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Abstract

The recent trend of using Large Language Mod-
els (LLMs) as tool agents in real-world appli-
cations underscores the necessity for compre-
hensive evaluations of their capabilities, partic-
ularly in complex scenarios involving planning,
creating, and using tools. However, existing
benchmarks typically focus on simple synthe-
sized queries that do not reflect real-world com-
plexity, thereby offering limited perspectives
in evaluating tool utilization. To address this
issue, we present UltraTool, a novel bench-
mark designed to improve and evaluate LLMs’
ability in tool utilization within real-world sce-
narios. UltraTool focuses on the entire pro-
cess of using tools - from planning and cre-
ating to applying them in complex tasks. It
emphasizes real-world complexities, demand-
ing accurate, multi-step planning for effective
problem-solving. A key feature of UltraTool
is its independent evaluation of planning with
natural language, which happens before tool
usage and simplifies the task solving by map-
ping out the intermediate steps. Thus, unlike
previous work, it eliminates the restriction of
pre-defined toolset. Through extensive exper-
iments on various LLMs, we offer novel in-
sights into the evaluation of capabilities of
LLMs in tool utilization, thereby contributing a
fresh perspective to this rapidly evolving field.
The benchmark is publicly available at https:
//github.com/JoeYing1019/UltraTool.

1 Introduction

Recent advancements in equipping Large Lan-
guage Models (LLMs) (Du et al., 2022; Touvron
et al., 2023; Chiang et al., 2023; Bai et al., 2023)
with external tools (Patil et al., 2023; Schick et al.,
2023; Qin et al., 2023a) have markedly improved
capability of AI systems in solving complex real-
world tasks. As this field evolves, it becomes cru-
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Figure 1: Illustration of (a) tool utilization process in
real-world complex scenarios and (b) construction pro-
cess of previous benchmarks.

cial to conduct a comprehensive evaluation cov-
ering full aspects of tool utilization, particularly
within complex real-world contexts. As depicted
in Figure 1 (a), addressing real-world tasks often
necessitates not only the planning and usage of mul-
tiple tools but also the creation of new tools, when
the existing tools are not enough to meet all spe-
cific requirements. However, existing benchmarks
(Tang et al., 2023; Xu et al., 2023; Patil et al., 2023;
Li et al., 2023; Qin et al., 2023b; Huang et al.,
2023) often focus only on limited dimensions of
this entire process. Besides, the user queries in
most existing benchmarks exhibit limitations in
mirroring the complexity of real-world tasks and
unreasonable dependency on pre-defined toolsets.

To tackle these challenges, we introduce
UltraTool, a benchmark covering a wide range
of evaluation dimensions. It is constructed on com-
plex, real-world queries and involves evaluation
of tool-independent natural-language planning and
advanced tool creation capabilities. UltraTool
comprises 5,824 examples, spanning 22 diverse
domains and incorporating 2,032 tools, and it com-
prehensively evaluates the tool utilization process
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Resource
ToolAlpaca APIBench APIBank ToolBench MetaTool UltraTool

Tang et al. (2023) Patil et al. (2023) Li et al. (2023) Qin et al. (2023b) Huang et al. (2023) (Ours)

Evaluation Range ⑥ ⑥ ⑥ ⑥ ④⑤ ①②③④⑤⑥

Real-world Query ✗ ✗ ✗ ✗ ✗ ✓

Multi-Tool Test ✗ ✗ ✗ ✓ ✓ ✓

Different Domains ✗ ✗ ✓ ✓ ✓ ✓

Table 1: Comparison of previous benchmarks and UltraTool.

including six dimensions covering three aspects:
① Planning: decomposing the complex goal into
logical sequence of simpler sub-tasks for effective
problem-solving. Tool Creation comprises two
dimensions: ② awareness - assessing whether ex-
isting tools suffice, and ③ creation - developing
the necessary tools if existing ones are inadequate.
Tool Usage involves three dimensions: ④ aware-
ness - determining which sub-tasks require tools, ⑤

selection - choosing the appropriate tools, and ⑥ us-
age - specifying the input parameters for these tools.
As demonstrated in Table 1, recent benchmarks in
tool utilization tend to focus only on limited dimen-
sions. For examples, Tang et al. (2023); Patil et al.
(2023); Li et al. (2023); Qin et al. (2023b) focus
on tool usage (⑥), while Huang et al. (2023) eval-
uates tool usage awareness (④) and tool selection
(⑤). Comparing with them, we further evaluate the
capability in planning (①) and tool creation (② and
③), which is crucial for LLMs to adeptly navigate
complex and varied real-world user demands.

Moreover, the queries in UltraTool have bet-
ter realism and complexity. The natural workflow
of tool-augmented task solving includes: “user
queries LLMs → LLMs pose a solution plan →
LLMs create/select tools to solve sub-task within
the plan”. Importantly, the query and the plan
should not be constrained by pre-existing tools. In
contrast, existing benchmarks (Qin et al., 2023b;
Li et al., 2023; Huang et al., 2023) are typically
constructed by collecting toolset, generating sim-
ulated queries with tools randomly selected from
toolset, and then annotating the solution as shown
in Figure 1 (b). Despite the collecting efficiency,
the generated queries may not accurately mirror
real user demands. Furthermore, the randomly se-
lected tools may lack a coherent logical relation-
ship, potentially leading to skewed influences on
the subsequent process. To ensure the complexity
and reality of queries, we collect real-world multi-
domain user queries with high complexity. Specifi-
cally, we engage experts from various domains to
craft complex queries that reflect real-world needs
and potentially incorporate the use of diverse tools.

A distinct feature of UltraTool is it explicitly
evaluates natural language (NL)-based plan, which
simplifies task solving by decomposing a complex
goal into several simpler sub-tasks described in NL.
Each sub-task is then solved by tool creation and
usage. Therefore, prior planning overcomes the
restriction brought by limited pre-existing tools.

We conduct experiments on various LLMs and
make in-depth analyses about strengths and chal-
lenges in the tool utilization of LLMs. Contribu-
tions of this work are: (1) UltraTool is a compre-
hensive evaluation benchmark derived from com-
plex real-world queries, covering six key dimen-
sions in tool utilization. (2) UltraTool explicitly
evaluates NL-based planning and advanced tool
creation capabilities. (3) Extensive experiments
uncover the limitations and inspire the future direc-
tion of LLMs in tool utilization.

2 UltraTool Construction

UltraTool begins by gathering real-world user
queries and encompasses a comprehensive range
of evaluation dimensions, including planning, tool
creation and tool usage. As depicted in Figure 4,
the construction process of UltraTool includes:
(1) query collection (§2.2); (2) solution annotation
(§2.3); and (3) manual refinement (§2.4). For the
detailed prompts utilized in the UltraTool con-
struction process, please refer to Appendix A.5.

2.1 Definition
To formalize, a triple (Q,P, T ) is regarded
as a sample within UltraTool. Specifically,
Q represents the user query, while P =
[(s1, t1), (s2, t2), ..., (sn, tn)] is the NL-based plan,
In this context, each element (si, ti) comprises a
step si and an associated tool calling message ti.
Furthermore, T = [tool1, tool2, ..., toolm] is the
corresponding toolset. As depicted in Figure 2,
P maintains a hierarchical tree structure , which
includes both ancestral steps (e.g., 1., 2., ...) and
child steps (e.g., 1.1, 1.2, ...). The child steps fall
into two distinct categories: (1) the tool-free step,
which the LLMs can infer without requiring tool
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Query: I need to calculate the total amount of RMB required to exchange 500 US dollars and 300 euros at the

current exchange rate.

"step" : 1. Obtain the 

current exchange rate

"tool": "null"

"step": 2. Calculate 

the exchange amount

"tool": "null"

"step": 3. Sum up the 

total amount

"tool": "null"

"step": 1.1 Obtain the 

current exchange rate of 

US dollar to RMB

"tool":"currency_exchange

_rate(currency_from='US

D',currency_to='CNY')"

"step": 1.2 Obtain the 

current exchange rate of 

euro to RMB

"tool":"currency_exchange

_rate(currency_from='EU

R', currency_to='CNY')"

"step": 2.1 Calculate the amount of 

500 US dollars exchanged into RMB 

"tool":"foreign_currency_exchange(a

mount=500, sourceCurrency='USD', 

targetCurrency='CNY', rate=<USD 

Exchange Rate>) "

"step": 2.2 Calculate the amount of 

300 euros exchanged into RMB 

"tool":"foreign_currency_exchange(a

mount=300, sourceCurrency='EUR', 

targetCurrency='CNY', rate=<Euro 

Exchange Rate>)"

"step": 3.1 Calculate the total 

amount

"tool":"sum_amounts(amount1=

<Amount from USD exchange>, 

amount2= <Amount from Euro 

exchange>) "

"step": 3.2 Display 

calculation results

"tool" : " No tool 

required"

Toolset:
Tool_1: {"name":"currency_exchange_rate",

"description": " Query the current exchange rate …",

"arguments": {…},"results": {…}},

Tool_2:{"name":"foreign_currency_exchange", … }

Tool_3: {"name":"sum_amounts", … }

Figure 2: Data example of UltraTool, including user query, tree-structure planning, and toolset.

callings, distinguished by the tool calling message
ti as "No tool required"; and (2) the tool-usage
step, which necessitates calling tools to complete
the task, indicated by the tool callings message ti
specifying the tool name toolname

i and the neces-
sary arguments [{argsname

j : argsvalue
j }]ikj=1. Here,

ik denotes the number of arguments, argsname
j is

the name of an argument belonging to the defined
argument properties of tooli, and argsvalue

j is the
argument value derived from the query context Q
or the outputs of preceding tool callings.

2.2 Query Collection

To ensure comprehensive coverage across various
domains and meet diverse requirements in real-
world scenarios, we carefully selected more than
20 domains such as Alarm, Train, Flight, Hotel, etc,
as shown in Figure 3. In detail, we collaborate with
a wide array of domain-specific experts to gather
complex, de-identified user queries that necessi-
tate complex tool usage as depicted in Figure 4 (a).
To better align each query with its corresponding
tool usage, we also request that the experts suggest
several potential tools for each query. These sug-
gestions are formatted in accordance with the style
of ChatGPT plugins 1, which aided in crafting an
initial toolset for each query. The query collection
guideline can be found in Appendix A.2.

As shown in Figure 4 (a), to create more diverse
and challenging queries, we utilized GPT-4 to gen-
eralize and complicate the initial queries. The ex-
amples of the generalization and complication pro-
cesses are listed in Appendix A.4. We then merge
the original, generalized, and complicated queries
into a comprehensive collection. Additionally, ev-
ery query undergoes a manual review to guarantee
quality and applicability, and queries that do not
align with actual human needs are removed.

1https://platform.openai.com/docs/guides/
function-calling
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Figure 3: Specific domain distribution of UltraTool.

2.3 Solution Annotation

Due to the complexity of the queries addressed by
UltraTool, UltraTool employs a multi-step plan
as the backbone of solution for effective problem-
solving, wherein each step includes a correspond-
ing tool calling message. By breaking down user
queries into simpler tasks via this planning process,
these tasks can subsequently be executed by the
designated tools. This strategy is not only in line
with the problem-solving logic of humans but also
reduces the complexity of tool usage, thereby fa-
cilitating the handling of more challenging tasks.
We introduce an automatic solution annotation ap-
proach utilizing GPT-4, including: (1) plan annota-
tion; (2) tool creation and plan refinement; (3) tool
calling message annotation; and (4) tool merge.
Plan Annotation. As illustrated in Figure 4 (b),
upon receiving a user query, GPT-4 is utilized to
formulate an initial multi-step, tree-structured plan
[s1, ..., sn]. This fundamental plan is deliberately
crafted without considering a predefined toolset.
Such a strategy ensures a primary focus on task
decomposition and the structural integrity of the
plan. Moreover, it adeptly avoids the potential lim-
itations that could surface when the initial toolset
does not fully meet the requirements of user query.
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Figure 4: The overall construction process of UltraTool, including (a) query collection, (b) solution annotation,
and (c) manual refinement.

Tool Creation and Plan Refinement. The initial
toolset may not meet all requirements within the
complex user queries in UltraTool, and the pro-
cesses of generalization and complication may lead
to emergence of new tool usage demands. There-
fore, as depicted in Figure 4 (b), to accommodate
the need for tools not present in initial toolset, we
utilize GPT-4 to discern whether need to create new
tools and create new tools in prescribed format.

Subsequently, we implement an automatic re-
finement process to enhance the quality of the NL-
based plan. Given that the existing toolset has
already fulfilled all the requirements of the user
query, we provide GPT-4 with the query, the ini-
tial plan, and the comprehensive toolset (which
includes both the initial and the newly created
tools). This allows GPT-4 to refine the plan further
in terms of the comprehensiveness of information
included and the compatibility with tool callings.
Tool Calling Message Annotation. As shown
in Figure 4 (b), we utilize GPT-4 to annotate the
tool calling messages [t1, ..., tn]. In detail, given
the query, the refined plan, and the comprehensive
toolset, GPT-4 initially differentiates between the
tool-free steps and tool-usage steps. Subsequently,
for each tool-usage step, GPT-4 selects the most
appropriate tool from the comprehensive toolset.
Moreover, utilizing the user’s query and the contex-
tual information within the plan, GPT-4 generates
the necessary arguments for the chosen tool.

It is also noteworthy that UltraTool incorpo-
rates nested tool callings, wherein the output from
one tool serves as a requisite parameter for an-
other subsequent tool. This feature significantly
enhances our benchmark’s alignment with the com-
plexities encountered in real-world scenarios.

