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Abstract

The deployment and application of Large Lan-
guage Models (LLMs) is hindered by their
memory inefficiency, computational demands,
and the high costs of API inferences. Tradi-
tional distillation methods, which transfer the
capabilities of LLMs to smaller models, often
fail to determine whether the knowledge has
been sufficiently transferred, potentially result-
ing in high costs or incomplete distillation. In
this paper, we propose an Explanation-Guided
LLMs Active Distillation (ELAD) framework
that employs an active learning strategy to op-
timize the balance between annotation costs
and model performance. To improve the ef-
ficiency of sample selection, we introduce an
explanation-guided sample selection method
that identifies samples challenging its reason-
ing by exploiting uncertainties in reasoning ex-
planation steps. Additionally, we present a cus-
tomized LLM-annotated explanation revision
technique where the teacher model detects and
corrects flaws in the student model’s reason-
ing. Our experiments across various reason-
ing datasets demonstrate that our framework
significantly enhances the efficiency of LLMs
knowledge distillation.

1 Introduction

The advancement of LLMs (Brown et al., 2020;
Hoffmann et al., 2022; Thoppilan et al., 2022; Tou-
vron et al., 2023) has significantly impacted the
natural language processing (NLP) domain, show-
casing excellent in-context learning and complex
reasoning capabilities. Yet, the deployment of
these models is hindered by their extensive param-
eter count, leading to significant computational de-
mands and financial burdens. For instance, deploy-
ing LLMs with 100-200 billion parameters would
require a cluster of NVIDIA A100 GPUs, where
each GPU costs $30, 000 in today’s market. While
cloud computing offers a solution, the costs asso-
ciated with such services can quickly accumulate.

Specifically, a cluster of A100 GPUs costs upwards
of $25 per hour, which may lead to a staggering
$18, 000 monthly if operated non-stop1. This fi-
nancial barrier makes it impractical for many insti-
tutions and research labs to adopt LLMs widely, es-
pecially in resource-constrained environments (Bai
et al., 2024), limiting their audience and application
scope. Additionally, relying on API calls to access
pre-trained LLMs, e.g., GPT-4, also presents its
challenges, including high usage fees, inability to
run models locally for customization or fine-tuning,
potential data transmission issues, and privacy con-
cerns (Yao et al., 2023c).

Recent research on LLMs knowledge distilla-
tion (Hinton et al., 2015) enables smaller mod-
els to achieve performance similar to LLMs by
transferring reasoning capabilities to them, mak-
ing them more computationally efficient. Tang
et al. (2019), Wang et al. (2021), and Arora et al.
(2022) demonstrate the training of smaller models
using pseudo-labels generated by LLMs, wherein
LLMs act as “teachers” to supervise the fine-tuning
of these “student” models. Recent works (Mag-
ister et al., 2022; Ho et al., 2022; Chan et al.,
2022; Zhang et al., 2023; Li et al., 2023; Hsieh
et al., 2023; Zhao et al., 2024; Pan et al., 2024a)
focus on multi-task fine-tuning of student mod-
els. They utilize chain-of-thought (CoT) reason-
ing (Wei et al., 2022) to generate both explanations
and final answers generated by LLMs as pseudo-
labels to jointly supervise small model fine-tuning.
However, a major issue with existing fully super-
vised learning methods is that they do not sense
whether the knowledge has been sufficiently dis-
tilled into the small model. Insufficient distillation
can lead to suboptimal performance of the small
model, while excessive distillation may incur un-
necessarily high costs.

To address this challenge, we take LLMs as an

1https://charshift.com/llm-true-cost/
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agent that guides small language models toward
progressive improvement. Throughout this process,
the LLMs (teacher) can sense the weaknesses of
the small language model (student) and customize
its teaching accordingly. Formally, we propose
an Explanation-Guided LLMs Active Distillation
(ELAD) framework that significantly enhances ac-
tive learning through the explanations generated
by language models. In each iteration, the frame-
work encompasses a student reasoning task and a
teacher reasoning task: the student model identifies
samples it struggles to predict accurately and rea-
sonably; subsequently, for these selected samples,
the teacher model reviews the student’s explana-
tions, correcting any erroneous reasoning.

However, first, it is nontrivial to tackle the stu-
dent task. Current sample selection methods typ-
ically focus on finding samples with the wrong
predictions (Lewis, 1995; Ren et al., 2021; Bansal
and Sharma, 2023), but even if the prediction is cor-
rect, the reasoning process can be wrong or flawed.
The selection of samples with bad reasoning goes
beyond it and is yet to be well explored, which
requires the student model to faithfully self-inspect
its step-by-step explanation of its prediction and
locate the flaw. To address this, we propose a novel
explanation-guided sample selection method that
identifies the samples that trouble its reasoning
by exploiting explanation stepwise uncertainties.
Second, how the teacher senses and corrects the
flaws in student model reasoning is also a chal-
lenging problem. Merely prompting teacher and
student to generate their respective explanations
separately and compare their difference is problem-
atic because a prediction could be led by differ-
ent reasoning processes and different explanations
(e.g., Rashomon Effect (Roth and Mehta, 2002)).
We need the teacher model to check the student
model’s explanation, locate the problem within its
reasoning, and correct it, which is not well explored.
To accomplish this, we propose a customized LLM-
annotated explanation revision technique. It entails
sequentially prompting the LLM with the expla-
nation from the small model and then asking it to
assess whether the current step is reasonable or
necessitates revision.

