA)

• Altaic (Al)

• Austro-Asiatic (AuA)

• Austronesian (Au)

• Aymaran (Ay)

• Basque (B)

• Dravidian (D)

• Hmong-Mien (HM)

• Indo-European (IE)

• Japanese (J)

• Kartvelian (K)

• Korean (Ko)

• Mande (M)

• Niger-Congo (NC)

• Other (O)

• Quechuan (Qu)

• Sino-Tibetan (ST)

• Tai-Kadai (TK)

• Tupian (T)

• Uralic (U)

Language Prop. of correct questions

Arabic 0.822
Catalan 0.899
Chinese 0.955
Farsi 0.890
French 0.915
German 0.995
Hindi 0.975
Indonesian 0.889
Italian 0.990
Japanese 0.955
Korean 0.97
Spanish 0.950
Tagalog 0.6
Quechua 0.895
Romanian 0.875
Russian 0.97
Ukrain 0.935
Urdu 0.935
Xhosa 0.990

Table 6: Validation Results on MULTIQ. We present
the proportion of correctly translated prompts for each
language assessed by native speakers in the respective
language.
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Code Language Family Code Language Family Code Language Family

af Afrikaans IE hmn Hmong HM ny Nyanja (Chichewa) NC
ak Twi (Akan) NC hr Croatian IE om Oromo AA
am Amharic AA ht Haitian Creole or Odia (Oriya) IE
ar Arabic AA hu Hungarian U pa Panjabi IE
as Assamese IE hy Armenian IE pl Polish IE
ay Aymara Ay id Indonesian Au ps Pashto IE
az Azerbaijani Al ig Igbo NC pt Portuguese IE
be Belarusian IE ilo Ilocano Au qu Quechua Qu
bg Bulgarian IE is Icelandic IE ro Romanian IE

bho Bhojpuri IE it Italian IE ru Russian IE
bm Bambara M iw Hebrew alternativ AA rw Kinyarwanda NC
bn Bengali IE ja Japanese J sa Sanskrit
bs Bosnian IE jv Javanese alternativ Au sd Sindhi IE
ca Catalan IE jw Javanese Au si Sinhala (Sinhalese) IE
ceb Cebuano Au ka Georgian K sk Slovak IE
ckb Kurdish (Sorani) IE kk Kazakh Al sl Slovenian IE
co Corsican IE km Khmer AuA sm Samoan Au
cs Czech IE kn Kannada D sn Shona NC
cy Welsh IE ko Korean K so Somali AA
da Danish IE kri Krio sq Albanian IE
de German IE ku Kurdish IE sr Serbian IE
doi Dogri IE ky Kyrgyz Al st Sesotho NC
dv Dhivehi IE la Latin su Sundanese Au
ee Ewe NC lb Luxembourgish IE sv Swedish IE
el Greek IE lg Luganda NC sw Swahili NC
en English IE ln Lingala NC ta Tamil D
eo Esperanto IE lo Lao TK te Telugu D
es Spanish IE lt Lithuanian IE tg Tajik IE
et Estonian U lus Mizo ST th Thai TK
eu Basque B lv Latvian IE ti Tigrinya AA
fa Persian IE mai Maithili IE tk Turkmen Al
fi Finnish U mg Malagasy Au tl Tagalog (Filipino) Au
fil Filipino (Taga-

log)
Au mi Maori Au tr Turkish Al

fr French IE mk Macedonian IE ts Tsonga NC
fy Frisian IE ml Malayalam D tt Tatar Al
ga Irish IE mn Mongolian ug Uyghur Al
gd Scots Gaelic IE mni-Mtei Meiteilon (Manipuri) ST uk Ukrainian IE
gl Galician IE mr Marathi IE ur Urdu IE
gn Guarani T ms Malay Au uz Uzbek Al

gom Konkani IE mt Maltese AA vi Vietnamese AuA
gu Gujarati IE my Myanmar (Burmese) ST xh Xhosa NC
ha Hausa AA ne Nepali IE yi Yiddish IE

haw Hawaiian Au nl Dutch IE yo Yoruba NC
he Hebrew AA no Norwegian IE zh Chinese (Trad.)
hi Hindi IE nso Sepedi NC zh-CN Chinese (Simpl.)

zh-TW Chinese (Simpl.) zu Zulu NC

Table 7: 137 Languages covered by MULTIQ, we present their Google Translate Code and the acronym of their
language families.
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B Experimental Setup

In Table 8, we provide all information and links to the data, models, and frameworks, we use in our work.
All artifacts were used according to their intended use, as described in their licenses. As described in the
main body of this manuscript, we are also releasing our code publicly and will do so under the CC-BY-4.0
license.