Tool Merge. Due to each tool being created sep-
arately for the queries, there may be similar tools
that exist in the whole benchmark. To address this
issue, we manually merge groups of tools that have
similar functions into a single tool. Specifically, we
combine the arguments and results fields of similar
tools and remove any duplicate properties, then we
write an appropriate name and description for the
merged tool. The remained toolset of UltraTool
contains 2,032 distinct tools.

2.4 Manual Refinement

To guarantee and further enhance the data quality
within UltraTool, we conduct a careful manual
refinement process for all samples, as illustrated
in Figure 4 (c). This process includes eliminat-
ing redundant steps, supplementing missing steps
for coherent planning logic, rectifying tool usage
demands and inappropriate tool selections, com-
pleting and refining the tool calling messages, and
deleting data of substandard quality. We employ
six experts endowed with specialized knowledge to
refine the data, and we ensure that all the polished
data undergoes a double-check process to maintain
high-quality standards. The refinement guideline
is provided in Appendix A.3.

2.5 Data Summary

Ultimately, we construct the UltraTool, which
encompasses 22 domains, 2,032 tools, and 5,824
samples, detailed statistics are presented in Ap-
pendix A.1. And the source language of our
collected data is Chinese, to broaden the scope
of evaluation, we translate it to English version
through GPT-4 and manual refinement. Therefore,
UltraTool supports two languages: Chinese and
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English, represented by the Chinese-dataset and
the English-dataset.

3 UltraTool Evaluation

In this section, we introduce the metrics (§3.1),
and the definition and measurement of each eval-
uation aspect, including: planning(§3.2), tool
creation(§3.3) and tool usage(§3.4).

3.1 Metrics

Three evaluation metrics are employed within
UltraTool, comprising:
(i) Multi-Dimensional Point-Wise LLM-as-Judge
Method (Liu et al., 2023), which utilizes a LLM-
scorer as automatic evaluator. By defining task-
specific evaluation dimensions M = [d1, d2, ...dm]
and providing the query Q, the model’s response
p, and the reference answer y, the LLM-scorer
is prompted to provide a multi-dimensional score,
along with an overall score:

S = LLM-scorer(M, [Q, p, y]), (1)

where S = [sd1 , ..., sdm , soverall] contains dimen-
sion scores sd1 , ..., sdm and the final overall score
soverall, and all the scores are ranging from 1 to 10.
The detailed prompts are listed in Appendix B.2.
(ii) Key-Value based Accuracy and (iii) Key-
Value based Levenshtein Distance, which are vari-
ants of traditional accuracy and Levenshtein dis-
tance (Miller et al., 2009) metrics. Given the key-
value format model’s response (pk, pv) and refer-
ence answer (yk, yv), where the keys pk and yk
represent steps and values pv and yv denote task-
specific results, these metrics compute the accuracy
or normalized Levenshtein distance between the
values when the keys match:

S =

{
F (pv, yv) if pk = yk

0 if pk ̸= yk
, (2)

where S is the computated score and F represents
the calculation function, which can applied by ac-
curacy or normalized Levenshtein distance.

The multiple-step nature of the plan resulting in
multiple predictions for a sample, so these metrics
may be computed at global level that evaluates mul-
tiple predictions together or local level that evalu-
ates each prediction separately. More illustration of
computation level can be found in Appendix B.1.

3.2 Planning

Given a query Q, LLMs need to decompose the
user query and generate a step sequence in hier-
archical form [pPL

1 , pPL
2 , ..., pPL

n ] , to serve as the
plan. Here, each pPL

i represents a step. We utilize
the Multi-Dimensional Point-Wise LLM-as-Judge
Method, applied at a global level, to evaluate LLMs’
planning ability. The generated plan is evaluated
across six score dimensions including Accuracy,
Completeness, Executability, Syntactic Soundness,
Structural Rationality and Efficiency, detailed di-
mension definitions are listed in Appendix B.3.1.

3.3 Tool creation

Since many real-world demands cannot be ad-
dressed by existing real-world tools, we design our
tools as tool skeletons that contain all the necessary
information for calling, as illustrated in Figure 2.
Despite these skeletons are not specific implemen-
tations, they serve as simulated tools that accurately
represent the tool’s functionality and provide guid-
ance for the future development of actual tools.

Furthermore, given the golden plan P and corre-
sponding toolset T , to evaluate whether the LLM
can accurately be aware that the provided toolset
is sufficient and effectively create the tools that are
lacking, we construct an alternative toolset T̂ that
may not contain all the necessary tools.
Awareness. Given plan P and toolset T̂ , LLMs
need to determine whether each tool-usage step
in the plan can be matched with an appropriate
tool from T̂ . The output is a predicted sequence
[(si, p

TCA
i ), ..., (sj , p

TCA
j )], where pTCA

i ∈ {0, 1}
indicates the matching availability of a suitable
tool within T̂ for step si. The evaluator of tool
creation awareness is conducted through the Key-
Value based Accuracy metric, which is calculated
at both the global and local levels.
Creation. Given plan P and toolset T̂ , LLMs are
required to create the lacking tool in required for-
mat for those tool-usage steps that can not match
a suitable tool in T̂ . The output is a predicted se-
quence [(si, pTC

i ), ..., (sj , p
TC
j )], where pTC

i denotes
the created tool for step si. The Multi-Dimensional
Point-Wise LLM-as-Judge Method, calculated at
the global level, is adopted as the evaluator for tool
creation. We evaluate the newly created tool across
five score dimensions including Format Compli-
ance, Accuracy, Content Reasonableness, Exe-
cutability and Richness, corresponding dimension
definitions can be found in Appendix B.4.1.
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3.4 Tool Usage
Awareness. Given the plan P , LLMs need to
determine whether child steps require the us-
age of tools and output a predicted sequence
[(si, p

TUA
i ), ..., (sj , p

TUA
j )], where pTUA

i ∈ {0, 1}
indicates whether step si need to use tool. The
tool usage awareness evaluator is Key-Value based
Accuracy calculated at both global and local levels.
Selection. Given the plan P and toolset T , we
construct an augmented toolset T̄ by incorporat-
ing additional interference tools. Then LLMs are
required to select the most appropriate tool from
T̄ for each tool-usage steps and generate a pre-
dicted sequence [(si, pTS

i ), ..., (sj , p
TS
j )], where pTS

i

denotes the name of the chosen tool for step si. The
Key-Value based Accuracy calculated at both global
and local levels is the evaluator for tool selection.
Usage. Given the plan P , the toolset T , and the
names of the required tools for each tool-usage
step, LLMs are tasked with generating property
arguments for each tool-usage step and outputting a
predicted sequence [(si, p

TU
i ), ..., (sj , p

TU
j )]. Here,

pTU
i = [{argsname

j : argsvalue
j }]kij=1 denotes the

generated arguments for step si. The evaluation of
tool usage awareness is conducted using Key-Value
based Levenshtein Distance, which is calculated
at the local level. We choose this metric for the
consideration that the argument values argsvalue

j

may be expressed in many different manners.

4 Experiments

4.1 Experimental Settings
We divide all data into two parts: a test set com-
prising 1,000 samples for constructing evaluation
datasets, and a development set with 4,824 sam-
ples, which are not used for training and can op-
tionally serve as a development set. For both the
Chinese-dataset and English-dataset, we construct
six evaluation datasets, each comprising 1,000 sam-
ples and corresponding to one of the six evaluation
dimensions. The toolset sizes for T̂ in tool creation
awareness and T̄ in tool selection are both set to 8.

We evaluate closed-source and open-source
LLMs on UltraTool for both Chinese-dataset and
English-dataset, aiming to provide comprehensive
analyses for current LLMs. For closed-source
LLMs, we select two representative models: GPT-
3.5 and GPT-4 from OpenAI. The version for GPT-
4 is gpt-4-1106-preview, and for GPT-3.5 is
gpt-3.5-turbo-1106. For open-source LLMs,
we choose a wide spectrum of models, including:

LLaMA2 (Touvron et al., 2023), ChatGLM3 (Du
et al., 2022), Baichuan2 (Yang et al., 2023), Vi-
cuna (Chiang et al., 2023), Qwen (Bai et al., 2023)
and Mistral (Jiang et al., 2023). And All experi-
ments are run on NVIDIA V100 GPUs.

To assist LLMs in grasping the desired output
format, we provide a few-shot example as a demon-
stration for each evaluation task. For further details,
the prompts are listed in Appendix B.6.

4.2 Main Results
The main results are illustrated in Table 2. As seen,
we can have the following observations:
GPT-4 achieves the best performance. Among
all evaluated LLMS, GPT-4 demonstrates supe-
rior performance, achieving an overall score of
76.04% on Chinese-dataset and 74.58% on English-
dataset, and with particularly impressive results in
the realms of tool creation and tool usage, setting
the pilot of acting as skillful tool agent. Besides,
Mistral-7B, GPT-3.5, and Qwen-72B also get com-
petitive performance, and Mistral-7B gets the best
of two worlds between exhibiting good tool utiliza-
tion abilities while keeping efficient model scale.
The larger the model scale, the better the tool
utilization ability. Regarding open-source LLMs,
we evaluate models at three scales, approximately
7B, 13B, and 70B parameters. The results indi-
cate that tool utilization ability improves as the
model scale increases. This finding aligns with
prior research, which has shown that increasing
of the model parameters bolsters the capabilities
of LLMs (Chung et al., 2022; Wei et al., 2022).
While most open-source LLMs demonstrate com-
petitive planning performance, a notable gap still
persists in tool creation and usage compared to
closed-source LLMs, especially for smaller-scale
models. This discrepancy may stem from the more
intricate JSON output format requirements inherent
in the evaluation dimensions of tool creation and
usage. These dimensions are critical areas to focus
on for enhancing LLMs’ abilities in tool utilization.
Language affects the tool utilization ability.
Although most of LLMs support both English
and Chinese, their capabilities in these two lan-
guages differ. For open-source LLMs, in most
cases, the Chinese-orientated LLMs (e.g. Qwen,
Baichuan2) show better tool utilization ability on
Chinese-dataset, while English-orientated LLMs
(e.g. LLaMA2, Vicuna) perform better on English-
dataset. We attribute this discrepancy to variations
in multilingual understanding resulting from differ-
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Model
Planing Tool Creation Tool Usage

Overall- Awareness Creation Awareness Selection Usage
Global Global Local Local Global Local Global Local Local

Chinese-dataset
LLaMA2-7B 46.44 2.70 6.09 3.24 2.10 10.10 0.30 0.66 3.01 8.29
ChatGLM3-6B 57.54 9.70 23.18 8.31 12.90 34.66 8.50 18.68 29.90 22.60
Baichuan2-7B 62.51 8.20 18.77 22.39 18.00 46.02 5.80 15.48 21.63 24.31
Vicuna-7B 58.38 7.10 17.77 22.9 17.40 66.49 5.40 11.49 36.50 27.05
Qwen-7B 61.48 13.40 25.91 19.40 21.40 76.44 12.50 21.96 32.35 31.65
Mistral-7B 66.18 24.50 42.55 50.95 37.00 81.30 58.60 74.70 59.68 55.05
LLaMA2-13B 62.05 5.20 16.72 16.29 28.30 73.15 4.10 5.96 25.79 26.40
Qwen-14B 67.91 10.60 23.90 34.01 24.90 76.89 13.60 19.73 61.10 36.96
Vicuna-13B 65.72 17.90 37.46 37.10 40.40 82.56 22.80 39.06 38.76 42.42
Baichuan2-13B 66.84 23.90 45.40 25.49 34.30 82.57 30.80 53.27 59.21 46.86
LLaMA2-70B 63.29 26.90 45.40 46.03 41.20 81.35 35.00 52.21 51.17 49.17
Qwen-72B 73.40 36.90 55.19 61.80 40.80 82.16 72.40 84.92 69.52 64.12
GPT-3.5 69.50 26.20 52.88 58.00 25.90 79.75 67.10 81.50 76.26 59.68
GPT-4 76.39 58.80 76.65 65.55 60.70 89.76 80.70 89.22 86.62 76.04

English-dataset
LLaMA2-7B 65.44 1.40 3.74 1.37 0.40 3.13 0.70 2.06 2.14 8.93
ChatGLM3-6B 60.19 15.50 29.69 10.92 15.20 57.09 13.00 28.23 24.84 28.30
Baichuan2-7B 62.64 10.50 25.33 17.67 30.10 62.24 8.20 17.97 22.26 28.55
Vicuna-7B 66.77 10.10 24.44 29.54 18.10 61.67 7.80 20.43 32.89 30.19
Qwen-7B 64.81 10.10 24.70 17.05 22.70 76.91 8.80 14.95 32.94 30.33
Mistral-7B 70.32 26.70 43.34 46.24 36.80 77.78 56.70 74.44 60.48 54.76
LLaMA2-13B 68.50 14.50 31.00 20.08 35.70 76.46 16.60 26.39 26.41 35.07
Qwen-14B 69.59 10.50 22.76 32.21 32.50 79.58 15.90 19.55 43.23 36.20
Vicuna-13B 69.64 20.30 41.50 39.90 36.50 79.08 26.60 47.22 46.29 45.23
Baichuan2-13B 67.59 22.30 40.03 15.79 24.30 78.96 29.40 51.34 48.97 42.08
LLaMA2-70B 69.72 25.50 44.52 46.94 55.50 87.61 40.20 53.66 43.44 51.90
Qwen-72B 72.93 30.90 51.15 57.98 49.00 84.86 71.80 84.31 63.51 62.94
GPT-3.5 69.74 33.10 59.26 51.83 15.20 76.29 69.00 82.20 73.47 58.90
GPT-4 74.07 56.10 75.18 61.17 62.50 90.85 79.30 88.69 83.32 74.58

Table 2: The main results of UltraTool. The overall score is the average score across all evaluation metrics. Bold
highlights the best score among all models, and underline underscores the best score under the same model scale.

ences in the proportions of training data. However,
despite their English orientation, GPT-3.5 and GPT-
4 actually exhibit slightly weaker performance on
English-dataset. We speculate that this could be
due to heightened safety and alignment constraints
in their English versions.