We evaluate our framework across six reasoning
benchmarks, comparing it against existing sample
selection methods for active learning and LLMs
explanation and answer generation methods. Our
findings indicate that the proposed framework no-
tably enhances annotating efficiency.

We summarize our main contributions as fol-
lows: a) An Explanation-Guided LLMs Active Dis-
tillation framework that enhances active learning,
guided by explanations from small models, during
the distillation of LLMs to smaller models. b) An
explanation-guided sample selection method that
identifies the samples that trouble the reasoning of
language model by exploiting explanation stepwise
uncertainties. c) A customized LLM-annotated ex-
planation revision technique that allows LLM to
teach customized knowledge by guiding the LLM
to pinpoint and correct inaccuracies in the reason-
ing steps of small models. d) Extensive experi-
ments demonstrate that the proposed framework
can improve annotating efficiency.

2 Related Work

2.1 LLMs Knowledge Distillation

DistilBert (Sanh et al., 2019) achieves efficient
distillation of the BERT transformer into a stu-
dent model with minimal performance loss. Tiny-
bert (Jiao et al., 2019) introduces a loss term for
matching hidden states between teacher and stu-
dent. Works like Magister et al. (2022), Fine-
tune-CoT (Ho et al., 2022), KNIFE (Chan et al.,
2022), SCoTD (Li et al., 2023), and Distilling step-
by-step (Hsieh et al., 2023) emphasize multi-task
fine-tuning of student models using both CoT rea-
soning explanations and LLM-generated answers.
Distilling step-by-step (Hsieh et al., 2023) specifi-
cally uses task-specific prefixes in prompts to tai-
lor model responses. Li et al. (2022) investigate
methods for generating explanations to aid student
model learning. SOCRATIC CoT (Shridhar et al.,
2023) decomposes problems into subproblems to
guide reasoning, while SCOTT (Wang et al., 2023)
uses teacher-generated explanations for training
on a counterfactual reasoning objective, promoting
self-consistency.

2.2 Efficient Annotating and Active Learning

Bansal and Sharma (2023) introduced a method us-
ing model uncertainty (Lewis, 1995), dataset den-
sity (Ren et al., 2021), and conditional informa-
tiveness (Bansal and Sharma, 2023) for one-shot
informative sample selection to enhance annotation
efficiency. However, these one-shot approaches fail
to sense the sufficiency of annotation. Addressing
this, active learning, particularly the pool-based
paradigm, has been recognized as a crucial tech-
nique for reducing annotation costs (Krishnakumar,
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2007; Ren et al., 2021). For NLP tasks, the most
common strategy is based on the entropy of pre-
dicted tokens for sampling (Zhang et al., 2022).
Additionally, Yao et al. (2023a) proposed a data
diversity-based active learning sampling strategy,
leveraging explanation annotations, with a human-
in-the-loop setting. BSDETECTOR (Chen and
Mueller, 2023) introduces an uncertainty quantifi-
cation technique for black-box LLMs, focusing on
consistency (Wang et al., 2022).

2.3 Explanation Generation for LLMs

Extractive explanations (Lei et al., 2016; Yu et al.,
2019) focus on identifying key elements within
the input that justify a prediction. However, they
are limited in explaining complex reasoning tasks
that require detailed natural language explanations
(free-text explanation) (Camburu et al., 2018; Ra-
jani et al., 2019). Narang et al. (2020) advanced
this by training models to generate explanations
post-prediction. Self-rationalization models, such
as those discussed by Wiegreffe et al. (2020), aim
to simultaneously predict labels and generate text-
based explanations. STaR (Zelikman et al., 2022)
generates explanations by augmenting ground truth
answers as hints when predicted answers are in-
correct. Wei et al. (2022) introduced CoT prompt-
ing, which uses demonstrations in LLM prompting
to elicit intermediate reasoning steps for explana-
tions. Kojima et al. (2022) demonstrated the zero-
shot reasoning capabilities of LLMs by employing
prompts like “Let’s think step by step” to generate
an explanation. Tree of Thought (Yao et al., 2023b;
Long, 2023) generates reasoning explanations by
recursively decomposing complex questions into
simpler sub-questions, solving them individually,
and integrating their answers.

3 Preliminary Study

3.1 LLMs Reasoning

In the zero-shot CoT prompting scenario, prompt-
ing a question q to an LLM triggers the generation
of the completion which consists of an answer a
and reasoning path (explanation) r, modeled as
(a, r) ∼ P (a, r | q). This process unfolds in an
auto-regressive manner, generating r before a and
formalizing the conditional probability of the an-
swer as P (a | q) = P (a | q, r)× P (r | q), where
P (a | q, r) represents the probability of a given
both q and r, and P (r | q) denotes the probability
of r given q. In few-shot scenarios, demonstration

triplets {(qpi , a
p
i , r

p
i )}mi=1 are included before q in

the prompt, facilitating contextual guidance and
reasoned answer generation, with m indicating the
number of demonstrations in the prompt.