Purpose Name Vocabsize Intended Languages

Models

meta-llama/Llama-2-7b-chat-hf 32000 en
meta-llama/Llama-2-13b-chat-hf 32000 en
mistralai/Mistral-7B-Instruct-v0.1 32000 en
Qwen/Qwen1.5-7B-Chat 151936 undefined
mistralai/Mixtral-8x7B-Instruct-v0.1 32000 fr, en, es, it, de
cis-lmu/glotlid 1600 langs
gpt-4-0125-preview

Framworks transformers==4.34.0
torch==2.1.0
huggingface-hub==0.17.3
tokenizers==0.14.1

Datasets WALS Dataset License: CC-BY-4.0
Grambank License CC-BY-4.0

Table 8: Overview of models, datasets and frameworks used in our work.

Task Prompt

Question Creation for MultiQ Generate a list of 10 simple and clear {domain} questions with
simple and clear answers.

Validate Answer Correctness For the following question, is this a correct answer?
Question: {MultiQ Question in English}
Answer: {Model Answer}
The question is in English. The answer is either in English or
in another language. If the answer is correct, type ’yes’. If the
answer is incorrect, type ’no’."

Table 9: Prompt templates used to prompt GPT-4 for question creation and QA accuracy validation respectively.
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Google Translate ID ISO_639_3

zh-CN
zhozh

zh-TW
ku

ckb
ckb
he

heb
iw
sr

hbs
hr
jv

jav
jw
tl

tgl
fil

Table 10: List of Languages in MULTIQ that map to only one iso code in the GlotLID model.
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C Granular Language Fidelity Analysis
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Figure 7: Correlation matrices illustrating the relationship between input question languages and model response
languages for the Llama2 models, shown as percentages. Axis ticks are selectively labeled for clearer visualization.
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Figure 8: Correlation matrix illustrating the relationship between input question languages and model response
languages for Mistral, shown as percentages. Axis ticks are selectively labeled for clearer visualization.
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Prompt Language English Translation Model Completion

Xana Misava yi na tin’hweti tingani? ts How many moons does Earth have? Xana Misava yi na tin’hweti tingani?
(What is Xana Misava’s net worth?)

X’inhu sena dawl? mt What is a light-year? X’inhu sena dawl? is a question in the
Mayan language of Guatemala. It trans-
lates to "What is the meaning of life?"
in English

Beth yw mynydd uchaf Japan? cy What is the highest mountain in Japan? Beth yw mynydd uchaf Japan? (Do you
speak Japanese?)

Quanto fa tre volte sette? it What is three times seven? Quanto fa tre volte sette? Quanto fa tre
volte sette? Quanto fa tre volte sette?
Quanto fa tre volte sette? Quanto fa tre
volte sette? Quanto fa tre volte sette?
Quanto fa tre volte sette? Quanto fa tre
volte sette? Quanto fa tre volte sette?
Quanto fa tre volte sette? [...]

Table 11: Examples of Fidelity Issues for Mistral 7B
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D Answer Accuracy

en es nl fr zh zh-C
N

it uk zh-TW
cs de ja pt sv bg no da pl ko ca id ru sl gl sk sr bs ro hr vi co el mk
m
s

af tl fil fi hu la hi ar tr ceb
be fa bho
eo iw ne mai
fy he is mr
lb doi
sa bn su lv ur et ka sq az lt mt
ga jv jw gom
th gd cy kk ky ilo ln lus
gn mi
ht eu kri
gu sw haw
tt tk hy st yi ta uz rw ml
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lo so my
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Figure 9: Answer Accuracy on MULTIQ in proportion (%) of correctly answered questions per language. We
compare the Llama2 models in different model sizes across all 137 languages and sort the results by median
accuracy.
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