4.3 Fine-grained Analysis of Planning and
Tool Creation

To offer a more refined analysis of the planning
and tool creation capabilities of current LLMs, we
present the multi-dimensional scores of 4 represen-
tative models under different model scales from
the Multi-Dimensional Point-Wise LLM-as-Judge
Method. More detailed multi-dimensional scores
for planning and tool creation can refer to Ap-
pendix B.3.2 and Appendix B.4.2, respectively.

As illustrated in Figure 5 (a) and (b), we can
observe that the GPT-4 and Qwen-70B are adept
at breaking down complex goals into logically or-

dered, simpler sub-tasks. And the plans generated
by smaller open-source LLMs showcase commend-
able Syntactic Soundness, yet reveal evident short-
comings across the remaining five score dimen-
sions. This suggests that while many existing open-
source LLMs demonstrate proficiency in generat-
ing grammatically accurate content, they still lack
holistic language comprehension, particularly in
fully grasping query requirements and structuring
language to effectively break down tasks.

As shown in Figure 5 (c) (d), it is evident that
GPT-4 and Qwen-70B are significantly ahead in all
score dimensions, demonstrating their proficient
tool creation capabilities. Conversely, the smaller-
scale models notably trail behind them across all
score dimensions, signaling ample room for im-
provement in enhancing the abilities of many open-
source LLMs concerning comprehensive query un-
derstanding, adherence to prescribed output struc-
tures, and the innovation of new tools.
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(a) Multi-dimensional scores of planning
evaluation on Chinese-dataset.
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(b) Multi-dimensional scores of planning
evaluation on English-dataset.

(c) Multi-dimensional scores of tool
creation evaluation on Chinese-dataset.

(d) Multi-dimensional scores of tool
creation evaluation on English-dataset.

Figure 5: Multi-dimensional scores of planning and tool creation evaluation of 4 representative models under
different model scales, including: Qwen-7B, Qwen-14B, Qwen-72B and GPT-4.
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(a) Pearson correlation coefficient on planning evaluation. (b) Pearson correlation coefficient on tool creation evaluation.

Figure 6: Pearson correlation coefficient between GPT-4 based Multi-Dimensional Point-Wise LLM-as-Judge
Method with human evaluation on planning and tool creation evaluation.

4.4 Alignment of GPT-4 Scoring with Human
Evaluation

To validate the effectiveness of the GPT-4
based Multi-Dimensional Point-Wise LLM-as-
Judge Method, we present the alignment of this
metric with human evaluation on the UltraTool
dataset. Specifically, for the evaluation of plan-
ning and tool creation, we randomly selected 140
evaluation samples for human evaluation. This se-
lection incorporates the results of all 14 evaluated
LLMs to ensure diversity and mitigate bias. By
providing score dimensions, inputs, and references,
we request human experts to evaluate these sam-
ples and provide a multi-dimensional score, along
with an overall score, following the same scoring
methodology as the Multi-Dimensional Point-Wise
LLM-as-Judge Method. Subsequently, we calculate
the Pearson correlation coefficient (Freedman et al.,
2007) between human evaluation and GPT-4 eval-
uation for planning and tool creation. The results,
depicted in Figure 6, indicate a high correlation be-
tween the scores of all dimensions and the overall
scores from human evaluation and GPT-4 evalu-
ation. This suggests that the Multi-Dimensional
Point-Wise LLM-as-Judge Method is suitable for
adoption in UltraTool evaluation, as it demon-

strates a strong alignment with human evaluation.

4.5 Error Analysis
We conduct analyses of the errors observed in eval-
uated LLMs, identifying five primary types:
Not Following Instructions. Not following in-
structions is a major error type, causing a phe-
nomenon of unanswered questions. The Error ex-
amples can refer to Appendix B.5.1.
Hallucinations. LLMs often suffer from hallucina-
tions (Ji et al., 2023), leading to outputs that include
content outside the intended definition. The error
examples are listed in Appendix B.5.2.
Redundant Outputs. Redundant outputs indicate
that outputs contain unnecessary/meaningless con-
tent. Error examples can refer to Appendix B.5.3.
Incomplete Outputs. Incomplete outputs refer to
outputs that lack necessary content. Corresponding
error examples can be found in Appendix B.5.4.
Incorrect JSON Format: In UltraTool, the ex-
pected output for planning is string format, while
the other five dimensions require outputs in various
JSON formats. Despite thorough post-processing,
errors still persist due to incorrect JSON formatting.
We calculate the proportion of outputs that adhere
to the correct JSON format, namely the JSON for-
mat correct rate, and analyze its correlation with the
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Figure 7: Correlation between JSON format correct rate
with the overall score in Table 2.

overall performance of UltraTool, as illustrated
in Figure 7. It is evident that there exists a positive
correlation between this ability and tool utilization,
underscoring the importance of possessing strong
skills in ensuring format compliance. For detailed
results regarding the JSON format correct rate and
examples of errors caused by incorrect JSON for-
matting, please refer to Appendix B.5.5.

5 Related Work

5.1 Tool Learning

The integration of external tools enhances the ca-
pabilities of LLMs to transcend the limitations of
their training data, resulting in problem-solving
abilities that are not only accurate and reliable but
also highly specialized (Qin et al., 2023a). The
approaches to LLMs’ tool learning can broadly be
divided into two categories: tool-oriented learning
and tool-augmented learning. The former involves
directly fine-tuning the LLMs to master tool us-
age (Parisi et al., 2022; Hao et al., 2023; Xu et al.,
2023; Shen et al., 2023; Schick et al., 2023), while
the latter enhances LLMs with the ability to utilize
tools through the provision of in-context tool de-
scriptions and demonstrations (Mialon et al., 2023;
Hsieh et al., 2023; Patil et al., 2023; Ruan et al.,
2023). There are also works that explore the tool
creation of LLMs (Qian et al., 2023; Cai et al.,
2024), but still lack systematic evaluation of the
tool creation abilities of current LLMs. With the
rapid evolution of tool learning, conducting a com-
prehensive evaluation that encompasses all aspects
of tool utilization has become vital, which is pre-
cisely the aim of UltraTool.

5.2 Tool Utilization Benchmark
Effective benchmarks allow for pinpointing limi-
tations and charting the course for future develop-
ments. LLM tool utilization comprises three core
aspects: planning, tool creation, and tool usage.
Predominantly, existing benchmarks primarily fo-
cus on evaluating the model’s proficiency during
the tool usage phase. This particular phase involves
tool usage awareness of query, selection of the ap-
propriate tool for each subtask (Huang et al., 2023)
and the execution of specific tools (Xu et al., 2023;
Tang et al., 2023; Li et al., 2023; Qin et al., 2023b;
Ye et al., 2024). Unlike prior work, we conduct a
comprehensive evaluation of tool utilization, which
additionally evaluates capabilities for planning and
tool creation, providing a more comprehensive and
fine-grained analysis of tool utilization capabilities.

6 Conclusion

In this paper, we introduce UltraTool, a compre-
hensive evaluation benchmark derived from real-
world complex queries, aimed at evaluating the tool
utilization capabilities of LLMs across six dimen-
sions that encompass three critical aspects: plan-
ning, tool creation, and tool usage. UltraTool ex-
cavates the necessary evaluation dimensions from
actual tool utilization processes and pioneers in
explicitly evaluating the NL-based planning and
tool creation abilities. Our extensive analyses re-
veal that many current LLMs still have significant
potential for enhancing their tool utilization abil-
ities. We hope that UltraTool, coupled with our
detailed experiments, will offer valuable insights
and stimulate further research into the real-world
application of LLMs in tool utilization.
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This work contributes a comprehensive evaluation
benchmark UltraTool for tool utilization based on
real-world complex queries and covering compre-
hensive evaluation ranges. While promising, the
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tools in UltraTool are not executable ; rather, they
are tool skeletons that represent the tools’ func-
tionalities, as many real-world demands cannot be
fully addressed by existing real-world tools. De-
spite these tool skeletons are not specific imple-
mentations, they serve as simulated representations
that accurately depict the tool’s functionality and
offer guidance for the future development of actual
tools. In the future, we plan to explore simulating
the execution of our designed tools or gathering
real-world data involving only executable tools.
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Statistics UltraTool

# of supporting languages 2
# of domains 22
# of tools 2,032
# of samples 5,824
-# of single tool calling 506
-# of multiple tool callings 5,318
percentage of nested tool callings 39.61%

avg. steps per sample 12.27
avg. tool calls per sample 2.74
avg. arguments per tool calling 3.05

Table 3: Statistics of UltraTool.

A Data Details

A.1 Data Statistics
UltraTool supports 2 languages including Chi-
nese and English, and encompasses 22 domains,
2,032 tools, and 5,824 samples. Detailed statistics
of the UltraTool are presented in Table 3. All
samples within the UltraTool involve at least one
tool calling. In particular, 5,318 samples comprise
multiple tool callings, whereas 506 samples consist
of single tool calling, and the percentage of nested
tool callings in UltraTool is 39.61%. On average,
each sample’s plan includes 12.27 steps and 2.72
tool callings, with each tool calling requiring an
average of 3.05 arguments. And the existence of
ancestral steps and tool-free steps results in a rela-
tively low proportion of tool-usage steps among all
steps.

A.2 Query Collection Guideline
To ensure the high quality of collected user queries,
we have developed a guideline that outlines the
query collection standards for experts, which is
illustrated in Figure 14.

A.3 Manual Refinement Guideline
We also provide a comprehensive manual refine-
ment guideline for experts, as depicted in Fig-
ure 15.

A.4 Generalization and Complication
Examples

We offer examples of the generalization and com-
plication processes, as shown in Figure 8.

A.5 Prompt Template for UltraTool
Construction

During the construction of UltraTool, we em-
ployed GPT-4 to perform a series of automated

Generalization process
I would like a ticket from Shenzhen to Changsha for the summer of 
2023, with priority business class and window seats.

I need a first class ticket from Guangzhou to Shanghai in the spring of 
2024, preferably by the window. 

Complication Process
Please help me contact a French tour guide who is available in early 
September. We plan to visit the Louvre together on September 1st.

Please help me find a French tour guide who has free time in early 
September and ensure that the guide has received a rating of at least 4.5 
stars in their past services. After confirming the availability of the tour 
guide, book a visit to the Louvre on September 1st. 

Figure 8: Examples for generalization and complication
process.

tasks, which include query generalization (Fig-
ure 16), query complication (Figure 17), plan an-
notation (Figure 18, Figure 19), tool creation (Fig-
ure 20), plan refinement (Figure 21, Figure 22), and
tool calling message annotation (Figure 23).

B Evaluation Details

B.1 Metric Computation Level

Due to the multiple-step nature of the plan P within
UltraTool, it is common to make several predic-
tions [(si, pi), ..., (sj , pj)] for the multiple steps of
a given sample across distinct evaluation dimen-
sions. To this end, we evaluate the performance in
different levels, comprising both the global level
and local level, where the former considers the sam-
ple as a whole and computes the metric based on
all prediction results [pi, ..., pj ] in a sample, while
the latter focus on individual steps and compute the
metric based on a single-step prediction result pi.

B.2 Prompt Template for Multi-Dimensional
Point-Wise LLM-as-Judge Method

We utilize GPT-4 to apply Multi-Dimensional Point-
Wise LLM-as-Judge Method for planning and tool
creation evaluation. The prompt templates for
Chinese-dataset and English-dataset can be found
in Figure 24 (planning evaluation on Chinese-
dataset), Figure 25 (planning evaluation on English-
dataset), Figure 26 (tool creation evaluation on
Chinese-dataset), Figure 27 (tool creation evalu-
ation on English-dataset), respectively.
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Evaluation Task Model Example
Planning LLaMA2-7B Reference: 1. Use the ordering service\n1.1 Obtain ordering service platform 

information (Platform Information: Ordering Service Platform)\n1.2 Select the first 
dish and set the quantity\n1.3 Select the second dish and set the quantity\n1.4 Submit 
the order and obtain the order ID (Order ID: Generated order ID)\n1.5 Confirm order 
details\n1.5.1 Obtain order ID\n1.5.2 Check order details\n1.6 Complete payment
Predict: Sure, I'd be happy to help! Please provide the question you would like me to 
answer.

Tool create awareness Vicuna-7B Reference: [{'step': '1.3 Write the letter content into a file', 'tool': '1'}]
Predict: [{'step': '1.4 Confirm whether the letter has been saved successfully', 'tool': ''}]

Figure 9: Error examples for not following instructions.

B.3 Planning Evaluation Details

B.3.1 Score Dimension Definitions
The designed six score dimensions of Multi-
Dimensional Point-Wise LLM-as-Judge Method for
planning evaluation are:
(1) Accuracy: The generated plan must be aligned
with the user query’s objectives.
(2) Completeness: The plan should encompass all
tasks and constraints mentioned in the user query,
ensuring no elements are omitted.
(3) Executability: Every step in the generated plan
ought to be logical and executable, forming a se-
quence that enables the progressive fulfillment of
the user’s request.
(4) Syntactic Soundness: The language of the gen-
erated plan should be grammatically sound.
(5) Structural Rationality: The plan should exhibit
a well-organized, tree-like hierarchical structure.
(6) Efficiency: The plan must be concise and effi-
cient, avoiding unnecessary complexity.

B.3.2 Multi-Dimensional Scores
We provide the detailed multi-dimensional scores
of Multi-Dimensional Point-Wise LLM-as-Judge
Method on planning evaluation, as depicted in Ta-
ble 4.