The CoT prompting approach facilitates sequen-
tial reasoning in LLMs, generating a series of rea-
soning steps r = {s1, s2, . . . , sn}, where n is the
total number of steps. Each step si contributes cu-
mulatively to the reasoning explanation, culminat-
ing in the final answer. Specifically, the probability
of generating the explanation r given the question
q, denoted P (r | q), is expressed as a product of
conditional probabilities, representing the step-by-
step reasoning:

P (r | q) =
∏n

i=1
P (si | q, s1, . . . , si−1) (1)

where each si is predicated on the question q
and the preceding steps s1, . . . , si−1.

3.2 LLMs Knowledge Distillation
LLMs Knowledge distillation entails a process
wherein a large teacher language model T transfers
its knowledge to a small student language model
S. In this framework, given an unlabeled dataset
U , the teacher model generates a pseudo-answer
and a pseudo-explanation for each question q in
dataset U . These outputs are represented as the
answer-explanation pair (completion) (â, r̂). This
generation process is modeled as:

(â, r̂) ∼ T (a, r | q) (2)

The result is a collection of triplets {(q, â, r̂)}|U|

as the training dataset D. Subsequently, the stu-
dent model S is fine-tuned using D, employing the
standard language modeling loss, formulated as:

maxE(q,â,r̂) ∼D [S(â, r̂ | q)] (3)

4 Problem Setup

In the context of knowledge distillation of LLM
T , we address the problem of efficiently annotat-
ing an unlabeled question set U . This involves
strategically selecting a subset Q from U , where
Q ⊂ U and |Q| < |U|. Our study’s primary
goal is to enhance the performance of a smaller
model S through fine-tuning with a training dataset
D = {(qi, âi, r̂i)}|Q|, where the LLM annotates
an answer â and a corresponding explanation r̂ for
each question q ∈ Q, forming D. The objective is
to achieve a performance with S that is comparable
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Figure 1: Overview of the Explanation-Guided LLM Active Distillation (ELAD) framework: (a) illustrates the
Explanation-Guided Sample Selection method, (b) depicts the Customized LLM-Annotated Explanation Revision
technique, and (c) showcases the LLM Knowledge Distillation (small model fine-tuning) process.

to that of T while minimizing the size of the anno-
tated dataset Q. This approach aims to maximize
the efficiency of the small model and minimize the
amount of annotated data required from the LLM.

5 Methodology

In this section, we first present the overview of our
proposed Explanation-Guided LLMs Active Distil-
lation framework. We then proceed to present a
novel explanation-guided sample selection method.
Lastly, we present a customized LLM-annotated
explanation revision method.

5.1 Explanation-Guided LLMs Active
Distillation Framework

We propose a novel Explanation-Guided LLMs Ac-
tive Distillation framework to optimize the trade-
off between sufficient distillation and annotation
costs for LLM knowledge distillation tasks via an
active learning strategy. Our overall framework
is depicted in Figure 1. We first collect an unla-
beled dataset U . At the n-th iteration of active
learning, during the sample selection phase, as de-
picted in Figure 1 (a), we employ the standard
pool-based setting. The small model S generates
answers and explanations (completions) for all sam-
ples q ∈ U , resulting in a set {(qi, ai, ri)}|U|. Then,
an explanation-guided sample selection method f
(details to be provided in Section 5.2) is adopted
to select m samples with high uncertainty in their
generated answers and explanations from this set,
forming the selected subset. This process can be

represented as

Qn = f({(qi, ai, ri)}|U|;m) (4)

We then create the batch Bn comprising triples
{(qi, ai, ri)}m for each q ∈ Qn. Subsequently, we
progress to the annotation phase of active learning,
as illustrated in Figure 1 (b). The customized LLM-
annotated explanation revision function g (to be
discussed in Section 5.3) annotates completions
(â, r̂) for the selected samples in Qn using the LLM
T , guided by the completion (a, r) generated by
the small model, represented as

Dn = g({(qi, ai, ri)}m; T ) (5)

For each q ∈ Qn, this results in the dataset
Dn = {(qi, âi, r̂i)}m for small model fine-tuning.
The datasets are updated by removing Qn from U
and adding Dn to the cumulative training set D.
Finally, in the model update phase of active learn-
ing, depicted in Figure 1 (c), we fine-tune the small
model S on the training set D. This process is re-
peated until the LLM annotating (labeling) budget
Bu is depleted or other stopping criteria are met
(e.g., marginal improvement of the small model
falls below a certain threshold). The overall algo-
rithm is summarized in Algorithm 1.

5.2 Explanation-Guided Sample Selection
This section presents the explanation-guided sam-
ple selection method to select samples with high
uncertainty. This uncertainty stems from the com-
plexity and instability inherent in the step-by-step
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Algorithm 1: ELAD
Require: U , D, T , S, annotating budget Bu, number of

samples to select each iteration m
Ensure: Fine-tuned student model S
1: while Bu > 0 do
2: Generate answers and explanations for samples

from U using small model S
3: Select m most informative samples asQn using

Equation 4 to form batch Bn

4: Annotate Bn using LLM T as per Equation 5,
obtaining Dn

5: Update D ← D ∪Dn; U ← U \ Qn

6: Retrain S on updated D
7: Bu← Bu−m
8: end while
9: Perform final retraining of S on D

reasoning process. We estimate it across two di-
mensions: 1) Intra-explanation uncertainty, which
explores the uncertainty within individual steps
of an explanation, and 2) Inter-explanation uncer-
tainty, which examines the uncertainty across the
aggregated answers from different reasoning paths.
Intra-explanation uncertainty As stated in Sec-
tion 3, for an explanation r = {s1, s2, . . . , sn},
each reasoning step si builds upon the question
and all preceding steps and influences subsequent
steps and the final answer. To address the chal-
lenge of estimating the uncertainty in the explana-
tion generation resulting from step-by-step reason-
ing, we introduce a novel method for estimating
intra-explanation uncertainty. This method utilizes
a step-wise technique to evaluate the consistency
of final answers, whether they are conditioned on
specific reasoning steps or not. By comparing out-
comes in both scenarios, we effectively measure
the uncertainty associated with each step in the
explanation. To be more specific, for the i-th rea-
soning step, the reasoning and answer before the
i-th step can be written as:

(a, s≥i) ∼ S(a, s≥i | q, s<n) (6)

Similarly, the reasoning process conditioned on the
i-th reasoning step can be written as:

(â, s>i) ∼ S(â, s>i | q, s<i, si) (7)

where â is the sampled answer conditioned on i-
th reasoning step. The above two scenarios are
illustrated in Figure 2. We prompt the small model
with (q, s<i) and (q, s≤i) for each of the n steps
to obtain the corresponding answers, resulting in
a set {(âi, ai)}ni=1 that records the outcomes. The
uncertainty of the explanation is then quantified
by calculating the frequency of instances where

predictions remain unchanged despite the removal
of a reasoning step in the prompt as

HReasoning :=
1

n

∑n

i=1
I (âi = ai) (8)

where I (âi = ai) is an indicator function that re-
turns 1 (or 0) if the predicted answer is unchanged
(or not). This intra-reasoning uncertainty score
HReasoning measures the uncertainty of a single
explanation.

Figure 2: (a) illustrates reasoning not conditioned on the
i-th reasoning step; (b) depicts reasoning conditioned
on the i-th reasoning step.

Inter-explanation uncertainty The answers and
explanations generated by language models can ex-
hibit diversity due to the randomness introduced
by sampling temperature. To assess the uncer-
tainty arising from this randomness, we propose
a consistency-based method for evaluating inter-
explanation uncertainty. For each question, we
apply a multiple-path decoding strategy, prompting
the model k times to generate k distinct reason-
ing paths. This process can produce different final
answers, leading to N unique answer values, with
each unique value occurring ci times. We assess the
consistency among these multiple final answers by
calculating the frequency of occurrence ci for ev-
ery unique answer and subsequently computing the
probability of each answer as pi = ci

k . To quantify
the uncertainty in the probability distribution of the
output answers derived from multiple promptings,
we utilize Shannon entropy, calculated as follows:

HConsistency := −
∑N

i=1
pi log(pi) (9)

This inter-explanation uncertainty score serves as
an indicator of the model’s reasoning uncertainty
arising from different reasoning paths.
Overall Uncertainty Estimation and Sample Se-
lection Based on the two types of uncertainty illus-
trated in Equations 8 and 9, we define the overall
reasoning uncertainty H as:

H = HConsistency +
∑k

i=1
H(i)

Reasoning (10)

For all samples in dataset U , we select m sam-
ples with the highest uncertainty scores to form
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the selected subset Q. Based on the above, the
Equation 4 is formalized as:

Q = argmax-m
q∈U

H(q) (11)

where H(q) denotes the computed uncertainty
score for a question q using Equation 10.

5.3 Customized LLM-Annotated Explanation
Revision

After selecting the samples the small model trou-
bles the reasoning, the next step is transferring
knowledge from the LLM to the small model. This
process involves using the LLM to generate pseudo-
completion to fine-tune small model. To achieve
this, we introduce a customized LLM-annotated ex-
planation revision technique. This approach lever-
ages the advanced capabilities of the LLM to pro-
vide customized guidance to the small model by
allowing the LLM to detect and correct flaws in the
small model’s reasoning.

Figure 3: Customized LLM-Annotated Explanation Re-
vision. (a) and (b) illustrate the process by which the
LLM is prompted to revise the explanation and answer
from the small model. (c) shows the DFS-based reason-
ing steps searching strategy.

As Figure 3 (a) and (b) illustrate, our method
prompts the LLM to annotate customized comple-
tion for the selected questions, conditioned on the
output completion provided by the small model
to make detection and possible revision (correc-
tion), as (r̂, â) ∼ T (r̂, â | q, r, a). Specifically,
we employ a Depth-First Search (DFS)-based strat-
egy (Yao et al., 2023b), where for each reasoning
step generated by the small model, the LLM is
prompted to perform verification to ascertain the va-
lidity of the current step. This verification process
is iterative, continuing along the current reasoning
path until it becomes infeasible to proceed further.
At this point, the LLM is prompted to complete
the reasoning process by generating the remaining
steps and providing the final answer. As depicted

in Figure 3 (c), the process is represented as: q →
s1 → . . . → si−1 → × → ŝi → . . . → ŝn → a,
denotes the si−1 reasoning step is infeasible. si are
the steps generated by the small model, and ŝi are
the steps generated (revised) by the LLM.