B.4 Tool Creation Evaluation Details

B.4.1 Score Dimension Definitions
The designed five score dimensions of Multi-
Dimensional Point-Wise LLM-as-Judge Method for
tool creation evaluation are:
(1) Format Compliance: The created tool must be
fully consistent with the standard answer in terms
of format.
(2) Accuracy: The created tool must align with the
objectives of the user query and accurately address
the user’s needs.
(3) Content Reasonableness: The content within
each field of the created tool should be reasonable.

(4) Executability: The tool name and description in
the created tool should accurately express its func-
tion, including a comprehensive list of parameters
and complete return results.
(5) Richness: The created tool should encompass
rich information, depth, contextual considerations,
and diversity.

B.4.2 Multi-Dimensional Scores
The detailed multi-dimensional scores of Multi-
Dimensional Point-Wise LLM-as-Judge Method on
tool creation evaluation are also provided, as illus-
trated in Table 5.

B.5 Error Examples

Through comprehensive observation, we catego-
rize errors into five primary types: (1) not follow-
ing instructions; (2) hallucinations; (3) redundant
outputs; (4) incomplete outputs; and (5) incorrect
JSON format.

B.5.1 Not Following Instructions
The error examples for not following instructions
are shown in Figure 9. Such errors signify outputs
that deviate from the instructions’ requirements,
potentially rendering them meaningless or irrele-
vant.

B.5.2 Hallucinations
The error examples for hallucination are illustrated
in Figure 10. This type of error indicates that the
output includes content that does not within the
intended definition, such as tools hallucination for
argument names hallucination.

B.5.3 Redundant outputs
The error examples for redundant outputs are
demonstrated in Figure 11. This type of error sug-
gests that the output includes unnecessary or non-
sensical content, such as redundant meaningless
texts or redundant predictions.
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Evaluation Task Model Example
Tool selection Baichuan2-7B Toolset: [{'name': 'delete_schedule', …}, {'name':  'file_modify', …}, {'name': 

'check_schedule_deleted', …}, {'name': 'update_hyperlinks_text', …}, {'name': 
'remove_specific_text', …}, {'name': 'file_contains', …}, {'name': 
'delete_specific_content', …}, {'name': 'delete_transaction_by_amount', …}]
Reference: [{'step': '1.3 Add content to the file', 'tool': 'file_modify'}, {'step': '1.6 Delete 
specific content from the file', 'tool': 'delete_specific_content’}]
Predict: [{'step': '1.2 Query the current exchange rate', 'tool': 'currency_exchange_rate'}, 
{'step': '1.6 Delete specific content from the file', 'tool': 'delete_specific_content'}

Tool usage ChatGLM3-6B Toolset: [{'name': 'file_write', 'description': 'Used to write content to a specified file. If 
the file does not exist, a new file will be created.', 'arguments': {'type': 'object', 
'properties': {'file_path': {'description': 'The file path where the content will be written', 
'type': 'string'}, 'content': {'description': 'The content to be written', 'type': 'string'}}}, 
'results': {'type': 'object', 'properties': {'status': {'description': 'Whether the write 
operation was successful', 'type': 'boolean'}}}}]
Reference: [{'step': '1.2 Create document and write content', 'tool': 'file_write', 'param': 
{'file_path': 'Desktop/Work Summary.txt', 'content': 'The work this week has been 
completed very well!'}}]
Predict: [{'step': '1.1 Get document creation information', 'tool': 'file_write', 'param': 
{'file_path': 'Desktop/Work Summary.txt', 'content': 'The work this week has been 
completed very well!'}}, {'step': '1.2 Create document and write content', 'tool': 
'file_write', 'param': ''}, {'step': '1.3 Confirm whether the document has been created and 
written successfully', 'tool': 'file_read', 'param': {'file_path': 'Desktop/Work 
Summary.txt', 'result_format': 'text'}}]

Figure 10: Error examples for hallucinations.

Evaluation Task Model Example
Planning LLaMA2-7B Reference: 1. Create file\n1.1 Get file creation information (File path: 

Desktop/Work_Tasks.txt, File content: Preparation for Tomorrow's Meeting)\n1.2 Use 
file writing tool to create and write content\n1.3 Confirm file creation and content 
writing success
Predict: Of course! I\'d be happy to help you create a file on your desktop and write 
the text "Preparation for Tomorrow\'s Meeting" into it.\n\nHere\'s a step-by-step plan 
to help you achieve this task:\n\n1. Create a new file on your desktop called 
"Work_Tasks.txt".\n\nOutput:\n1. Create a new file on desktop called 
"Work_Tasks.txt"\n\n2. Write the text "Preparation for Tomorrow\'s Meeting" into the 
file.\n\nOutput:\n2. Write "Preparation for Tomorrow\'s Meeting" into 
"Work_Tasks.txt" file\n\nGreat, the task is complete! Let me know if you have any 
other questions or tasks you\'d like me to assist you with.

Tool create awareness Vicuna-7B Reference: [{'step': '1.2 Use file writing tool to create and write content', 'tool': '0'}]
Predict: [{'step': '1.1 Get file creation information', 'tool': '1’}, {'step': '1.2 Use file 
writing tool to create and write content', 'tool': '0'}]

Figure 11: Error examples for redundant outputs.

B.5.4 Incomplete outputs
The error examples illustrating incomplete outputs
are depicted in Figure 12. This type of error indi-
cates that the output lacks essential content, such
as incomplete predictions or fragmented tool struc-
tures.

B.5.5 Incorrect JSON Format
In the UltraTool, the expected outputs for eval-
uation dimensions other than planning require di-
verse JSON formats, presenting more challenges
due to the potential rendering of data unusable with
even minor formatting errors. After thorough post-
processing, the proportion of outputs conforming
to the correct JSON format among the evaluated
LLMs, referred to as the JSON format correctness
rate, is presented in Table 6. It is evident that as the

model scale increases, so does the JSON format
correct rate.

Furthermore, error examples resulting from in-
correct JSON formats are depicted in Figure 13.
Such errors typically stem from incomplete or ille-
gal JSON structures.

B.6 Prompt Template for Inference
During the inference of our experiments, we uti-
lize one-shot example for all LLMs. The prompt
templates can be found in Figure 28 (planning), Fig-
ure 29 (tool creation awareness), Figure 30 (tool
creation), Figure 31 (tool usage awareness), Fig-
ure 32(tool selection), Figure 33(tool usage), re-
spectively.
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Evaluation Task Model Example
Tool usage awareness Vicuna-7B Reference: [{'step': "1.1 Get the original alarm time (Original alarm time: 7 o'clock 

tomorrow morning)", 'tool': '0'}, {'step': "2.1 Find and change the original alarm time 
to the new time (New alarm time: 8 o'clock tomorrow morning, New alarm frequency: 
Daily)", 'tool': '1'}, {'step': '2.2 Confirm whether the alarm time has been successfully 
modified', 'tool': '0’}]
Predict: [{"step": "1.1 Get the original alarm time (Original alarm time: 7 o\'clock 
tomorrow morning)", "tool": "1"}, {"step": "2.1 Find and change the original alarm 
time to the new time (New alarm time: 8 o\'clock tomorrow morning, New alarm 
frequency: Daily)", "tool": "0"}]

Tool creation Vicuna-7B Reference: [{'step': '1.2 Use backup tool to backup the original file', 'tool': {'name': 
'file_backup', 'description': 'Used for backing up specified files.', 'arguments': {'type': 
'object', 'properties': {'source_file_path': {'type': 'string', 'description': 'Source file 
path'}, 'backup_file_path': {'type': 'string', 'description': 'Backup file path'}}}, 'results': 
{'type': 'object', 'properties': {'status': {'description': 'Whether the backup operation was 
successful', 'type': 'boolean'}}}}}]
Predict: [{'step': '1.2 Use backup tool to backup the original file', 'tool': {'name': 
'backup_original_file', 'description': 'Backup original file'}}]

Figure 12: Error examples for incomplete outputs.

Evaluation Task Model Example
Tool creation awareness Vicuna-7B Reference: [{'step': '2.1.4 Search for available rooms on specified dates', 'tool': '1'}, 

{'step': '2.3 Book rooms', 'tool': '1’}]
Predict: " [{'step': '1.1 Obtain user's name (Name: Li Ming)'"

Tool creation Vicuna-7B Reference: [{'step': '1.2 Create a text file and write content', 'tool': {...}}]
Predict: " [{'step': '"

Tool usage awareness ChatGLM3-6B Reference: [{'step': '1.1 Compose the letter content (Salutation: Dear Tom, Body: I 
plan to go to London on a business trip on April 1, 2023, and will return on April 3. 
Looking forward to your reply. Closing: Best wishes, Jack.)', 'tool': '0'}, {'step': '1.2 Get 
the letter content (Letter content: Dear Tom, I plan to go to London on a business trip 
on April 1, 2023, and will return on April 3. Looking forward to your reply. Best wishes, 
Jack.)', 'tool': '0'}, {'step': '1.3 Write the letter content into a file', 'tool': '1'}, {'step': '1.4 
Confirm whether the letter has been saved successfully', 'tool': '0'}]
Predict: ' The solution to this problem is as follows:\n\n1. Initialize an empty list called 
"output".\n2. Iterate through each step in the plan.\n3. Check if the step has a \'tool\' 
field. If it does, add a new element to the "output" list with keys "step" and "tool".\n4. 
If the step does not have a \'tool\' field, add a new element to the "output" list with keys 
"step" and "tool" set to 0.\n5. Return the "output" list.'

Tool selection Vicuna-7B Reference: [{'step': '1.2 Adjust the alarm time to every morning at 7:00', 'tool': 
'clock_alarm_change'}, {'step': '2.2 Set the new alarm', 'tool': 'clock_alarm_set'}]
Predict: " [{'step': '1.2 Adjust the alarm time to every morning at"

Tool usage Vicuna-7B Reference: [{'step': '1.2 Query and display the temperature forecast', 'tool': 
'special_weather_forecast_tool', 'param': {...}}, {'step': '2.3 Book a comfortable vehicle', 
'tool': 'ride_hailing_service', 'param': {...}}, {'step': '3.2 Book food delivery service', 
'tool': 'ingredient_delivery_tool', 'param': {...}}]
Predict: " Based on the given plan and toolset, the following output is 
generated:\n\n[{'step': '1.2 Check the current exchange rate', 'tool': 'currency"

Figure 13: Error examples for incorrect JSON format.

4377



Model Accuracy Completeness Executability Syntactic Structural Efficiency Overall
Soundness Rationality

Chinese-dataset
LLaMA2-7B 51.35 47.61 50.66 72.52 50.79 50.39 46.44
ChatGLM3-6B 66.09 59.41 62.68 81.47 61.02 62.11 57.54
Vicuna-7B 65.26 60.91 63.51 79.01 63.12 62.06 58.38
Qwen-7B 69.60 62.98 66.90 81.89 65.47 66.57 61.48
Baichuan2-7B 70.16 65.22 67.54 82.23 67.04 66.43 62.51
Mistral-7B 73.00 68.50 70.77 81.48 70.07 69.68 66.18
LLaMA2-13B 69.15 63.93 67.42 82.12 67.12 66.99 62.05
Vicuna-13B 73.19 68.08 70.64 81.68 69.98 70.89 65.72
Baichuan2-13B 73.67 69.53 71.50 82.13 71.14 71.22 66.84
Qwen-14B 75.13 70.16 72.15 81.76 71.39 72.23 67.91
LLaMA2-70B 69.89 66.64 69.16 82.42 68.35 66.64 63.29
Qwen-72B 78.28 74.25 76.23 80.83 75.70 77.30 73.40
GPT-3.5 76.43 70.26 73.14 80.94 72.26 75.10 69.50
GPT-4 79.56 77.53 78.31 81.21 78.19 78.60 76.39

English-dataset
ChatGLM3-6B 67.07 61.07 64.65 83.20 62.45 62.71 60.19
Baichuan2-7B 67.86 65.22 67.58 86.92 67.51 65.13 62.64
Qwen-7B 70.13 67.20 69.31 86.53 68.42 67.35 64.81
LLaMA2-7B 70.57 67.62 69.67 86.53 69.77 68.12 65.44
Vicuna-7B 71.58 69.70 70.85 87.38 70.80 69.29 66.77
Mistral-7B 74.61 72.92 74.15 87.23 73.63 72.00 70.32
Baichuan2-13B 72.40 70.00 71.77 87.47 71.56 69.67 67.59
LLaMA2-13B 72.96 71.78 73.25 88.98 73.06 70.51 68.50
Qwen-14B 74.31 72.00 73.58 86.95 72.97 71.85 69.59
Vicuna-13B 74.65 72.19 73.68 86.14 73.18 71.62 69.64
LLaMA2-70B 74.35 72.98 73.84 88.20 73.83 70.72 69.72
Qwen-72B 77.24 74.55 75.85 84.61 75.47 74.95 72.93
GPT-3.5 76.61 69.25 72.13 84.25 71.52 72.11 69.74
GPT-4 77.59 76.17 77.00 85.18 76.53 75.14 74.07

Table 4: Multi-dimensional scores of Multi-Dimensional Point-Wise LLM-as-Judge Method on planning evaluation.

4378



Model Format Accuracy Content Executability Richness Overall
Compliance Reasonableness

Chinese-dataset
LLaMA2-7B 4.15 3.46 3.92 3.39 2.84 3.24
ChatGLM3-6B 9.70 9.10 9.61 8.41 7.21 8.31
Qwen-7B 22.08 21.46 22.27 19.80 17.26 19.40
Baichuan2-7B 25.77 24.31 25.56 22.93 19.70 22.39
Vicuna-7B 26.83 24.48 26.77 23.66 20.41 22.90
Mistral-7B 58.18 55.53 57.84 52.61 45.53 50.95
LLaMA2-13B 20.17 17.49 18.93 16.77 14.30 16.29
Baichuan2-13B 32.46 27.01 31.16 26.43 23.40 25.49
Qwen-14B 40.15 36.04 39.31 35.14 30.98 34.01
Vicuna-13B 42.56 39.68 42.43 38.15 33.24 37.10
LLaMA2-70B 53.44 48.81 52.86 47.42 40.86 46.03
Qwen-72B 69.96 66.86 70.04 64.08 55.72 61.80
GPT-3.5 66.19 64.43 64.64 59.01 50.30 58.00
GPT-4 73.87 70.95 74.54 68.60 59.11 65.55

English-dataset
LLaMA2-7B 1.33 1.44 1.60 1.39 1.17 1.37
ChatGLM3-6B 10.43 11.84 13.04 10.88 9.86 10.92
Qwen-7B 16.24 18.00 20.70 17.35 15.74 17.05
Baichuan2-7B 16.97 18.49 20.84 17.96 15.91 17.67
Vicuna-7B 28.39 30.68 35.13 30.41 27.11 29.54
Mistral-7B 44.76 48.58 54.89 47.64 42.13 46.24
Baichuan2-13B 15.49 16.08 19.39 16.17 14.64 15.79
LLaMA2-13B 19.26 21.48 24.30 20.41 17.76 20.08
Qwen-14B 31.18 33.44 38.15 33.18 30.02 32.21
Vicuna-13B 38.60 41.56 47.17 40.85 36.40 39.90
LLaMA2-70B 45.28 48.57 55.82 48.12 42.16 46.94
Qwen-72B 56.10 60.31 68.07 59.71 53.28 57.98
GPT-3.5 49.68 54.91 61.40 52.96 46.07 51.83
GPT-4 59.49 63.47 71.63 63.28 56.13 61.17

Table 5: Multi-dimensional scores of Multi-Dimensional Point-Wise LLM-as-Judge Method on tool creation
evaluation.
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Model Tool Creation Tool Usage Avg.
Awareness Creation Awareness Selection Usage

Chinese-dataset
LLama2-7B 50.70 54.30 41.00 35.70 41.10 44.56
Baichuan2-7B 78.50 70.80 70.00 83.80 79.00 76.42
Vicuna-7B 92.10 89.40 99.10 98.20 94.80 94.72
ChatGLM3-6B 97.80 86.80 96.00 98.80 98.00 95.48
Qwen-7B 97.10 92.90 99.70 98.20 97.70 97.12
Mistral-7B 99.20 89.00 99.60 99.50 99.30 97.32
LLama2-13B 88.00 88.00 99.70 73.90 85.80 87.08
Qwen-14B 97.10 92.90 99.70 98.20 97.70 97.12
Vicuna-13B 99.80 94.40 99.80 98.30 97.10 97.88
Baichuan2-13B 99.80 90.60 99.90 100.00 99.20 97.90
LLama2-70B 99.70 91.30 100.00 98.10 98.00 97.42
Qwen-72B 100.00 99.30 99.90 100.00 99.90 99.82
GPT-3.5 100.00 99.00 100.00 100.00 99.90 99.78
GPT-4 100.00 100.00 100.00 100.00 100.00 100.00

English-dataset
LLama2-7B 29.40 10.50 3.60 31.10 21.00 19.12
Baichuan2-7B 95.50 81.00 80.80 98.50 85.50 88.26
ChatGLM3-6B 91.40 86.70 96.40 97.10 95.80 93.48
Vicuna-7B 96.90 92.40 99.40 98.10 87.20 94.80
Qwen-7B 97.70 91.80 99.70 97.40 96.10 96.54
Mistral-7B 99.40 90.00 99.90 99.50 99.60 97.68
Qwen-14B 89.90 94.70 99.50 67.00 94.90 89.20
LLama2-13B 97.10 89.80 99.80 91.50 88.00 93.24
Vicuna-13B 99.90 93.30 99.60 100.00 97.90 98.14
Baichuan2-13B 99.60 95.10 99.80 100.00 98.50 98.60
LLama2-70B 99.00 93.50 99.90 94.90 97.70 97.00
Qwen-72B 100.00 99.00 99.60 100.00 99.80 99.68
GPT-3.5 100.00 94.00 100.00 99.80 100.00 98.76
GPT-4 100.00 100.00 99.90 100.00 100.00 99.98

Table 6: The results of JSON format correct rate for tasks that require JSON output format. And AVG. is the average
score of all five tasks’ JSON format correct rate.
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Query Collection Guideline
Assuming you are a user of an artificial intelligence assistant, based on your experience in the {domain} field, 
you are required to write a set of unique queries for the AI assistant. The requirements are as follows:

1. Authenticity: The queries should be based on real-world needs, reflecting scenarios that users might 
encounter. Please construct the queries based on real cases you are aware of or appropriately modified 
scenarios.
2. Complexity: The queries should be sufficiently complex to reflect the multiple decision points that may be 
needed to solve a problem, including the potential use of various tools. The best queries would require the use 
of multiple tools to obtain an answer.
3. Specificity: The queries should pertain to concrete needs within the {domain}, rather than being general or 
vague. Ensure that the queries are closely related to the specified domain and contain enough detail to 
understand their complexity.
4. Privacy: Avoid using real personal information. Construct the queries using pseudonyms and hypothetical 
scenarios.
5. Diversity: The queries should cover a wide range of real-life needs. We encourage you to construct queries 
based on the needs of different user groups to reflect the diversity of the real world. For example, consider the 
needs that users of different ages, occupations, and cultural backgrounds might have.

After constructing each query, you will also need to list the potential tools required, including the tool's name, 
the parameters needed to call the tool within the query, and the expected return value of the tool.

To assist you in understanding the type of queries required, here are some examples of queries and tools:
{query example}
{tool example}

Please note that these are only examples. We encourage you to provide a more diverse and specific set of 
complex queries, and ensure that the entire set of queries you provide is as non-repetitive as possible.

Figure 14: Guideline for query collection process.
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Manual Refinement Guideline
Given you a data for resolving user queries from an LLM (Language Model) perspective, which involves the 
calling of tools. This data includes the user's query (in the "question" field), a plan tailored to the user's query 
(in the "plan" field, where each step contains information about tool usage, indicated by the "tool" field), a list 
of tools involved in the plan (in the "tools" field), and a complete set of all the tools (the toolset). Your task is 
to perform detailed refinement on this data:

Definitions:
1. The plan includes three types of steps: tool-free steps (where the "tool" field value is "no tool required"), 
tool-usage steps (where the "tool" field specifies a particular tool calling), and some parent operations that are 
not of concern (where the "tool" field value is "null"). 
2. When invoking a tool in a tool-usage step, the parameters are passed in the form "parameter name=specific 
value".
3. Refine the plan with minimal changes to the original plan, avoiding over-optimization and excessive 
modifications, while maintaining the sequential order of plan numbers.

Specific Refinement Guidelines:
1. Ensure the overall logic of the plan is coherent (each step should be based on the previous one and 
contribute to the overall goal, without contradictions or repetitions), the sequence of steps in the plan is 
reasonable (if not, adjust them to a logical order), there are no redundant steps (remove if any), and no missing 
steps (add if any). If adjustments involve renumbering, ensure the sequence remains orderly.
2. If a tool-free step actually requires the calling of a tool to solve the issue for the LLM, modify it to a tool-
usage step: find an appropriate tool from the list of tools or select one from the toolset (if no suitable tool is in 
the list), and populate it with the appropriate parameters, ensuring the completeness of the used parameters.
3. If a tool-usage step can actually be resolved without invoking a tool for the LLM, modify it to a tool-free 
step.
4. Ensure that the parameter values used in tool-usage steps have a source, which can be the user query, the 
result of pre-ordered tool calling, or some user-related information (such as name, identification card, account 
number, etc.). If the source of the parameter value used in a tool calling is the result of another tool calling XX 
(specific parameter name=XX), it should be modified to "specific parameter name=<XX>" to indicate that the 
parameter value is the result of a specific tool calling.
5. If the tool selection in a tool-usage step is inappropriate, select a more suitable tool from the toolset and 
populate the corresponding parameters.
6. If the format of the parameters used in a tool-usage step does not comply with "parameter name=specific 
value," it needs to be corrected. If any parameters are missing, they should be supplemented. If there is a clear 
mismatch between the used parameter names and their meanings and the content of the parameter values, 
modify them to appropriate values or select other reasonable parameter names defined by the tool.
7. If you feel that the data quality is indeed poor, you can also choose to delete the data directly.

To assist you in understanding the refinement requirement, here are some examples of data refinement:
{example}

Figure 15: Guideline for manual refinement process.

4382



Chinese Prompt
你是⼀个经验丰富的问题重写助⼿。给定⼀个问题，你的目标是将给定的问题进⾏重写，要求如下：
1. #重写后的问题#必须仍然是与#给定的问题#相似类型的问题。
2. #重写后的问题#要多样化，主题、格式、风格以及涉及的数字等都不能跟#给定的问题#⼀样。
3. #重写后的问题#必须是合理的，并且必须能被⼈类理解和回应。
4. 根据#给定的问题#重写2个不同的问题，#重写后的问题#对比#给定的问题#要有多样性。

以下是给定的问题：
#给定的问题#:
{query}

按如下格式输出：
#重写后的问题#:
{{
"问题1":"..."
"问题2":"..."
}}

English Prompt
You are an experienced query rewriting assistant. Given an query, your goal is to rewrite the given query with 
the following requirements:
1. The #rewritten query# must still be a query of a similar type to the #given query#.
2. The #rewritten query# should be diversified; the theme, format, style, and any numbers involved must not 
be the same as the #given query#.
3. The #rewritten query# must be reasonable and must be capable of being understood and responded to by 
humans.
4. Rewrite 2 different queries based on the #given query#, ensuring that the #rewritten queries# demonstrate 
diversity when compared to the #given query#.

Below is the given query:
#given query#:
{query}

Output in the following format:
#rewritten queries#:
{{
”query1":"..."
”query2":"..."
}}

Figure 16: Prompt for query generalization process.
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Chinese Prompt
作为⼀名资深的问题构建专家，你的目标是通过添加新的操作步骤或者约束条件，将输⼊的问题转化
为跟复杂的问题。请遵循以下指导原则：
1. 在#给定的问题#的基础上增加⼀到两个相关的条件约束或者能够通过⼯具API调用执⾏的操作步骤。
这些新增的操作步骤/条件约束应该与#给定的问题#逻辑相关联，并能够增加⼤语⾔模型解决问题所
需的推理和⼯具调用难度。
2. 避免在#重写后的问题#中使用“如果/若...则...”这类与选择(if-else)相关的复杂逻辑。
3. 避免#重写后的问题#形式为“请设计⼀个脚本/程序，该脚本/程序能够...”或“编写⼀个简短的脚本...”，
即不要求进⾏脚本编写。
4. 避免在#重写后的问题#中使用"给定问题"、"重写后的问题"等直接的原始术语，⽽是以自然流畅的
⽅式表达。
5. 确保#重写后的问题#在难度上超越#给定的问题#，要求执⾏者采取更多的策略和处理更复杂的任
务。
6. 在增加复杂性的同时，避免不必要的冗长描述，尽可能保持问题的精炼、可读和可操作性。
7. 根据#给定的问题#重写2个不同的问题，#重写后的问题#对比#给定的问题#要有多样性，同时在
难度上超越#给定的问题#，要求执⾏者采取更多的策略和处理更复杂的任务。

对于以下给定的问题，请构建⼀个更为复杂的版本：
#给定的问题#：
{query}

#重写后的问题#：
{{
"问题1":"..."
"问题2":"..."
}}

English Prompt
As a seasoned query construction expert, your goal is to transform an input query into a more complex one by 
adding new operational steps or constraints. Please follow the guidelines below:
1. Add one or two relevant conditional constraints or operational steps that can be executed through tool API 
calls, based on the #given query#. These added operations/steps or constraints should be logically associated 
with the #given query# and increase the difficulty of reasoning and tool invocation required for a large 
language model to solve the problem.
2. Avoid using complex logic related to selection (if-else) in the #rewritten query#, such as "if/then..." 
statements.
3. Avoid forms like "Please design a script/program that can..." or "Write a short script..." in the #rewritten 
query#, meaning that script writing is not requested.
4. Refrain from using direct terms such as "given query" or "rewritten query" in the #rewritten query#, but 
express it in a natural and fluent manner.
5. Ensure that the #rewritten query# is more challenging than the #given query#, requiring the executor to 
adopt more strategies and handle more complex tasks.
6. While increasing complexity, avoid unnecessary lengthy descriptions and maintain the conciseness, 
readability, and operability of the queries as much as possible.
7. Rewrite two different queries based on the #given query#. The #rewritten queries# should be diverse 
compared to the #given query# and more challenging, requiring the executor to adopt more strategies and 
handle more complex tasks.

For the following given query, please construct a more complex version:
#given query#:
{question}

#rewritten queries#:
{
"query 1": "..."
"query 2": "..."
}

Figure 17: Prompt for query complication process.
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Chinese Prompt

你是⼀个专业的任务规划助⼿，可以理解复杂的用户问题，并制定⼀个合理的、可执⾏的多步计划，
以完成用户的任务。具体⽽⾔，你制订的计划应像⼀棵树⼀样分为多个⼦任务，这些⼦任务将交给底
层的任务处理器顺序执⾏，任务处理器由⼀个最先进的⼤型语⾔模型（LLM）驱动，它可以处理许多
⼦任务，可以调用外部⼯具。输出格式示例如下：
1. 任务1

    1.1 任务1.1

    1.2 任务1.2

        1.2.1 任务1.2.1

...
2. 任务2 

...