Based on the above statement, the Equation 5
can be formalized as the following process. We
initiate the process with the question and prompt
the LLM to determine if the current step si from
the small model is valid for problem-solving. If the
LLM’s response is “Yes”, we prompt it to generate
its own reasoning step ŝi as ŝi ∼ P (ŝi | q, si, ŝ<i).
This process is continued until the LLM responds
“No” to the i-th step. At this point, we prompt the
LLM to generate the remaining reasoning steps and
the final answer as (a, ŝ≥i) ∼ P (a, ŝ≥i | q, ŝ<i).
The specifics of this verification and prompting
process take the following form. Initially, we com-
bine the first reasoning step from the student model
s1 with the question q to create the prompt: “For
question <q>, can we start with this step: <s1>?”
If the LLM’s answer is “Yes”, we adopt the first
reasoning step from the LLM ŝ1 as the annotated
step and proceed to the next reasoning step. For the
i-th reasoning step from the student small model,
we define the prompt as: “Can we continue with
this step: <si>?” If the response is “No,” we then
prompt the LLM with: “What are the rest of the
reasoning procedures and the answer?” to generate
the subsequent reasoning steps and the final answer.
An example is shown below:

Customized LLM-Annotated Explanation Revision

Prompt: For question <q>. Let’s think step by step.
Can we start with this step: <s1>? If yes, give me
your step. If no, give me the rest steps and the final
answer.
Response: Yes, we can start with that <ŝ1>
Prompt: Can we continue with this step <s2>?
Response: Yes, the second step is <ŝ2>.
Prompt: Can we continue with this step <s3>?
Response: No, we should proceed as <ŝ≥3>, the
final answer is <â>.

6 Experiments

Datasets The experiments are conducted on six
well-known benchmark datasets across 3 different
reasoning tasks: GSM8K (Cobbe et al., 2021) and
AQuA (Geva et al., 2021) for arithmetic reasoning
tasks, ANLI (Nie et al., 2019) and e-SNLI (Cam-
buru et al., 2018) for natural language inference
(NLI) tasks, and StrategyQA (Geva et al., 2021)
and CommonSenseQA (Talmor et al., 2018) for
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Method Annotating Arithmetic NLI Commonsense

GSM8K AQuA ANLI e-SNLI CommonSenseQA StrategyQA

Teacher: GPT-3.5-turbo

Zero-shot-CoT – 73.45 54.96 68.02 67.67 68.94 69.78

Student: LLaMA-2-7B

Zero-shot-CoT – 10.04 21.07 33.94 28.98 41.28 44.71

Fine-Tuned Student

Random CoT Prompting 28.42 26.86 54.22 48.60 45.66 48.76
CLAER 30.31 27.05 57.12 48.56 48.54 50.89

Maximum Entropy CoT Prompting 27.58 27.67 52.56 47.98 46.35 49.03
CLAER 29.04 27.42 53.75 51.76 48.86 51.05

Least Confidence CoT Prompting 28.42 25.8 52.26 48.21 45.93 47.53
CLAER 28.68 27.19 53.63 48.65 48.52 51.23

Disagreement CoT Prompting 30.11 25.91 55.59 50.32 48.64 48.60
CLAER 31.49 27.23 58.71 54.32 52.46 53.81

Self-Confidence CoT Prompting 26.41 26.04 52.69 46.01 48.53 49.69
CLAER 27.95 25.57 54.32 49.21 49.03 52.44

EGSS CoT Prompting 30.01 26.91 55.87 51.16 49.64 50.32
CLAER 32.72 28.43 58.02 54.44 53.53 55.63

Table 1: Performance of ELAD. Accuracy (%) of Fine-tuned LLaMA-2 model with ELAD (EGSS and CLEAR)
and with different baseline sample selection strategies and completion generation methods. We report results at 50%
annotation budget for all datasets in this table for comparison. Blue cells denote results of ELAD.

common sense reasoning task. Further details are
provided in the Appendix A.

Evaluation Metric To assess question-answering
performance for the above reasoning tasks, we cal-
culate the accuracy based on the final answers
given by the student small model.

Setup We use GPT-3.5-turbo as a teacher via
OpenAI API. We use LLaMA-2-7B (Touvron et al.,
2023) as our student model. Further implementa-
tion details are provided in the Appendix A.

Baseline Methods We compare the proposed
ELAD framework with two different categories
of baselines: 1) sample selection methods, and
2) completion generation methods. To be more
specific, we provide a comparison of Explanation-
Guided Sample Selection (EGSS) with five dif-
ferent sample selection methods: Random, Maxi-
mum Entropy (Krishnakumar, 2007), Least Con-
fidence (Culotta and McCallum, 2005), Disagree-
ment (Vote Entropy) (Engelson and Dagan, 1996),
and Self-Confidence (Kadavath et al., 2022). Fur-
ther, we delineate the efficacy of our Customized
LLM-Annotated Explanation Revision (CLAER)
method in contrast to the conventional vanilla an-
notating with zero-shot-CoT prompting (Kojima
et al., 2022) method applied post-sample selection.
We also include comparative results from student
and teacher models, assessed without fine-tuning

and using direct prompting to answer questions.

6.1 Results and Analysis

This section evaluates the reasoning performance
of models using our proposed ELAD framework,
comparing it with baseline methods. We highlight
improvements in sample selection and completion
generation. Performance trends from a 5% to 50%
annotating budget are depicted in Figure 4, illustrat-
ing the effectiveness of our EGSS method against
other selection baselines. Furthermore, we detail
reasoning performance at a 50% annotating budget
for our CLAER completion annotation method and
the CoT prompting baseline in Table 1.
Comparison with sample selection baselines
From Table 1 we can observe that the EGSS
method demonstrates significant performance im-
provements compared with traditional sample se-
lection baselines for active learning. For arithmetic
reasoning tasks (GSM8K and AQuA), EGSS with
CLEAR exhibits a remarkable performance advan-
tage. Specifically, it shows an increase of approxi-
mately 2.41% and 1.38% in accuracy over the next
best-performing method for GSM8K and AQuA,
respectively. In the context of natural language in-
ference and commonsense reasoning tasks, such
as ANLI, e-SNLI, CommonSenseQA, and Strate-
gyQA, EGSS continues to set the benchmark. For
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(a) GSM8K (b) ANLI (c) CommonSenseQA

(d) AQuA (e) e-SNLI (f) StrategyQA

Figure 4: Performance curves of different sample selection methods for active learning. The y-axis denotes the
accuracy of the question-answering task, and the x-axis represents the percentage of samples annotated by the LLM
for small model fine-tuning. In this case, 100% denotes that all samples from the training set have been annotated.

instance, in the ANLI dataset, EGSS achieves a
performance boost of nearly 3.27% over the Least
Confidence method with CLEAR. Similarly, for
StrategyQA, EGSS demonstrates a substantial in-
crease of 4.82% in accuracy compared to the Dis-
agreement strategy. From Figure 4, It is evident that
the proposed EGSS method effectively selects the
most informative unlabeled questions, as evidenced
by performance gains that align with increases in
annotation budget. Initially, differences between
EGSS and Disagreement strategies are minimal,
likely due to the dominance of Inter-explanation
uncertainty. However, as the annotation budget
grows, EGSS significantly outperforms the Dis-
agreement strategy, highlighting the crucial role
of Intra-explanation uncertainty in identifying the
most valuable samples for annotation.
Evaluating customized LLM-annotated expla-
nation revision method Table 1 showcases the
CLAER technique’s effectiveness over the baseline
CoT Prompting across several tasks. In arithmetic
tasks like GSM8K and AQuA, CLAER outper-
forms vanilla CoT Prompting annotation method
by up to 2.71% and 1.52%, respectively, under the
EGSS framework, highlighting its superior capabil-
ity in refining reasoning skills. In NLI and Com-
monsense Reasoning tasks, such as ANLI and Strat-
egyQA, CLAER demonstrates notable accuracy
improvements of 2.15% and 5.31%, respectively.
These results underline the method’s strength in
leveraging detailed explanations to enhance model
understanding and performance significantly.

6.2 Ablation Studies
In this section, we conduct an ablation study to
investigate the importance of each component in
the ELAD framework we propose, and the results
are reported in Table 2. The results reveal that the
full proposed ELAD framework outperforms con-
figurations lacking EGSS (w/o EGSS) and CLAER
(w/o CLAER) across all tasks. Ours demonstrates
a notable performance advantage, with improve-
ments up to 2.41% in arithmetic tasks, 6.88% in
NLI tasks, and 5.09% in commonsense reasoning
tasks over the “w/o EGSS” setup. This highlights
the critical contributions of EGSS and CLAER to
the framework’s overall performance. The dimin-
ished performance in configurations without these
components underscores their importance in en-
hancing model reasoning ability.

Setting
Arithmetic NLI Commonsense

GSM8K AQuA ANLI e-SNLI CommonSenseQA StrategyQA

ELAD (Ours) 32.72 28.43 58.02 54.44 53.53 55.63
w/o EGSS 30.31 27.05 57.12 48.56 48.54 50.89
w/o CLAER 30.01 26.91 55.87 51.16 49.64 50.32

Table 2: Ablation Study. We report the performance of
our ELAD framework under different settings.

7 Conclusion

This paper introduced the Explanation-Guided
LLMs Active Distillation framework to address the
challenges of deploying LLMs due to the high
memory and computational demands. Our pro-
posed framework provides an efficient distillation
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of LLMs, incorporating an active learning method.
This includes an explanation-guided sample selec-
tion technique and a customized LLM-annotated
explanation revision method tailored for active
learning. Extensive experiments on various reason-
ing datasets demonstrate the effectiveness of our
approach in enhancing the distillation efficiency.