在示例中，任务1包括⼦任务1.1、1.2等，⽽⼦任务1.2又包括⼦任务1.2.1、1.2.2等。每个任务要包含任
务的描述。如果⼀个任务包含多个⼦任务，还需要说明不同⼦任务之间的关系，如任⼀⼦任务完成即
可、所有⼦任务需要顺序执⾏成功才⾏等。重要提示：
1. 在同⼀层级的任务应当复杂度相当。上层的任务可以抽象⼀些。如果某⼀任务太复杂或不够具体，
应当将它分解为多个可执⾏的⼦任务。这个过程应当递归执⾏，直到某个⼦任务可以被能调用某种⼯
具的任务处理器解决。
2. 始终制定既可⾏又⾼效的计划，以确保任务的成功完成。尽量减少任务树的深度和⼦任务的数量，
但要确保包含所有必须达成的目标。
3. 不要创建与现有⼦任务相似或相同的新⼦任务。对于目标相似的⼦任务，尽量将它们合并在⼀个⼦
任务中，列出⼀系列⼦目标，⽽不是将它们分割成多个⼦任务。
4. 请按上述示例格式直接输出计划，不要产⽣额外的解释，因为你的回复将直接被解析执⾏。

你制订的计划将从以下⽅面进⾏评估，因此请注重这些⽅面：
1. **完整性**：计划应当覆盖到用户需求的⽅⽅面面，不能遗漏用户的约束，也不能臆造用户的需求。
计划执⾏完成后应当能确实完成用户的任务。
1. **逻辑连贯性**：计划应当保持逻辑的连贯性。也就是说，每⼀个步骤都应该基于前⼀步，⽽且每
⼀步都应该对达成总体目标有所贡献。不应出现⼦任务⽭盾和重复的现象。任务和⼦任务的关系应当
符合逻辑。
3. **可实⾏性**：计划应当⾜够清晰，易于理解。上层任务应当简洁，符合⼈类的任务分解习惯。最
终执⾏的底层任务要⾜够具体，且包含所有必要的⽅面和细节，以便任务处理器知道如何去执⾏。
4. **格式遵从性**：应当仅输出符合上述格式要求的计划本身，不产⽣额外冗余的回复，以便后续进
⾏计划解析和执⾏。

以下是⼀些用户问题与对应的计划的样例：
{example1}

{example2}

{example3}

以下是用户问题：
{question}

接下来，请你根据用户的问题制定计划，输出格式：
计划：...

Figure 18: Chinese prompt for plan annotation process.
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English Prompt

As a professional task planning assistant, you are capable of understanding complex user inquiries and 

developing a structured, executable multi-step plan to fulfill the user's tasks. Specifically, the plans you create 

should branch out like a tree into multiple subtasks, which are sequentially executed by underlying task 

processors powered by a state-of-the-art Large Language Model (LLM) capable of handling many subtasks 

and invoking external tools. An example of the output format is as follows:

1. Task 1

    1.1 Subtask 1.1

    1.2 Subtask 1.2

        1.2.1 Subtask 1.2.1

...

2. Task 2

...

In the example, Task 1 includes Subtasks 1.1, 1.2, etc., while Subtask 1.2 further includes Subtasks 1.2.1, 1.2.2, 

and so on. Each task must contain a description of the task. If a task contains multiple subtasks, the 

relationship between different subtasks also needs to be explained, such as whether any subtask can be 

completed, or all subtasks need to be executed in sequence to succeed. Important tips:

1. Tasks at the same level should have comparable complexity. Higher-level tasks can be more abstract. If a 

task is too complex or not specific enough, it should be broken down into multiple executable subtasks. This 

process should be recursively executed until a subtask can be addressed by a task processor that can invoke a 

certain tool.

2. Always develop feasible and efficient plans to ensure the successful completion of tasks. Minimize the 

depth of the task tree and the number of subtasks, but ensure that all necessary goals are included.

3. Do not create new subtasks that are similar or identical to existing ones. For subtasks with similar objectives, 

try to merge them into one subtask, listing a series of sub-goals, rather than splitting them into multiple 

subtasks.

4. Please output the plan directly in the format shown above without generating additional explanations, as 

your response will be parsed and executed directly.

Your plan will be evaluated in the following aspects, so please pay attention to them:
1. **Completeness**: The plan should cover all aspects of the user's needs without omitting any constraints or 

fabricating requirements. Upon completion, the plan should indeed fulfill the user's task.
2. **Logical Coherence**: The plan should maintain logical consistency. That is, each step should be based on 

the previous one, and each step should contribute to achieving the overall goal. There should be no 

contradictions or duplications in subtasks. The relationship between tasks and subtasks should be logical.
3. **Feasibility**: The plan should be clear enough to be understood. Higher-level tasks should be concise and 

in line with human task decomposition habits. The underlying tasks to be executed should be specific enough 

and include all necessary aspects and details so that the task processor knows how to execute them.
4. **Format Compliance**: Only the plan itself, which meets the format requirements mentioned above, 

should be output without generating any additional redundant responses, to facilitate subsequent plan parsing 

and execution.

Here are some examples of user questions and corresponding plans:

{example1}

{example2}

{example3}

Below is the user's question:

{question}

Next, please develop a plan based on the user's question, output format:

Plan: ...

Figure 19: English prompt for plan annotation process.
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Chinese Prompt
你是⼀名专业的⼯具创造助⼿，给定⼀个#计划#和⼀个#现有⼯具#集合，你的任务是判断#现有⼯具#
是否⾜够完成任务，若不⾜够完成，需要进⾏相应的⼯具创造。要求如下：
1. 在#计划#中明确区分需要使用⼯具的步骤和不需要使用⼯具的步骤。
2. 对于需要使用⼯具的步骤，判断在#现有⼯具#是否能找到合适的⼯具，如果#现有⼯具#不⾜够完成
任务，需要创造对应的新⼯具。
3. 创造的新⼯具应遵循最小必要原则，具有通用性，并且参数化，以适应不同情况下的相似操作。
4. 创造的新⼯具的格式与#现有⼯具#中的⼯具格式相同。

以下是⼀些输⼊#计划#和#现有⼯具#，输出新⼯具的样例：
{example1}
{example2}

请根据以下#计划#和#现有⼯具#，参照样例格式，以json格式⽣成可能需要的新⼯具，注意保证json字
符串格式的正确性，不要输出其他任何内容。
#计划#：
{plan}
#现有⼯具#
{tool}
#输出#：

English Prompt
You are a professional tool creation assistant. Given a #plan# and a collection of #existing tools#, your task is 
to determine whether the #existing tools# are sufficient to complete the task. If they are not, you will need to 
create the appropriate tools accordingly. The requirements are as follows:
1. In the #plan#, clearly differentiate between steps that require the use of tools and those that do not.
2. For steps that require the use of tools, assess whether suitable tools can be found within the #existing tools#. 
If the #existing tools# are insufficient to complete the task, new corresponding tools must be created.
3. The newly created tools should adhere to the principle of minimal necessity, be versatile, and parameterized 
to accommodate similar operations in different scenarios.
4. The format of the newly created tools should be consistent with the format of the tools within the #existing 
tools# collection.

Below are some examples of input #plans# and #existing tools#, and output of new tool samples:
{example1}
{example2}

Based on the following #plan# and #existing tools#, please refer to the sample format and generate the 
potentially required new tools in JSON format. Ensure the correctness of the JSON string format and do not 
output any other content.
#plan#:
{plan}
#existing Tools#:
{tool}
#output#:

Figure 20: Prompt for tool creation process.
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Chinese Prompt
你是⼀名专业的计划优化助⼿，给定#用户问题#，针对用户问题的#计划#和#⼯具集#，你的任务是优
化提供的树状#计划#，形成⼀个#优化计划#，并确保#优化计划#中的叶⼦节点是原⼦操作，即执⾏计
划中的最小不可分割步骤。这些原⼦操作应匹配LLM可以直接执⾏的操作（如信息获取、决策、推理、
选择、⽂本⽣成等），或与外部系统交互的操作（即需要调用⼯具）。要求如下：
1. 仔细审查#用户问题#和提供的#计划#，通过（1）删除冗余的步骤；（2）现有步骤进⾏拆分、合并、
细化、调整，以形成更合适的原⼦操作；（3）增加新的合理的原⼦操作；来初步形成针对#用户问题
#的#优化计划#。
2. 若原⼦操作中包含具体名词，需要以“(抽象名词：具体名词)”的形式抽象化，便于⼯具调用的过程
中将具体名词作为传递的参数。
3. 在#优化计划#中明确区分需要使用⼯具的原⼦操作和不需要使用⼯具的原⼦操作。
4. 对于需要使用⼯具的原⼦操作，其前序需要有信息获取类的原⼦操作（不需要使用⼯具）来获取⼯
具调用所需的所有参数值，其后序需要有⼯具调用结果观察/使用类的原⼦操作（不需要使用⼯具）来
使用/验证⼯具调用结果，若没有则需要进⾏步骤补充。
5. 需要使用⼯具的原⼦操作只专注于⼯具调用，不能同时获取参数（若有则需要将其独立为新的获取
信息操作，安排到前序），且确保⼯具需要的所有参数值全部来自于前序信息获取类原⼦操作中的
“(抽象名词：具体名词)”里的具体名词，若有参数需要的具体名词未曾出现在前序信息获取步骤中，
则应调整前序信息获取步骤或在前序增加对应的信息获取步骤，但注意不需要重复获取同⼀个具体名
词的信息。
6. 确保#优化计划#保持有序的树状结构。

以下是⼀些输⼊#用户问题#，#计划#和#现有⼯具#，输出#优化计划#的样例：
{example1}
{example2}

请根据以下#用户问题#、#计划#和#现有⼯具#，参照样例格式，以json格式⽣成#优化计划#，注意保
证json字符串格式的正确性，不要输出其他任何内容。
#用户问题#：
{query}
#计划#：
{plan}
#现有⼯具#
{tool}
#输出#：

Figure 21: Chinese prompt for plan refinement process.

4388



English Prompt
You are a professional plan refinement assistant. Given an #user query#, with a corresponding #plan# and 
#toolset#, your task is to refine the provided tree-like #plan# to form an #refined plan#. Ensure that the leaf 
nodes in the #refined plan# are atomic operations, which represent the smallest indivisible steps in the 
execution plan. These atomic operations should match actions directly executable by an LLM (such as 
information retrieval, decision-making, reasoning, selection, text generation, etc.), or operations that interact 
with external systems (i.e., requiring tool invocation). The requirements are as follows:
1. Carefully review the #user query# and the provided #plan#. Formulate a preliminary #refined plan# for the 
#user query# by (1) removing redundant steps; (2) splitting, merging, refining, or adjusting existing steps to 
form more appropriate atomic operations; (3) adding new reasonable atomic operations.
2. If atomic operations include concrete nouns, abstract them in the form "(abstract noun: concrete noun)" to 
facilitate the passing of concrete nouns as parameters during the tool invocation process.
3. Clearly distinguish between atomic operations in the #refined plan# that require tool usage and those that do 
not.
4. For atomic operations that require tool usage, there must be preceding atomic operations (that do not require 
tool usage) for information retrieval to acquire all necessary parameters for tool invocation. Following the tool 
invocation, there should be atomic operations (that do not require tool usage) for observing/using the results of 
the tool invocation. If these are missing, additional steps must be supplemented.
5. Atomic operations requiring tool usage should focus solely on the tool invocation and not on parameter 
retrieval (if so, separate them into a new information retrieval operation arranged beforehand). Ensure that all 
parameter values required by the tool come exclusively from the concrete nouns in the "(abstract noun: 
concrete noun)" format of preceding information retrieval atomic operations. If a parameter's concrete noun 
has not appeared in prior information retrieval steps, adjust the preceding steps or add corresponding 
information retrieval steps. However, avoid repetitive retrieval of the same concrete noun.
6. Ensure the #refined plan# maintains a structured, orderly tree form.

Below are examples of inputs for #user query#, #plan#, and #existing tools#, and outputs for the #refined 
plan#:
{example1}
{example2}

Please generate a #refined plan# in JSON format based on the following #user query#, #plan#, and #existing 
tools#, referring to the example format. Ensure the correctness of the JSON string format and do not output 
any other content.
#user query#:
{query}
#plan#:
{plan}
#existing tools#
{tool}
#output#:

Figure 22: English prompt for plan refinement process.
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Chinese Prompt
你是⼀名专业的⼯具匹配助⼿。根据#用户问题#，#计划#和#⼯具集#。你的任务是对#计划#中的原⼦
操作进⾏⼯具匹配，并输出匹配⼯具后的#具体执⾏计划#，原⼦操作是#计划#中的叶⼦节点，即计划
中的最小不可分割步骤。要求如下：
1. 在#计划#中明确区分需要使用⼯具的原⼦操作和不需要使用⼯具的原⼦操作。
2. 对于需要使用⼯具的原⼦操作，指定使用#⼯具集#中的哪⼀个具体⼯具。
3. 在#具体执⾏计划#中以json格式清晰显示每个步骤及其是否需要⼯具。对于非原⼦操作，“tool”字段
标为"null”；对于不需要⼯具的原⼦操作，“tool”字段标为“不需要⼯具”；对于需要使用⼯具的原⼦操
作，提供⼯具名称及其具体参数。
4. 参数传递的形式均为：“参数名：参数值” ，保证使用的参数名来自于对应⼯具中定义的参数名集合，
保证使用的参数值都有来源，来源有三部分：用户指令、其他⼯具调用结果、⼀些用户相关信息（个
⼈信息如姓名、身份证、账号、密码等），若⼯具调用使用的参数值来源是其他⼯具调用的结果，需
要用“<>”标记出来，即修改为“具体参数名=<xx>”。

以下是⼀些输⼊#用户问题#，#计划#和#⼯具集#，输出#具体执⾏计划#的样例：
{example1}
{example2}

请根据以下#用户问题#，#计划#和#⼯具集#，参照样例格式，以json格式⽣成匹配⼯具后的#具体执⾏
计划#，注意保证json字符串格式的正确性，不要输出其他任何内容。
#用户问题#：
{query}
#计划#：
{plan}
#⼯具集#
{tool}
#输出#：

English Prompt
You are a professional tool-matching assistant. Based on the #user query#, #plan#, and #toolset#, your task is 
to match the atomic operations in the #plan# with appropriate tools and output the #specific execution plan#, 
where atomic operations are the leaf nodes of the #plan#, that is, the smallest indivisible steps of the plan. The 
requirements are as follows:
1. Clearly distinguish between atomic operations in the #plan# that require tools and those that do not.
2. For atomic operations that require the use of tools, specify which specific tool from the #toolset# should be 
used.
3. In the #specific execution plan#, clearly display each step in JSON format, along with whether or not a tool 
is needed. For non-atomic operations, the “tool” field should be marked as "null”; for atomic operations that 
do not require tools, the “tool” field should be marked as “no tool needed”; for atomic operations that do 
require tools, provide the tool name and specific parameters.
4. The format for parameter passing should be: “parameter name: parameter value”, ensuring that the used 
parameter names come from the corresponding tool’s defined parameter name collection and that the used 
parameter values have a source. The sources are threefold: user instructions, results of other tool invocations, 
and some user-related information (personal information such as name, ID card, account, password, etc.). If 
the parameter value used for tool invocation is the result of another tool's call, it should be marked with “<>”, 
i.e., changed to “specific parameter name=<xx>”.

Below are some examples of input #user query#, #plan#, and #toolset#, with output #specific execution plan#:
{example1}
{example2}

Please generate the #specific execution plan# in JSON format according to the following #user query#, #plan#, 
and #toolset#, referring to the example format. Ensure the correctness of the JSON string format and do not 
output any other content.
#user query#:
{query}
#plan#:
{plan}
#toolset#:
{tool}
#output#:

Figure 23: Prompt for tool calling message annotation process.
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Chinese Prompt
作为⼀名专业评估专家，你的任务是参照标准答案，根据给定的评估维度客观评估所提供数据的质量。给
定用户指令，标准答案和用户指令对应的任务规划，请根据以下评估维度对任务规划的质量进⾏评分：

1. 准确性：任务规划与用户指令的目标应该⼀致，对用户指令的理解和用户指令中提供信息的使用需要准
确，不能虚增用户指令中没有要求的不合理任务或不合理约束。
2. 完整性：用户指令中涉及的多个任务、约束全部需要在任务规划的步骤中体现，不能有遗漏。
3. 可执⾏性：任务规划整体逻辑连贯，任务规划中的步骤均合理且可执⾏，步骤之间顺序合理，可以逐步
执⾏以解决用户指令，不会缺失步骤导致后续步骤⽆法执⾏，也不会有冗余步骤导致执⾏错误。
4. 语法健全性：任务规划的内容语法健全，语句通顺流畅，语⾔风格良好，没有语法错误。
5. 结构合理性：任务规划的结构是⼀个有序的树状结构，⽗操作和⼦操作之间关系合理，整体组织结构⾼
效合理。
6. ⾼效性：任务规划简洁⾼效，步骤清晰明确，不会过度细分步骤，没有冗长复杂的流程。

总的来说，模型回答的质量越⾼，则分数越⾼，作为示例，标准答案在各个维度和总分上都可以得到8分。
对照标准答案，逐步给上述每个评估维度打⼀个分数，然后根据所有的评估维度，打⼀个总分，总分的具
体打分标准为：
当模型回答存在与问题不相关，或者有本质性的事实错误，或⽣成了有害内容时，总分必须是1分；
当模型回答没有严重错误⽽且基本⽆害，但是质量较低，没有满⾜用户需求，总分为2到3分；
当模型回答基本满⾜用户要求，但是在部分维度上表现较差，质量中等，总分可以得4到6分；
当模型回答质量与标准答案相近，在所有维度上表现良好，总分得7到8分；
只有当模型回答质量显著超过标准答案，充分地解决了用户问题和所有需求，并且在所有维度上都接近满
分的情况下，才能得9到10分。

你必须按照以下格式提供你的评估结果：
[
{{"打分理由": <对照准确性定义和标准答案，提供评分原因>, "准确性分数": <分配1到10分之间的分数>}},
{{"打分理由": <对照完整性定义和标准答案，提供评分原因>, "完整性分数": <分配1到10分之间的分数>}},
{{"打分理由": <对照可执⾏性定义和标准答案，提供评分原因>, "可执⾏性分数": <分配1到10分之间的分数
>}},
{{"打分理由": <对照语法健全性定义和标准答案，提供评分原因>, "语法健全性分数": <分配1到10分之间的
分数>}},
{{"打分理由": <对照结构合理性定义和标准答案，提供评分原因>, "结构合理性分数": <分配1到10分之间的
分数>}},
{{"打分理由": <对照⾼效性定义和标准答案，提供评分原因>, "⾼效性分数": <分配1到10分之间的分数>}},
{{"打分理由": <对照所有评估维度定义和标准答案，提供评分原因>, "总分": <分配1到10分之间的分数>}},
]

以下是给定的用户指令，标准答案和要评估的任务规划：
用户指令：{question}
标准答案：{reference}
要评估的任务规划：{answer}

根据上述评估维度，对照标准答案，对要评估的任务规划逐步给每个评估维度打分，然后再打⼀个总分。
最终输出内容应以json字符串的形式输出，不要输出其他任何内容。
输出：

Figure 24: Prompt for Multi-Dimensional Point-Wise LLM-as-Judge Method on Chinese-dataset planning evaluation.
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English Prompt
As a professional assessment expert, your task is to objectively evaluate the quality of the provided data based on 
the given assessment dimensions, with reference to the standard answer. Given user instructions, a standard answer, 
and a task planning corresponding to the user instructions, please score the quality of the task planning according to 
the following assessment dimensions:

1. Accuracy: The task planning should align with the objectives of the user instructions. The understanding of the 
user instructions and the use of information provided within them must be accurate, without adding unreasonable 
tasks or constraints that are not requested by the user.
2. Completeness: All tasks and constraints involved in the user instructions must be reflected in the steps of task 
planning without omissions.
3. Executability: The overall logic of the task planning should be coherent. All steps in the task planning should be 
reasonable and executable, with a logical sequence that allows for gradual completion to address the user's 
instructions. There should be no missing steps that would prevent subsequent steps from being executed, nor any 
superfluous steps that could cause errors in execution.
4. Syntactic Soundness: The content of the task planning should be grammatically sound, with smooth and fluent 
sentences, a good language style, and free of grammatical errors.
5. Structural Rationality: The structure of the task planning should be an ordered tree-like hierarchy, with reasonable 
relationships between parent and child operations, and an overall efficient and rational organization.
6. Efficiency: The task planning should be concise and efficient, with clear and specific steps, without excessively 
subdividing steps or having lengthy and complicated procedures.

Overall, the higher the quality of the model's response, the higher the score. As an example, the standard answer 
could receive a score of 8 in each dimension and in total.
Contrasting with the standard answer, assign a score to each of the above assessment dimensions individually, and 
then give an overall score based on all the assessment dimensions. The specific criteria for the overall score are as 
follows:
The overall score must be 1 if the model's response is irrelevant to the question, contains fundamental factual errors, 
or generates harmful content.
If the model's response has no serious errors and is generally harmless but of low quality and does not meet the 
user's needs, the overall score should be between 2 and 3.
If the model's response basically meets the user's requirements but performs poorly on some dimensions, with 
medium quality, the overall score should be between 4 and 6.
If the model's response is close to the quality of the standard answer and performs well in all dimensions, the overall 
score should be between 7 and 8.
Only if the model's response significantly surpasses the standard answer, thoroughly addresses the user's questions 
and all needs, and is near perfect in all dimensions, can it receive a score between 9 and 10.

You must provide your assessment results in the following format:
[
{{"Reasoning": <Provide reasoning for the score with reference to the accuracy definition and standard answer>, 
"Accuracy Score": <Assign a score between 1 and 10>}},
{{"Reasoning": <Provide reasoning for the score with reference to the completeness definition and standard 
answer>, "Completeness Score": <Assign a score between 1 and 10>}},
{{"Reasoning": <Provide reasoning for the score with reference to the executability definition and standard answer>, 
"Executability Score": <Assign a score between 1 and 10>}},
{{"Reasoning": <Provide reasoning for the score with reference to the syntactic soundness definition and standard 
answer>, "Syntactic Soundness Score": <Assign a score between 1 and 10>}},
{{"Reasoning": <Provide reasoning for the score with reference to the structural rationality definition and standard 
answer>, "Structural Rationality Score": <Assign a score between 1 and 10>}},
{{"Reasoning": <Provide reasoning for the score with reference to the efficiency definition and standard answer>, 
"Efficiency Score": <Assign a score between 1 and 10>}},
{{"Reasoning": <Provide reasoning for the score with reference to all assessment dimension definitions and 
standard answer>, "Overall Score": <Assign a score between 1 and 10>}},
]

Here are the given user instructions, standard answer, and the task planning to be assessed:
User Instructions: {question}
Standard Answer: {reference}
Task Planning to be Assessed: {answer}

Based on the above assessment dimensions and contrasting with the standard answer, score each assessment 
dimension for the task planning to be assessed, and then give an overall score. The final output should be in the 
form of a JSON string, without including any other content.
Output:

Figure 25: Prompt for Multi-Dimensional Point-Wise LLM-as-Judge Method on English-dataset planning evaluation.
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Chinese Prompt

作为⼀名专业评估专家，你的任务是参照标准答案，根据给定的评估维度客观评估所提供数据的质量。给
定用户指令，标准答案和根据用户指令所创造的⼯具，请根据以下评估维度对创造的⼯具的质量进⾏评分：

1. 格式遵从性：创造的⼯具应该与标准答案在格式上保持完全⼀致，完整包含⼯具名（"name"字段）、⼯
具描述（"description"字段）、参数列表（"arguments"字段，"arguments"中还包含"type"和"properties"字段）
和返回值（"results"字段，"results"中还包含"type"和"properties"字段）这⼏个基本组成部分。
2. 准确性：创造的⼯具与用户指令的目标应该⼀致，能够准确解决用户指令的需求。
3. 内容合理性：创造的⼯具定义的各个字段的内容都应该合理，包括自然语⾔描述字段的表达清晰、语法
健全，以及定义的各个参数的类型和各个返回值的类型均是合理的。
4. 可执⾏性：创造的⼯具定义的⼯具名和⼯具描述能够恰当表达⼯具的功能，定义的参数列表完备，定义
的返回值完备。
5. 丰富度：创造的⼯具包含丰富的信息、深度、上下⽂考虑和多样性。

总的来说，模型回答的质量越⾼，则分数越⾼，作为示例，标准答案在各个维度和总分上都可以得到8分。
对照标准答案，逐步给上述每个评估维度打⼀个分数，然后根据所有的评估维度，打⼀个总分，总分的具
体打分标准为：
当模型回答存在与问题不相关，或者有本质性的事实错误，或⽣成了有害内容时，总分必须是1分；
当模型回答没有严重错误⽽且基本⽆害，但是质量较低，没有满⾜用户需求，总分为2到3分；
当模型回答基本满⾜用户要求，但是在部分维度上表现较差，质量中等，总分可以得4到6分；
当模型回答质量与标准答案相近，在所有维度上表现良好，总分得7到8分；
只有当模型回答质量显著超过标准答案，充分地解决了用户问题和所有需求，并且在所有维度上都接近满
分的情况下，才能得9到10分。

你必须按照以下格式提供你的评估结果：
[
{{"打分理由": <对照格式遵从性定义和标准答案，提供评分原因>, "格式遵从性分数": <分配1到10分之间的
分数>}},
{{"打分理由": <对照准确性定义和标准答案，提供评分原因>, "准确性分数": <分配1到10分之间的分数>}},
{{"打分理由": <对照内容合理性定义和标准答案，提供评分原因>, "内容合理性分数": <分配1到10分之间的
分数>}},
{{"打分理由": <对照可执⾏性定义和标准答案，提供评分原因>, "可执⾏性分数": <分配1到10分之间的分数
>}},
{{"打分理由": <对照丰富度定义和标准答案，提供评分原因>, "丰富度分数": <分配1到10分之间的分数>}},
{{"打分理由": <对照所有评估维度定义和标准答案，提供评分原因>, "总分": <分配1到10分之间的分数>}},
]

以下是给定的用户指令，标准答案和要评估的创造的⼯具：
用户指令：{question}
标准答案：{reference}
创造的⼯具：{answer}

根据上述评估维度，对照标准答案，对要评估的创造的⼯具逐步给每个评估维度打分，然后再打⼀个总分。
最终输出内容应以json字符串的形式输出，不要输出其他任何内容。
输出：

Figure 26: Prompt for Multi-Dimensional Point-Wise LLM-as-Judge Method on Chinese-dataset tool creation
evaluation.
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English Prompt

As a professional assessment expert, your task is to objectively assess the quality of the provided data in reference to 
the standard answer, based on the given assessment dimensions. Given a user instruction, the standard answer, and a 
tool created in response to the user instruction, please score the quality of the created tool according to the following 
assessment dimensions:

1. Format Compliance: The created tool should be completely consistent with the standard answer in terms of 
format, fully including the basic components such as the tool name ("name" field), tool description ("description" 
field), list of arguments ("arguments" field, with "type" and "properties" fields within "arguments") and return 
values ("results" field, with "type" and "properties" fields within "results").
2. Accuracy: The created tool should align with the objectives of the user instruction and accurately address the 
user's needs.
3. Content Reasonableness: The content within each field of the created tool should be reasonable, including clear 
expression and solid grammar in the natural language description fields, as well as sensible types for each defined 
argument and return value.
4. Executability: The tool name and description defined in the created tool should appropriately express its function, 
with a comprehensive list of parameters and complete return values.
5. Richness: The created tool should include rich information, depth, contextual considerations, and diversity.