Limitations

Our proposed ELAD framework, which utilizes
LLMs as agents in active learning, is influenced
by the design of prompts for the LLM, potentially
affecting the quality of generated explanations and
answers. Similarly, the prompt design for the small
model can impact its reasoning abilities. Addition-
ally, our approach requires submitting questions
(data) to third-party services via APIs (e.g., Ope-
nAI), posing a risk of data leakage. Additionally,
due to budget constraints, we did not utilize the
most recently released GPT-4.0 or other LLMs as
the teacher model in our experiments. We plan to
explore this in future research.

Ethical Considerations

All datasets and models used in this study are open-
source, and references to previous work are prop-
erly cited. For fine-tuning the smaller student lan-
guage model, we solely used triples generated by
GPT-3.5-Turbo and LLaMA-2-7B, both of which
are publicly accessible. This work complies with
ethical guidelines, and no ethical concerns have
been identified.
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A Appendix

Datasets Details

We provide more detailed descriptions of the
datasets used in our experiments. We include a
more detailed introduction and original sources re-
leased from the authors as follows:
GSM8K (Grade School Math 8K) (Cobbe et al.,
2021): A dataset containing approximately 8,000
math word problems designed for grade school
students, testing a variety of mathematical skills in
natural language. For more information, visit the
GSM8K GitHub repository.
AQuA (Algebra Question Answering) (Geva
et al., 2021): Features algebraic word problems
with multiple-choice answers, aimed at evaluating
algebraic problem-solving in AI systems. Available
on Kaggle.
ANLI (Adversarial Natural Language Infer-
ence) (Nie et al., 2019): A dataset with natural
language inference tasks, including adversarial ex-
amples, to test models’ understanding of human
language beyond existing NLI datasets. For more
details, refer to the ANLI GitHub repository.
e-SNLI (Explainable Stanford Natural Lan-
guage Inference) (Camburu et al., 2018): Extends
the SNLI dataset by providing human-annotated
explanations for NLI decisions, assessing models
on inference and explanation generation. Visit the
e-SNLI GitHub repository for more information.
CommonSenseQA (Talmor et al., 2018): A
question-answering dataset that focuses on com-
monsense reasoning, requiring an understanding
of everyday concepts for correct answers. More
details can be found on the CommonSenseQA web-
site.
StrategyQA (Geva et al., 2021): Tests models on
strategic question answering, particularly on rea-
soning about implicit strategies for yes/no ques-
tions. Information is available on the AllenAI web-
site.

For each dataset where a validation set is not
originally provided, we randomly subsample 10%
of the original training set to serve as a validation
set. The dataset statistics are provided in Table 3.
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Dataset Task Type #Train #Validation #Test

GSM8K Arithmetic 7,473 – 1,319
AQuA Arithmetic 10,000 – 254
ANLI NLI 16,946 1,000 1,000
e-SNLI NLI 549,367 9,842 9,824
CommonSenseQA Commonsense 9,741 975 1,221
StrategyQA Commonsense 1,603 490 687

Table 3: Dataset statistics used in our experiments.

Implementation Details

The main experiments were conducted on a sin-
gle NVIDIA GTX 3090 GPU with 24GB of mem-
ory. We utilize QLoRA4 (Dettmers et al., 2023) by
default to conduct parameter-efficient fine-tuning.
We set the attention dimension as 64, the alpha
parameter as 16, and the dropout rate as 0.1. For
fine-tuning the Llama-2-7b-chat-hf model, we
utilized the Huggingface libraries2 and set the batch
size to 16 and the learning rate to 1e-4 using the
AdamW optimizer.

Examples for Customized LLM-Annotated
Explanation Revision

We present two examples of Customized LLM-
Annotated Explanation Revision. Example 4 illus-
trates a case where the small model makes incorrect
reasoning in step 3. The explanation from the small
model is sequentially prompted to LLMs for verifi-
cation. At step 3, the LLM responds with “No” and
proceeds to revise step 3 and generate the remain-
ing steps and the final answer. Example 5 provides
an example where the small model errs in step 1 of
its reasoning. The step 1 from the small model fails
the LLM’s verification, and LLM directly generates
the entire completion.

Discussion of API Costs

The proposed CLAER method leverages LLM
APIs, such as GPT-3.5 and GPT-4, to generate
pseudo answers and explanations. The costs as-
sociated with these API calls are based on the
number of input and output tokens, with output
tokens priced significantly higher than input to-
kens—approximately three times higher3. Com-
pared to the zero-shot CoT prompting method,
which generates both an answer and an explana-
tion in a single prompt, our CLAER method does
not substantially increase the output token counts.
In fact, it can even result in fewer tokens if the

2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
3https://openai.com/api/pricing/

initial explanation steps input is accurate and suc-
cinct. Also, our designed prompts are not long,
which does not substantially increase the input to-
ken counts (Pan et al., 2024b; Zhang et al., 2024).
Therefore, the main additional cost arises from in-
put tokens, which are considerably less expensive
than output tokens. Our analysis, based on com-
paring the average input and output token counts
between CLAER and zero-shot CoT prompting,
suggests that the incremental costs are minor rel-
ative to the benefits of significantly reducing the
need to annotate large numbers of unlabeled sam-
ples through an efficient sampling strategy.
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Question: Anne purchased a box of sweets that contains 15 packs, and each pack has 60 pieces. She kept two packs and gave
the rest to her 10 friends equally. How many pieces of sweets did each of her friends receive?
Response from Small Model: Let’s think step by step. Step 1: Identify the information given in the problem. Number of packs
of sweets Anne purchased: 15 Number of pieces in each pack: 60 Number of friends Anne gave the sweets to: 10. Step 2:
Identify the unknown quantity. Number of pieces of sweets each friend received: x (where x is the unknown quantity). Step 3:
Use the information given in the problem to find the unknown quantity. Since Anne kept two packs for herself, the total number
of pieces she gave to her friends is 15 x 10 = 150. Therefore, the number of pieces each friend received is 150 / 10 = 15 pieces.
So, each of Anne’s 10 friends received 15 pieces of sweets from her.
Prompt: Anne purchased a box of sweets that contains 15 packs, and each pack has 60 pieces. She kept two packs and gave the
rest to her 10 friends equally. How many pieces of sweets did each of her friends receive? Let’s think step by step. Can we start
with this step: Step 1: Identify the information given in the problem. Number of packs of sweets Anne purchased: 15 Number of
pieces in each pack: 60 Number of friends Anne gave the sweets to: 10? Yes or no? If yes, give me your answer for this step. If
no, give me the rest steps and final answer.
Response: ✓ Yes, we can start with that step. Step 1: Identify the information given in the problem. Number of packs of sweets
Anne purchased: 15. Number of pieces in each pack: 60. Number of friends Anne gave the sweets to: 10.
Prompt: Can we continue with this step Step 2: Identify the unknown quantity. Number of pieces of sweets each friend received:
x (where x is the unknown quantity)?
Response: ✓ Yes, we can continue with Step 2: Step 2: Identify the unknown quantity. Number of pieces of sweets each friend
received: x (where x is the unknown quantity).
Prompt: Can we continue with Step 3: Use the information given in the problem to find the unknown quantity. Since Anne kept
two packs for herself, the total number of pieces she gave to her friends is 15 x 10 = 150. Therefore, the number of pieces each
friend received is 150 / 10 = 15 pieces.?
Response: × No, we should proceed as Step 3: Use the information given in the problem to find the unknown quantity. Since
Anne kept two packs for herself, the total number of pieces she gave to her friends is (15 packs - 2 packs) x 60 pieces/pack = 13
packs x 60 pieces/pack = 780 pieces. Therefore, the number of pieces each friend received is 780 pieces / 10 friends = 78 pieces.
So, each of Anne’s friends received 78 pieces of sweets.

Table 4: Example that small model makes incorrect reasoning in its step 3

Question: Rong has been saving 20 coins in his piggy bank every month. Neil has been saving 2/5 times more coins in his piggy
bank per month than Rong. How many coins are they having ten years after they started their savings?
Response from Small Model: Rong has been saving 20 coins in his piggy bank every month. Neil has been saving 2/5 times
more coins in his piggy bank per month than Rong. How many coins are they having ten years after they started their savings?
Let’s think step by step. Rong has been saving 20 coins per month for 10 years, so he has saved a total of 20 x 10 = 200 coins.
Neil has been saving 2/5 times more coins than Rong, so he has saved 2/5 x 20 = 40 coins per month. He has saved a total of 40
x 10 = 400 coins. Therefore, Rong has 200 coins and Neil has 400 coins after 10 years of saving."
Prompt: Rong has been saving 20 coins in his piggy bank every month. Neil has been saving 2/5 times more coins in his piggy
bank per month than Rong. How many coins are they having ten years after they started their savings? Let’s think step by step.
Can we start with this step: Rong has been saving 20 coins per month for 10 years, so he has saved a total of 20 x 10 = 200
coins? If yes, give me your answer on this step. If no, give me the rest steps and final answer.
Response: × No, we cannot start with that step because Neil has been saving a different amount of coins per month than Rong.
We need to calculate Neil’s savings separately. Let’s break it down step by step: Step 1: Calculate how many coins Rong has
saved in 10 years. Rong saves 20 coins per month, so in a year, he saves 20 coins x 12 months = 240 coins. In 10 years, Rong
will have saved 240 coins/year x 10 years = 2,400 coins. Step 2: Calculate how many coins Neil has saved in 10 years. Neil
has been saving 2/5 times more coins than Rong per month. 2/5 of 20 coins = (2/5) * 20 = 8 coins. So, Neil saves an extra 8
coins per month compared to Rong. Neil’s monthly savings = 20 coins (Rong’s savings) + 8 coins (extra savings) = 28 coins per
month. In a year, Neil saves 28 coins x 12 months = 336 coins. In 10 years, Neil will have saved 336 coins/year x 10 years =
3,360 coins. Step 3: Calculate the total number of coins they both have together. Rong saved 2,400 coins, and Neil saved 3,360
coins. So, the total number of coins they have saved together is 2,400 coins + 3,360 coins = 5,760 coins. So, after 10 years of
saving, they will have a total of 5,760 coins.

Table 5: Example that small model makes incorrect reasoning in its step 1
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