Overall, the higher the quality of the model answer, the higher the score. As an example, the standard answer can 
score 8 points in each dimension and in total.
Compare the standard answer and step by step score each of the above assessment dimensions, then provide an 
overall score based on all dimensions. The specific criteria for the overall score are as follows:
The total score must be 1 point if the model answer is irrelevant to the question, contains essential factual errors, or 
generates harmful content.
The total score should be 2 to 3 points if the model answer is of low quality without serious errors and is harmless 
but does not meet user needs.
The total score can be 4 to 6 points if the model answer generally meets user requirements but performs poorly in 
some dimensions and is of mediocre quality.
The total score should be 7 to 8 points if the model answer's quality is close to the standard answer and performs 
well in all dimensions.
A score of 9 to 10 points is only achievable if the model answer significantly surpasses the standard answer, fully 
resolves the user's issue and all requirements, and approaches a perfect score in all dimensions.

You must provide your assessment results in the following format:
[
{{"Scoring Reason": <Provide reasons for scoring against the definition of format compliance and the standard 
answer>, "Format Compliance Score": <Assign a score between 1 to 10>}},
{{"Scoring Reason": <Provide reasons for scoring against the definition of accuracy and the standard answer>, 
"Accuracy Score": <Assign a score between 1 to 10>}},
{{"Scoring Reason": <Provide reasons for scoring against the definition of content reasonableness and the standard 
answer>, "Content Reasonableness Score": <Assign a score between 1 to 10>}},
{{"Scoring Reason": <Provide reasons for scoring against the definition of executability and the standard answer>, 
"Executability Score": <Assign a score between 1 to 10>}},
{{"Scoring Reason": <Provide reasons for scoring against the definition of richness and the standard answer>, 
"Richness Score": <Assign a score between 1 to 10>}},
{{"Scoring Reason": <Provide reasons for scoring against all assessment dimensions and the standard answer>, 
"Total Score": <Assign a score between 1 to 10>}},
]

Below are the given user instruction, standard answer, and the created tool to be evaluated:
User instruction: {question}
Standard answer: {reference}
Created tool: {answer}

Based on the above assessment dimensions and comparing against the standard answer, score each dimension for 
the created tool to be evaluated, then provide an overall score. The final output should be in the form of a JSON 
string, without any additional content.
Output:

Figure 27: Prompt for Multi-Dimensional Point-Wise LLM-as-Judge Method on English-dataset tool creation
evaluation.
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Chinese Prompt
你是⼀个专业的计划制定助⼿，给你⼀个用户问题，你的任务是充分理解用户问题，并制定⼀个合理
的、可执⾏的多步计划以完成用户的任务，具体⽽⾔，你制订的计划应像⼀棵树⼀样分为多个⼦任务。
输出格式为字符串（内容是使用换⾏符分隔的⼀系列⼦任务），例如：1. 任务1 \n 1.1 任务1.1 \n 1.2 任
务1.2 \n 1.2.1 任务1.2.1 \n ... \n 2. 任务2 \n ...

你应该严格遵守输出格式要求，不要输出其他任何内容。
样例：
问题：{input}
输出：{reference}

让我们开始吧！
问题：{input}
输出：

English Prompt
You are a professional planning assistant. Given a user's question, your task is to fully understand the user's 
question and create a reasonable, executable multi-step plan to complete the user's task. Specifically, your plan 
should be like a tree with multiple subtasks. The output format is a string (content is a series of subtasks 
separated by newline characters), for example: 1. Task 1 \n 1.1 Task 1.1 \n 1.2 Task 1.2 \n 1.2.1 Task 1.2.1 \n ... 
\n 2. Task 2 \n ...

You should strictly follow the output format requirements and not output any other content. 
Example: 
Question: {input}
Output: {reference}

Let’s Begin!
Question: {input}
Output: 

Figure 28: Prompt for planning inference on Chinese-dataset and English-dataset.
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Chinese Prompt
你是⼀个专业的⼈⼯智能助⼿，给你⼀个计划和相应的⼯具集，计划中有些步骤带有'tool'字段，你的
任务是判断这些步骤能否在给定的⼯具集中找到合适的⼯具，如果⼯具集中没有合适的⼯具（需要创
造新的⼯具）则'tool'字段为'1'，否则为'0'。输出格式为元素是dict的list，每个dict包含'step'（给定计划
中有'tool'字段的步骤）和'tool'（判断，'0'或'1'）字段，例如：[{"step": "2.1 步骤2.1", "tool": "1"}, 
{"step": "4.2 步骤4.2", "tool": "0"}, ...]

你应该严格遵守输出格式要求，不要输出其他任何内容。
样例：
计划：{input}
⼯具集：{toolset}
输出：{reference}

让我们开始吧！
计划：{input}
⼯具集：{toolset}
输出：

English Prompt
You are a professional AI assistant. Given a plan and a corresponding set of tools, some steps in the plan have 
a 'tool' field. Your task is to determine whether it is possible to find an appropriate tool in the given toolset for 
these steps. If there is no suitable tool in the toolset (requiring the creation of a new tool), then the 'tool' field 
should be '1', otherwise '0'. The output format is a list of dicts, each dict contains 'step' (the step in the given 
plan that has a 'tool' field) and 'tool' (judgment, '0' or '1'), for example: [{"step": "2.1 step 2.1", "tool": "1"}, 
{"step": "4.2 step 4.2", "tool": "0"}, ...]

You should strictly follow the output format requirements and not output any other content. 
Example: 
Plan: {input}
Toolset: {toolset}
Output: {reference}

Let’s Begin!
Plan: {input}
Toolset: {toolset}
Output: 

Figure 29: Prompt for tool creation awareness inference on Chinese-dataset and English-dataset.
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Chinese Prompt
你是⼀个专业的⼯具创造助⼿，给你⼀个计划和⼀个⼯具集，计划中有些步骤带有'tool'字段，你的任
务是参照给定⼯具集中的⼯具的格式，为这些步骤创造对应的⼯具，并在'tool'字段填⼊所创造的⼯具。
输出格式为元素是dict的list，每个dict包含'step'（给定计划中有'tool'字段的步骤）和'tool'（创造的⼯具，
dict格式）字段，例如：[{"step": "2.3 步骤2.3", "tool": {"name": ..., "description": ..., "arguments": 
{"type": ..., "properties": {...}}, "results": {"type": ..., "properties": {...}}}}, ...]

你应该严格遵守输出格式要求，不要输出其他任何内容。
样例：
计划：{input}
⼯具集：{toolset}
输出：{reference}

让我们开始吧！
计划：{input}
⼯具集：{toolset}
输出：

English Prompt
You are a professional tool creation assistant. Given a plan and a toolset, some steps in the plan have a 'tool' 
field. Your task is to create corresponding tools for these steps, referring to the format of tools in the given 
toolset, and fill in the 'tool' field with the created tool. The output format is a list of dicts, each dict contains 
'step' (the step in the given plan that has a 'tool' field) and 'tool' (the created tool, dict format), for example: 
[{"step": "2.3 step 2.3", "tool": {"name": ..., "description": ..., "arguments": {"type": ..., "properties": {...}}, 
"results": {"type": ..., "properties": {...}}}}, ...]

You should strictly follow the output format requirements and not output any other content. 
Example: 
Plan: {input}
Toolset: {toolset}
Output: {reference}

Let’s Begin!
Plan: {input}
Toolset: {toolset}
Output: 

Figure 30: Prompt for tool creation inference on Chinese-dataset and English-dataset.
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Chinese Prompt
你是⼀个专业的⼈⼯智能助⼿，给你⼀个计划，计划中有些步骤带有'tool'字段，你的任务是判断完成
这些步骤是否需要使用⼯具，如果需要使用⼯具则'tool'字段为'1'，否则为'0'。输出格式为元素是dict的
list，每个dict包含'step'（给定计划中有'tool'字段的步骤）和'tool'（判断，'0'或'1'）字段，例如：
[{"step": "1.1 步骤1.1", "tool": "0"}, {"step": "2.3 步骤2.3", "tool": "1"}, ...]

你应该严格遵守输出格式要求，不要输出其他任何内容。
样例：
计划：{input}
输出：{reference}

让我们开始吧！
计划：{input}
输出：

English Prompt
You are a professional AI assistant. Given a plan, some steps in the plan have a 'tool' field. Your task is to 
determine whether tools are needed to complete these steps. If tools are required, the 'tool' field should be '1', 
otherwise '0'. The output format is a list of dicts, each dict contains 'step' (the step in the given plan that has a 
'tool' field) and 'tool' (judgment, '0' or '1'), for example: [{"step": "1.1 step 1.1", "tool": "0"}, {"step": "2.3 step 
2.3", "tool": "1"}, ...]

You should strictly follow the output format requirements and not output any other content. 
Example: 
Plan: {input}
Output: {reference}

Let’s Begin!
Plan: {input}
Output: 

Figure 31: Prompt for tool usage awareness inference on Chinese-dataset and English-dataset.
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Chinese Prompt
你是⼀个专业的⼯具选择助⼿，给你⼀个计划和相应的⼯具集，计划中有些步骤带有'tool'字段，你的
任务是从给定的⼯具集中为这些步骤选择合适的⼯具，并在'tool'字段填⼊选中⼯具的名称（⼯具的
'name'字段）。输出格式为元素是dict的list，每个dict包含'step'（给定计划中有'tool'字段的步骤）和
'tool'（选中⼯具的'name'字段）字段，例如：[{"step": "2.1 步骤2.1", "tool": "⼯具名1"}, ...]

你应该严格遵守输出格式要求，不要输出其他任何内容。
样例：
计划：{input}
⼯具集：{toolset}
输出：{reference}

让我们开始吧！
计划：{input}
⼯具集：{toolset}
输出：

English Prompt
You are a professional tool selection assistant. Given a plan and a corresponding set of tools, some steps in the 
plan have a 'tool' field. Your task is to select the appropriate tool from the given toolset for these steps and fill 
in the 'tool' field with the name of the selected tool (the 'name' field of the tool). The output format is a list of 
dicts, each dict contains 'step' (the step in the given plan that has a 'tool' field) and 'tool' (the 'name' field of the 
selected tool), for example: [{"step": "2.1 step 2.1", "tool": "Tool Name 1"}, ...]

You should strictly follow the output format requirements and not output any other content. 
Example: 
Plan: {input}
Toolset: {toolset}
Output: {reference}

Let’s Begin!
Plan: {input}
Toolset: {toolset}
Output: 

Figure 32: Prompt for tool selection inference on Chinese-dataset and English-dataset.
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Chinese Prompt
你是⼀个专业的⼯具参数填充助⼿，给你用户问题，问题对应的计划和相应的⼯具集，计划中有些步
骤带有'tool'字段（⼯具名）和'param'字段，你的任务是先通过'tool'字段在⼯具集中找到对应⼯具，然
后为这些步骤的'param'字段填⼊调用对应⼯具所需要的参数（参数格式为"参数名=参数值"，多个参数
用','分隔），参数名来自于对应⼯具的'arguments'中的'properties'字段（不需要全部使用），参数值来
源于用户问题和每个步骤的前序步骤中的信息（若参数值来自于前序⼯具调用的返回值，用<>标识）。
输出格式为元素是dict的list，每个dict包含'step'（给定计划中有'tool'字段的步骤），'tool'（步骤对应的
'tool'字段）和'param'（填充的参数，dict格式）字段，例如： [{"step": "3.2 步骤3.2", "tool": "⼯具名1", 
"param": {"参数名1": "参数值1", "参数名2": "<参数值2>", ...}}, ...]

你应该严格遵守输出格式要求，不要输出其他任何内容。
样例：
问题：{question}
计划：{input}
⼯具集：{toolset}
输出：{reference}

让我们开始吧！
问题：{question}
计划：{input}
⼯具集：{toolset}
输出：

English Prompt
You are a professional tool parameter filling assistant. Given a user's question, the corresponding plan, and a 
set of tools, some steps in the plan have a 'tool' field (tool name) and a 'param' field. Your task is to first find 
the corresponding tool in the toolset through the 'tool' field, and then fill in the 'param' field for these steps 
with the parameters required to call the corresponding tool (parameter format is "parameter name=parameter 
value", separate multiple parameters with ','), where the parameter names come from the 'properties' field in 
the 'arguments' of the corresponding tool (not all need to be used), and parameter values come from the user's 
question and information from the previous steps (if the parameter value comes from the return value of a 
previous tool call, use <> to indicate). The output format is a list of dicts, each dict contains 'step' (the step in 
the given plan that has a 'tool' field), 'tool' (the corresponding 'tool' field of the step), and 'param' (the filled 
parameters, dict format), for example: [{"step": "3.2 step 3.2", "tool": "Tool Name 1", "param": {"parameter 
name1": "parameter value1", "parameter name2": "<parameter value2>", ...}}, ...]

You should strictly follow the output format requirements and not output any other content. 
Example: 
Question: {question}
Plan: {input}
Toolset: {toolset}
Output: {reference}

Let’s Begin!
Question: {question}
Plan: {input}
Toolset: {toolset}
Output: 

Figure 33: Prompt for tool usage inference on Chinese-dataset and English-dataset.
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